Supplementary Information

ICG-Loaded and ¹²⁵I-Labeled Theranostic Nanosystem for Multimodality Imaging-Guided Phototherapy of Breast Cancer

Dianyu Wang,^{a,#} Jianlan Yue,^{b,c,#} Qiannan Cao,^{a,#} Jinjian Liu,^a Lijun Yang,^{a,*} Wen

Shen,^{d,*} Wenxue Zhang,^{e,*} and Jianfeng Liu^{a,*}

^a Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy

of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of

Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.

^b Department of Radiology, First Central Clinical College, Tianjin Medical University,

Tianjin 300192, P. R. China.

^c Department of Nuclear Medicine, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin 300162, P. R. China.

^d Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, P. R. China.

Radiation Oncology Department, Tianjin Medical University General Hospital,
Tianjin 300052, P. R. China.

[#] These authors contributed equally to this work.

* Corresponding authors

Prof. Lijun Yang, E-mail address: yanglijun@irm-cams.ac.cn

Prof. Wen Shen, E-mail address: shenwen66happy@126.com

Prof. Wenxue Zhang, E-mail address: wenxuezhang@tmu.edu.cn

Prof. Jianfeng Liu, E-mail address: liujianfeng@irm-cams.ac.cn

Fig. S1 The synthesis route for ALG-Na-DAB-PTyr(¹²⁵I).

Fig. S2 ¹H NMR spectrum of DAB-PTyr in DMSO-d₆.

Element	C%	Н%	N%
Content	34.31	5.52	1.13

Fig. S3 The elemental analysis of ALG-Na-DAB-PTyr.

Fig. S4 The radiolabeling rate (A) and the radiochemical purity (B) of ALG-Na-DAB-PTyr(¹²⁵I) determined by a radioactive TLC scanner.

Fig. S5 The CMC of ADY(¹²⁵I) NPs determined by using Nile Red as the fluorescence probe.

Fig. S6 The representative TEM image of ADY(¹²⁵I) NPs.

Fig. S7 The radiochemical purity of ICG@ADY(¹²⁵I) NPs before (A) and after (B) 48 h of incubation with mouse plasma.

Fig. S8 Quantitative analysis of ICG in 4T1 cells after the treatment with ICG or ICG@ADY(¹²⁵I) NPs with or without various inhibitors using a UV-visible spectrophotometer. The data are presented as the mean \pm SD (n = 3). *** stands for *P* < 0.001.

Fig. S9 H&E stained tissue sections from the heart, liver, spleen, lung, and kidney of the healthy BALB/c mice one week after the two successive days of administration of PBS, ICG, or ICG@ADY(¹²⁵I) NPs.

Fig. S10 The intratumoral temperatures of the 4T1 tumor-bearing mice during an 808 nm laser (1 W/cm²) irradiation 24 h after the intravenous administration of PBS, ICG, or ICG@ADY(¹²⁵I) NPs.

Fig. S11 Body weight changes in the tumor-bearing mice with various treatments. The data are presented as the mean \pm SD (n = 5).

Fig. S12 H&E-stained tissue sections from the heart, liver, spleen, lung, and kidney of the 4T1 tumor-bearing nude mice on the 20th day after PTT/PDT.