Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2023

In situ titanium phosphate formation on titanium implant as an ultrahigh linking with nano-hydroxyapatite coating for rapid osseointegration

Ziming Liao¹, Luyao Zhang¹, Weiwei Lan^{1,2}, Jingjing Du^{1,2,3}, Yinchun Hu^{1,2}, Yan Wei^{1,2*}, Ruiqiang Hang^{4*}, Weiyi Chen^{1,2}, Di Huang^{1,2*}

- ¹ Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- ² Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030060, China
- ³ Analytical & Testing Center, Hainan University, Haikou 570028, China
- ⁴ Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China Corresponding to: Telephone: 86-351-3176650; E-mail: huangjw2067@163.com (D. Huang), weiyan@tyut.edu.cn (Y. Wei), hangruiqiang@tyut.edu.cn (R. Hang)

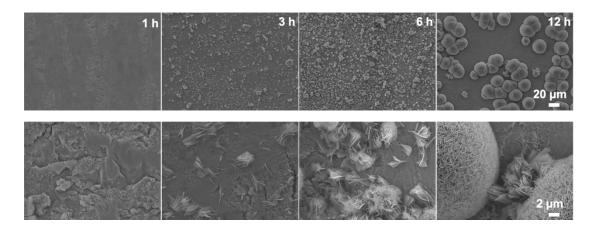
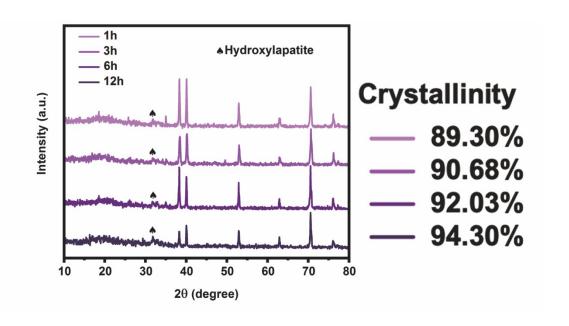



Figure S1. The formation process of titanium phosphate coating.

Figure S2. XRD images of TiP-Ca coatings with different fabrication times and corresponding crystallinity of HA.

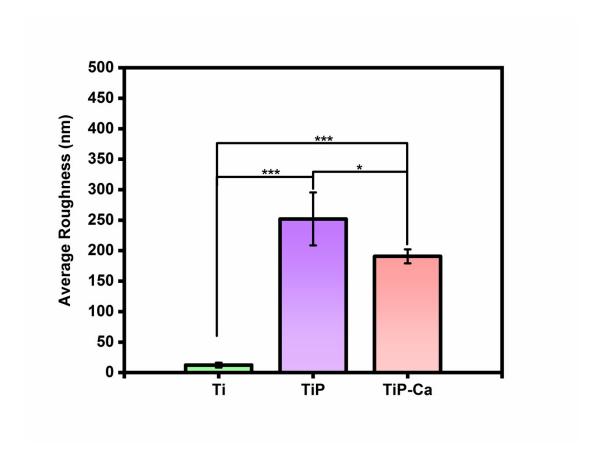


Figure S3. Average roughness of the samples tested by AFM.