Development of lipidated polycarbonates with broad-spectrum

antimicrobial activity

Ruixuan Gao, Xuming Li, Menglin Xue, Ning Shen, Minghui Wang, Jingyao Zhang, Chuanhai Cao, and Jianfeng Cai*

jianfengcai@usf.edu

Department of Chemistry, University of South Florida, Tampa, FL 33620

Polymer Characterization

¹H NMR and DP calculation for **P20** (Figure S1) is shown here as representative.¹ Peak f accounts for 2 protons from the initiator. Peak a accounts for 5 protons from M1 benzene ring on side chain, thus the average number of M1 per polymer chain equates to 42.26/5 = 8.452. Peak d accounts for 4 protons from M2 methylene groups, therefore, the average number of M2 per polymer chain equates to 93.44/4 = 23.36.

DP is calculated by summing up these values (8.452+23.36=32) to get the average total number of monomer units per polymer chain.

 M_n is calculated by taking the molecular weight of each monomer and multiplying by the number of each of the relevant monomer, and adding the molecular weight of the initiator. M_n for **P20** equates to 250.25 (molecular weight of M1) * 8.452 + 203.19 (molecular weight of M2) * 23.36 + 214.39 (molecular weight of tetradecanol) = 7076.02 (2 significant figures).

Polymer	M _n ^a	DPb	PDIc
P1	4586.64	21	1.07
P2	4103.56	19	1.27
P3	8982.15	43	1.40
P4	7845.81	37	1.21
P5	15130.80	71	1.32
P6	17058.28	79	1.33
P7	13201.34	61	1.30
P8	12705.62	56	1.30
P9	8079.43	36	1.30
P10	15464.73	69	1.72
P11	8185.56	35	1.43
P12	8555.92	39	1.03
P13	14997.90	65	1.81
P14	5419.38	26	1.39

Table S1:¹H NMR and MALDI analysis of the synthesized polymers.

P15	3654.93	16	1.32
P16	8184.90	39	1.38
P17	6493.09	29	1.66
P18	8090.21	37	1.45
P19	8172.30	40	1.27
P20	7076.02	32	1.56
P21	9953.64	43	-
P22	6880.77	30	1.26
P23	11571.92	56	1.21
P24	10975.12	50	1.28
P25	7370.46	35	1.82
P26	8333.59	37	1.36
P27	5906.15	25	1.49
P28	13886.63	60	-

a: M_n: number average molecular weight.

b: DP: degree of polymerization, determined by ¹H NMR peak integration analysis as described.

c: PDI: polydispersity, calculated by MALDI-TOF.²

Figure S1: ¹H NMR (600 MHz, D₂O) spectrum of P20.

Figure S2: MALDI spectrum for P20. Mass between two nearby peaks belongs to the mass of M1

or M2.

Figure S3: MALDI spectrum for **P7**. The expected m/z was observed from the spectrum (blue arrow).

Figure S4: ¹H NMR (600 MHz, D₂O) spectrum of P1.

Figure S5: ¹H NMR (600 MHz, D₂O) spectrum of P2.

Figure S6: ¹H NMR (600 MHz, D₂O) spectrum of P3.

Figure S7: ¹H NMR (600 MHz, D₂O) spectrum of P4.

Figure S8: ¹H NMR (600 MHz, D₂O) spectrum of P5.

Figure S9: ¹H NMR (600 MHz, D₂O) spectrum of P6.

Figure S10: ¹H NMR (600 MHz, D₂O) spectrum of P7.

Figure S11: ¹H NMR (600 MHz, D₂O) spectrum of P8.

Figure S12: ¹H NMR (600 MHz, D₂O) spectrum of P9.

Figure S13: ¹H NMR (600 MHz, D₂O) spectrum of P10.

Figure S14: ¹H NMR (600 MHz, D₂O) spectrum of P11.

Figure S15: ¹H NMR (600 MHz, D₂O) spectrum of P12.

Figure S16: ¹H NMR (600 MHz, D₂O) spectrum of P13.

Figure S17: ¹H NMR (600 MHz, D₂O) spectrum of P14.

Figure S18: ¹H NMR (600 MHz, D₂O) spectrum of P15.

Figure S19: ¹H NMR (600 MHz, D₂O) spectrum of P16.

Figure S20: ¹H NMR (600 MHz, D₂O) spectrum of P17.

Figure S21: ¹H NMR (600 MHz, D₂O) spectrum of P18.

Figure S22: ¹H NMR (600 MHz, D₂O) spectrum of P19.

Figure S23: ¹H NMR (600 MHz, D₂O) spectrum of P21.

Figure S24: ¹H NMR (600 MHz, D₂O) spectrum of P22.

Figure S25: ¹H NMR (600 MHz, D₂O) spectrum of P23.

Figure S26: ¹H NMR (600 MHz, D₂O) spectrum of P24.

Figure S27: ¹H NMR (600 MHz, D₂O) spectrum of P25.

Figure S28: ¹H NMR (600 MHz, D₂O) spectrum of P26.

Figure S29: ¹H NMR (600 MHz, D₂O) spectrum of P27.

Figure S30: ¹H NMR (600 MHz, D₂O) spectrum of P28.

References

- 1. K. E. S. Locock, T. D. Michl, N. Stevens, J. D. Hayball, K. Vasilev, A. Postma, H. J. Griesser, L. Meagher and M. Haeussler, *ACS Macro Letters*, 2014, **3**, 319-323.
- 2. H. Räder and W. Schrepp, *Acta Polymerica*, 1998, **49**, 272-293.