NH₄(B₆PO₁₀(OH)₄)·H₂O: Exhibiting the Largest Birefringence in

Borophosphates

Sujuan Yu,^a Hongping Wu,^a Hongwei Yu,^{*a} Zhanggui Hu,^{*a} Jiyang Wang,^a and Yicheng Wu^a

^aTianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China.

CONTENTS

Experimetal Section
Figure S1. The selected millimeter size crystals of NH ₄ (B ₆ PO ₁₀ (OH) ₄)·H ₂ OS2
Figure S2. The program of X-ray powder diffraction patterns of
$NH_4(B_6PO_{10}(OH)_4) \cdot H_2OS3$
Figure S3. X-ray powder diffraction patterns of NH ₄ (B ₆ PO ₁₀ (OH) ₄)·H ₂ OS4
Figure S4. Photograph of crystal sizeS5
Figure S5. The crystal orientation of the NH ₄ (B ₆ PO ₁₀ (OH) ₄)·H ₂ OS6
Table S1. Atoms coordinates and equivalent isotropic displacement parameters for
$NH_4(B_6PO_{10}(OH)_4) \cdot H_2O \dots S7$
Table S2. Selected distances (Å) and angles (deg) for NH4(B6PO10(OH)4)·H2OS8-S9
Table S3. Hydrogen bonds for NH ₄ (B ₆ PO ₁₀ (OH) ₄)·H ₂ OS10
Table S4 A symmetry of mixed accordinated becombered

Experimetal Section: Reagents

H₃BO₃ (Shanghai Aladdin Chemistry Co., Ltd., 99.5%), NH₄H₂PO₄ (Tianjin Fuchen Chemical Co., Ltd, 99.0%) and SnCl₂·2H₂O (Shanghai Aladdin Chemistry Co., Ltd., 98.0%) were ground as received without further purification.

Synthesis

 $NH_4(B_6PO_{10}(OH)_4) \cdot H_2O$ crystals were synthesized by boric acid flux method. First, the mixtures containing H₃BO₃ (4mmol, 0.2473g), $NH_4H_2PO_4$ (1.15mmol, 0.1321g) and $SnCl_2 \cdot 2H_2O$ (1mmol, 0.2257g) were put into a 23ml Teflon-lined stainless steel autoclave without any stirring and grinding. Then the Teflon-lined stainless steel autoclave was put into oven. The autoclave was heated to 220 °C within 3 h, held at that temperature for 3 days, and then cooled to 30 °C at a rate of 5 °C/h. Owing to the low yield (5% based on H₃BO₃), the final products were selected millimeter size crystals.

In addition, as is known that K, Rb, Cs-phases can often exhibit the similar structures with NH4-phase, so we also had tried to synthesize the K, Rb, Cs-phases. But unfortunately, we did not succeed to obtain them.

Figure S1. The selected millimeter size crystals of $NH_4(B_6PO_{10}(OH)_4) \cdot H_2O$.

 $NH_4(B_6PO_{10}(OH)_4) \cdot H_2O.$

The powder X-ray diffraction data were collected using Bruker SMART APEX III CCD diffractometer with Integrate Debye Rings program at room temperature (Mo K α radiation). Data were collected in the 2 θ range of 10-70° with a step size of 2.00° and a step time of 60 s.

Figure S3. X-ray powder diffraction patterns of NH₄(B₆PO₁₀(OH)₄)·H₂O.

Figure S4. Photograph of crystal size.

Figure S5. The crystal orientation of the NH₄(B₆PO₁₀(OH)₄)·H₂O was indexed by using a Bruker SMART APEX III.

Atoms	X	У	Z	U(eq)	BVS
N(1)	1412(5)	6282(4)	8567(3)	40(1)	3.04
P(1)	2605(1)	4800(1)	5077(1)	16(1)	5.13
B(1)	2728(5)	9266(4)	2373(4)	22(1)	2.98
B(2)	-2203(5)	10025(4)	3752(4)	21(1)	2.98
B(3)	-966(5)	8342(5)	2080(4)	22(1)	2.98
B(4)	4297(5)	7748(5)	584(4)	25(1)	2.97
B(5)	-576(5)	7181(4)	4581(4)	16(1)	2.99
B(6)	4888(5)	6523(4)	3038(4)	19(1)	3.03
O(1)	1731(5)	4541(4)	1446(3)	63(1)	-2.51
O(2)	3681(3)	8052(2)	3358(2)	19(1)	-1.80
O(3)	-44(3)	7134(2)	3078(2)	19(1)	-1.80
O(4)	-1379(3)	8796(2)	4787(2)	19(1)	-1.83
O(5)	1024(3)	6331(2)	5337(2)	17(1)	-1.98
O(6)	-2133(3)	9781(3)	2434(2)	29(1)	-1.85
O(7)	2972(3)	9111(3)	989(2)	29(1)	-1.85
O(8)	5281(3)	6555(3)	1549(2)	20(1)	-1.87
O(9)	4116(3)	5179(2)	3851(2)	18(1)	-2.01
O(10)	1957(3)	3688(2)	4651(2)	19(1)	-1.98
O(11)	3315(3)	3944(3)	6501(2)	21(1)	-1.98
O(12)	1504(4)	10662(3)	2650(3)	32(1)	-1.05
O(13)	-731(4)	8186(3)	737(2)	34(1)	-1.03
O(14)	4614(4)	7629(3)	-785(3)	40(1)	-1.02
O(15)	-3109(4)	11548(3)	3902(3)	34(1)	-1.03

Table S1. Atoms coordinates and equivalent isotropic displacement parameters for $NH_4(B_6PO_{10}(OH)_4)\cdot H_2O.$

N(1)-H(3)	0.8256	B(5)-O(4)	1.443(4)
N(1)-H(4)	0.8861	B(5)-O(3)	1.458(4)
N(1)-H(6)	0.9337	B(5)-O(5)	1.486(4)
N(1)-H(8)	0.7307	B(5)-O(10)#1	1.509(4)
O(1)-H(9)	0.8307	B(6)-O(8)	1.430(4)
O(1)-H(10)	0.7466	B(6)-O(2)	1.455(4)
B(1)-O(12)	1.349(5)	B(6)-O(11)#2	1.494(4)
B(1)-O(2)	1.363(4)	B(6)-O(9)	1.501(4)
B(1)-O(7)	1.392(5)	P(1)-O(9)	1.524(2)
B(2)-O(15)	1.353(4)	P(1)-O(10)	1.527(2)
B(2)-O(4)	1.356(4)	P(1)-O(11)	1.534(2)
B(2)-O(6)	1.393(5)	P(1)-O(5)	1.537(2)
B(3)-O(3)	1.357(4)	O(10)-B(5)#1	1.509(4)
B(3)-O(13)	1.353(5)	O(11)-B(6)#2	1.494(4)
B(3)-O(6)	1.395(4)	O(12)-H(7)	0.9840
B(4)-O(8)	1.355(4)	O(13)-H(2)	0.9543
B(4)-O(14)	1.357(5)	O(14)-H(1)	0.9128
B(4)-O(7)	1.397(5)	O(15)-H(5)	0.9603
H(3)-N(1)-H(4)	113.6	O(2)-B(6)-O(11)#2	109.9(3)
H(3)-N(1)-H(6)	122.7	O(8)-B(6)-O(9)	108.1(3)
H(4)-N(1)-H(6)	113.6	O(2)-B(6)-O(9)	111.7(3)
H(3)-N(1)-H(8)	112.8	O(11)#2-B(6)-O(9)	106.0(2)
H(4)-N(1)-H(8)	96.1	O(9)-P(1)-O(10)	105.45(13)
H(6)-N(1)-H(8)	92.5	O(9)-P(1)-O(11)	111.87(14)
O(12)-B(1)-O(2)	123.7(3)	O(8)-B(6)-O(11)#2	106.9(3)
O(12)-B(1)-O(7)	115.8(3)	O(2)-B(6)-O(11)#2	109.9(3)
O(2)-B(1)-O(7)	120.5(3)	O(8)-B(6)-O(9)	108.1(3)
O(15)-B(2)-O(4)	123.6(3)	O(2)-B(6)-O(9)	111.7(3)
O(15)-B(2)-O(6)	115.6(3)	O(11)#2-B(6)-O(9)	106.0(2)
O(4)-B(2)-O(6)	120.8(3)	O(9)-P(1)-O(10)	105.45(13)
O(3)-B(3)-O(13)	121.0(3)	O(9)-P(1)-O(11)	111.87(14)
O(3)-B(3)-O(6)	119.4(3)	O(8)-B(6)-O(11)#2	106.9(3)
O(13)-B(3)-O(6)	119.6(3)	O(2)-B(6)-O(11)#2	109.9(3)
O(8)-B(4)-O(14)	120.0(3)	O(8)-B(6)-O(9)	108.1(3)
O(8)-B(4)-O(7)	120.2(3)	O(2)-B(6)-O(9)	111.7(3)
O(14)-B(4)-O(7)	119.9(3)	O(11)#2-B(6)-O(9)	106.0(2)
O(4)-B(5)-O(3)	113.5(3)	O(9)-P(1)-O(10)	105.45(13)
O(4)-B(5)-O(5)	108.0(3)	O(9)-P(1)-O(11)	111.87(14)
O(3)-B(5)-O(5)	111.0(3)	O(8)-B(6)-O(11)#2	106.9(3)
O(4)-B(5)-O(10)#1	107.4(3)	O(2)-B(6)-O(11)#2	109.9(3)
O(3)-B(5)-O(10)#1	110.6(3)	O(5)-B(5)-O(10)#1	106.0(3)
O(8)-B(6)-O(11)#2	106.9(3)	O(8)-B(6)-O(2)	113.8(3)

Table S2. Selected distances (Å) and angles (deg) for $NH_4(B_6PO_{10}(OH)_4) \cdot H_2O$.

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1 #2 -x+1,-y+1,-z+1

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(10)O(10)	0.75	2.51	3.087(4)	135.8
O(1)-H(10)O(3)	0.75	2.38	3.019(4)	145.1
O(1)-H(9)O(14)#3	0.83	2.14	2.886(4)	148.9
N(1)-H(8)O(15)#4	0.73	2.28	3.003(4)	169.3
O(12)-H(7)O(4)#4	0.98	1.76	2.741(4)	177.7
O(15)-H(5)O(2)#4	0.96	1.82	2.778(4)	174.7
N(1)-H(4)O(8)#2	0.89	2.07	2.936(4)	164.6
N(1)-H(3)O(13)#5	0.83	2.18	2.982(4)	163.9
O(13)-H(2)O(12)#6	0.95	2.63	3.367(4)	133.8
O(13)-H(2)O(7)#6	0.95	1.88	2.816(3)	167.0
O(14)-H(1)O(6)#6	0.91	1.93	2.829(4)	166.4

Table S3. Hydrogen bonds for $NH_4(B_6PO_{10}(OH)_4) \cdot H_2O$.

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z+1 #2 -x+1,-y+1,-z+1 #3 -x+1,-y+1,-z #4 -x,-y+2,-z+1 #5 x,y,z+1 #6 -x,-y+2,-z

BPOs	Synthesis	B:P	BO3:BO4
M ₂ [BP ₃ O ₁₂](M=Cr,V,Fe)	Solid state	1:3	3:0
Co ₅ [BPO ₆][PO ₄] ₂	Low temperature flux	1:3	1:0
$CsSc[B_2P_3O_{11}(OH)_2]$	Hydrothermal	2:3	1:1
$[C_6H_{14}N_2]_2[VOB_3P_4O_{15}(OH)_5]\cdot H_2O$	Hydrothermal	3:4	1:2
Na ₂ [MB ₃ P ₂ O ₁₁ (OH)]·0.67H ₂ O(M=Co,Fe,Mn,Ni,Zn)	Low temperature flux	3:2	1:2
$Na_5(H_3O)\{M_3[B_3O_3(OH)]_3(PO_4)_6\}\cdot 2H_2O$	Hydrothermal	3:2	1:2
(M=Mn,Co,Ni)			
$Na_5(NH_4)Mn_3[B_9P_6O_{33}(OH)_3] \cdot 1.5H_2O$	Hydrothermal	3:2	1:2
$Na_8[Cr_4B_{12}P_8O_{44}(OH)_4][P_2O_7]\cdot nH_2O$	Hydrothermal	3:2	1:2
$Na_{2}[VB_{3}P_{2}O_{12}(OH)] \cdot 2.92H_{2}O$	Low temperature flux	3:2	1:2
Na5KCu3[B9P2O33(OH)3] ·H2O	Low temperature flux	3:2	1:2
$LiNa_2B_5P_2O_{14}$	Solid state	5:2	2:3
Li ₂ B ₃ PO ₈	Solid state	3:1	2:1
Li[B ₃ PO ₆ (OH) ₃]	Hydrothermal	3:1	2:1
(NH ₄) ₂ [B ₃ PO ₇ (OH) ₂]	Hydrothermal	3:1	2:1
(NH ₄)[B ₃ PO ₆ (OH) ₃]·0.5H ₂ O	Solvothermal	3:1	2:1
K ₂ MB ₄ PO ₁₀ (M=Rb,Cs)	Solid state	4:1	2:2
$K_3B_4PO_{10}$	Solid state	4:1	2:2
K ₃ [B ₅ PO ₁₀ (OH) ₃]	Hydrothermal	5:1	2:3
Na ₃ B ₆ PO ₁₃	Solid state	6:1	4:2
K[B ₆ PO ₁₀ (OH) ₄]	Hydrothermal	6:1	4:2

Table S4. A summary of mixed-coordinated borophosphates.