Supplementary Material

Cellulose-Based Hydrogels Towards an Antibacterial Wound Dressing

^{a.} Esteban Leonardo Guamba Cajas,^a Nelson Santiago Vispo,^a Daniel C. Whitehead^b, Ajaya Kumar Singh^c, Ralph Santos-Oliveira^{d,e}, Dario Niebieskikwiat^g, Camilo Zamora Ledezma^f, Frank Alexis,^g*

Supplementary Figure 1.

Supplementary Figure 1. Fourier-transform infrared spectra of natural cellulose compared to commercial cellulose: CMC, F53, F12, F7, and F1.

Supplementary Figure 2.

^{a.} School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador.

^b Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA.

^c Department of Chemistry, Government VYT PG Autonomous College Durg, Chhattisgarh-491001, India

^{d.} Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Brazil

e. Zona Oeste State University, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, Brazil.

¹ Tissue Regeneration and Repair Group, Orthobiology, Biomaterials and Tissue Engineering, UCAM- Universidad Católica de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain

⁹ Colegio de Ciencias y Ingenierías, Universidad San Francisco de Quito, Departamento de Ingeniería Química, Quito, 107910, Ecuador. E-mail: falexis@usfq.edu.ec

Supplementary figure 2: X-ray diffraction analysis of the cellulose samples CMC, F1, F4, F12, and F53. By using Equation 1 we can see that F53 has the bigger crystallinity index; crystallinity is a factor that affects the properties of cellulose.

Supplementary Figure 3.

Supplementary Figure 4.

Supplementary Figure 4: Prototype design of the cellulose-based hydrogel for a wound healing bandage, here the hydrogel was formed in the top of the white fiber as a coating so it can provide moisture and bacterial defense in wounds.

Appendix A: Raw data of the absorption test of cellulose-hydrogels

	Weight/Dry							
SAIVIPLES	1	2	3	4	5	wean		
F1	0,1206	0,1298	0,1221	0,1272	0,1248	0,1249		
F4	0,1275	0,1273	0,1239	0,1298	0,1245	0,1266		
F12	0,0601	0,0597	0,0589	0,0587	0,0576	0,059		

Table S1. Weigh measures of the dry hydrogels for the absorption test

F53	0,0534	0,0569	0,0565	0,0586	0,05219	0,055518
СМС	0,1349	0,1311	0,1302	0,1347	0,1386	0,1339

	Weight/With PBS							
SAIVIPLES	1	2	3	4	5	wean		
F1	0,5297	0,5279	0,5439	0,5227	0,5198	0,5288		
F4	0,5601	0,5897	0,5689	0,5446	0,5472	0,5621		
F12	0,4618	0,5222	0,4921	0,4894	0,4895	0,491		
F53	0,6172	0,6137	0,6143	0,6147	0,6201	0,616		
СМС	0,5523	0,5386	0,5381	0,5318	0,5157	0,5353		

Table S2. Weigh measures of the dry hydrogels after absorbing the PBS for the absorption test.

Appendix B: Raw data of the ex-vivo antibacterial test as proof of concept

Table S3. : Raw results of the antibacterial test, at four different times, for the hydrogels against bacteria.

REPLICA 1									
HYDROGEL	То	T1	T2	Т3					
F4	0	21	57	150					
F12	0	5	42	150					
F53	0	5	7	32					
СМС	0	27	74	150					
CONTROL	0	30	73	150					
DIPER	0	9	56	150					
REPLICA 2									
HYDROGEL	То	T1	T2	Т3					
F4	0	24	66	150					
F12	0	10	37	150					
F53	0	2	11	41					
СМС	0	31	67	150					
CONTROL	0	37	79	150					
DIPER	0	21	63	150					
		REPLICA 3							
HYDROGEL	То	T1	T2	Т3					
F4	0	27	60	150					
F12	0	9	38	150					
F53	0	2	6	41					
СМС	0	32	72	150					
CONTROL	0	35	79	150					
DIPER	0	12	55	150					

Table S4. One-Way Anova Test of the ex-vivo antibacterial test

RESUMEN							
Grupos	Cuenta	Sum	a Promed	io Varianz	a		
Columna 1	5	0	0	0			
Columna 2	5	99	19,8	186,2			
Columna 3	5	256	51,2	792,2			
Columna 4	5	638	127,6	2508,8	}		
ANÁLISIS E	DE VARIAN	IZA					
				Promedio			
Origen de la variacione	as Sun s cuac	na de drados	Grados de libertad	de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupo Dentro de lo	os 471 os	73,75	3	15724,5833	18,036916	2,1926E-05	3,23887152
grupos	139	948,8	16	871,8			
Total	611	22,55	19				

ImageJ Darkness Processing for Porosity Estimation

F12 – 300X

CMC - 300X

List Copy Log Live

MEAN VALUES OF THE GRAYSCALE ANALYSIS

Gray scale indicates porosity, the darker the color more porous is the material and the wither represents less porosity. Minimum brightness is 0 and maximum of brightness is 255

HYDROGEL	CMC	F53	F12	F4
MEAN OF	130,28	118,925	134,016	132,7
BRIGHTNESS				

According with the analysis, F53 has the smallest degree of brightness, therefore we can assume the porosity on this material is higher than in the others.