Electronic Supplementary Material (ESI) for RSC Chemical Biology. This journal is © The Royal Society of Chemistry 2022

RSC Chemical Biology

An Intramodular Thioesterase Domain Catalyses Chain Release in the Biosynthesis of a Cytotoxic Virulence Factor

Rory Little, Felix Trottmann, Miriam Preissler, Christian Hertweck.

DOI: 10.1039/d2cb00121g.

Supplementary Tables 2

Supplementary Figures 9

Supplementary References 21

Supplementary Tables

Organism/pathway	Accession #	Class in SSN	Product	Domain arrangement for non- terminal TE domains
Burkholderia thailandensis TE-A	ABC36203	BurA TE-A and homologues	Gonyol	TE-A-T-KS-KR-TE-AT-ACP
Micromonospora nigra TE-A	WP_217628199	BurA TE-A and homologues		TE-A-T-KS-KR-TE-AT-ACP
Pseudomonas sp Irchel s3b6 TE-A	WP_095144283	BurA TE-A and homologues		TE-A-T-KS-KR-TE-AT-ACP
Saccharothrix syringae TE-A	WP_211269021	BurA TE-A and homologues		TE-A-T-KS-KR-TE-AT-ACP
Streptomyces bryophytorum TE-A	WP_240165141	BurA TE-A and homologues		TE-A-T-KS-KR-TE-AT-ACP
Streptomyces glebosus TE-A	WP_229894110	BurA TE-A and homologues		TE-A-T-KS-KR-TE-AT-ACP
Streptomyces mobaraensis TE-A	WP_152263742	BurA TE-A and homologues		TE-A-T-KS-KR-TE-AT-ACP
Agrobacterium vitis TE-B	WP_156583012	BurA TE-B and homologues		TE-A-T-KS-KR- TE -AT-ACP
Burkholderia thailandensis TE-B	ABC36203	BurA TE-B and homologues	Gonyol	TE-A-T-KS-KR- TE -AT-ACP
Micromonospora nigra TE-B	WP_217628199	BurA TE-B and homologues		TE-A-T-KS-KR- TE -AT-ACP
Pseudomonas sp Irchel s3b6	WP_095144283	BurA TE-B and homologues		TE-A-T-KS-KR- TE -AT-ACP
Saccharothrix syringae	WP_211269021	BurA TE-B and homologues		TE-A-T-KS-KR- TE -AT-ACP
Streptomyces bryophytorum TE-B	WP_240165141	BurA TE-B and homologues		TE-A-T-KS-KR- TE -AT-ACP
Streptomyces glebosus	WP_229894110	BurA TE-B and homologues		TE-A-T-KS-KR- TE -AT-ACP
Streptomyces mobaraensis	WP_152263742	BurA TE-B and homologues		TE-A-T-KS-KR- TE -AT-ACP
DEBS_TEII Saccharopolyspora erythraea	CAA42028	Type II Thioesterase	Р	
Megalomicin_TEII Micromonospora megalomicea	AAG13923	Type II Thioesterase	Р	
Pikromycin_TEII Streptomyces venezuelae	AAC69333	Type II Thioesterase	Р	
Borrelidin_TEII Streptomyces sp. CRB46	WP_019330222	Type II Thioesterase	Р	
Tylosin_TEll Streptomyces fradiae	KDS84464	Type II Thioesterase	Р	
Kendomycin_TEII Streptomyces violaceoruber	CAQ52621	Type II Thioesterase	Р	
Rifamycin_TEII Amycolatopsis mediterranei	AAG52991	Type II Thioesterase	Р	
Abyssomicin_TEII Verrucosispora maris	AEK75515	Type II Thioesterase	Р	
Filipin_TEII Streptomyces avermitilis	BAC68117	Type II Thioesterase	Р	
Kijanimicin_TEII Actinomadura kijanjata	ACB46473	Type II Thioesterase	Р	
Maklamicin_TEII Micromonosporg sp. GMKU326	BAQ25498	Type II Thioesterase	Р	
Tetromadura verrucosospora	QKG20162	Type II Thioesterase	Р	
Tetronasin_TEII Strentomyces longisporoflavus	ACR50794	Type II Thioesterase	Р	
Tetronomycin_TEII Streptomyces sp. NRRI 11266	BAE93720	Type II Thioesterase	P	
Thiolactomycin_TEll	ALJ49917	Type II Thioesterase	P	
Gramicidin_TEII Brevibacillus brevis	BAH43865	Type II Thioesterase	N	

Microcystin_TEII	ACA83967	Type II Thioesterase	N	
Planktothrix agardhii	BA031058		D	
Strentomyces versinellis	BAQ21958	Type II Thioesterase	P	
Tyrocidine TEII	WP 0158910190	Type II Thioesterase	N	
Brevibacillus brevis		.,,		
Bacitracin_TEII	WP_020452080	Type II Thioesterase	N	
Bacillus licheniformis				
Naphthyridinomycin_TEll	AGD80621	Type II Thioesterase	N	
Gramicidin TEIL N	WP 006096422	Type II Thioesterase	N	
B.pseudomycoides	W1_000000422			
Xenocoumacin	CBJ89763	Type II Thioesterase	PN	
Xenorhabdus nematophila				
Griseoviridin_TEII	AGN74877	Type II Thioesterase	PN	
Streptomyces griseoviridis			DN	
Strentomyces sp. SID8354	WP_018540598	Type II Thioesterase	PN	
Spiruchostatin TEII	AFR69340	Type II Thioesterase	PN	
Pseudomonas sp. Q71576		.,,		
Gramicidin_TEII	WP_006096422	Type II thioesterase	N	
Bacillus pseudomycoides				
Soraphen_TEI	AAA79984	Type I thioesterase domain	P	
Amphotericin TEL	ΔΔΚ73503	Type I thioesterase domain	P	
Sorangium cellulosum				
Lasalocid_TEI	BAG85032	Type I thioesterase domain	Р	
Streptomyces lasalocidi				
Spinosyn_TEI	AAG23262	Type I thioesterase domain	Р	
Saccharopolyspora spinosa	CAD42451	Tuna I thiostorosa domain	D	
Sorangium cellulosum	CAD43451	Type I thoesterase domain	P	
Avermectin TEI	WP 010982381	Type I thioesterase domain	Р	
Streptomyces avermitilis	_			
Pikromycin_TEI	AAC69332	Type I thioesterase domain	Р	
Streptomyces venezuelae	N/D 011072120	.		
DEBS_TEL Saccharonolyspora enythraea	WP_011873139	Type I thioesterase domain	P	
Meilingmycin TEI	ADC45535	Type I thioesterase domain	Р	
Streptomyces nanchangensi				
Lankamycin_TEI	BAC76491	Type I thioesterase domain	Р	
Streptomyces rochei			-	
Curacin_A_TEI	ACV42478	Type I thioesterase domain	P	
Mycinamicin II TEI	BAC57032	Type I thioesterase domain	P	
Micromonospora griseorubida		.,,		
Natamycin_TEI	ADX66459	Type I thioesterase domain	Р	
Streptomyces chattanoogensis				
Aureothin_TEI	CAE02606	Type I thioesterase domain	P	
Bacitracin TEI	068008	Type I thioesterase domain	N	
Bacillus licheniformis				
Lichenysin_TEI	CAA06325	Type I thioesterase domain	N	
Bacillus licheniformis				
Surfactin_TEI	1JMK_C	Type I thioesterase domain	N	
Bacillus subtills	030409	Type I thioesterase domain	N	
Bacillus brevis	030403	Type I thoesterase domain		
Fengycin_TEI	AAB00093	Type I thioesterase domain	N	
Bacillus subtilis				
Mycosubtilin_TEI	Q9R9I9	Type I thioesterase domain	N	
Bacillus subtilis	W/D 007410142	Tuna I thioastarasa damain	N	
Bacillus subtilis	VVF_007410142			
Iturin_TEI	ABY89500	Type I thioesterase domain	N	
Bacillus subtilis				
Cephalosporin_CTE1	KFH48607	Type I thioesterase domain	Ν	
Acremonium chrysogenum	AAK01027	Tupo I thioostoroos dorosia	N	
socomplestatin_lel	ΑΑΚδ1827	i ype i thioesterase domain	IN	
successive avenualite	1	1	1	1

Echinomycin_TEI	BAE98156	Type I thioesterase domain	N	
Streptomyces Iasalocidi	AA723078	Type I thioesterase domain	N	
Streptomyces fradiae	741223070			
			1	1
Daptomycin_TEI	AAX31559	Type I thioesterase domain	N	
Enduracidin TEI-B	ABD65958	Type I thioesterase domain	N	C-A-T-C-A-T-C-A-T-C-A-T-C-A-T-
Streptomyces fungicidicus	1.2200000			C-A-T-C-A-T-C-A-T-TE- TE
Teixobactin TE1-B	AJF34464	Type I thioesterase domain	N	C-A-T-C-C-A-T-C-A-T-C-A-T-C-A-
Eleftheria terrae				T-TE- TE
Arthrofactin A TE1-B	BAC67536	Type I thioesterase domain	N	C-A-T-C-C-A-T-C-A-T-C-A-T-C-A-
Massetolide A TE1-B	ABH06369	Type I thioesterase domain	N	C-A-T-C-A-T-C-A-T-TF- TF
Pseudomonas fluorescens	Abrio0303	Type I thoesterase domain		
Lysobactin TE1-B	AEH59100	Type I thioesterase domain	N	C-A-T-C-A-T-C-A-T-C-A-T-C-A-
Lysobacter sp. ATCC 53042				T-C-A-T-C-A-T-TE- TE
Syringopeptin_TEI-B	AAO72425	Type I thioesterase domain	N	C-A-T-C-A-T-C-A-T-C-A-T-C-A-T-
Pseudomonas syringde				C-A-I-C-A-I-C-A-I-C-A-I-C-A-I- C-A-T-C-A-T-TE- TE
Myxothiazol TEI	AAF19815	Type I thioesterase domain	PN	
Stigmatella aurantiaca DW4/3-1				
Tubulysin_TEI	CAF05651	Type I thioesterase domain	PN	
Archangium discijorme				
Chondramid_TEI	Q0VZ70	Type I thioesterase domain	PN	
Chondromyces crocatus				
Cryptophycin_TEI	ABM21572	Type I thioesterase domain	PN	
Nostoc sp. ATCC 53789		Turne Lithia astarassa damain	DN	
I vnahva majuscula	AA142398	Type I thoesterase domain	PIN	
Cylindrocyclophane_TEI	AFV96142	Type I thioesterase domain	Р	
Cylindrospermum licheniforme			TEII-like ¹	
Jerangolid_TEI	ABK32291	Type I thioesterase domain	P	
Sorangium cellulosum	CA019925	Type I thiosstorase domain	TEII-like ^{1, 2}	
Chondromyces crocatus	CAQ10055	Type I thoesterase domain	TEII-like ³	
Legioliulin_TEI	AIU36104	Type I thioesterase domain	Р	
Legionella parisiensis			TEII-like ⁴	
Enduracidin_TEI-A	ABD65958	Other non-terminal thioesterase	N	C-A-T-C-A-T-C-A-T-C-A-T-
Streptomyces fungicialcus		domain		C-A-1-C-A-1- 1E -1E
Teixobactin TE1-A	AJF34464	Other non-terminal thioesterase	N	C-A-T-C-C-A-T-C-A-T-C-A-T-C-A-
Eleftheria terrae		domain		T- TE -TE
Arthrofactin A TE1-A	BAC67536	Other non-terminal thioesterase	N	C-A-T-C-C-A-T-C-A-T-C-A-
Pseudomonas sp. MIS38		domain Other neg terminal thioesterase	N	
Pseudomonas fluorescens	АВПО0509	domain	IN	
Lysobactin TE1-A	AEH59100	Other non-terminal thioesterase	N	C-A-T-C-A-T-C-A-T-C-A-T-C-A-
Lysobacter sp. ATCC 53042		domain		Т-С-А-Т-С-А-Т- ТЕ -ТЕ
Syringopeptin_TEI-B	AAO72425	Other non-terminal thioesterase	N	C-A-T-C-A-T-C-A-T-C-A-T-
Pseudomonas syringde		domain		C-A-I-C-A-I-C-A-I-C-A-I-C-A-I- C-A-T-C-A-T- TE -TE
Non-terminal TE1	WP 023803946	Other non-terminal thioesterase		TE -A-T-KS-AT-T
Mesorhizobium sp. L48C026A00		domain		
Non-terminal TE1	WP_022438322	Other non-terminal thioesterase		TE-A-KR-T-SDR
Clostridium sp. CAG:411		domain		
Non-terminal IE1 Branchiostoma floridae	XP_002598380	domain		KS-AI-DH-ER-KR-I-IE-C-A
Non-terminal TE1	WP 027170255	Other non-terminal thioesterase		TE-A-T-KS-AT-T
Mesorhizobium sp. WSM3224		domain		
Non-terminal TE1	XP_005650993	Other non-terminal thioesterase		KS-MT-MT-MT-MT-T-T-T-KS-
Coccomyxa subellipsoidea C169		domain		KR-T-T-KS-DH-ERKR-T-T-KS-KR-
				TKS-DH-KR-T-T-KS-DH-KRT-T-KS-
				KR-T-TE-T-TE
Non-terminal TE1	WP_025239395	Other non-terminal thioesterase		TE-KS-AT-T
Mycobacterium abscessus		domain		
	XP_002905400	domain		IE-A-I-SUK
	1	aoman	1	1

FR901464 TE1	ADH01484	Other non-terminal thioesterase	Р	DH-KR-AT-ACP-KS-KR-ACP-KS-
Pseudomonas sp. 2663		domain		ACP-ACP- TE -KS-ACP-C
Obafluorin_TEI	AQZ26587	Other non-terminal thioesterase	N	C-A-T- <u>TE</u> -A
Pseudomonas fluorescens		domain		
FmoA5_TEI-1	BAP16699	Other non-terminal thioesterase	N	C-T- TE -TE-A-T
Streptomyces sp. Sp080513GE-23		domain		
FmoA5_TEI-2	BAP16699	Other non-terminal thioesterase	N	C-T-TE- TE -A-T
Streptomyces sp. Sp080513GE-23		domain		

Supplementary Table 1. Thioesterase sequences used to create a sequence similarity network. The thioesterase sequences were divided into five groupings: 1) BurA TE-A from *Burkholderia thailandensis* (in bold) and the equivalent TE-A domains from BurA homologues encoded in other bacteria (yellow); 2) BurA TE-B from *Burkholderia thailandensis* (in bold) and the equivalent TE-B domains from BurA homologues encoded in other bacteria (orange); 3) Type II thioesterases (teal); 4) Type I thioesterase domains (blue); and 5) Other non-terminal thioesterase domains (magenta). Where known, the product class (polyketide: P, non-ribosomal peptide: N, or polyketide-non-ribosomal peptide hybrid: NP) of the pathway that contains the thioesterase is included.

Primer name	Sequence 5'-3'. Restriction sites are underlined, mutated residues are highlighted using red bold.
S90A_OL1_Fw	GATTACA <u>TCTAGA</u> AATAATTTTGTTTAACTTTAAGAAGG
S90A_OL1_Rv	CGTAGGCGAGCAGCGCCGAAGGGCGCGAACAGGAAGAAGGG
S90A_OL2_Fw	CCCTTCTTCCTGTTCGGCCACGCCCTCGGCGCGCGCTGCTCGCCTACG
S90A_OL2_Rv	GATTACA <u>GAATTC</u> GCCGACGAGCGAATCGGGCCAGCTCTTTTCGAGC
S2023A_OL1_Fw	GCCCGATTCGCTCGTCGGC <u>GAATTC</u> GTCGCGAGCTGCCGCGTCGCGC
S2023A_OL1_Rv	CGCGGCCGCCGCCGTAG <mark>GC</mark> CAGCCCGCAGAACGCGACGGGCAGTTCG
S2023A_OL2_Fw	CGAACTGCCCGTCGCGTTCTGCGGGCTG <mark>GC</mark> CTACGGCGGCGCGGCGCGCG
S2023A_OL2_Rv	TCCTTCTGCGGCCGC <u>AAGCTT</u> CTACTCGTCCGCGATGCCGGCGACGT
S2749A_OL1_Fw	ACTGGCTGATCGACGAGCA <u>GCAGGTG</u> CCGCC
S2749A_OL1_Rv	GCGCGAGATCGAGCG <mark>C</mark> ATCGAGCCCGAGCG
S2749A_OL2_Fw	CGCTCGGGCTCGAT <mark>G</mark> CGCTCGATCTCGCGC
S2749A_OL2_Rv	CGACGGCCGACC <u>ACCGGT</u> CCCG
pGEM_pbur_S90A_Up_Fw	TGAACCACCAAGTCTGTGGAGGTACCATGAGGCAAATAGTTTCAACG
pGEM_pbur_S90A_Up_Rv	CGTAGGCGAGCAGCGCCGAGG <mark>GC</mark> GTGGCCGAACAGGAAGAAGGG
pGEM_pbur_S90A_Dn_Fw	CCCTTCTTCCTGTTCGGCCACGCCCTCGGCGCGCGCTGCTCGCCTACG
pGEM_pbur_S90A_Dn_Rv	AAGCTATGCATCCAACGCGTTGGGAGCTCTCCCATATGGTCGACCTGC
pET28a_TE-B_Fw	GATTACA <u>CATATG</u> TCATGCAACGGCGGACATGA
pET28a_TE-B_Rv	ATATATATATAAAGCTTATCACAGCCACGCGGCCACGCGCGCG
Tet_rv	CGGTGCCGAGGATGACGATG
ll2087rvConf	CGAAGATCACGTCGTCGCCG

Supplementary Table 2. Oligonucleotide primers used in this study.

Plasmid	Description	Source
pHis8_svp	E. coli expression vector with His8- tag and svp; KanR	[^{5, 6}]
pHis8_ <i>svp_burA</i>	pHis8-svp containing burA; KanR	[7]
pHis8_ <i>svp_burA</i> _S90A	pHis8- <i>svp</i> containing <i>burA</i> S90A; KanR	This study
pHis8_ <i>svp_burA</i> _S2023A	pHis8- <i>svp</i> containing <i>burA</i> S2023A; KanR	This study
pHis8_ <i>svp_burA</i> _S2749A	pHis8- <i>svp</i> containing <i>burA</i> S2729A; KanR	This study
pET-28(+)	<i>E. coli</i> expression vector with a His6- tag; KanR	Novagen
pET-28(+) TE-B	E. coli expression vector containing a His6-tagged TE-B domain; KanR	This study
pET-28(+)TE-B S2023A	<i>E. coli</i> expression vector containing a His6-tagged TE-B S2023A domain; KanR	This study
pGEM_ <i>pbur</i>	pGEM-easy vector for integrating PthaA promoter upstream of burA in B. thailandensis.	[⁸]
pGEM_ <i>pbur_S90A</i>	pGEM-easy vector for integrating PthaA promoter upstream of burA and also introducing an S90A mutation in burA.	This study

Supplementary Table 3. Plasmids used in this study.

Name			Description	Source
E. coli TOP10)		General cloning host strain	Invitrogen
<i>E. coli</i> Rosett	a2 (λDE3)		Protein expression host strain containing tRNAs for rare codons; CmR	Novagen
<i>E. coli</i> BL21 (λDE3)		Protein expression host	New England Biolabs
<i>E. coli</i> BL21 (λDE3) TE-B			Heterologous expression host for pET-28(+) TE-B	This study
<i>E. coli</i> BL21 (λDE3) TE-B S20	23A	Heterologous expression host for pET-28(+) TE-B S2023A	This study
E. coli	Rosetta2	(λDE3)	Heterologous expression host for	This study
pHis8_ <i>svp_b</i>	urA_S90A		pHis8_ <i>svp_burA</i> _S90A	
E. coli	Rosetta2	(λDE3)	Heterologous expression host for	This study
pHis8_ <i>svp_b</i>	<i>urA</i> _\$2023A		pHis8_ <i>svp_burA</i> _S2023A	
E. coli	Rosetta2	(λDE3)	Heterologous expression host for	This study
pHis8_ <i>svp_burA</i> _S2749A			pHis8_ <i>svp_burA</i> _S2749A	
B. thailandensis E264			Prototroph; environmental isolate	DSMZ
B. thailander	isis E264 Pbur		The promotor of <i>burA</i> was exchanged with ∆PthaA;TetR	[8]
B. thailandensis E264 Pbur S90A		590A	The promotor of <i>burA</i> was exchanged with ΔPthaA;TetR. An S90A mutation is present within <i>burA</i>	This study

Supplementary Table 4. Strains used in this study.

Supplementary Figures

BurA_TE-A	YADMARALGGAFAFTTLSLPGRGATQH	42
BurA_TE-B	FD <mark>G</mark> WART <mark>AP</mark> DWLDIVAIEWPGRNARAE	42
Abyssomicin_TEII_P	M <mark>G</mark> RTARA <mark>G</mark> TQRST <mark>G</mark> YLDRT <mark>P</mark> D <mark>P</mark> -ADR <mark>VRLFCFHHAG</mark> AAAS <mark>T</mark> FA <mark>GWA</mark> EALQ <mark>P</mark> RVAVYPVQLP <mark>G</mark> RENRVR	67
Avermectin_TEI_P	PALICLPTVAAVSSVYQYSRFAAGLNGHRDVWYVPAPGFLEGE-	43
DEBS_TEI_P	TVI CCA <mark>GT</mark> AAI S <mark>GP</mark> HEFTRLAGAL R <mark>G</mark> I APVRAVP QPGYEE <mark>GE</mark> -	42
Kijanimicin TEII P	MAVSTEPGGLWFRRFVPDAEGAPVRLVCLPHAGGSASYFHPFARALGASVDVLAVOYPGRODRRL	65
Lasalocid TEL P		43
Surfactio TEL N		21
Sunactin_TEI_N		51
	Gx S xG *	
BurA_TE-A	I - PFYDDWPSLV DDLAAEVARLDDGTPFFLFGHSLGALLAYEVARALEO RGGAOPAGVFLSGHPAP	107
BurA TE-B	ESPARDDADDLAARDAI AAAI VADAGELPVAFCGLSYGGAAATELLAGPLRAWAASGRVKGLAVVGR-AP	111
Abyssomicin TEII P		130
Avermectin TEL P	PLPSGI GAVT RMEADAL VRET DGAPEAL ACHSAGGWEVY AVT SHLER LGVRPEAVVT MDAVLP	106
		100
Vitanimiain TEU D		100
		129
Lasalocid_TEI_P	PLPASAEALA RALAAVVRKVAGGRRCVLLGHSSGGTVAAAVAQLEE AGEAPAGLVLVDTPWW	106
Surfactin_TEI_N	DFIEEEDRL DRYADLI QKLQPEGPLTLFGYSAGCSLAFEAAKKLEG QGRI VQRI I MVDSYKK	93
BurA TE-A	SRERAT DAWROPT HALPDTAFT FAVR WGFFPDGALDDADVARYVLPPL RADL RLAETYRHA	169
BurA TE-B		167
Abussomisin TEIL D		107
Abyssomicin_TEII_P		187
Avermectin_TEI_P		152
DEBS_TEI_P	GHQDAMNAWLEELTATLFDRETVRMDDTRLTALGAYDRLTGQWRPR	151
Kijanimicin_TEII_P	SRPAGELVHLFDDDRLLAELARLDGTDARVLGDEEIMRSALPAIRADYKAAETYRLT	186
Lasalocid_TEI_P	GSAGGLGSQEWLPVINEMLLA <mark>R</mark> GAAAGAEDSDAGDAWVTARAKYFSLDFAIAPR	160
Surfactin_TEI_N	Q <mark>G</mark> VSDL <mark>DG</mark> RTVES <mark>D</mark> VEALMNVN <mark>R</mark> DNEALNSEAVKH <mark>GL</mark> KQK <mark>T</mark> HAFYS <mark>YY</mark> VNLIST	147
	н	
Burd TE-A		222
		222
BUFA_TE-B		220
Abyssomicin_TEII_P	GP DPV- PVPVRATVGDSDPLVGRADAVGWAAYTSSSFR LRVLPGGHLFHLRSGDRLRADIAACLGELT	254
Avermectin_TEI_P		192
DEBS_TEI_P	ETGLP-TLLVSAGEPMGPWPD-DSWKPTWPFEHDTVAVPGDHFTMVQE	197
Kijanimicin_TEII_P	GDARL - GCPVTALAGAEDTRVALDVRAWERHTTGGFEMHVYPGGHFFLAD	236
Lasalocid_TEI_P	DVRTLLLRPAEPLAGSAADAGWRAEWRPGTTVVEVPGNHFSMLDS	205
Surfactin_TEI_N	<mark>G</mark> QV KADI DLLTS <mark>G</mark> ADFDIP - EWLASWEEATTGAYR MKR <mark>GFG</mark> THAEMLQG	195
BurA_TE-A	236	
BurA_TE-B	232	
Abyssomicin_TEII_P	SL <mark>PGGRP</mark> D <mark>GG</mark> ASVDVEDRLA <mark>G</mark> HAA <mark>A</mark> EQRLDRVVDALPGV <mark>PP</mark> ADR 298	
Avermectin_TEI_P	205	
DEBS_TEI_P	210	
Kijanimicin TFII P		
Lasalocid TEL P		
Surfactin TEL N		
CONTROLIN (L1 IN		

Supplementary Figure 1. Alignment of BurA TE-A, BurA TE-B, with other Type I thioesterase domains and Type II thioesterases. Alignment was made using MUSCLE⁹. The active site Ser and His residues are highlighted using the corresponding letter. The location of the conserved active site Asp is highlighted using an asterisk (*). Chemically similar or identical amino acids in an alignment are coloured accordingly: Blue, hydrophobic; Green, polar; Purple, negative; Red, positive; Yellow, proline; Orange, Gly.

Supplementary Figure 2. Creation of a *B. thailandensis* E264 burA S90A mutant. The plasmid pGEM_*pbur_S90A* was transformed into *B. thailandensis* E264 by electroporation. Tetracycline resistant colonies were then screened using tet-rv and II2087rv_Conf primers (product size 1850 bp) to confirm that the desired plasmid integration had occurred, which simultaneously introduced the PThaA⁸ promoter upstream of *burA* and introduced an S90A mutation into *burA*.

Sup

plementary Figure 3. Mutating TE-A in *B. thailandensis* E264. A) The desired S90A mutation in of *burA* TE-A was made in wild type *B. thailandensis* by transforming the plasmid pGEM_*pbur_S90A*. In addition to integrating a strong promoter upstream of *burA*, necessary for activating the *bur* cluster, pGEM_*pbur_S90A* also had a homology arm fragment to overwrite the 5' end of burA to add the S90A mutation in the gene region corresponding to TE-A. B) Levels of the highly UV absorbing burkholderic acid (Absorbance 370 nm) were unchanged in the *B. thailandensis* TE-A S90A mutant compared to the wild type. Burkholderic acid level is relative to a caffeine internal standard (Abs 270 nm). Data representative of three independent experiments.

Supplementary Figure 4. A) Synthetic route to form racemic (2-acetamidoethyl) 3-hydroxy-5-(methylthio)pentanethioate, the precursor of racemic SNAC-gonyol. B) Synthetic route to form racemic SNAC-gonyol.

Supplementary Figure 5. Metal Affinity Purification of BurA TE-B and BurA TE-B S2023A. The gene region encoding **A.** the TE-B domain of BurA or **B.** were cloned into pET-28a in frame with an N-terminal His6-tag. The TE-B protein was then purified using cobalt resin affinity chromatography. Each lane on the SDS-PAGE gel contains a different fraction from the purification. M) Protein marker ladder—Precision Plus Dual Colour (Bio-Rad). 1) Insoluble fraction. 2) soluble fraction. 3) Column flow-through. 4) Fraction from 20 mM TrisCl pH 7.9, 0.5 M NaCl, 10 % glycerol. 5) Fraction from 20 mM TrisCl pH 7.9, 0.5 M NaCl, 10 % glycerol, 50 mM imidazole. 6)Fraction from 20 mM TrisCl pH 7.9, 0.5 M NaCl, 10 % glycerol, 100 mM imidazole. 7) Fraction from 20 mM TrisCl pH 7.9, 0.5 M NaCl, 10 % glycerol, 200 mM imidazole. 8) Fraction from 20 mM TrisCl pH 7.9, 0.5 M NaCl, 10 % glycerol, 100 mM imidazole. 7) Fraction from 20 mM TrisCl pH 7.9, 0.5 M NaCl, 10 % glycerol, 30 mM imidazole. 8) Fraction from 20 mM TrisCl pH 7.9, 0.5 M NaCl, 10 % glycerol, 30 mM imidazole. 7) Fraction from 20 mM TrisCl pH 7.9, 0.5 M NaCl, 10 % glycerol, 30 mM imidazole. 8) Fraction from 20 mM TrisCl pH 7.9, 0.5 M NaCl, 10 % glycerol, 400 mM imidazole. The arrow highlights the lane corresponding to the elution fraction highly enriched for TE-B/TE-B S2023A. The theoretical mass of TE-B and TE-B S2023A is 31 kDa.

Supplementary Figure 6. The melting temperatures of purified TE-B and TE-B S2023A. The melting temperature of the mutant was very similar to the wild type.

Supplementary Figure 7. SNAC standard curve used for the Ellman's reagent assay of TE-B. Different concentrations of SNAC were incubated in triplicate each with 10 μ M (saturating) of Ellman's reagent, followed by measuring the absorbance at 412 nm.

Supplementary Figure 8. H NMR spectrum of racemic (2-acetamidoethyl) 3-hydroxy-5-(methylthio)pentanethioate (CD₂Cl₂).

Supplementary Figure 9. ¹³C NMR spectrum of racemic (2-acetamidoethyl) 3-hydroxy-5-(methylthio)pentanethioate (CD₂Cl₂).

Supplementary Figure 10. Full ¹H NMR spectrum of racemic gonyol SNAC thioester (CD₃CN).

Supplementary Figure 11. Enlarged ¹H NMR spectrum of racemic gonyol SNAC thioester (CD₃CN).

Supplementary Figure 12. Full ¹³C NMR spectrum of racemic gonyol SNAC thioester (CD₃CN).

Supplementary Figure 13. Enlarged 13 C NMR spectrum of racemic gonyol SNAC thioester (CD₃CN).

Supplementary References

- 1. H. Nakamura, J. X. Wang and E. P. Balskus, *Chem. Sci.*, 2015, **6**, 3816-3822.
- 2. B. Julien, Z.-Q. Tian, R. Reid and C. D. Reeves, Chem. Biol., 2006, 13, 1277-1286.
- 3. K. Buntin, K. J. Weissman and R. Müller, *ChemBioChem*, 2010, **11**, 1137-1146.
- 4. T. Ahrendt, M. Miltenberger, I. Haneburger, F. Kirchner, M. Kronenwerth, A. O. Brachmann, H. Hilbi and H. B. Bode, *ChemBioChem*, 2013, **14**, 1415-1418.
- 5. J. M. Jez, J.-L. Ferrer, M. E. Bowman, R. A. Dixon and J. P. Noel, Biochem., 2000, 39, 890-902.
- 6. C. Sánchez, L. Du, D. J. Edwards, M. D. Toney and B. Shen, Chem. Biol., 2001, 8, 725-738.
- 7. F. Trottmann, K. Ishida, J. Franke, A. Stanišić, M. Ishida-Ito, H. Kries, G. Pohnert and C. Hertweck, Angew. Chem. Int. Ed., 2020, 59, 13511-13515.
- 8. J. Franke, K. Ishida and C. Hertweck, Angew. Chem. Int. Ed., 2012, 51, 11611-11615.
- 9. R. C. Edgar, BMC Bioinform., 2004, 5, 113.