Supporting Information

Development and optimization of an ocular hydrogel adhesive patch using definitive screening design (DSD)

Shima Gholizadeh¹, Xi Chen¹, Ann Yung², Amirreza Naderi², Mahsa Ghovvati¹, Yangcheng Liu¹, Ashkan Farzad³, Azadeh Mostafavi¹, Reza Dana², Nasim Annabi¹

¹Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA, USA

² Schepens Eye Research Institute, Mass Eye and Ear, Harvard Medical School, Department of Ophthalmology, Boston, MA, USA

³Sanquin product support and development, Sanquin plasma products B.V., Amsterdam, The Netherlands.

Corresponding author: Nasim Annabi (nannabi@ucla.edu), Tel: 310-267-5927

#	GelMA ¹	Instagel ²	PEGDA ³	HAMA ^₄	HAGM⁵	Replicates
	%(w/v)	%(w/v)	%(w/v)	%(w/v)	%(w/v)	
1	0	0	0	0	3	2
2	0	0	0	3	0	2
3	0	0	1	0	0	2
4	0	0	1	3	0	2
5	0	3	0	0	0	2
6	0	4	1	0	3	2
7	0	6.5	0.5	1	0	2
8	0	6.5	1	0	0.5	2
9	0	7	0	0	3	2
10	0	7	0	3	0	2
11	3	0	0	0	0	2
12	4	0	1	0	3	2
13	4	0	1	3	0	2
14	6.5	0	0.5	1	0	2
15	6.5	0	1	0.5	0	2
16	7	0	0	0	3	2
17	7	0	0	1	0	2

Table S1. Hydrogel compositions based on different concentrations of polymers used for Design of experiment (DoE) by JMP[®] software

¹Referred to as GelMA B300, ²Commercial name of GelMA B225, ³Poly ethylene glycol diacrylate, ⁴Methacrylated hyaluronic acid and ⁵Glycidyl methacrylated hyaluronic acid.

Table S2. Physicochemical characteristics of single polymers 10% (w/v) for GeIMA (B300 and B225), 3% (w/v) for HAMA and HAGM, and PEGDA.

Polymer	MW (kDa) ¹	DM ²
GelMA B300	60-100	81%
GelMA B225, Instagel	40-60	78%
HAGM	1.5-1.8 x 10 ³	12%
HAMA	1.5-1.8 x 10 ³	33%
PEGDA	35 x 10 ³	85%

¹Molecular weight, ²Degree of modification determined by ¹HNMR

Table S3. Optimized hydrogel formulations at different concentrations and weight ratios of GeIMA B300 and HAGM.

#	Formulations	GelMA %(w/v)	HAGM %(w/v)	GelMA: HAGM ratio
1	G7HG3	7	3	2.3
2	G14HG3	14	3	4.7
3	G14HG6	14	6	2.3
4	G7HG6	7	6	1.2

Figure S1. ¹HNMR characterization of porcine derived methacrylated gelatin (GelMA B300) compared to its native form gelatin (B300).

Figure S2. ¹HNMR characterization of porcine derived methacrylated gelatin (GelMA B225) compared to its native form gelatin (B225) or Instagel.

Figure S3. ¹HNMR characterization of glycidyl methacrylated hyaluronic acid (HAGM).

Figure S4. ¹HNMR characterization of methacrylated hyaluronic acid (HAMA).

Figure S5. ¹HNMR characterization of diacylated polyethylene glycol (PEGDA)

Figure S6. Circular dichroism (CD) spectra of 0.03% GelMA B300 (blue), GelMA B225 (cyan), [orcine gelatin B300 (red), and porcine gelatin B225 (green) dissolved in water. The bottom half is dynode voltage, labeled as high tension (HT).

Figure S7. Representative compressive stress-strain curves of photocrosslinked hydrogels prepared with 10% (w/v) GeIMA (300 and 225) and 3% (w/v) HAGMA and HAMA.

Figure S8. Scatterplots of experimental versus predicted values for (A) Burst pressure, (B) Swelling ratio, (C) compression modulus, and (D) Elasticity.

Figure S9. Response surface estimated by definitive screening design (DSD) for swelling ratio. (A) As a function of GeIMA B300 and GeIMA B225 concentrations, (B) as a function of GeIMA B300 and PEGDA concentrations, (C) as a function of HAMA and GeIMA B300 concentrations, (D) as a function of GeIMA B300 of HAGM concentrations. Only positive Z values were considered.

Figure S10. Response surface estimated by definitive screening design (DSD) for compression modulus. (A) As a function of GeIMA B300 and GeIMA B225 concentrations, (B) as a function of GeIMA B300 and PEGDA concentrations, (C) as a function of GeIMA B300 and HAMA concentrations, (D) and as a function of GeIMA B300 of HAGM concentrations. Only positive Z values were considered.

Figure S11. Response surface estimated by definitive screening design (DSD) for elasticity (maximum strain). (A) As a function of GeIMA B300 and GeIMA B225 concentrations, (B) as a function of GeIMA B300 and PEGDA concentrations, (C) as a function of GeIMA B300 and HAMA concentrations, and (D) as a function of GeIMA B300 of HAGM concentrations. Only positive Z values were considered.

suggested by augmented design of JMP[®] software. (A) Burst pressure measured using collagen sheets and (B) swelling ratios of various formulations in DPBS at 37°C.

Figure S13. *In vitro* degradation of optimized GelPatch formulation (G7HG3) in the presence of various concentrations of collagenase type II and Hyaluronidase (type I-S) in DPBS and 37°C. Data are represented as mean \pm SD, n =3.

Movie S1. (.mp4 format). This movie shows the *ex vivo* adhesion and retention of the optimized GelPatch formulation (G7HG3) to the scleral ocular surface after 4 days of incubation in organ batch.

Movie S2. (.mp4 format). This movie shows *ex vivo* adhesion and retention of the optimized GelPatch formulation (G7HG3) upon subconjunctival injection and crosslinking after 4 days of incubation in organ bath.