Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2022

Supplementary

Effects of surface patterning and topography on cellular functions of tissue engineered scaffolds with special reference to 3D bioprinting

Jaideep Adhikari^a, Avinava Roy^b, Amit Chanda^c, Gouripriya D A^d, Sabu Thomas^e, Manojit Ghosh^b, Jinku Kim^{f,*}, Prosenjit Saha^{d,*}

^aSchool of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India

^bDepartment of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India.

^cDepartment of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India

^dSchool of Chemical Sciences, MG University, Kottayam 686560, Kerala, India

^eDepartment of Bio and Chemical Engineering, Hongik University, Sejong, 30016, South

Korea

^fCentre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR), JIS University, Salt Lake City, Kolkata-700091

Corresponding author: prosenjipoly@jisiasr.org; jinkukim@hongik.ac.kr

Bioprinting process		Minimal print volume	Remarks
	Acoustic droplet ejection	Avg. droplet dia. 54–183 μm ⁻¹ , 60-500 μm ²	<u>Advantages</u> Nozzle free technique
			Increment in frequency reduces droplet dia.
ъņ			<u>Disadvantages</u>
ntin			Frequency of wave
prir			negatively impact cell
bio			viability
ed 1	Inkjet bioprinting	<u>Thermal inkjet bioprinting</u>	<u>Advantages</u>
oas		Orifice dia. $\sim 50 \ \mu m$	Ink ejection can be carried
et l		Resolution 85 μ m	out in both continuous and
lqc		Drop volume 85 pL ^{3,4}	drop by drop mode as per
Dre		Piezoelectric inkjet printhead	requirement
		Orifice dia. 120 µm ⁵	
		Electrohydrodynamic jetting	Disadvantages
		Dia. 5µm ⁶	Application of temperature
		Electro-assisted bioprinting	/pulse voltage/ electric field
		Dia-100 μm ⁷	induces harsh effect on cells
		Upward bioprinting ⁸	- · · ·
			Droplet spread out is

Table S1: Resolution of different bioprinters

		Against gravitational force, offers better printing resolution than downward bioprinting	common occurrence with larger size droplets
		than downward bioprinting	The interaction with substrate due to gravitational force and sudden deacceleration reduces cell viability
		Droplet dia-200–300 µm Printing resolution 300 µm ⁹	<u>Advantages</u> Precise cellular positioning
	Micro valve bioprinting		Synchronized ejection of hydrogel and cell suspension could be ejected from different nozzles
			<u>Disadvantages</u> Droplet dia. > 100 μm is not suitable for patterning, it distorts morphology
			Cell sedimentation and presence of shear stress
			Limited cell concentration and cell concentration could be printed due to nozzle clogging
Extrusion based bioprinting	Pneumatic, mechanical and solenoid micro extrusion	Needle diameter varies between 0.25-1.25 mm ¹⁰	<u>Advantages</u> Shear stress during extrusion helps in cellular orientation
			Introduction of static tensile stress after extrusion (stretching) by modifying deposition mechanism can induce cellular orientation
			<u>Disadvantages</u> Shear stress affects cellular functions both short term and long term
	Laser based bioprinting	Laser Guided Direct Writing Near single cell resolution is possible ¹¹ Laser Induced Forward Transfer Resolution droplet dia. 40-60	<u>Advantages</u> Highly viscous ink with high cell concentration could be printed
Li gh		μ m ¹² Laser based stereolithography	<u>Disadvantages</u> Impact of laser energy on cellular functions

		Printing resolution $\sim 50 \mu m^{13}$	
		Two-photon polymerization	
		Printing resolution < 100nm ¹⁴	
		Resolution of 3–5 µm ¹⁵	<u>Advantages</u> Varying the light intensity in the layer-by-layer method, stiffness gradient could be
	Digital light		achieved Disadvantages
	processing		Optimization required to use of UV absorbers and photoinitiators for crosslinking to mitigate
do Li			adverse effects on printed cells

Table S2: Summary of few patterning examples

Sl. No.	Patterning	Printing method	Motive	Ref.
1	Grid of varying fiber diameters and arrangement of fibers to have small and large pores	Electrohydrodynamic printing	Studying structure- induced cell growth for efficient simulation of <i>in vivo</i> environment.	16
2	Anisotropic patterns having concave and convex interfaces	Microextrusion printing	Fabricating anisotropic networks of type I collage to mimic <i>in vivo</i> conditions.	17
3	A chessboard of two different types of cells	Laser-assisted bioprinting	Studying the effect of laser-assisted printing on patterning, cell viability differentiating ability and retention of phenotype.	18
4	Two-dimensional grid patterns were created by dispensing chitosan or laminin-blended chitosan substrate strands oriented in orthogonal directions.	Dispensing-based rapid prototyping	Perfecting the use of biofunctional pathways in the design of three- dimensional scaffolds for guidance of nerve repair.	19
5	Microscaled 3D niches	Two-photon polymerization	Mimicking structural aspects of the native cell/extracellular matrix interaction to highlight the crucial role played by niche 3-D geometry on MSC colonization in culture.	20

6	Osteogenic and vasculogenic niches	Extrusion-based bioprinting	Reproduce complex 3D bone architecture.	21
 7	Broccoli-like nanofibrous particle-scaffolds	Thermally induced phase transition + extrusion-based bioprinting	Reflect natural structure and dimension of collagen fibrils.	22
8	Micro/nano surface pores through vigorous agitation of ink with air bubbles and subsequent evaporation of volatile solvent	Extrusion-based bioprinting of polycaprolactone	Promotion of osteogenic differentiation of MSCs	23
9	3D scaffolds with micro- patterns (micro-pillar and micro-ridge types) on each layer	Nano- stereolithography	<i>In vitro</i> study of the effects of micro- patterns on cellular behaviors of pre- osteoblasts, such as proliferation, adhesion and osteogenic differentiation.	24
10	Striped grooved surface structure with many acicular bumps between the grooves.	Cryogenic printing	Efficacy of nutrient deposition/ trapping using modified surface morphology.	25
 11	Micro-chanelled gelatin scaffolds	Extrusion-based bioprinting	Induction of contractile functionality to cardiomyocytes coupled with helping in orientation, elongation and differentiation of MSCs	26
12	Uniaxially aligned surface topography on collagen struts	Extrusion-based bioprinting using polyvinyl alcohol as a sacrificial material and for fibrillation	Higher efficiency of myotube formation noted using myoblasts (C2C12 cell line) with better alignment	27
13	Controllably porous half- heart connected with ventricle	Modified inkjet-based bioprinting	Rhythmic contractile function of cardiomyocytes plus periodic beating of entire scaffold	28
14	Valentine-shaped heart structure having grooves	Fusion deposition melting utilizing sacrificial nature of PVA	Mimicry of micro-fluid channel-based network in a hollow structure of the human heart	29
15	A semi-circular design having two different subpopulations of keratinocytes in a single insert	Inkjet bioprinting	Reproduction of the heterogeneity of the epidermis within an organotypic epidermal model.	30
16	Polypyrrole/collagen track	Inkjet bioprinting	Stimulated neurite cell	31

	(100 wide, 1.4 µm high)		growth along printed track creating a cell pattern.	
17	Nanostructured ridge/groove-patterns having spacings of 350 nm and height of 500 nm	UV-assisted capillary force lithography	Induction of embryonic stem cells to differentiate into neurons.	32
18	Square wells connected by linear channel	Photolithography	Efficient formation of neuron-like networks derived from mouse embryonic stem cells.	33
19	Si wafer with linear, circular, and dot micro- patterns	Photolithography	Adult neural stem cell nuclei elongated along the groove axis, and cell extended branches guided by topology on linear and circular patterns	34
20	C-shaped rings representing tracheal rings	Extrusion-based bioprinting	Repair of long-segment anterior tracheal defects in a large animal model.	35
21	Micropatterns that self- fold into a 3D scaffold.	Four-dimensional (4D) inkjet-printing platform	Human umbilical vein endothelial cells (HUVECs) were embedded in self-folded microtubes to mimic microvessels.	36

References

- 1 S. Jentsch, R. Nasehi, C. Kuckelkorn, B. Gundert, S. Aveic and H. Fischer, *Small Methods*, 2021, **5**, 2000971.
- 2 J. O. Castro, S. Ramesan, A. R. Rezk and L. Y. Yeo, *Soft Matter*, 2018, 14, 5721–5727.
- 3 X. Cui, D. Dean, Z. M. Ruggeri and T. Boland, *Biotechnol. Bioeng.*, 2010, **106**, 963–969.
- 4 T. Xu, C. A. Gregory, P. Molnar, X. Cui, S. Jalota, S. B. Bhaduri and T. Boland, *Biomaterials*, 2006, **27**, 3580–3588.
- 5 K. Christensen, C. Xu, W. Chai, Z. Zhang, J. Fu and Y. Huang, *Biotechnol. Bioeng.*, 2015, **112**, 1047–1055.
- 6 M. J. Poellmann, K. L. Barton, S. Mishra and A. J. W. Johnson, *Macromol. Biosci.*, 2011, **11**, 1164–1168.
- 7 M. Xie, Q. Gao, H. Zhao, J. Nie, Z. Fu, H. Wang, L. Chen, L. Shao, J. Fu and Z. Chen, *Small*, 2019, **15**, 1804216.
- 8 Y. Ji, Q. Yang, G. Huang, M. Shen, Z. Jian, M.-J. Thoraval, Q. Lian, X. Zhang and F. Xu, *ACS Biomater. Sci. Eng.*, 2019, **5**, 4112–4121.

- 9 W. Lee, J. C. Debasitis, V. K. Lee, J.-H. Lee, K. Fischer, K. Edminster, J.-K. Park and S.-S. Yoo, *Biomaterials*, 2009, **30**, 1587–1595.
- 10 J. Emmermacher, D. Spura, J. Cziommer, D. Kilian, T. Wollborn, U. Fritsching, J. Steingroewer, T. Walther, M. Gelinsky and A. Lode, *Biofabrication*, 2020, **12**, 25022.
- 11 A. Doraiswamy, R. J. Narayan, M. L. Harris, S. B. Qadri, R. Modi and D. B. Chrisey, *J. Biomed. Mater. Res. Part A*, 2007, **80**, 635–643.
- 12 B. Guillotin, A. Souquet, S. Catros, M. Duocastella, B. Pippenger, S. Bellance, R. Bareille, M. Rémy, L. Bordenave and J. Amédée, *Biomaterials*, 2010, **31**, 7250–7256.
- 13 Z. Wang, X. Jin, Z. Tian, F. Menard, J. F. Holzman and K. Kim, *Adv. Healthc. Mater.*, 2018, **7**, 1701249.
- 14 T. Weiß, G. Hildebrand, R. Schade and K. Liefeith, *Eng. Life Sci.*, 2009, 9, 384–390.
- 15 C. Yu, J. Schimelman, P. Wang, K. L. Miller, X. Ma, S. You, J. Guan, B. Sun, W. Zhu and S. Chen, *Chem. Rev.*, 2020, **120**, 10695–10743.
- 16 C. Xie, Q. Gao, P. Wang, L. Shao, H. Yuan, J. Fu, W. Chen and Y. He, *Mater. Des.*, 2019, **181**, 108092.
- 17 B. A. Nerger, P.-T. Brun and C. M. Nelson, *Soft Matter*, 2019, **15**, 5728–5738.
- 18 L. Koch, S. Kuhn, H. Sorg, M. Gruene, S. Schlie, R. Gaebel, B. Polchow, K. Reimers, S. Stoelting and N. Ma, *Tissue Eng. Part C Methods*, 2010, **16**, 847–854.
- 19 N. Zhu, M. G. Li, Y. J. Guan, D. J. Schreyer and X. B. Chen, *Biofabrication*, 2010, 2, 45002.
- 20 M. T. Raimondi, S. M. Eaton, M. Laganà, V. Aprile, M. M. Nava, G. Cerullo and R. Osellame, *Acta Biomater.*, 2013, **9**, 4579–4584.
- 21 B. Byambaa, N. Annabi, K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, W. Jia, M. Kazemzadeh-Narbat, S. R. Shin, A. Tamayol and A. Khademhosseini, *Adv. Healthc. Mater.*, 2017, **6**, 1700015.
- A. Prasopthum, K. M. Shakesheff and J. Yang, *Biofabrication*, 2018, **10**, 25002.
- A. Prasopthum, M. Cooper, K. M. Shakesheff and J. Yang, *ACS Appl. Mater. Interfaces*, 2019, **11**, 18896–18906.
- 24 H. Do Cha, J. M. Hong, T.-Y. Kang, J. W. Jung, D.-H. Ha and D.-W. Cho, J. *Micromechanics Microengineering*, 2012, **22**, 125002.
- 25 W. Zhang, I. Ullah, L. Shi, Y. Zhang, H. Ou, J. Zhou, M. W. Ullah, X. Zhang and W. Li, *Mater. Des.*, 2019, **180**, 107946.
- 26 A. Tijore, S. A. Irvine, U. Sarig, P. Mhaisalkar, V. Baisane and S. Venkatraman, *Biofabrication*, 2018, **10**, 25003.
- 27 M. Kim, W. Kim and G. Kim, ACS Appl. Mater. Interfaces, 2017, 9, 43459–43469.
- 28 T. Xu, C. Baicu, M. Aho, M. Zile and T. Boland, *Biofabrication*, 2009, 1, 35001.
- 29 Q. Zou, B. E. Grottkau, Z. He, L. Shu, L. Yang, M. Ma and C. Ye, *Mater. Sci. Eng. C*, 2020, **108**, 110205.

- 30 S. Madiedo-Podvrsan, J.-P. Belaïdi, S. Desbouis, L. Simonetti, Y. Ben-Khalifa, J. Soeur and M. Rielland, *Sci. Rep.*, 2021, **11**, 1–12.
- 31 B. Weng, X. Liu, R. Shepherd and G. G. Wallace, *Synth. Met.*, 2012, **162**, 1375–1380.
- 32 M. R. Lee, K. W. Kwon, H. Jung, H. N. Kim, K. Y. Suh, K. Kim and K.-S. Kim, *Biomaterials*, 2010, **31**, 4360–4366.
- 33 C. Luo, L. Liu, X. Ni, L. Wang, S. M. Nomura, Q. Ouyang and Y. Chen, *Microelectron*. *Eng.*, 2011, **88**, 1707–1710.
- 34 L. Qi, N. Li, R. Huang, Q. Song, L. Wang, Q. Zhang, R. Su, T. Kong, M. Tang and G. Cheng, *PLoS One*, 2013, **8**, e59022.
- 35 S. S. Rehmani, A. M. Al-Ayoubi, A. Ayub, M. Barsky, E. Lewis, R. Flores, R. Lebovics and F. Y. Bhora, *Ann. Thorac. Surg.*, 2017, **104**, 998–1004.
- 36 C. Cui, D.-O. Kim, M. Y. Pack, B. Han, L. Han, Y. Sun and L.-H. Han, *Biofabrication*, 2020, **12**, 45018.