Supporting Information

An Ag₂S@ZIF-Van nanosystem for NIR-II imaging of bacterialinduced inframmation and treatment of wound bacterial infection

Yao Huang^a, Hongchao Geng^a, Zeming Wu^b, Leilei Sun^a, Chenhui Ji^a, Craig A. Grimes^c, Xinxin Feng^{a,*}, Qingyun Cai^{a,*}

^aState Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China

^bInner Mongolia Environmental Monitoring Center, Hohhot 010011, Inner Mongolia, China

°Flux Photon Corporation, Alpharetta, Georgia 30005, United States

Corresponding Author: <u>qycai0001@hnu.edu.cn</u>

Fig. S1 (A) TEM image of Ag₂S-DDT; (B) XRD spectrum of Ag₂S-DDT.

Fig. S2 The EDS spectra of Ag_2S -MPA and Ag_2S @ZIF-Van.

Fig. S3 The XPS spectra of Ag₂S-MPA and Ag₂S@ZIF-Van.

Fig. S4 (A) The absorption spectra of Zincon monosodium salt after combined with different concentration of Zn^{2+} ions; (B) The curve and fitted linear relationship (inset picture) between absorption intensity at 625 nm and the concentrations of Zn^{2+} ions.

Fig. S5 (A) The absorption spectra of different concentration of Van; (B) The fitted linear relationship between absorption intensity at 280 nm and the concentrations of Van .

Fig. S6 The absorption spectra of the centrifugal supernatant of $Ag_2S@ZIF$ -Van in before release (black line) and after release (red line) for calculating the Van contents in $Ag_2S@ZIF$ -Van (100 µg/mL).

Fig. S7 The absorption spectra of the Zincon monosodium salt after reaction with centrifugal supernatant of $Ag_2S@ZIF$ -Van in before release (black line) and after release (red line) for calculating Zn^{2+} ions contents in $Ag_2S@ZIF$ -Van (200 µg/mL).

Fig. S8 The $Ag_2S@ZIF$ -Van release content of Zn^{2+} ions and Van after incubated 2 h in different pH environment and color change of Zincon monosodium salt solution (inset picture).

Fig. S9 Hemolysis test of $Ag_2S@ZIF$ -Van at different concentrations.

Fig. S10 Cytotoxicity of Ag₂S@ZIF-Van with different concentrations to CT26 and 4T1.

Fig. S11 In vivo toxicity tests of $Ag_2S@ZIF$ -Van by H&E-stained tissue sections (scale bar = 200 μ m).

Fig. S12 (A) Ex-vivo NIR-II fluorescent imaging of main organs from the mice treated with $Ag_2S@ZIF$ -Van after 0.5 day, 3 day, 6 day post-injection under 808 nm NIR laser excitation (300 mW/cm²) with NIR-II imaging system. (B) Fluorescence intensity of each organ corresponding to (A) as a function of time.

Fig. S13 (A) NIR-II fluorescent imaging of resuspension and supernatant after incubation and then centrifugation of different concentrations of *S. aureus* with $Ag_2S@ZIF-Van;$ (B) The curve of optical signal intensity corresponding to (A).

Fig. S14 (A) The schematic diagram of tissue depth imaging experiment and NIR-II fluorescent images of Ag₂S@ZIF-Van at different tissue depths. (B) The fluorescence signal distribution at the yellow arrow position of different tissue depth imaging in (A).

Fig. S15 (A) Plate coating count of *S. aureus* after treatment with different concentration of $Ag_2S@ZIF$ -Van in various environment (pH = 7.4, pH = 6.0 or pH = 6.0 + NIR irradiation); (B) *S. aureus* count histogram corresponding to (A).

Fig. S16 (A) The fluorescence analysis of confocal imaging of Fig. 4D; (B) The ratio of I_{PI} to I_{DAPI} fluorescence.

Fig. S17 The OD₅₇₀ of wells after treatment with each anti-bacterial methods. The red line represents 90% bacteriostatic rate. (A₁) and (A₂): Van; (B₁) and (B₂): ZIF-8; (C₁) and (C₂): Ag₂S-MPA + NIR irradiation; (D₁) and (D₂): Ag₂S@ZIF-Van + NIR irradiation.

Sample name	рН	MIC _(6h)
Van	7.4	10 μg/mL
	6.0	10 μg/mL
ZIF-8	7.4	>400 μg/mL
	6.0	400 μg/mL
Ag ₂ S-MPA+NIR	7.4	400 μg/mL
	6.0	400 μg/mL
Ag ₂ S@ZIF-Van + NIR	7.4	100 μg/mL
	6.0	50 μg/mL

Table S1 MIC_(6h) of each anti-bacterial methods.

Per 100 µg of Ag₂S@ZIF-Van contains ~2 µg of Van, ~30 µg of Ag₂S-MPA, ~68 µg of ZIF-8.

Fig. S18 Temperature change curves of bacterial wound infection site after treatment with PBS solution and $Ag_2S@ZIF$ -Van under 808 nm laser (1.0 W/cm²) irradiation, respectively.

Fig. S19 Body weight change of mice after different treatments.

Fig. S20 The corresponding CFU counts of *S. aureus* colonies from each wounds, (n=3).