Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Decellularized extracellular matrix derived from keratinocytes can suppress cellular senescence induced by replicative and oxidative stresses.

Takashi Hoshiba*

Supplemental Figures

Figure S1. The growth percentage of P3-NHEKs on NHEK-derived dECM and TCPS. Data represent means \pm SD (n=4). *: P < 0.05, ***: P < 0.005 vs. TCPS (7 days).

Figure S2. The growth percentage of P5-NHEKs on NHEK-derived dECM and TCPS. Data represent means \pm SD (n=4). *N.S.* indicates not significant difference.

Supplemental Tables

Table S1. Primer sequences for RT-PCR.

Gene	Sequence (5' to 3')	Reference			
LAMA3	F: CACTGTGAACGCTGCCAGGAGGGCTA	[1]			
	R: CAGCTACCTCCGAATTTCTGGGGATT				
LAMA5	F: GGTCACCCGCCGGTATTATT -				
	R: AGTCGATACAGACACCCCCA				
COL4A1	F: GGATCGGCTACTCTTTTGTGATG	[2]			
	R: AAGCGTTTGCGTAGTAATTGCA				
HSPG2	F: GGCATACGATGGCTTGTCTC -				
	R: CACCTCTCGGAACTCTCTGG				
NID-1	F: TCCGCTTCTACGACAGATCC -				
	R: GAAAGAGATCTCCGGGAACC				
GAPDH	F: GGGCTGCTTTTAACTCTGGT [3]				
	R: TGGCAGGTTTTTCTAGACGG				

LAMA5, HSPG2, and NID-1 were originally designed.

Table S2. Primer and probe sequences for real-time PCR.

Gene	Sequence (5' to 3') or Gene Expression Assay No.	Reference
SOD1	Hs00533490_m1	-
GPX1	Hs00829989_gH	-
CAT	Hs00156308_m1	-
AQP3	Hs00185020_m1	-
GAPDH	F: ATGGGGAAGGTGAAGGTCG	[4]
	R: TAAAAGCAGCCTGGTGACC	
	Probe: [FAM]CGCCCAATACGACCAAATCCGTTGAC[TAMRA]	

Table S3. Projected cell areas of P3-NHEKs under oxidative condition.

Substrates	Projected cell area (μm²)	P-value vs. TCPS
P3-dECM	553±641	7.5×10 ⁻⁹
P5-dECM	839±937	1.1×10 ⁻⁶
TCPS	632±589	-

Statistical differences were determined by Kruskal-Wallis test and Wilcoxson rank sum test was applied as a *post hoc* test. Over 550 cells/sample were measured.

Table S4. Projected cell areas of P5-NHEKs under normal condition.

Substrates	Projected cell area (μm²)	P-value vs. TCPS
P3-dECM	2470±1185	0.0065
P5-dECM	2713±1375	N.S.
TCPS	2724±1267	-

Statistical differences were determined by Kruskal-Wallis test and Wilcoxson rank sum test was applied as a *post hoc* test. Over 350 cells/sample were measured.

Table S5. The yields of passaged cells on P3-dECM and TCPS (unit: ×10⁴ cells).

	Passage	P3-dECM	TCPS	Initial cell number
#1	Passage 2 to	451	625	50.25
	passage 3			
#2	Passage 3 to	326	371	75
	passage 4			
#3	Passage 3 to	369	435	75
	passage 4			

References

- [1] H. Fujiwara, Y. Kikkawa, N. Sanzen, K.Sekiguchi, J. Biol. Chem. 2001, 276, 17550.
- [2] T.-W. Wang, J.-S. Sun, Y.-C. Huang, H.-C. Wu, L.-T. Chen, F.-H. Lin, *Biomaterials* **2006**, *27*, 5059.
- [3] R. Tuli, S. Tuli, S. Nandi, X. Huang, P.A. Manner, W.J. Hozack, K.G. Danielson, D.J. Hall, R.S. Tuan, *J. Biol. Chem.* **2003**, *278*, 41227.
- [4] I. Martin, M. Jakob, D. Schafer, G. Spagnoli, M. Heberer, Osteoarthr. Carti. 2001, 9, 112.