Supporting Information

Sugar modified amphiphilic cationic nano-adjuvant ceased tumor immune suppression and rejuvenated peptide vaccine induced antitumor immunity in cervical cancer

Adityanarayan Mohapatra^a[‡], Santhosh Kalash Rajendrakumar^a[‡], Kondareddy Cherukula^a

Myong-Suk Park^b, Sathiyamoorthy Padmanaban^a, Arathy Vasukuty^a, Ayeskanta Mohanty^a,

Jae Young Lee^c, Woo Kyun Bae^b and In-kyu Park^{a*}

^aDepartment of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists

at Chonnam National University, Chonnam National University Medical School,

Gwangju 61469, Republic of Korea.

^bDepartment of Hematology-Oncology, Chonnam National University Medical School,

Gwangju, 61469, South Korea.

^cSchool of Materials Science and Engineering, Gwangju Institute of Science and Engineering,

Gwangju 61005, Korea.

Mannosylated disulfide crosslinked polyethylenimine conjugated lithocholic acid micelle (mLAPMi)

Figure S1: Schematic representation of mLAPMi synthesis and NMR analysis.

Figure S2: FTIR analysis of mLAPMi.

Sample	[LAPMi]: [Mannose] (feed ratio)	Grafting ratio % (1HNMR)
mLAPMi	1:0.1	39
mLAPMi	1:0.2	62
mLAPMi	1:0.25	65

Table S1: The chemical properties of mannose conjugated ssPEI-lithocholic acid micelle (mLAPMi).

Figure S3: Dynamic light scattering analysis of mLAPMi and mLAPMi R848.

Figure S4: Zeta potential of mLAPMi-R848.

LAPMi

mLAPMI

mLAPMi R848

Figure S5- TEM images of mLAPMi and mLAPMi loaded with R848.

Figure S6- Critical micelle concentration of mLAPMi.

Sample	Feed LAPMi (mg)	Feed R848 (mg)	Amount of R848 (μg)/ mg of micelle	Loading efficiency (%)	Loading content (%)
LAPMi	10	2	46.4	22.6	4.64
mLAPMi	10	2	54.2	27.1	5.42

Figure S7: Intracellular uptake of mLAPMi-Ce6 in BMDCs. Scale bar is 20 $\mu m.$

Figure S8: DC maturation in BMDCs treated with different concentration of R848.

Figure S9: BMDCs maturation induced by mLAPMi-R848 nanoparticle and E6E7 peptide antigen in bone marrow derived dendritic cells, N = 4, SEM, ****, p < 0.0001

Figure S10- Macrophage polarization by mLAPMi-R848 nanoparticle and E6E7 peptide antigen in IL-4 induced M2 polarized J774A.1 macrophage cell lines. N = 4, SEM ****, p < 0.0001.

Figure S11: ELISA analysis of TNFα secreted from mLAPMi-R848 treated BMDCs. n=3, SEM, ****p<0.0001.

Figure S12: Antitumor effect of different dose of R848 in TC-1 tumor model. 10 μ g is equivalent to 0.5 mg/kg, 50 μ g is equivalent to 2.5 mg/kg. n=5, SEM, *p<0.05, ***p<0.001.

Figure S13: Survival rate of TC-1 tumor mice administered with mLAPMi-R848 and E6E7 peptide.

Figure S14: Body mass of TC-1 tumor mice administered with mLAPMi-R848 and E6E7 peptide.

Figure S15: Immune phenotyping of cells isolated from primary tumor of mLAPMi-R848 and E6E7 peptide antigen vaccinated TC-1 tumor mice. A) Absolute numbers of CD8+ T cells (gated with CD3+CD8+), B) MDSCs (gated with CD11b+ Ly6g & Ly6cGR-1+) C) Tregs (gated with CD4+CD25+FoxP3+). N=4, ***p<0.001.

Figure S16: Gating strategy of CD8+ T cells isolated from the both primary and secondary tumors in mLAPMI-R848/E6E7 treated bilateral tumor model.

Figure S17: Gating strategy of Treg cells isolated from the both primary and secondary tumors in mLAPMI-R848/E6E7 treated bilateral tumor model.

Figure S18: Gating strategy of MDSCs isolated from the both primary and secondary tumors in mLAPMI-R848/E6E7 treated bilateral tumor model.