Supplementary Materials

Antimicrobial Peptide-grafted PLGA-PEG Nanoparticles to Fight Bacterial Wound Infections

António Miguel Ramôa^{a,b, c, d}, Filipa Campos^{a,b}, Luís Moreira^{a,b,e}, Cátia Teixeira^f, Victoria Leiro^{a,b}, Paula Gomes^f, José das Neves^{a,b}, M. Cristina L. Martins^{a,b,c,*}, Cláudia Monteiro^{a,b,*}

^a i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto

^b INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal

^c Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal

^d Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

^e Escola Superior de Biotecnologia, Universidade Católica do Porto, Rua de Diogo Botelho, 1327, 4169-005 Porto

^fLAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal

*Authors equally contributed to this work

Emails: claudia.monteiro@ineb.up.pt, cmartins@ineb.up.pt, a, <a href="mailto:cm

Experimental Section

Peptide purification and analysis

The crude peptide products were purified by reverse phase-high performance liquid chromatography (RP-HPLC) at preparative scale, on a Hitachi-Merck LaPrep Sigma system equipped with an LP3104 UV detector and an LP1200 pump, using an RP-C18 column (250 × 25 mm, 5 μ m pore size) and an elution gradient using 0.05% aqueous trifluoroaceticacid (TFA) as solvent A and acetonitrile (ACN) as solvent B. The pure peptides fractions were collected, pooled, and freeze-dried on a Virtis Benchtop 9L freeze-dryer to afford the final peptides as fluffy white solids. Peptides' purity degrees were confirmed by analytical RP-HPLC using a Hitachi-Merck LaChrom Elite system equipped with a quaternary pump, a thermostatted automated sampler, and a diode array detector; analyses were performed with a reverse-phase C18 column (150 × 4.6 mm ID and 5 μ m pore size, Merck) at a 1 mL/min flow rate using a 1–100% gradient of solvent B in solvent A, for 30 min, with detection at 220 nm. Peptides' molecular weights were confirmed by electrospray ionization-ion trap mass spectrometry (ESI-IT MS). Peptides' stock solutions were prepared at approximately 10 mg/mL in distilled water for accurate quantitation by microvolume spectrophotometry at 205 nm, using a Thermo ScientificTM NanoDropTM One system and the quantitation method 31 that assumes an extinction coefficient (ϵ) at 205 of 31 mL·mg-1·cm-1¹.

Results

Instrumental Analysis

Electrospray ionization-ion trap mass spectrometry (ESI-IT MS) analyses were run in a Thermo Finnigan LCQ Deca XP Max LC/MSn instrument using ion-trap quadrupole detection in positive mode.

Reverse phase high performance liquid chromatography (RP-HPLC) analyses were performed in a Hitachi-Merck LaChrom Elite system equipped with an L-2130 quaternary pump, an L-2455 diode-array detector (DAD) and an L220 thermostatted automated sampler. The samples were injected in a C18 column (125×4.0 mm ID and 5 µm pore size) with the elution gradient of 1 to 100% of B in A, using 0.05% aqueous trifluoroacetic acid (TFA) as solvent A and acetonitrile (ACN) as solvent B, and was run for 30 min at the flow rate of 1mL/min. The detection was performed at 220 nm.

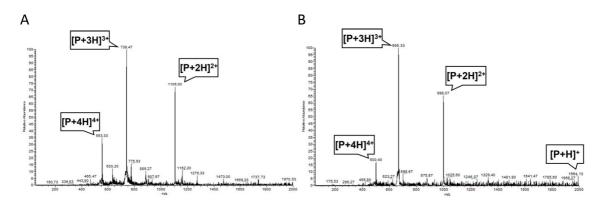


Figure 1- ESI-IT(+) mass spectrum of the (A) MSI-78 (4-20) and (B) MSI-78 (4-20)-Ahx-Cys. Multiply charged molecular ions of the target peptide, typically observed in ESI-IT MS analyses, are indicated as [M+nH]n+.

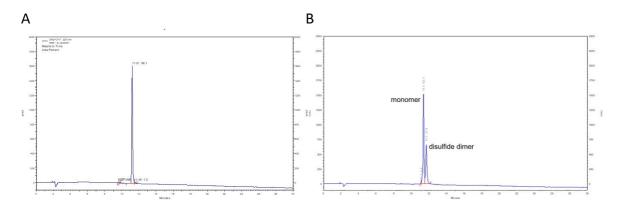


Figure 2 - RP-HPLC chromatogram of the (A) MSI-78 (4-20) and (B) MSI-78 (4-20)-Ahx-Cys.

References

1 Loughrey S, Mannion J, Matlock B. Using the NanoDrop One to Quantify Protein and Peptide Preparations at 205 nm, on Thermo Fisher Scientific, Wilmington, DE. <u>http://tools.thermofisher.com/content/sfs/brochures/ND-One-Protein-and-Peptide-r16-01-18.pdf</u>