Elucidation of microbial lignin degradation pathways using synthetic isotope-labelled lignin

Awatif Alruwaili, Goran M.M. Rashid, Victoria Sodré, James Mason, Zainab Rehman, David Cheung, Steven Brown and Timothy D.H. Bugg*

Supporting Information

- Figure S1. ¹H and ¹³C NMR spectra of ¹³C-labelled ferulic acid
- Figure S2. ¹H NMR and ¹³C NMR spectra of ¹³C-labelled coniferyl alcohol
- Figure S3 Purification of recombinant *Rhodococcus jostii* RHA1 glycolate oxidase
- Figure S4. Gel permeation chromatography of unlabelled and ¹³C-labelled DHP lignin
- Figure S5 Solid state ¹³C NMR spectrum of poly-ferulic acid

Figure S6,S7. Extracted ion chromatogram LC-MS data for the formation of unlabelled oxalic acid from unlabelled DHP lignin (S6), and ¹³C-labelled oxalic acid from ¹³C-labelled DHP lignin (S7), by *Rhodococcus jostii* RHA1, with control incubations lacking bacteria, and authentic oxalic acid standard.

Figure S8,S9. Extracted ion chromatogram LC-MS data for the formation of unlabelled homovanillic acid from unlabelled DHP lignin (S8), and ¹³C-labelled homovanillic acid from ¹³C-labelled DHP lignin (S9), by *Rhodococcus jostii* RHA1, with control incubations lacking bacteria, and authentic oxalic acid standard.

Figure S10. Extracted ion chromatogram LC-MS data for the formation of ¹³C-labelled oxalic acid from ¹³C-labelled polyferulic acid by *Rhodococcus jostii* RHA1, with control incubation lacking bacteria, and authentic oxalic acid standard.

Figure S11 HPLC analysis of reaction products from incubation of 4-hydroxyphenylacetic acid with *Rhodococus jostii* RHA1 glycolate oxidase enzyme.

Figure S2. ¹H NMR (400 MHz) and ¹³C NMR (125 MHz) spectra of ¹³C-labelled coniferyl alcohol

Figure S3. Purification of recombinant *Rhodococcus jostii* RHA1 glycolate oxidase (predicted M_r 68 kDa) by Immobilized Ion Affinity Chromatography (IMAC, Ni-NTA column), followed by Superdex 200 Gel Filtration chromatography.

GPC analysis of unlabelled DHP lignin

	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
	(g/mol)	(g/mol)	(g/mol)	(g/mol)	(g/mol)	(g/mol)	
Peak 1	5102	3471	5154	6961	9016	6682	1.484875

GPC analysis of ¹³C-Labelled DHP lignin

There are two distributions, at ~1500 g/mol (Peak 2) and a much smaller one at ~18000 g/mol (Peak 1)

Poak	Mp (g/mol)	Mn (g/mol)	Mw (g/mol)	Mz (g/mol)	Mz+1 (g/mol)	Mv (g/mol)	PD
1 Peak	17950	14519	17032	19558	22543	19162	1.173084
2		1129	1308	1456	1577	1437	1.158547

Lignin samples were acetylated using acetic anhydride/pyridine. The acetylated samples were analysed on an Agilent 1260 Infinity II-MDS analyzer, on a 2 x PLgel Mixed-D column, using DMF/5mM NH₄BF₄ as solvent, and polystyrene molecular weight standards.

Figure S4. Gel permeation chromatography of unlabelled and ¹³C-labelled DHP lignin

Figure S5. ¹³C solid state NMR spectrum of $[\beta$ -¹³C]-polyferulic acid. Data collection as described in Experimental section.

Figure S6. Extracted ion chromatogram LC-MS data for the formation of unlabelled oxalic acid (calculated 91.0 for MH⁺) at retention time 5.8 min from unlabelled DHP lignin by *Rhodococcus jostii* RHA1 (Panel B, m/z 91.0; Panel C, m/z 92.0). Panel A, control incubation lacking bacteria (m/z 91.0). Panel D, authentic oxalic acid standard.

Figure S7. Extracted ion chromatogram LC-MS data for the formation of ¹³C-labelled oxalic acid (calculated 92.0 for MH⁺) at retention time 5.8 min from unlabelled DHP lignin by *Rhodococcus jostii* RHA1 (Panel B, m/z 92.0; Panel C, m/z 91.0). Panel A, control incubation lacking bacteria (m/z 92.0). Panel D, authentic oxalic acid standard.

Figure S8. Extracted ion chromatogram LC-MS data for the formation of unlabelled homovanillic acid acid (calculated 205.0 for MNa⁺) at retention time 23.0 min from unlabelled DHP lignin by *Rhodococcus jostii* RHA1 (Panel B, m/z 205.0; Panel C, m/z 206.0). Panel A, control incubation lacking bacteria (m/z 205.0). Panel D, authentic homovanillic acid standard.

Figure S9. Extracted ion chromatogram LC-MS data for the formation of ¹³C-labelled homovanillic acid acid (calculated 206.0 for MNa⁺) at retention time 23.0 min from unlabelled DHP lignin by *Rhodococcus jostii* RHA1 (Panel B, m/z 206.0; Panel C, m/z 205.0). Panel A, control incubation lacking bacteria (m/z 206.0). Panel D, authentic homovanillic acid standard.

Figure S10. Extracted ion chromatogram LC-MS data for formation of ¹³C-labelled oxalic acid from [β -¹³C]-poly-ferulic acid (m/z 114.0, MNa⁺) by *Rhodococcus jostii* RHA1. Panel A, unlabelled oxalic acid formed from unlabelled DHP lignin (m/z 91.0, MH⁺). Panel B, ¹³Clabelled oxalic acid (m/z 92.0, MH⁺) formed from [β -¹³C]-DHP lignin. Panel D, oxalic acid standard.

Figure S11. HPLC analysis of reaction products from incubation of 4-hydroxyphenylacetic acid with *Rhodococus jostii* RHA1 glycolate oxidase enzyme. Blue line, sample treated with *R. jostii* RHA1 glycolate oxidase; orange line, control lacking glycolate oxidase enzyme. Reaction mixtures were separated on an Aminex HPX-87H Organic Acids column (300 x 7.8 mm) (Bio-Rad) at 45°C, with 5 mM sulfuric acid as mobile phase and a flow rate of 0.5 mL/min.