Supporting Information

Madhavi Bhandari ^a†, Héctor Soria- Carrera ^{b,c,d}, Jens Wohlmann ^a, Nils-Jørgen Knudsen Dal ^a, Jesús M. de la Fuente ^{b,c}, Rafael Martín-Rapún ^{b,c,d*}, Gareth Griffiths ^a, Federico Fenaroli ^{a, e*}

^a Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
^b Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza and CIBER-BBN, C/ Mariano Esquillor s/n, 50018 Zaragoza, Spain
^c CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
^d Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
^e Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway

Present Address † Faculty of Health Sciences, Department of Life Sciences and Health Pharmacy, Oslo Metropolitan University, Pilestredet 50, 0167 Oslo, Norway

A ZK₃₀-BnE₃₀

Supporting Figure 1. A) Structure and ¹H-NMR spectrum of ZK_{30} -BnE₃₀ with signal assignment. B) Structures of ZK_{30} -NH₂ and ZK_{30} -RhB C) ¹H-NMR spectrum of ZK_{30} . D) ¹H-NMR of ZK_{30} -RhB E) Enlargement of the aromatic region in C and D, showing the appearance of aromatic peaks belonging to RhB in the ¹H-NMR spectrum of ZK_{30} -RhB (l protons). All spectra were registered using [D⁶]DMSO as solvent.

	M _w	M _n	
Polymer	(g mol⁻¹)	(g mol ⁻¹)	Ð
ZK30	16670	13160	1,27
ZK30BnE30	22840	19750	1,16

Sample	$D_{\mathrm{H}}\left(\mathrm{nm} ight)$	PDI	ζ-potential (mV)	DL (%)	EE (%)
M30	49.7	0.118+0.007	-36.8	-	-
M30-BQ	36.1	0.119+0.009	-23.6	20	73
M30-RhB	56.7	0.186+0.02	-40.7	-	-
M30-RhB-BQ	41.3	0.135+0.01	-36.7	17	61

 Table 1. Characterization summary for BQ and empty M30-RhB micelles.

D_H: Hydrodynamic diameter (nm)

DL: Drug loading (mg_{drug}/mg_{nanoparticle})

PDI: polydispersity index

Encapsulation efficiency: Hydrodynamic diameter (mg_{drug encapsulated}/mg_{drug in the feed})

Supporting Figure 3. Fluorescence spectra for BQ loaded and empty fluorescent micelles (M30-RhB-BQ and M30-RhB).

Supporting Figure 4. Transmission electron micrograph of M30-BQ NP (A), M30-RhB NP (B) and M30 NP (C). Scale bars indicates 1 μ m.

Supporting Figure 5. *In vivo* toxicity assay, survival graph. BQ drug, either NP-encapsulated or in free form, was injected into the PCV of wild type zebrafish embryos at 2 dpf. 20 nL of encapsulated BQ (NP-BQ, M30-BQ), empty NPs (NP-Blank, M30) and PBS control were injected. The doses of NP-BQ, NP-Blank and free drug dissolved in DMSO injected were 8.3 ng per embryo. Data was analyzed by Log-rank (Mantel-Cox) test and show the cumulative mortality of one experiment, N (embryos per group) \geq 17.

Supporting Figure 6. Bacterial burden analysis via fluorescence pixel count comparing therapeutic efficacy of free (dissolved in DMSO) versus encapsulated BQ (NP-BQ, M30-BQ). NP-blank (M30) was used as a control. The graph in A shows the results on the neural tube model of infection while the one in B represents our assessment in the blood infection model. In A analysis has been performed at 5 and 7 days after infection while in B we carried out only one analysis at day 7. Statistical analysis was performed using a Kruskal-Wallis test, followed by Dunn's multiple comparisons test. N (embryos per group on the day of infection) in $A \ge 17$, while in $B \ge 16$. Bars indicate mean \pm SD.