Electronic Supplementary Information

Retro Baeyer-Villiger reaction: thermal conversion of the

[60]fullerene-fused lactones to ketones

Chuang Niu,‡^{*a*} Zheng-Chun Yin,‡^{*a*} Wei-Feng Wang,^{*a*} Xinmin Huang,^{*a*} Dian-Bing Zhou,^{*a*} Guan-Wu Wang^{*a,b,**}

 ^a Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China E-mail: gwang@ustc.edu.cn; Fax: +86 551 3607864; Tel: +86 551 3607864
^b State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
<u>‡</u> These authors contributed equally to this work.

Table of Contents

1. General Information	S2
2. Synthesis and Spectral Data of Compounds 2a-i	S2
3. Synthesis and Spectral Data of Compounds 3a–5a	S5
4. NMR Spectra of Compounds 2a-i and 3a-5a	S 8
5. UV-vis Spectra of Compounds 2g and 3a–5a	S21
6. MALDI-TOF HRMS Spectra of Compounds 2g and 3a–5a	S23
7. CVs and DPVs of Compounds 2g and 3a–5a	S25
8. References	S29

1. General Information

Compounds **1a–i** were synthesized according to the procedure developed by our group.¹ Tetra-*n*-butylammonium perchlorate (TBAP) was recrystallized from absolute ethanol and dried in a vacuum at 313 K prior to use. Other chemicals were obtained commercially and used without further purification. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker ASCEND III–400 or a Bruker ASCEND III–500 spectrometer at room temperature. ¹H NMR and ¹³C NMR chemical shifts were determined relative to TMS. Abbreviations for signal couplings are: s, singlet; d, doublet; t, triplet; m, multiplet. Compounds **2a–f**, **2h** and **2i** are known compounds, and their ¹H NMR data are consistent with those reported in the literature.² High resolution mass spectra were obtained on a Bruker UltrafleXtreme MALDI-TOF/TOF instrument. UV-vis spectra were obtained on a SHIMADZU UV-3600PLUS instrument. IR spectra were obtained on a Thermo Scientific Nicolet 6700 instrument. All electrochemical reactions, CV and DPV measurements were performed under an argon atmosphere using a Shanghai Chenhua CHI630D workstation.

2. Synthesis and Spectral Data of Compounds 2a-i

General Procedure: A dry 25 mL tube equipped with a magnetic stirrer was charged with **1** (0.015 mmol) and triflic anhydride (Tf₂O) (0.045–0.150 mmol), which were dissolved in anhydrous 1,2-dichlorobenzene (1,2-C₆H₄Cl₂) (3 mL) under an air atmosphere. Then, the tube was sealed tightly and stirred in an oil bath at 120 °C for 10 h. The resulting mixture was filtered through a silica gel (200–300 mesh) plug with CS_2/CH_2Cl_2 (1:1 v/v) to remove insoluble materials. After the solvent had been evaporated in *vacuo*, the residue was separated on a silica gel column (300–400 mesh) with CS_2/CH_2Cl_2 (4:1 v/v) as the eluent to give product **2**.

2.1. Synthesis of 2a

By following the general procedure, the reaction of **1a** (12.8 mg, 0.015 mmol) and Tf₂O (7.5 μ L, 0.045 mmol) in 1,2-C₆H₄Cl₂ (3 mL) at 120 °C for 10 h afforded **2a** (10.9 mg, 87%): amorphous brown solid; ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) δ 8.37 (d, *J* = 7.9 Hz, 1H), 8.21 (s, 1H), 7.87 (dd, *J* = 7.9, 1.1 Hz, 1H), 2.72 (s, 3H).

2.2. Synthesis of 2b

By following the general procedure, the reaction of **1b** (12.8 mg, 0.015 mmol) and Tf₂O (7.5 μ L, 0.045 mmol) in 1,2-C₆H₄Cl₂ (3 mL) at 120 °C for 10 h afforded **2b** (11.2 mg, 89%): amorphous brown solid; ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) δ 8.32 (d, *J* = 8.1 Hz, 1H), 8.30 (s, 1H), 7.66 (dd, *J* = 7.9, 0.6 Hz, 1H), 2.72 (s, 3H).

2.3. Synthesis of 2c

By following the general procedure, the reaction of **1c** (13.1 mg, 0.015 mmol) and Tf₂O (12.5 μ L, 0.075 mmol) in 1,2-C₆H₄Cl₂ (3 mL) at 120 °C for 10 h afforded **2c** (11.3 mg, 88%): amorphous brown solid; ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) δ 8.34 (d, *J* = 8.5 Hz, 1H), 7.79 (d, *J* = 2.6 Hz, 1H), 7.61 (dd, *J* = 8.5, 2.6 Hz, 1H), 4.09 (s, 3H).

2.4. Synthesis of 2d

By following the general procedure, the reaction of **1d** (13.1 mg, 0.015 mmol) and Tf₂O (12.5 μ L, 0.075 mmol) in 1,2-C₆H₄Cl₂ (3 mL) at 120 °C for 10 h afforded **2d** (11.1 mg, 86%): amorphous brown solid; ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) δ 8.31 (d, *J* = 8.6 Hz, 1H), 7.86 (d, *J* = 2.2 Hz, 1H), 7.35 (dd, *J* = 8.6, 2.2 Hz, 1H), 4.08 (s, 3H).

2.5. Synthesis of 2e

By following the general procedure, the reaction of **1e** (13.1 mg, 0.015 mmol) and Tf₂O (25.0 μ L, 0.150 mmol) in 1,2-C₆H₄Cl₂ (3 mL) at 120 °C for 10 h afforded **2e** (10.5 mg, 81%): amorphous brown solid; ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) δ 8.43 (d, *J* = 8.2 Hz, 1H), 8.36 (d, *J* = 2.0 Hz, 1H), 7.99 (dd, *J* = 8.2, 2.0 Hz, 1H).

2.6. Synthesis of 2f

By following the general procedure, the reaction of **1f** (13.1 mg, 0.015 mmol) and Tf₂O (25.0 μ L, 0.150 mmol) in 1,2-C₆H₄Cl₂ (3 mL) at 120 °C for 10 h afforded **2f** (10.6 mg, 82%): amorphous brown solid; ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) δ 8.47 (d, *J* = 1.7 Hz, 1H), 8.34 (d, *J* = 8.2 Hz, 1H), 7.81 (dd, *J* = 8.2, 1.7 Hz, 1H).

2.7. Synthesis of 2g

By following the general procedure, the reaction of **1g** (13.4 mg, 0.015 mmol) and Tf₂O (12.5 µL, 0.075 mmol) in 1,2-C₆H₄Cl₂ (3 mL) at 120 °C for 10 h afforded **2g** (10.5 mg, 80%): amorphous brown solid; ¹H NMR (500 MHz, 1:1 CS₂/CDCl₃) δ 9.11 (s, 1H), 8.50 (d, *J* = 7.9 Hz, 1H), 8.49 (d, *J* = 7.9 Hz, 1H), 4.04 (s, 3H); ¹³C NMR (126 MHz, 1:1 CS₂/CDCl₃) (all 2C unless indicated) δ 198.30 (*C*=*O*), 165.15 (*C*=*O*), 156.36, 153.39, 152.78, 147.38 (1C), 147.35, 147.14 (1C), 146.36 (4C), 146.10, 146.06, 145.71, 145.61, 145.54, 145.47, 145.37, 145.34, 144.55, 144.23, 143.08, 142.73, 142.67, 142.35, 142.08, 142.03, 142.00, 141.91, 141.57, 140.59, 140.56, 137.91 (1C, aryl *C*), 137.52 (1C, aryl *C*), 135.51 (1C, aryl *C*), 135.43, 131.11 (1C, aryl *C*), 128.00 (1C, aryl *C*), 127.17 (1C, aryl *C*), 78.74 (1C, sp³-*C* of C₆₀), 70.62 (1C, sp³-*C* of C₆₀), 52.75 (1C); FT-IR *v*/cm⁻¹ (KBr) 1727, 1608, 1588, 1513, 1433, 1414, 1285, 1214, 1137, 1100, 1079, 1013, 987, 850, 833, 800, 765, 728, 687, 553, 527; UV-vis (CHCl₃) λ_{max}/nm (log ε) 258 (5.06), 310 (4.55), 430 (3.54), 697 (2.52); MALDI-TOF MS *m/z* calcd for C₆₉H₆O₃ [M]⁻ 882.0322, found 882.0316.

2.8. Synthesis of 2h

By following the general procedure, the reaction of **1h** (13.5 mg, 0.015 mmol) and Tf₂O (12.5 μ L, 0.075 mmol) in 1,2-C₆H₄Cl₂ (3 mL) at 120 °C for 3 h afforded **2h** (10.9 mg, 82%): amorphous brown solid; ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) δ 7.80 (s, 1H), 7.75 (s, 1H), 4.15 (s, 3H), 4.14 (s, 3H).

2.9. Synthesis of 2i

By following the general procedure, the reaction of **1i** (12.6 mg, 0.015 mmol) and Tf₂O (7.5 μ L, 0.045 mmol) in 1,2-C₆H₄Cl₂ (3 mL) at 120 °C for 10 h afforded **2i** (11.1 mg, 90%): amorphous brown solid; ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) δ 8.50 (d, *J* = 7.8 Hz, 1H), 8.42 (d, *J* = 7.7 Hz, 1H), 8.06 (td, *J* = 7.5, 1.2 Hz, 1H), 7.85 (td, *J* = 7.5, 0.8 Hz, 1H).

3. Synthesis and Spectral Data of Compounds 3a-5a

3.1. Synthesis of 3a and 4a

Compound **2a** (12.6 mg, 0.015 mmol) was electroreduced by controlled potential electrolysis (CPE) at -1.30 V vs. saturated calomel electrode (SCE) in 15 mL of 1,2-C₆H₄Cl₂ containing 0.1 M TBAP under an argon atmosphere at room temperature. The electrolysis was terminated when the theoretical number of coulombs required for a full conversion of **2a** to **2a**²⁻ was reached. Then, the dianionic **2a**²⁻ was allowed to react with benzyl bromide (PhCH₂Br) (134.1 µL, 1.125 mmol) and sodium hydride (NaH) (57–63% oil dispersion, 31.2 mg, 0.75 mmol). After being stirred at 50 °C for 6 h, the resulting mixture was directly filtered through a silica gel (200–300 mesh) plug with CS₂/CH₂Cl₂ (1:1 v/v) to remove the supporting electrolyte and insoluble materials, and then evaporated in *vacuo* to remove the solvent. Next, the residue was further separated on a silica gel column (300–400 mesh) with CS₂ as the eluent to afford product **3a** (5.0 mg, 29%) and product **4a** (4.4 mg, 25%) as amorphous brown solids.

Compound 3a: ¹H NMR (500 MHz, 1:1 CS₂/CDCl₃) δ 8.60 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.58 (s, 1H), 7.40–7.24 (m, 7H), 7.15–7.06 (m, 3H), 5.47 (d, J = 12.3 Hz, 1H), 5.43 (d, J = 12.3 Hz, 1H), 4.93 (d, J = 12.3 Hz, 1H), 4.04 (d, J = 12.3 Hz, 1H), 2.55 (s, 3H); ¹³C NMR (126 MHz, 1:1 CS₂/CDCl₃) (all 1C unless indicated) δ 170.07 (*C*=*O*), 157.04, 156.68, 154.94, 153.16, 147.85, 147.64, 147.20, 146.73, 146.58 (2C), 146.56, 146.52, 146.39, 146.32, 146.25, 146.19, 146.03, 146.00, 145.88, 145.63, 145.62, 145.55 (2C), 145.47, 145.36, 145.31, 145.28, 145.03, 144.77 (2C), 144.58, 144.26, 143.38, 143.26, 142.74, 142.69, 142.67 (2C), 142.41, 142.30, 142.28 (2C), 142.08, 142.04, 141.57, 141.53, 141.44, 141.39, 141.23, 140.46, 139.77, 139.57, 138.96, 138.72, 138.50, 138.38 (aryl *C*), 137.84 (aryl *C*), 137.01 (aryl *C*), 136.67,

135.23 (aryl *C*), 135.06 (aryl *C*), 134.68, 134.11 (aryl *C*), 133.84, 132.05 (2C, aryl *C*), 131.36 (aryl *C*), 130.43 (aryl *C*), 128.87 (2C, aryl *C*), 128.69 (2C, aryl *C*), 128.61 (aryl *C*), 127.92 (2C, aryl *C*), 126.88 (aryl *C*), 71.52 (sp³-*C* of C₆₀), 67.98, 67.36 (sp³-*C* of C₆₀), 49.12, 21.18; FT-IR ν /cm⁻¹ (KBr) 1718, 1492, 1450, 1290, 1251, 1203, 1147, 1090, 1063, 817, 748, 733, 695, 576, 525; UV-vis (CHCl₃) λ_{max} /nm (log ε) 258 (5.08), 314 (4.67), 436 (3.61), 705 (2.70); MALDI-TOF MS *m*/*z* calcd for C₈₂H₂₀O₃ [M]⁻ 1152.1418, found 1152.1416.

Compound 4a: ¹H NMR (500 MHz, 1:1 CS₂/CDCl₃) δ 8.50 (d, J = 8.1 Hz, 1H), 7.52 (dd, J = 8.1, 1.3 Hz, 1H), 7.42 (d, J = 7.1 Hz, 2H), 7.37–7.27 (m, 7H), 7.23–7.16 (m, 2H), 5.26 (d, J = 12.4 Hz, 1H), 5.18 (d, J = 12.4 Hz, 1H), 4.17 (d, J = 13.0 Hz, 1H), 4.02 (d, J = 13.0 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (126 MHz, 1:1 CS₂/CDCl₃) (all 1C unless indicated) δ 169.38 (C=O), 156.21, 155.93, 151.09, 149.91, 148.89, 148.60, 148.43, 148.02, 147.36, 147.02 (2C), 147.01, 146.95, 146.90, 146.81 (2C), 146.76, 146.73, 145.45, 145.39, 145.18, 145.07, 144.99, 144.85, 144.56, 144.40, 144.37, 144.29, 144.23 (3C), 144.20, 144.01 (2C), 143.82, 143.71, 143.64, 143.61, 143.39, 143.20, 143.13, 143.06, 143.01, 142.92, 142.76, 142.66, 142.63, 142.52, 142.37 (2C), 142.17, 141.97, 141.89, 141.57, 140.69, 139.19, 138.57, 138.30, 137.98 (aryl C), 137.73, 135.37 (aryl C), 135.05 (aryl C), 134.08 (aryl C), 133.39 (aryl C), 131.30 (aryl C), 130.55 (2C, aryl C), 129.63 (aryl C), 129.49 (aryl C), 128.58 (2C, aryl C), 128.32 (aryl C), 128.30 (2C, aryl C), 128.18 (2C, aryl C), 127.08 (aryl C), 67.45, 60.24 (sp³-C of C₆₀), 60.07 (sp³-C of C₆₀), 47.76, 20.99; FT-IR v/cm⁻¹ (KBr) 1717, 1491, 1453, 1292, 1253, 1206, 1143, 1063, 819, 747, 729, 697, 578, 524; UV-vis (CHCl₃) λ_{max}/nm (log ε) 258 (5.05), 330 (4.54), 445 (3.81), 690 (2.48); MALDI-TOF MS m/z calcd for C₈₂H₂₀O₃ [M]⁻ 1152.1418, found 1152.1412.

3.2. Synthesis of 5a

Compound **2a** (16.8 mg, 0.020 mmol) was electroreduced by CPE at -1.30 V vs. SCE in 15 mL of 1,2-C₆H₄Cl₂ containing 0.1 M TBAP under an argon atmosphere at room temperature. The electrolysis was terminated when the theoretical number of coulombs required for a full conversion of **2a** to **2a**^{2–} was reached. Then, the dianionic **2a**^{2–} was allowed to react with trifluoroacetic acid (TFA) (4.5 µL, 0.060 mmol). After being stirred at 25 °C for 0.5 h, the resulting mixture was directly filtered through a neutral silica gel (200–300 mesh, pH: 6.5~7.5) plug with CS₂/ethyl acetate (5:1 v/v) to

remove the supporting electrolyte and insoluble materials, and then evaporated in *vacuo* to remove the solvent. Next, the residue was further separated on a neutral silica gel column (200–300 mesh, pH: 6.5~7.5) with CS₂/ethyl acetate (5:1 v/v) as the eluent to afford product **5a** (9.3 mg, 53%) as amorphous brown solid; ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) δ 8.51 (d, *J* = 8.0 Hz, 1H), 7.85 (s, 1H), 7.64 (dd, *J* = 8.0, 1.1 Hz, 1H), 6.90 (s, 1H), 2.57 (s, 3H); ¹³C NMR (126 MHz, 1:1 CS₂/CDCl₃) (all 2C unless indicated) δ 174.30 (1C, *C=O*), 153.00 (4C), 147.44 (1C), 147.06 (1C), 146.85, 146.28, 146.21, 146.02 (6C), 145.67, 145.48, 145.31, 145.26, 145.20, 144.70, 144.34, 143.20, 142.46 (4C), 141.97, 141.95, 141.92, 141.83, 141.54, 141.41, 140.91, 140.07, 139.69, 138.10, 136.70 (1C, aryl *C*), 132.83 (1C, aryl *C*), 131.93 (1C, aryl *C*), 131.68 (1C, aryl *C*), 131.43 (1C, aryl *C*), 127.53 (1C, aryl *C*), 67.26 (1C, sp³-C of C₆₀), 61.83 (1C, sp³-C of C₆₀), 20.96 (1C); FT-IR v/cm⁻¹ (KBr) 1698, 1512, 1461, 1425, 1258, 1215, 1038, 886, 834, 819, 769, 642, 585, 525; UV-vis (CHCl₃) λ_{max}/nm (log ε) 255 (4.98), 330 (4.49), 430 (3.58), 704 (2.30); MALDI-TOF MS *m/z* calcd for C₆₈H₈O₃ [M]⁻ 872.0479, found 872.0470.

Figure S1. ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) of compound 2a.

Figure S2. ¹H NMR (400 MHz, 1:1 $CS_2/CDCl_3$) of compound 2b.

Figure S3. ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) of compound 2c.

Figure S4. ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) of compound 2d.

Figure S5. ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) of compound 2e.

Figure S6. ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) of compound **2f**.

S12

Figure S11. ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) of compound **2h**.

Figure S12. ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) of compound 2i.

Figure S14. ¹³C NMR (126 MHz, 1:1 CS₂/CDCl₃) of compound **3a**.

S16

Figure S20. Expanded ¹³C NMR (126 MHz, 1:1 CS₂/CDCl₃) of compound 4a.

Figure S21. ¹H NMR (400 MHz, 1:1 CS₂/CDCl₃) of compound 5a.

Figure S22. ¹³C NMR (126 MHz, 1:1 CS₂/CDCl₃) of compound 5a.

Figure S24. Expanded ¹³C NMR (126 MHz, 1:1 CS₂/CDCl₃) of compound 5a.

Figure S25. Expanded ¹³C NMR (126 MHz, 1:1 $CS_2/CDCl_3$) of **3a** (red) and **6**³ (black) in the regions of 171–144 and 140–126 ppm.

Figure S26. Expanded ¹³C NMR (126 MHz, 1:1 $CS_2/CDCl_3$) of 4a (red) and 7³ (black) in the regions of 171–144 and 140–126 ppm.

5. UV-vis Spectra of Compounds 2g and 3a-5a

Figure S27. UV-vis absorption of 2g in CHCl₃.

Figure S28. UV-vis absorption of 3a in CHCl₃.

Figure S29. UV-vis absorption of 4a in CHCl₃.

Figure S30. UV-vis absorption of 5a in CHCl₃.

6. MALDI-TOF HRMS Spectra of Compounds 2g and 3a-5a

Figure S33. MALDI-TOF HRMS of 4a.

7. CVs and DPVs of 2g and 3a-5a

Figure S35. Cyclic voltammogram of 2g (scanning rate: 50 mV s⁻¹).

Figure S36. Differential pulse voltammogram of 2g.

Figure S37. Cyclic voltammogram of 3a (scanning rate: 50 mV s⁻¹).

Figure S38. Differential pulse voltammogram of 3a.

Figure S39. Cyclic voltammogram of 4a (scanning rate: 50 mV s⁻¹).

Figure S40. Differential pulse voltammogram of 4a.

Figure S41. Cyclic voltammogram of 5a (scanning rate: 50 mV s⁻¹).

Figure S42. Differential pulse voltammogram of 5a.

8. References

- 1 G.-W. Wang and B. Zhu, Chem. Commun., 2009, 1769–1771.
- 2 C. Niu, D.-B. Zhou, Y. Yang, Z.-C. Yin and G.-W. Wang, *Chem. Sci.*, 2019, **10**, 3012–3017.
- 3 C. Niu, B. Li, Z.-C. Yin, S. Yang and G.-W. Wang, Org. Lett., 2019, 21, 7346–7350.