Supporting Information

Peptide-crosslinked molecularly imprinted polymers for efficient separation of immunoglobulin G from human serum

Qiujing Dong^a, Mengmeng Yang^a, Yafei Wang,^a Ying Guan ^{a,*}, Wangqing Zhang^{a,*},

Yongjun Zhang^{b,*}

^a Key Laboratory of Functional Polymer Materials and State Key Laboratory of

Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry,

Nankai University, Tianjin 300071, China. ^b School of Chemistry, Tiangong

University, Tianjin 300387, China

Fig. S1. (A, B) ¹H (A) and ¹³C NMR spectra (B) of BLG-NCA monomer. (C, D) ¹H NMR spectra of PBLG intermediate (C) and PLGA crosslinker (D). Solvent: DMSO-d₆.

Fig. S2. GPC traces of PBLG intermediates in DMF solution at flow rate of 0.5 mL/min using STYRAGEL HR4E column and PMMA standards.

Fig. S3. Elution efficiency of 2% PLGA25-crosslinked MIP in 20 mM pH 7.4 PBS containing 154 mM NaCl at 37 °C. (A) AAm functional monomer content from 0% to 8%. (B) AMPS functional monomer content from 0% to 8%. (C) SS functional monomer content from 0% to 8%. (D) AS functional monomer content from 0% to 8%. (E) AAPTAC functional monomer content from 0% to 8%. (F) Combination of two functional monomers. (G) Combination of three functional monomers. IgG used in the preparation of the MIP was 45 mg.

Fig. S4. Elution efficiency of PLGA-crosslinked MIP in 20 mM pH 7.4 PBS containing 154 mM NaCl at 37 °C. (A) Different amount of PLGA25 from 1.5% to 3.0% with 4% AAm and 4% AMPS functional monomers. (B) Different molecular weight of 2% PLGA with 4% AAm and 4% AMPS functional monomers. IgG used in the preparation of the MIP was 45 mg.

Fig. S5. Elution efficiency of 2% PLGA25-crosslinked MIP in 20 mM pH 7.4 PBS containing 154 mM NaCl at 37 °C. The functional monomers were consisting of 4% AAm, 6% AMPS and 2% AAPTAC. IgG used in the preparation of the MIP was 45 mg, 55 mg and 65 mg.

Fig. S6. (A) Adsorption of different proteins onto IgG-PLGA25-MIP1 and IgG-PLGA25-NIP1. $C_{0, \text{ protein}} = 3.33 \text{ } \mu \text{mol/L}$. The binding amounts of proteins were expressed in $\mu \text{mol/g}$ (A) and mg/g

Sample	[M]/[I] ^{a)}	DP ^{b)}	Mn[Da] ^{b)}	$Mw/Mn^{b)}$
PBLG17	20/1	17	3874	1.55
PBLG25	27/1	25	5535	1.47
PBLG29	32/1	29	6437	1.39

Table S1. Synthesis and GPC characterization of PBLG intermediates.

^{a)} Feeding molar ratio of monomer/initiator; ^{b)} Determined by GPC.

Table S2. Recipes of the IgG MIPs for the study of effect of pH, the length of the peptide crosslinker, and crosslink density.

	Crosslink density	IgG	NIPAM	AAm	AMPS	AAPTAC
	(mol%)	(mg)	(mg)	(mg)	(mg)	(µL)
IgG-PLGA25-MIP2	2	45.0	113.0	2.8	8.3	0
IgG-PLGA17-MIP2	2	45.0	113.0	2.8	8.3	0
IgG-PLGA29-MIP2	2	45.0	113.0	2.8	8.3	0
IgG-PLGA25-MIP3	1.5	45.0	113.0	2.8	8.3	0
IgG-PLGA25-MIP4	3	45.0	113.0	2.8	8.3	0

Table S3. PLGA25-crosslinked MIPs using AAm as functional monomer.

	PLGA25	IgG	NIPAM	AAm
	(mol%)	(mg)	(mg)	(mg)
0% AAm	2	45.0	113.0	0
2% AAm	2	45.0	113.0	1.4
4% AAm	2	45.0	113.0	2.8
6% AAm	2	45.0	113.0	4.2
8% AAm	2	45.0	113.0	5.6

Table S4. PLGA25-crosslinked MIPs using AMPS as functional monomer.

	PLGA25	IgG	NIPAM	AMPS
	(mol%)	(mg)	(mg)	(mg)
0% AMPS	2	45.0	113.0	0
2% AMPS	2	45.0	113.0	4.1
4% AMPS	2	45.0	113.0	8.3
6% AMPS	2	45.0	113.0	12.4
8% AMPS	2	45.0	113.0	16.6

Table S5. PLGA25-crosslinked MIPs using SS as functional monomer.

	PLGA25	IgG	NIPAM	SS
	(mol%)	(mg)	(mg)	(mg)
0% SS	2	45.0	113.0	0
2% SS	2	45.0	113.0	4.1
4% SS	2	45.0	113.0	8.2
6% SS	2	45.0	113.0	12.4
8% SS	2	45.0	113.0	16.5

	PLGA25	IgG	NIPAM	AS
	(mol%)	(mg)	(mg)	(mg)
0% AS	2	45.0	113.0	0
2% AS	2	45.0	113.0	2.9
4% AS	2	45.0	113.0	5.8
6% AS	2	45.0	113.0	8.7
8% AS	2	45.0	113.0	11.6

Table S6. PLGA25-crosslinked MIPs using AS as functional monomer.

Table S7. Preparation formula of PLGA25-crosslinked MIP using AAPTAC as a functional

monomer								
	PLGA25	IgG	NIPAM	AAPTAC				
	(mol%)	(mg)	(mg)	(mg)				
0% AAPTAC	2	45.0	113.0	0				
2% AAPTAC	2	45.0	113.0	2.9				
4% AAPTAC	2	45.0	113.0	5.8				
6% AAPTAC	2	45.0	113.0	8.7				
8% AAPTAC	2	45.0	113.0	11.6				

 Table S8. PLGA25-crosslinked MIPs with two functional monomers.

Table 56. TEGA25-crossniked will s with two functional monomers.								
	PLGA25	IgG	NIPAM	AAm	AMPS	SS	AS	AAPTAC
	(mol%)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(µL)
4% AAm+4% AMPS (IgG-PLGA25-MIP2)	2	45.0	113.0	2.8	8.3			
4% AAm+4% SS	2	45.0	113.0	2.8		8.2		
4% AAm+4% AS	2	45.0	113.0	2.8			5.8	
4% AAm+4% AAPTAC	2	45.0	113.0	2.8				10.0

Table S9	PLGA25-crosslinked MIPs with th	ree functional monomers.

	PLGA25	IgG	NIPAM	AAm	AMPS	SS	AS	AAPTAC
	(mol%)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	(µL)
4% AAm+4% AMPS+4% AAPTAC	2	45.0	113.0	2.8	8.3			10.0
4% AAm+4% AMPS+2% AAPTAC	2	45.0	113.0	2.8	8.3			5.0
4% AAm+6% AMPS+2% AAPTAC	2	45.0	113.0	2.8	12.4			5.0
4% AAm+8% AMPS+2% AAPTAC	2	45.0	113.0	2.8	16.6			5.0
4% AAm+2% AMPS+6% AAPTAC	2	45.0	113.0	2.8	4.1			15.0

	PLGA25	IgG	NIPAM	AAm	AMPS	AAPTAC
	(mol%)	(mg)	(mg)	(mg)	(mg)	(µL)
IgG-PLGA25-MIP1	2	55.0	113.0	2.8	12.4	5.0
IgG-PLGA25-MIP5	2	45.0	113.0	2.8	12.4	5.0
IgG-PLGA25-MIP6	2	65.0	113.0	2.8	12.4	5.0

Table S10. Recipes of the IgG MIPs with different feeding amount of IgG.

Table S11. Performance of MIPs using different polymerization times. The formula of IgG-PLGA25-MIP1 was used for the MIPs.

Polymerization time (h)	Elution Efficiency (%)	$Q_{MIP} \left(mg/g\right)$	$Q_{\text{NIP}} \left(\text{mg/g} \right)$	IF
6	98.9	327.8	90.5	3.62
12	96.2	502.2	98.8	5.08
18	95.8	520.9	99.6	5.23
24	95.5	528.3	100.1	5.28

 Q_{MIP} or Q_{NIP} : rebinding capacity of IgG on MIP or NIP. $C_{0, IgG} = 0.5 \text{ mg/mL}$, 20 mM pH 5.0 phosphate buffer, T = 37°C.

Table S12. Optimization of the separation procedure.

Swelling Equilibrium Time	Rebinding Time	Elution Time	Purity	Separation
(h)	(h)	(h)	(%)	Yield (%)
24	24	24	91	78
24	18	24	92	77
24	12	24	90	75
24	6	24	84	53
18	24	24	86	72
12	24	24	65	59
24	24	18	89	73
24	24	12	90	62