Electronic Supplementary Information

Hydride Transfer-initiated Synthesis of 3-Functionalized Quinolines by Deconstruction of Isoquinoline Derivatives

WenHui Mao, He Zhao, and Min Zhang*

Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P.R. China. *E-mail: <u>minzhang@scut.edu.cn</u>

Table of contents

1.	General information	S2
2.	Experimental section	S3-S13
	2.1. Substrates preparation	S3-S12
	2.2. Detailed optimization studies	S12
	2.3. Typical procedure for the synthesis of 3aa	S13
3.	Control experiments	S13-S14
4.	Synthetic application	S14-S15
5.	References	S16
6.	Analytical data of the obtained compounds	S17-S33
7.	NMR spectra	S34-S72

1. General information

All the obtained products were characterized by ¹H-NMR, ¹³C-NMR and mass spectra (MS), high-resolution mass spectra (HRMS), and melting points (m.p.). The NMR spectra were recorded on Bruker spectrometer (¹H at 500 MHz, ¹³C at 126 MHz and ¹⁹F at 471 MHz). Chemical shifts (δ) were given in ppm with reference to solvent signals [¹H NMR: CDCl₃ (7.26); ¹³C NMR: CDCl₃ (77.16); ¹H NMR: DMSO-*d*₆ (2.50); ¹³C NMR: DMSO-*d*₆ (40.01); ¹H NMR: CD₃OD (3.31); ¹³C NMR: CD₃OD (49.00)]. ¹H NMR data are reported as followed: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz), and integration. High-resolution mass spectra (HRMS) were recorded on a thermo scientific Q Exactive Ultimate 3000 UPLC. Melting points were measured on a BUCHI Melting Point M-565. Column chromatography was performed on silica gel (200-300 mesh). TLC was performed using commercially prepared 1600-2000 mesh silica gel plates (GF254), and visualization was effected with short wavelength UV light (254 nm).

All the reagents were purchased from Bide Pharmatech Ltd. and Energy Chemical. All solvents were purchased from Greagent (Shanghai Titansci incorporated company) and used without further purification.

2. Experimental Section

2.1. Substrates preparation.

(1) Synthesis of isoquinolinium salts (1a-1n, 1p)¹:

Method 1: Synthesis of compound **1a**: isoquinoline (3 mmol), ethyl bromoacetate or benzyl bromide (4.5 mmol) and acetone (3 mL) were introduced in a flask (50 mL). And it was stirred at room temperature for 24 hours. Then, the solvent was removed. The reaction mixture was washed with small amount of diethyl ether and finally dried under vacuum to get **1a**.

Method 2: Synthesis of compound **1i**: 6-phenylisoquinoline (3 mmol), ethyl bromoacetate (4.5 mmol) and toluene (3 mL) were introduced in a flask (50 mL). And it was stirred at 100 °C for 24 hours. Then, the solvent was removed. The reaction mixture was washed with small amount of diethyl ether and finally dried under vacuum to get **1i**.

Method 3: Synthesis of compound 10^2 : The oven-dried round-bottom flask were charged with CH₃CN (15 mL), isoquinoline (5mmol, 1.0equiv), CH₃I (10 mmol, 2.0 eq). The reaction mixture was refluxed for 12 hours, and then cooled to room temperature. When ethyl acetate was added to the system, the isoquinoline salt precipitated quickly as a solid, which was filtered and washed with ethyl acetate to give pure product **10**.

(1) 2-(2-ethoxy-2-oxoethyl) isoquinolin-2-ium bromide $(1a)^1$

Method 1, White solid, ¹H NMR (500 MHz, DMSO- d_6) δ 10.22 (d, J = 10.0 Hz, 1H), 8.85 (d, J = 5.0 Hz, 1H), 8.70 (d, J = 5.0 Hz, 1H), 8.53 (d, J = 10.0 Hz, 1H), 8.40 (d, J = 10.0 Hz, 1H), 8.31 (t, J = 10.0 Hz, 1H), 8.10 (t, J = 10.0 Hz, 1H), 5.90 (d, J = 5.0 Hz, 2H), 4.26 (q, J = 10.0 Hz, 2H), 1.26 (t, J = 5.0 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 166.47, 151.72, 137.62, 137.25, 136.12, 131.42, 130.60, 127.35, 126.64, 125.38, 62.31, 60.14, 13.93. HRMS (ESI): Calcd. for C₁₃H₁₄NO₂ [M-Br]⁺: 216.1025; found: 216.1017.

(2) 2-(2-ethoxy-2-oxoethyl)-6-methylisoquinolin-2-ium bromide $(1b)^1$

Method 1, Brown solid, ¹H NMR (500 MHz, DMSO- d_6) δ 10.08 (s, 1H), 8.76 (d, J = 5.0 Hz, 1H), 8.53 (d, J = 5.0 Hz, 1H), 8.42 (d, J = 10.0 Hz, 1H), 8.16 (s, 1H), 7.94 (d, J = 10.0 Hz, 1H), 5.84 (s, 2H), 4.25 (q, J = 10.0 Hz, 2H), 2.66 (s, 3H), 1.26 (t, J = 10.0 Hz 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 166.63, 150.95, 149.51, 137.45, 136.20, 133.59, 130.32, 126.13, 125.01, 124.47, 62.29, 59.91, 22.31, 13.96. HRMS (ESI): Calcd. For C₁₄H₁₆NO₂ [M-Br]⁺: 230.1181; found: 230.1173.

(3) 2-(2-ethoxy-2-oxoethyl)-6-methoxy isoquinolin-2-ium bromide $(1c)^1$

Method 1, White solid, ¹H NMR (500 MHz, DMSO- d_6) δ 9.92 (s, 1H), 8.67 (d, J = 10.0 Hz, 1H), 8.42 (d, J = 10.0 Hz, 1H), 8.39 (d, J = 5.0 Hz, 1H), 7.82 (s, 1H), 7.66 (d, J = 10.0 Hz, 1H), 5.78 (s, 2H), 4.24 (q, J = 5.0 Hz, 2H), 4.06 (s, 3H), 1.25 (t, J = 5.0 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 166.79, 166.04, 149.62, 140.29, 136.30, 132.58, 124.19, 123.31, 122.06, 106.01, 62.23, 59.45, 56.80, 13.96. HRMS (ESI): Calcd. for C₁₄H₁₆NO₃ [M-Br]⁺: 246.1130; found: 246.1121.

(4) 2-(2-ethoxy-2-oxoethyl)-5-hydroxyisoquinolin-2-ium bromide $(1d)^1$

Method 1, Orange solid, ¹H NMR (500 MHz, DMSO- d_6) δ 11.50 (s, 1H), 10.14 (s, 1H), 8.72 (d, J = 10.0 Hz, 1H), 8.57 (d, J = 5.0 Hz, 1H), 7.87 – 7.89 (m, 2H), 7.65 (d, J = 5.0 Hz, 1H), 5.89 (s, 2H), 4.23 (q, J = 10.0, 2H), 1.24 (t, J = 10.0 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 166.55, 153.01, 151.23, 134.95, 132.64, 128.20,

127.73, 120.45, 120.38, 118.96, 62.32, 60.08, 13.97. HRMS (ESI): Calcd. for C₁₃H₁₄NO₃ [M-Br]⁺: 232.0974; found: 232.0965.

(5) 2-(2-ethoxy-2-oxoethyl)-6-fluoroisoquinolin-2-ium bromide $(1e)^1$

F - Br N CO₂Et

Method 1, Brown solid, ¹H NMR (500 MHz, DMSO- d_6) δ 10.22 (s, 1H), 8.85 (d, J = 5.0 Hz, 1H), 8.70 – 8.65 (m, 2H), 8.28 (t, J = 5.0 Hz, 1H), 8.06 – 8.02 (m, 1H), 5.87 (s, 2H), 4.25 (q, J = 10.0 Hz, 2H), 1.26 (t, J = 10.0 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 167.03 (d, J = 260.8 Hz), 166.95, 151.97, 140.29 (d, J = 12.6 Hz), 137.30, 135.47 (d, J = 11.3 Hz), 125.29 (d, J = 6.3 Hz), 124.68, 122.71 (d, J = 26.5 Hz), 112.20 (d, J = 22.7 Hz), 62.86, 60.59, 14.44. ¹⁹F NMR (471 MHz, DMSO- d_6) δ - 94.70. HRMS (ESI): Calcd. for C₁₃H₁₃FNO₂ [M-Br]⁺: 234.0930; found: 234.0921.

(6) 2-(2-ethoxy-2-oxoethyl)-6-chloroisoquinolin-2-ium bromide $(1f)^1$

Method 1, Yellow solid, ¹H NMR (500 MHz, DMSO- d_6) δ 10.18 (s, 1H), 8.85 (d, J = 5.0 Hz, 1H), 8.62 (d, J = 5.0 Hz, 1H), 8.59 – 8.58 (m, 2H), 8.13 (d, J = 5.0 Hz, 1H), 5.85 (s, 2H), 4.26 (q, J = 5.0 Hz, 2H), 1.26 (t, J = 5.0 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 166.35, 151.78, 142.65, 138.08, 137.22, 132.77, 132.12, 126.42, 125.21, 124.50, 62.38, 60.22, 13.94. HRMS (ESI): Calcd. for C₁₃H₁₃ClNO₂ [M-Br]⁺: 250.0635; found: 250.0625.

(7) 2-(2-ethoxy-2-oxoethyl)-6-bromoisoquinolin-2-ium bromide $(1g)^1$

Method 1, Brown solid, ¹H NMR (500 MHz, DMSO- d_6) δ 10.22 (s, 1H), 8.87 (d, J = 10.0 Hz, 1H), 8.75 (s, 1H), 8.62 (d, J = 10.0 Hz, 1H), 8.48 (d, J = 10.0 Hz, 1H), 8.23 (d, J = 5.0 Hz, 1H), 5.87 (s, 2H), 4.25 (q, J = 5.0 Hz, 2H), 1.26 (t, J = 5.0 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 166.34, 151.99, 138.10, 137.26, 134.73, 132.50,

132.44, 129.74, 125.40, 124.39, 62.38, 60.26, 13.96. HRMS (ESI): Calcd. for C₁₃H₁₃BrNO₂ [M-Br]⁺: 294.0130; found: 294.0119.

(8) 2-(2-ethoxy-2-oxoethyl)-5-nitroisoquinolin-2-ium bromide (1h)¹

Method 1, Brown solid, ¹H NMR (500 MHz, DMSO- d_6) δ 10.44 (s, 1H), 9.11 (d, J = 7.8 Hz, 1H), 9.08 (d, J = 7.2 Hz, 1H), 9.02 (d, J = 7.2 Hz, 1H), 8.95 (d, J = 8.2 Hz, 1H), 8.29 (t, J = 8.0 Hz, 1H), 5.93 (s, 2H), 4.28 (q, J = 7.0 Hz, 2H), 1.28 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 166.14, 152.82, 144.17, 138.83, 137.80, 135.04, 130.91, 129.71, 127.56, 121.47, 62.46, 60.39, 13.94. HRMS (ESI): Calcd. for C₁₃H₁₃N₂O₄ [M-Br]⁺: 261.0875; found: 261.0868.

Method 2, White solid, ¹H NMR (500 MHz, DMSO- d_6) δ 10.14 (s, 1H), 8.81 (d, J = 5.0 Hz, 1H), 8.73 (s, 1H), 8.66 (d, J = 10.0 Hz, 1H), 8.60 (d, J = 10.0 Hz, 1H), 8.44 (d, J = 10.0 Hz, 1H), 7.98 (d, J = 10.0 Hz, 2H), 7.61 (t, J = 10.0 Hz, 2H), 7.57 (d, J = 5.0 Hz, 1H), 5.87 (s, 2H), 4.27 (q, J = 5.0 Hz, 2H), 1.28 (t, J = 10.0 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 166.55, 151.18, 148.26, 137.81, 137.48, 136.45, 131.28, 130.38, 129.90, 129.42, 127.85, 125.80, 125.37, 124.31, 62.34, 60.07, 13.95. HRMS (ESI): Calcd. for C₁₉H₁₈NO₂ [M-Br]⁺: 292.1338; found: 292.1326.

(10) 2-(2-ethoxy-2-oxoethyl)-6-(4-(methylthio)phenyl)isoquinolin-2-ium bromide(1j)¹

Method 2, Yellow solid, ¹H NMR (500 MHz, DMSO- d_6) δ 10.03 (d, J = 10.0 Hz, 1H), 8.75 (d, J = 5.0 Hz, 1H), 8.70 (s, 1H), 8.61 (d, J = 5.0 Hz, 1H), 8.57 (d, J = 10.0 Hz, 1H), 8.45 (d, J = 10.0 Hz, 1H), 7.97 – 7.95 (m, 2H), 7.48 (d, J = 10.0 Hz, 2H), 5.81 (t, J = 5.0 Hz, 2H), 4.27 (q, J = 5.0 Hz, 2H), 2.57 (s, 3H), 1.28 (t, J = 10.0 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 166.58, 150.97, 147.65, 141.44, 137.89, 136.44, 133.41, 131.29, 129.99, 128.18, 126.20, 125.69, 125.24, 123.49, 62.34, 60.03, 14.24, 13.95. HRMS (ESI): Calcd. for C₂₀H₂₀NO₂S [M-Br]⁺: 338.1215; found: 338.1203.

(11) 2-benzylisoquinolin-2-ium bromide $(1k)^1$

Method 1, White solid, ¹H NMR (500 MHz, DMSO- d_6) δ 10.49 (s, 1H), 8.91 (d, J = 5.0 Hz, 1H), 8.63 (d, J = 10.0 Hz, 1H), 8.55 (d, J = 10.0 Hz, 1H), 8.35 (d, J = 5.0 Hz, 1H), 8.25 (t, J = 10.0 Hz, 1H), 8.07 (t, J = 10.0 Hz, 1H), 7.66 (s, 1H), 7.65 (s, 1H), 7.45 – 7.39 (m, 3H), 6.06 (s, 2H). ¹³C NMR (126 MHz, DMSO- d_6) δ 150.12, 137.05, 136.98, 134.73, 134.30, 131.25, 130.51, 129.24, 129.11, 128.90, 127.29, 127.23, 126.23, 63.08. HRMS (ESI): Calcd. for C₁₆H₁₄N [M–Br]⁺: 220.1126; found: 220.1116.

(12) 2-(4-methoxybenzyl)isoquinolin-2-ium bromide (11)¹

Method 1, White solid, ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.46 (d, *J* = 25.0 Hz, 1H), 8.91 (t, *J* = 5.0 Hz, 1H), 8.62 (d, *J* = 5.0 Hz, 1H), 8.55 (d, *J* = 10.0 Hz, 1H), 8.36 (d, *J* = 5.0 Hz, 1H), 8.26 (t, *J* = 5.0 Hz, 1H), 8.08 (t, *J* = 10.0, 5.0 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.31 (d, *J* = 5.0 Hz, 1H), 7.19 (d, *J* = 5.0 Hz, 1H), 6.98 (d, *J* = 5.0 Hz, 1H), 6.00 (d, *J* = 5.0 Hz, 2H), 3.76 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 159.61, 150.14, 137.07, 137.00, 135.59, 134.73, 131.25, 130.55, 130.33, 127.30, 127.24, 126.19, 120.93, 114.87, 114.72, 63.08, 55.30. HRMS (ESI): Calcd. for C₁₇H₁₆NO [M–Br]⁺: 250.1232; found: 250.1222. (13) 2-(4-methylsulfonylbenzyl)isoquinolin-2-ium bromide $(1m)^1$

Method 1, White solid, ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.50 (d, *J* = 5.0 Hz, 1H), 8.93 (d, *J* = 5.0 Hz, 1H), 8.66 (d, *J* = 10.0 Hz, 1H), 8.56 (d, *J* = 5.0 Hz, 1H), 8.38 (d, *J* = 10.0 Hz, 1H), 8.28 (t, *J* = 10.0 Hz, 1H), 8.09 (t, *J* = 10.0 Hz, 1H), 7.99 (d, *J* = 10.0 Hz, 2H), 7.89 (s, 1H) 7.90 (s, 1H), 6.21 (s, 2H), 3.23 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 150.66, 141.38, 139.68, 137.25, 137.13, 134.89, 131.34, 130.65, 129.78, 127.64, 127.34, 127.31, 126.37, 62.20, 43.33. HRMS (ESI): Calcd. for C₁₇H₁₆NO₂S [M-Br]⁺: 298.0902; found: 298.0892.

(14) 2-((perfluorophenyl)methyl)isoquinolin-2-ium bromide (1n)¹

Method 1, White solid, ¹H NMR (500 MHz, CD₃OD) δ 10.17 (s, 1H), 8.75 (d, J = 6.8 Hz, 1H), 8.64 (d, J = 8.4 Hz, 1H), 8.61 (d, J = 6.9 Hz, 1H), 8.37 (d, J = 8.3 Hz, 1H), 8.30 (t, J = 7.6 Hz, 1H), 8.11 (t, J = 7.6 Hz, 1H), 6.30 (s, 2H). ¹³C NMR (126 MHz, CD₃OD) δ 151.65, 148.55 – 148.33 (m), 146.56 – 145.05 (m), 143.21 – 143.01 (m), 140.49 - 140.21 (m), 139.38, 139.09, 138.50 – 138.23 (m), 135.76, 132.88, 132.06, 129.29, 128.63, 128.12, 108.58 (td, J = 17.2, 4.0 Hz), 53.10. ¹⁹F NMR (471 MHz, DMSO- d_6) δ -139.69 (dd, J = 23.3, 6.6 Hz), -152.34 (d, J = 21.3 Hz), -161.63 (dd, J = 30.6, 14.7 Hz). HRMS (ESI): Calcd. for C₁₆H₉F₅N [M–Br]⁺: 216.1025; found: 216.1017.

Scheme S1 Various isoquinolinium salts employed for the reaction.

(2) Synthesis of 2-aminobenzaldehyde derivatives 2

Method 1³:

Scheme S2 Synthesis of 2-aminobenzaldehyde derivatives.

A mixture of 2-nitro carbonyl compounds (3 mmol), iron powder (20 mmol), HCl (2 drops), and a mixture of EtOH, HOAc and H₂O (2 : 2 : 1 = 10 mL : 10 mL : 5 mL) were refluxed for 15 min and then stirred at 25 °C for 25 minutes. The solution was filtered, diluted with water (20 mL), and extracted with CH_2Cl_2 (3 x 30 mL). The organic layer was washed with saturated NaHCO₃ (2 x 30 mL) and H₂O (2 x 30 mL), dried using anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel to provide the corresponding 2-amino carbonyl compounds with high purity. 2-aminobenzaldehydes (**2b**, **2i**, **2j**, **2o**) were obtained were shown in Scheme S2.

Method 2⁴:

$$Br \stackrel{II}{\downarrow} \qquad CHO \\ NH_2 \qquad + \quad R-B(OH)_2 \qquad \xrightarrow{Pd(PPh_3)_4, K_2CO_3} \qquad R \stackrel{II}{\downarrow} \qquad CHO \\ \hline Dioxane : H_2O = 1 : 1 \qquad NH_2$$

The 2-amino-5-bromobenzaldehyde (2 mmol), *p*-tolylboronic acid (2.4 mmol), K_2CO_3 (6 mmol), Pd(PPh₃)₄ (5 mol %), 2.5 mL dioxane and 2.5 mL H₂O were taken in a 50 mL Schlenk tube. The tube was evacuated and backfilled with N₂ for three times. The mixture was stirred at 100 °C for 3 h. The reaction mixture was poured into 20 mL of ethyl acetate and the organic layer was separated. The organic layer was washed with 1M HCl and brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by chromatography on silica gel to afford the coupling product. 2-aminobenzaldehydes derivatives (**2l**, **2m**, **2n**) were obtained were shown in Scheme S3.

(1) 2-amino-4-methoxybenzaldehyde $(2b)^3$

Method 1, ¹H NMR (500 MHz, DMSO- d_6) δ 9.63 (s, 1H), 7.41 (d, J = 9.2 Hz, 1H), 7.20 (s, 2H), 6.25 – 6.21 (m, 2H), 3.75 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 191.60, 164.72, 153.02, 137.60, 112.92, 104.30, 97.67, 55.15.

(2) methyl 3-amino-4-formylbenzoate $(2i)^3$

Method 1, ¹H NMR (500 MHz, DMSO- d_6) δ 9.92 (s, 1H), 7.68 (d, J = 8.2 Hz, 1H), 7.42 (s, 1H), 7.29 (s, 2H), 7.13 (d, J = 8.2 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 194.21, 165.87, 150.25, 135.88, 134.68, 119.79, 117.21, 114.46, 52.38.

(3) 2-amino-4-(trifluoromethyl)benzaldehyde $(2j)^3$

Method 1, ¹H NMR (500 MHz, DMSO- d_6) δ 9.92 (s, 1H), 7.74 (d, J = 7.9 Hz, 1H), 7.42 (s, 2H), 7.13 (s, 1H), 6.85 (d, J = 8.0 Hz, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ

194.06, 150.39, 136.83, 134.30 (d, J = 31.6 Hz), 124.81, 122.64, 119.43, 112.75 – 112.68 (m), 110.28 (d, J = 3.2 Hz). ¹⁹F NMR (471 MHz, DMSO) δ -62.89.

(4) 2-amino-4-(p-tolyl))benzaldehyde (2l)⁴

Method 2, ¹H NMR (500 MHz, CDCl₃) δ 11.07 (s, 1H), 8.81 (d, J = 2.2 Hz, 1H), 8.70 (dd, J = 8.6, 2.2 Hz, 1H), 8.56 (d, J = 8.2 Hz, 2H), 8.38 – 8.35 (m, 2H), 7.85 (d, J = 8.6 Hz, 1H), 3.51 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 194.33, 149.10, 137.22, 136.62, 134.06, 133.71, 129.84, 129.72, 126.16, 119.16, 116.75, 21.19.

(5) 2-amino-5-(thiophen-2-yl)benzaldehyde (2m)⁴

Method 2, ¹H NMR (500 MHz, CDCl₃) δ 9.91 (s, 1H), 7.69 (s, 1H), 7.56 (d, J = 8.6 Hz, 1H), 7.21 (d, J = 5.0 Hz, 1H), 7.18 (d, J = 2.8 Hz, 1H), 7.07 – 7.04 (m, 1H), 6.67 (d, J = 8.6 Hz, 1H), 6.21 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 194.01, 149.29, 143.67, 133.17, 132.79, 128.08, 123.61, 123.46, 121.77, 118.76, 116.75.

(6) 2-amino-4-(furan-3-yl)benzaldehyde $(2n)^4$

Method 2, ¹H NMR (500 MHz, CDCl₃) δ 9.84 (s, 1H), 7.79 (s, 1H), 7.51 – 7.45 (m, 2H), 7.47 (d, *J* = 8.2 Hz, 1H), 6.88 (dd, *J* = 8.2, 1.0 Hz, 1H), 6.75 (s, 1H), 6.69 (s, 1H), 6.18 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 193.32, 150.41, 144.13, 140.18, 139.23, 136.44, 125.81, 117.97, 114.54, 112.63, 108.76.

(7) 6-aminobenzo[d][1,3]dioxole-5-carbaldehyde (20)³

Method 1, ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.54 (s, 1H), 7.25 (s, 2H), 6.99 (s, 1H), 6.31 (s, 1H), 5.96 (s, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 190.47, 153.54, 150.12, 138.09, 110.95, 110.65, 101.26, 95.17.

Scheme S4. Substrates employed for the reaction.

2.2. Detailed Optimization Studies

Table S1. Screening of hydrogen donor.^a

1	$Br^{-}O + V + O + O + O + O + O + O + O + O + $	e, Hydrogen donor t, Temperature,Tin	NH N O 3aa
Entry	Hydrogen donor	Base	Yield $(\%)^b$
1	1,1,3,3-Tetramethyldisiloxane	Cs_2CO_3	5
2	(EtO) ₃ SiH	Cs_2CO_3	27
3	Et_2SiH_2	Cs_2CO_3	<5
4	Et ₃ SiH	Cs_2CO_3	Trace
5	PhSiH ₃	Cs_2CO_3	50^{c}
6	HBpin	Cs_2CO_3	Trace
7	(EtO) ₃ SiH	Cs_2CO_3	Trace
8	Polymethylhydrosiloxane	Cs_2CO_3	Trace

^{*a*}Unless otherwise stated, all the reactions were performed with **1a** (0.2 mmol), **2a** (0.2 mmol), hydrogen donor (1 equiv.), additive (0.5 equiv), *t*-AmOH (1.0 mL) at 85 °C for 16 h. ^{*b*}GC yield using hexadecane as an internal standard. ^c0.5 equiv. PhSiH₃.

2.3. Typical procedure for the synthesis of 3aa

Under N₂ atmosphere, 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium bromide **1a** (0.3 mmol), 2-aminobenzaldehyde **2a** (0.2 mmol), Cs₂CO₃ (50 mol %), PhSiH₃ (75 mol %) and *t*-AmOH (1.0 mL) were introduced in a Schlenk tube, successively. Then the Schlenk tube was closed and the resulting mixture was stirred at 85 °C oil bath for 20 h. After cooling down to room temperature, the resulting mixture was filtrated, extracted with ethyl acetate, washed with 5% Na₂CO₃ solution, dried with anhydrous Na₂SO₄, and then concentrated by removing the solvent under vacuum. Finally, the residue was purified by preparative TLC on silica, eluting with petroleum ether (PE) : ethyl acetate (EA) = 2 : 1 (v/v) to give *N*-(2-(quinolin-3-yl)benzyl)glycine ethyl ester **3aa.**

3. Control experiments

(1) Synthesis of 2-benzyl-1,2-dihydroisoquinoline (1k-1)¹

To a suspension of 1-benzylisoquinolin-1-ium bromide **1k** (3.0 mmol) in 25 mL of THF was slowly added lithium aluminium hydride (3.0 mmol) at room temperature. The reaction was stirred at room temperature for 20 minutes, then slowly quenched with 0.1 mL of water and stirred for additional 10 minutes. To the reaction was added 0.2 mL 10% sodium hydroxide solution and stirred at room temperature for additional 10 minutes. To the reaction was added 5% Na₂CO₃ solution and the resulting mixture was extracted with ethyl acetate, dried with anhydrous Na₂SO₄, and then concentrated by removing the solvent under vacuum to give the unstable crude 1-benzyl-1,2-dihydroisoquinoline as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.24 (m, 4H), 7.22 (td, *J* = 6.6, 6.2, 2.6 Hz, 1H), 7.03 (t, *J* = 7.8 Hz, 1H), 6.89 (td, *J* = 7.4, 1.2 Hz, 1H), 6.82 (d, *J* = 7.6 Hz, 1H), 6.76 (d, *J* = 7.4 Hz, 1H), 6.17 (d, *J* = 7.4 Hz, 1H), 5.26 (d, *J* = 7.4 Hz, 1H), 4.13 (s, 2H), 4.03 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 139.0, 137.4, 134.0, 128.8, 128.3, 127.7, 127.7, 125.7, 124.9, 122.9, 98.3, 59.4, 51.1. **(2) Synthesis of ethyl 2-(3,4-dihydroisoquinolin-2(1H)-yl)acetate (1a-2)**⁵

ON O

A dried 250 mL round bottom flask was equipped with a magnetic stir bar and charged with 1,2,3,4-tetrahydroisoquinoline (30 mmol), Na₂CO₃ (20 mmol), and THF (60 mL). Then, ethyl bromoacetate (40 mmol) was added, and the resulting mixture appeared as a pale yellow emulsion. The reaction was stirred at room temperature overnight. After 1,2,3,4-tetrahydroisoquinoline was completely consumed as indicated by TLC, ethyl acetate and water were added to the reaction. The aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. After the organic phase was filtered and concentrated, the residue was purified by column chromatography, eluting with PE : EA (20: 1 to 5:1) to give **1a-2** as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.15 – 7.05 (m, 3H), 7.00 (d, *J* = 6.4 Hz, 1H), 4.22 (q, *J* = 7.2 Hz, 2H), 3.80 (s, 2H), 3.41 (s, 2H), 2.96 – 2.91 (m, 2H), 2.91 – 2.87 (m, 2H), 1.29 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.58, 134.37, 133.94, 128.79, 126.58, 126.27, 125.73, 60.73, 59.21, 55.41, 50.75, 29.01, 14.38.

4. Synthetic applications

(1) One-pot gram scale synthesis of compound 3aa

Scheme S5. Synthesis of compound 3aa.

Under N₂ atmosphere, 2-(2-ethoxy-2-oxoethyl)isoquinolin-2-ium bromide **1a** (9 mmol), 2-aminobenzaldehyde **2a** (6 mmol), Cs₂CO₃ (50 mol%), PhSiH₃ (75 mol%) and *t*-AmOH (30.0 mL) were introduced successively in a Schlenk tube (100 mL) equipped with a magnetic stirrer bar. Then the Schlenk tube was closed and the resulting mixture was stirred at 85 °C oil bath for 24 h. After cooling down to room

temperature, the resulting mixture was extracted with ethyl acetate, washed with 5% Na_2CO_3 solution, dried with anhydrous Na_2SO_4 , and then concentrated by removing the solvent under vacuum. Finally, the residue was purified by column chromatography, eluting with PE : EA = 5 : 1 (v/v) to give **3aa** (1.344 g, 70% yield).

(2) Synthesis of amino acid 4⁶

Scheme S6. Synthesis of amino acid 4

Compound **3aa** (0.2 mmol) was dissolved in methanol (2 mL) and added 3N NaOH (aq) (0.1 mL, 0.3 mmol). The reaction was stirred at room temperature for 2 hours and monitored by TCL. The resulting mixture was filtered and concentrated under vacuum. The residue was directly purified by preparative TLC on silica, eluting with dichloromethane : methanol = 3 : 1 (v/v) to give amino acid **4** (95%) as yellow-orange solid. ¹H NMR (500 MHz,DMSO-*d*₆) δ 8.92 (s, 1H), 8.49 (s, 1H), 8.08 (d, *J* = 8.6 Hz, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 8.02 (d, *J* = 7.4 Hz, 1H), 7.81 (t, *J* = 7.6 Hz, 1H), 7.67 (t, *J* = 7.6 Hz, 1H), 7.60 – 7.51 (m, 2H), 7.45 (d, *J* = 7.0 Hz, 1H), 4.22 (s, 2H), 3.69 (s, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 167.75, 151.01, 146.63, 138.66, 136.10, 132.47, 130.94, 130.42, 130.09, 129.81, 128.90, 128.66, 128.51, 127.20, 127.02, 47.02, 46.91. HRMS (ESI): Calcd. for C₁₈H₁₆N₂O₂ [M+H]⁺: 293.1285; found: 293.1280.

S15

6. Reference

- 1 Z.-D. Tan, C.-G. Ci, J. Yang, Y. Wu, L. Cao, H.-F. Jiang and M. Zhang, ACS *Catal.*, 2020, **10**, 5243.
- 2 G.-J. Wang, W.-Y. Hu, Z.-L. Hu, Y.-X. Zhang, W. Yao, L. Li, Z.-Q. Fu and W. Huang, *Green Chem.*, 2018, **20**, 3302.
- 3 E. C. Riesgo, X.-Q. Jin and R. P. Thummel, J. Org. Chem., 1996, 61, 3017.
- 4 R. Mamidala, M. S. Subramani, S. Samser, P. Biswal and K. Venkatasubbaiah, *Eur. J. Org. Chem.*, 2018, **2018**, 6286.
- 5 Y.-W. Xu, J.-K. Wang, G.-J. Wang and L. Zhen, J. Org. Chem., 2021, 86, 91.
- 6 H. Neelakantan, H.-Y. Wang, V. Vance, J. D. Hommel, S. F. McHardy and S. J. Watowich, *J. Med. Chem.*, 2017, **60**, 5015.

7. Analytic data of the obtained compounds

(1) ethyl (2-(quinolin-3-yl)benzyl)glycinate (3aa)

Yellow oil, 57.6 mg (90%), ¹H NMR (500 MHz, CDCl₃) δ 8.98 (s, 1H), 8.24 (s, 1H), 8.15 (d, J = 8.6 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.73 (t, J = 7.8 Hz, 1H), 7.57 (t, J =7.4 Hz, 2H), 7.42 (t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.4 Hz, 1H), 7.34 (d, J = 7.4 Hz, 1H), 4.06 (q, J = 7.2 Hz, 2H), 3.74 (s, 2H), 3.31 (s, 2H), 1.17 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.32, 151.43, 147.15, 138.35, 137.57, 135.67, 134.04, 130.62, 129.68, 129.54, 129.28, 128.48, 128.07, 127.71, 127.56, 126.98, 60.76, 50.81, 50.31, 14.20. HRMS (ESI): Calcd. for C₂₀H₂₀N₂O₂ [M+H]⁺: 321.1598; found: 321.161202.

(2) ethyl (2-(7-methoxyquinolin-3-yl)benzyl)glycinate (3ab)

Yellow oil, 55.4 mg (79%), ¹H NMR (500 MHz, CDCl₃) δ 8.88 (s, 1H), 8.15 (s, 1H), 7.72 (d, J = 9.0 Hz, 1H), 7.55 (d, J = 7.4 Hz, 1H), 7.46 (s, 1H), 7.40 (t, J = 7.2 Hz, 1H), 7.36 (t, J = 7.4 Hz, 1H), 7.32 (d, J = 7.2 Hz, 1H), 7.22 (d, J = 9.0 Hz, 1H), 4.06 (q, J = 7.2 Hz, 2H), 3.96 (s, 3H), 3.73 (s, 2H), 3.31 (s, 2H), 1.17 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.32, 160.84, 151.42, 148.82), 138.52, 137.55, 135.47, 131.94, 130.64, 129.63, 129.07, 128.27, 127.51, 122.90, 120.22, 107.15, 60.75, 55.60, 50.82, 50.31, 14.20. HRMS (ESI): Calcd. for C₂₁H₂₂N₂O₃ [M+H]⁺: 351.1703; found: 351.1700. (3) ethyl (2-(7-(dimethylamino)quinolin-3-yl)benzyl)glycinate (3ac)

Dark brown oil, 44.3 mg (61%), ¹H NMR (500 MHz, CDCl₃) δ 8.79 (s, 1H), 8.05 (s, 1H), 7.68 (d, J = 9.0 Hz, 1H), 7.55 (d, J = 7.4 Hz, 1H), 7.39 – 7.31 (m, 3H), 7.22 – 7.19 (m, 2H), 4.07 (q, J = 7.2 Hz, 2H), 3.76 (s, 2H), 3.31 (s, 2H), 3.11 (s, 6H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.31, 151.46, 151.17, 148.72, 138.87, 137.51, 135.52, 130.65, 129.98, 129.52, 128.67, 128.02, 127.46, 120.33, 116.79, 106.37, 60.76, 50.81, 50.31, 40.57, 14.21. HRMS (ESI): Calcd. for $C_{22}H_{25}N_3O_2$ [M+H]⁺: 364.2020; found: 364.2017.

(4) ethyl (2-(7-aminoquinolin-3-yl)benzyl)glycinate (3ad)

Dark brown oil, 56.3 mg (84%), ¹H NMR (500 MHz, CDCl₃) δ 8.78 (s, 1H), 8.03 (s, 1H), 7.60 (d, J = 8.8 Hz, 1H), 7.53 (d, J = 7.4 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.29 (d, J = 7.2 Hz, 1H), 7.24 (s, 1H), 6.98 (d, J = 8.6 Hz, 1H), 4.06 (q, J = 7.2 Hz, 2H), 3.74 (s, 2H), 3.30 (s, 2H), 1.16 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.30, 151.20, 148.70, 148.20, 138.67, 137.46, 135.63, 130.57, 130.43, 129.51, 129.17, 128.04, 127.42, 121.51, 119.15, 108.57, 60.72, 50.74, 50.25, 14.15. HRMS (ESI): Calcd. for C₂₀H₂₁N₃O₂ [M+H]⁺: 336.1707; found: 336.1704.

(5) ethyl (2-(6-chloroquinolin-3-yl)benzyl)glycinate (3ae)

Yellow oil, 58.8 mg (83%), ¹H NMR (500 MHz, CDCl₃) δ 8.96 (s, 1H), 8.18 (s, 1H), 8.07 (d, J = 9.0 Hz, 1H), 7.83 (s, 1H), 7.64 (d, J = 9.0 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.4 Hz, 1H), 7.32 (d, J = 7.4 Hz, 1H), 4.08 (q, J = 7.2 Hz, 2H), 3.71 (s, 2H), 3.32 (s, 2H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.35, 151.72, 145.52, 137.95, 137.55, 134.93, 134.72, 132.70, 130.92, 130.54, 130.42, 129.89, 128.69, 128.36, 127.68, 126.70, 60.82, 50.87, 50.30, 14.22. HRMS (ESI): Calcd. for C₂₀H₁₉ClN₂O₂ [M+H]⁺: 355.1208; found: 355.1205.

(6) ethyl (2-(6-bromoquinolin-3-yl)benzyl)glycinate (3af)

Yellow oil, 69.3 mg (87%), ¹H NMR (500 MHz, CDCl₃) δ 8.97 (s, 1H), 8.18 (s, 1H), 8.00 (d, *J* = 9.8 Hz, 2H), 7.78 (d, *J* = 9.0 Hz, 1H), 7.57 (d, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 1H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.32 (d, *J* = 7.4 Hz, 1H), 4.08 (q, *J* = 7.2 Hz, 2H), 3.71 (s, 2H), 3.32 (s, 2H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.36, 151.86, 145.72, 137.93, 137.56, 134.91, 134.63, 132.96, 131.03, 130.56, 130.08, 129.91, 128.87, 128.71, 127.70, 120.88, 60.83, 50.88, 50.31, 14.24. HRMS (ESI): Calcd. for C₂₀H₁₉BrN₂O₂ [M+H]⁺: 399.0703; found: 399.0701.

(7) ethyl (2-(6-fluoroquinolin-3-yl)benzyl)glycinate (3ag)

Yellow oil, 33.1 mg (49%), ¹H NMR (500 MHz, CDCl₃) δ 8.94 (s, 1H), 8.22 (s, 1H), 8.14 (dd, J = 9.0, 5.4 Hz, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.48 – 7.41 (m, 2H), 7.39 (t, J = 7.4 Hz, 1H), 7.33 (d, J = 7.4 Hz, 1H), 4.09 (q, J = 7.2 Hz, 2H), 3.73 (s, 2H), 3.32 (s, 2H), 1.19 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.39, 160.82 (d, J = 249.48 Hz), 150.86 (d, J = 2.5 Hz), 144.31, 138.08, 137.59, 135.07 (d, J = 5.0 Hz), 134.83, 131.84 (d, J = 8.8 Hz), 130.60, 129.87, 128.69 , 128.47 (d, J = 10.1 Hz), 127.69, 119.80 (d, J = 25.2 Hz), 111.04 (d, J = 21.4 Hz), 60.85, 50.89, 50.35, 14.25. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.85 (dd, J = 14.0, 8.2 Hz). HRMS (ESI): Calcd. for C₂₀H₁₉FN₂O₂ [M+H]⁺: 339.1503; found: 339.1507.

Yellow oil, 68.5 mg (72%), ¹H NMR (500 MHz, CDCl₃) δ 9.06 (s, 1H), 8.22 (s, 1H), 8.14 (s, 1H), 7.99 (s, 1H), 7.56 (d, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.30 (d, *J* = 7.4 Hz, 1H), 4.09 (q, *J* = 7.2 Hz, 2H), 3.69 (s, 2H), 3.31 (s, 2H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.32, 152.54, 143.01, 137.53, 137.32, 135.79, 135.24, 133.91, 130.53, 130.03, 129.66, 128.94, 127.82, 125.75, 120.24, 60.87, 50.89, 50.27, 14.24. HRMS (ESI): Calcd. for C₂₀H₁₈Br₂N₂O₂ [M+H]⁺: 476.9808; found: 476.9807. (9) methyl 3-(2-(((2-ethoxy-2-oxoethyl)amino)methyl)phenyl)quinoline-7-carboxylate (3ai)

Yellow oil, 69.6 mg (92%), ¹H NMR (500 MHz, CDCl₃) δ 9.04 (s, 1H), 8.84 (s, 1H), 8.28 (s, 1H), 8.15 (d, J = 8.6 Hz, 1H), 7.89 (d, J = 8.6 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.4 Hz, 1H), 7.33 (d, J = 7.4 Hz, 1H), 4.06 (q, J = 7.2 Hz, 2H), 3.99 (s, 3H), 3.72 (s, 2H), 3.31 (s, 2H), 1.16 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.31, 166.82, 152.53, 146.43, 137.90, 137.53, 135.83, 135.31, 131.90, 130.88, 130.53, 130.18, 129.90, 128.75, 128.36, 127.69, 126.44, 60.78, 52.54, 50.84, 50.27, 14.20. HRMS (ESI): Calcd. for C₂₂H₂₂N₂O₄ [M+H]⁺: 379.1652; found: 379.1647.

Yellow oil, 39.6 mg (51%), ¹H NMR (500 MHz, CDCl₃) δ 9.09 (s, 1H), 8.46 (s, 1H), 8.35 (s, 1H), 8.00 (d, J = 8.6 Hz, 1H), 7.76 (d, J = 8.6 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.45 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.4 Hz, 1H), 7.35 (d, J = 7.4 Hz, 1H), 4.09 (q, J = 7.2 Hz, 2H), 3.72 (s, 2H), 3.33 (s, 2H), 1.19 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.39, 152.98, 146.14, 137.68 (d, J = 31.5 Hz), 136.04, 135.50, 131.40 (t, J = 32.8 Hz), 130.61, 130.05, 129.38, 128.28, 128.92, 127.82, 127.20 (d, J = 4.4 Hz), 124.08 (d, J = 273.4 Hz), 122.69 (d, J = 2.9 Hz), 60.89, 50.94, 50.33, 14.24. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.57 (s). HRMS (ESI): Calcd. for C₂₁H₁₉F₃N₂O₂ [M+H]⁺: 389.1471; found: 389.1468. (11) ethyl (2-(7-nitroquinolin-3-yl)benzyl)glycinate (3ak)

Dark brown oil, 35.8 mg (49 %), ¹H NMR (500 MHz, CDCl₃) δ 9.18 (s, 1H), 9.05 (s, 1H), 8.44 (s, 1H), 8.36 (d, J = 9.0 Hz, 1H), 8.04 (d, J = 9.0 Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.48 (t, J = 8.2 Hz, 1H), 7.44 (t, J = 6.7 Hz, 1H), 7.38 (d, J = 7.4 Hz, 1H), 4.11 (q, J = 7.2 Hz, 2H), 3.74 (s, 2H), 3.35 (s, 2H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.38, 154.04, 148.11, 146.04, 137.60, 137.48, 137.16, 135.40, 131.05, 130.58, 130.28, 129.77, 129.16, 127.96, 125.74, 120.51, 60.91, 51.06, 50.36, 14.29. HRMS (ESI): Calcd. for C₂₀H₁₉N₃O₄ [M+H]⁺: 366.1448; found: 366.1448.

(12) ethyl (2-(6-(p-tolyl)quinolin-3-yl)benzyl)glycinate (3al)

Yellow oil, 62.4 mg (76%), ¹H NMR (500 MHz, CDCl₃) δ 8.97 (s, 1H), 8.28 (s, 1H), 8.21 (d, J = 8.8 Hz, 1H), 8.02 (s, 1H), 8.00 (d, J = 8.8 Hz, 1H), 7.64 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 7.2 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.40 (t, J = 7.4 Hz, 1H), 7.37 (d, J = 7.4 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 4.08 (q, J = 7.2 Hz, 2H), 3.78 (s, 2H), 3.34 (s, 2H), 2.42 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.29, 151.18, 146.43, 139.68, 138.38, 137.71, 137.55, 137.43 135.79, 134.36, 130.58, 129.76, 129.71, 129.59, 129.24, 128.48, 127.94, 127.57, 127.31, 125.32, 60.75, 50.83, 50.31, 21.19, 14.19. HRMS (ESI): Calcd. for C₂₇H₂₆N₂O₂ [M+H]⁺: 411.2067; found: 411.2064.

(13) ethyl (2-(6-(thiophen-2-yl)quinolin-3-yl)benzyl)glycinate (3am)

Yellow oil, 68.4 mg (85%), ¹H NMR (500 MHz, CDCl₃) δ 8.93 (s, 1H), 8.23 (s, 1H), 8.14 (d, J = 8.8 Hz, 1H), 8.04 (s, 1H), 8.00 (d, J = 8.8 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.46 (d, J = 2.6 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H), 7.35 – 7.34 (m, 2H), 7.12 (t, J = 4.0 Hz, 1H), 4.08 (q, J = 7.2 Hz, 2H), 3.76 (s, 2H), 3.33 (s, 2H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.33, 151.28, 146.57, 143.53, 138.24, 137.56, 135.58, 134.66, 132.98, 130.56, 129.84, 129.75, 128.54, 128.38, 128.05, 128.02, 127.59, 125.81, 124.20, 123.98, 60.78, 50.83, 50.32, 14.21. HRMS (ESI): Calcd. for C₂₄H₂₂N₂O₂S [M+H]⁺: 403.1475; found: 403.1494.

(14) ethyl (2-(7-(furan-3-yl)quinolin-3-yl)benzyl)glycinate (3an)

Yellow oil, 48.7 mg (63%), ¹H NMR (500 MHz, CDCl₃) δ 8.96 (s, 1H), 8.23 (d, J = 15.0 Hz, 2H), 7.91 (s, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.58 (d, J = 7.4 Hz, 1H), 7.54 (s, 1H), 7.43 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H), 7.35 (d, J = 7.4 Hz, 1H), 6.88 (s, 1H), 4.08 (q, J = 7.2 Hz, 2H), 3.76 (s, 2H), 3.33 (s, 2H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.35, 151.91, 147.61, 144.21, 139.56, 138.37, 137.60, 135.42, 133.77, 133.71, 130.62, 129.76, 128.56, 126.50, 127.61, 126.75, 126.12, 125.49, 125.12, 108.90, 60.80, 50.88, 50.36, 14.23. HRMS (ESI): Calcd. for C₂₄H₂₂N₂O₃ [M+H]⁺: 387.1703; found: 387.1705.

(15) ethyl (2-([1,3]dioxolo[4,5-g]quinolin-7-yl)benzyl)glycinate (3ao)

Yellow oil, 40.1 mg (40.1%), ¹H NMR (500 MHz, CDCl₃) δ 8.73 (s, 1H), 8.04 (s, 1H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.41 (s, 1H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.30 (d, *J* = 7.4 Hz, 1H), 7.07 (s, 1H), 6.10 (s, 2H), 4.08 (q, *J* = 7.2 Hz, 2H), 3.73 (s, 2H), 3.31 (s, 2H), 1.18 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.37, 150.84, 148.87, 148.24, 145.42, 138.49, 137.52, 134.80, 132.47, 130.60, 129.63, 128.30, 127.51, 124.78, 105.67, 103.00, 101.86, 60.81, 50.82, 50.34, 14.23. HRMS (ESI): Calcd. for C₂₁H₂₀N₂O₄ [M+H]⁺: 365.1496; found: 365.1493.

(16) ethyl (2-(1,8-naphthyridin-3-yl)benzyl)glycinate (3ap)

Yellow oil, 30.2 mg (30.2%), ¹H NMR (500 MHz, CDCl₃) δ 9.16 (s, 1H), 9.11 (s, 1H), 8.36 – 8.21 (m, 2H), 7.59 – 7.49 (m, 2H), 7.42 (t, *J* = 7.4 Hz, 1H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.33 (d, *J* = 6.8 Hz, 1H), 4.07 (q, *J* = 7.2 Hz, 2H), 3.71 (s, 2H), 3.31 (s, 2H), 1.17 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.27, 155.23, 154.70, 153.55, 137.48, 137.60, 136.69, 135.24, 130.60, 129.95, 128.81, 127.74, 122.55, 122.28, 60.83, 50.91, 50.28, 14.21. HRMS (ESI): Calcd. for C₁₉H₁₉N₃O₂ [M+H]⁺: 322.1550; found: 322.1647. (17) ethyl (4-methyl-2-(quinolin-3-yl)benzyl)glycinate (3ba)

Yellow oil, 50.8 mg (76%), ¹H NMR (500 MHz, CDCl₃) δ 8.97 (s, 1H), 8.23 (s, 1H), 8.15 (d, *J* = 8.6 Hz, 1H), 7.85 (d, *J* = 8.2 Hz, 1H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.23 (d, *J* = 7.8 Hz, 1H), 7.16 (s, 1H), 4.06 (q, *J* = 7.2 Hz, 2H), 3.70 (s, 2H), 3.30 (s, 2H), 2.39 (s, 3H), 1.16 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.35, 151.46, 147.09, 138.22, 137.25, 135.63, 134.54, 134.19, 131.29, 129.76, 129.48, 129.23, 129,19, 128.06, 127.73, 126.95, 60.74, 50.50, 50.25, 21.12, 14.19. HRMS (ESI): Calcd. for C₂₁H₂₂N₂O₂ [M+H]⁺: 335.1754; found: 335.1752.

(18) ethyl (4-methoxy-2-(quinolin-3-yl)benzyl)glycinate (3ca)

Yellow oil, 62.3 mg (89%), ¹H NMR (500 MHz, CDCl₃) δ 8.98 (s, 1H), 8.25 (s, 1H), 8.14 (d, J = 8.6 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.72 (t, J = 7.8 Hz, 1H), 7.56 (t, J =7.6 Hz, 1H), 7.46 (d, J = 8.6 Hz, 1H), 6.95 (dd, J = 8.6, 2.6 Hz, 1H), 6.87 (d, J = 2.6Hz, 1H), 4.05 (q, J = 7.2 Hz, 2H), 3.82 (s, 3H), 3.66 (s, 2H), 3.29 (s, 2H), 1.15 (t, J =7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.36, 158.74, 151.29, 147.17, 139.57, 135.63, 133.98, 131.18, 129.77, 129.57, 129.23, 128.09, 127.66, 126.99, 115.97, 113.85, 60.73, 55.44, 50.17, 50.18, 14.18. HRMS (ESI): Calcd. for C₂₁H₂₂N₂O₃ [M+H]⁺: 351.1703; found: 351.1702. (19) ethyl (4-nitro-2-(7-amino-quinolin-3-yl)benzyl)glycinate (3cd)

Dark brown oil, 47.5 mg (65%), ¹H NMR (500 MHz, CDCl₃) δ 8.78 (s, 1H), 8.05 (s, 1H), 7.62 (d, J = 8.6 Hz, 1H), 7.43 (d, J = 8.6 Hz, 1H), 7.24 (s, 1H), 6.99 (d, J = 8.6 Hz, 1H), 6.91 (d, J = 8.6 Hz, 1H), 6.84 (s, 1H), 4.05 (q, J = 7.2 Hz, 2H), 3.80 (s, 3H), 3.66 (s, 2H), 3.28 (s, 2H), 1.16 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.37, 158.70, 151.13, 148.77, 148.22, 139.98, 135.63, 131.04, 130.47, 129.73, 129.25, 121.53, 119.20, 115.90, 113.56, 108.65, 60.75, 55.43, 50.18, 14.19. HRMS (ESI): Calcd. for C₂₁H₂₃N₃O₃ [M+H]⁺: 366.1812; found: 366.1808.

(20) Methyl 3-(2-(((2-ethoxy-2-oxoethyl)amino)methyl)-5-methoxyphenyl)quinoline-7-carboxylate (3ci)

Yellow oil, 54.7 mg (67%), ¹H NMR (500 MHz, CDCl₃) δ 9.04 (s, 1H), 8.83 (s, 1H), 8.30 (s, 1H), 8.15 (d, *J* = 8.6 Hz, 1H), 7.89 (d, *J* = 8.6 Hz, 1H), 7.45 (d, *J* = 8.6 Hz, 1H), 6.95 (d, *J* = 8.6 Hz, 1H), 6.87 (s, 1H), 4.05 (q, *J* = 7.2 Hz, 2H), 3.99 (s, 3H), 3.81 (s, 3H), 3.64 (s, 2H), 3.29 (s, 2H), 1.15 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.35, 166.82, 158.84, 152.43, 146.48, 139.13, 135.79, 135.29, 131.88, 131.40, 130.92, 130.15, 129.72, 128.39, 126.44, 115.91, 114.11, 60.76, 55.47, 52.53, 50.24, 50.15, 14.19. HRMS (ESI): Calcd. for C₂₃H₂₄N₂O₅ [M+H]⁺: 409.1758; found: 409.1756. (21) ethyl (3-hydroxy-2-(quinolin-3-yl)benzyl)glycinate (3da)

Yellow oil, 36.3 mg (54 %), ¹H NMR (500 MHz, CDCl₃) δ 8.78 (s, 1H), 8.15 (s, 1H), 8.00 (d, J = 8.6 Hz, 1H), 7.70 (d, J = 8.2 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H), 7.45 (t, J =7.6 Hz, 1H), 7.18 (t, J = 7.8 Hz, 1H), 7.02 (d, J = 7.6 Hz, 1H), 6.91 (d, J = 8.2 Hz, 1H), 4.00 (q, J = 7.2 Hz, 2H), 3.49 (s, 2H), 3.20 (s, 2H), 1.12 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.21, 155.05, 152.27, 146.24, 139.14, 137.81, 129.77, 129.60, 128.35, 128.08, 127.91, 126.96, 125.09, 120.63, 115.40, 60.86, 50.89, 50.09, 14.17. HRMS (ESI): Calcd. for C₂₀H₂₀N₂O₃ [M+H]⁺: 337.1547; found: 337.1547.

(22) ethyl (4-fluoro-2-(quinolin-3-yl)benzyl)glycinate (3ea)

Yellow oil, 51.4 mg (76%), ¹H NMR (500 MHz, CDCl₃) δ 8.95 (s, 1H), 8.24 (s, 1H), 8.14 (d, J = 8.6 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.73 (t, J = 7.8 Hz, 1H), 7.58 (t, J =7.6 Hz, 1H), 7.54 (dd, J = 8.4, 6.0 Hz, 1H), 7.12 – 7.08 (m, 1H), 7.05 (dd, J = 9.2, 2.6 Hz, 1H), 4.06 (q, J = 7.2 Hz, 2H), 3.68 (s, 2H), 3.29 (s, 2H), 1.16 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.30, 161.77 (d, J = 247.0 Hz), 150.94, 147.32, 140.26 (d, J = 7.9 Hz), 135.75, 133.50 (d, J = 3.1 Hz), 132.98, 131.56 (d, J = 8.3 Hz), 129.84, 129.31, 128.12, 127.58, 127.17, 117.27 (d, J = 21.4 Hz), 115.23 (d, J = 21.4Hz), 60.82, 50.20, 50.14, 14.19. ¹⁹F NMR (471 MHz, CDCl₃) δ -114.96 (s). HRMS (ESI): Calcd. for C₂₀H₁₉FN₂O₂ [M+H]⁺: 339.1503; found: 339.1503. (23) ethyl (4-chloro-2-(quinolin-3-yl)benzyl)glycinate (3fa)

Yellow oil, 45.3 mg (64%), ¹H NMR (500 MHz, CDCl₃) δ 8.93 (s, 1H), 8.20 (s, 1H), 8.14 (d, *J* = 8.6 Hz, 1H), 7.85 (d, *J* = 8.2 Hz, 1H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.38 (d, *J* = 8.4 Hz, 1H), 7.33 (s, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 3.68 (s, 2H), 3.29 (s, 2H), 1.16 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.26, 150.89, 147.33, 139.99, 136.19, 135.77, 133.15, 132.76, 131.07, 130.36, 129.87, 129.32, 128.47, 128.10, 127.58, 127.20, 60.84, 50.20, 14.19. HRMS (ESI): Calcd. for C₂₀H₁₉ClN₂O₂ [M+H]⁺: 355.1208; found: 355.1204.

(24) ethyl (4-bromo-2-(quinolin-3-yl)benzyl)glycinate (3ga)

Yellow oil, 51.0 mg (64%), ¹H NMR (500 MHz, CDCl₃) δ 8.93 (s, 1H), 8.20 (s, 1H), 8.14 (d, J = 8.6 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.74 (t, J = 7.8 Hz, 1H), 7.58 (t, J =7.6 Hz, 1H), 7.54 (d, J = 8.2 Hz, 1H), 7.49 (s, 1H), 7.46 (d, J = 8.2 Hz, 1H), 4.06 (q, J =7.2 Hz, 2H), 3.67 (s, 2H), 3.29 (s, 2H), 1.16 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.25, 150.90, 147.35, 140.33, 136.72, 135.78, 133.24, 132.66, 131.44, 131.32, 129.89, 129.34, 128.11, 127.59, 127.21, 121.21, 60.86, 50.26, 50.21, 14.21. HRMS (ESI): Calcd. for C₂₀H₁₉BrN₂O₂ [M+H]⁺: 399.0703; found: 399.0708. (25) ethyl (3-nitro-2-(quinolin-3-yl)benzyl)glycinate (3ha)

Dark brown oil, 10.2 mg (14%), ¹H NMR (500 MHz, CDCl₃) δ 8.83 (s, 1H), 8.17 (d, J = 8.6 Hz, 1H), 8.03 (s, 1H), 7.90 – 7.8 (m, 2H), 7.82 (d, J = 8.2 Hz, 1H), 7.78 (t, J = 7.8 Hz, 1H), 7.61 – 7.57 (m, 2H), 4.05 (q, J = 7.2 Hz, 2H), 3.56 (s, 2H), 3.22 (d, J = 5.0 Hz, 2H), 1.16 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.13, 150.59, 150.41, 147.54, 141.58, 135.31, 133.13, 132.14, 130.21, 129.54, 129.30, 128.51, 128.12, 127.43, 127.36, 123.00, 61.00, 50.60, 50.27, 14.24. HRMS (ESI): Calcd. for C₂₀H₁₉N₃O₄ [M+H]⁺: 366.1448; found: 366.1459.

(26) ethyl (4-phenyl-2-(quinolin-3-yl)benzyl)glycinate (3ia)

Yellow oil, 62.9 mg (79%), ¹H NMR (500 MHz, CDCl₃) δ 9.06 (s, 1H), 8.29 (s, 1H), 8.18 (d, J = 8.6 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.75 (t, J = 7.8 Hz, 1H), 7.67 (s, 2H), 7.63 (d, J = 7.4 Hz, 2H), 7.59 (t, J = 7.0 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.35 (t, J = 7.4 Hz, 1H), 4.09 (q, J = 7.2 Hz, 2H), 3.80 (s, 2H), 3.36 (s, 2H), 1.19 (t, J = 7.2Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.31, 151.39, 147.25, 140.51, 140,37, 138.82, 136.62, 135.72, 134.03, 130.22, 129.60, 129.33, 128.93, 128.08, 127.73, 127.61, 127.15, 127.08, 127.03, 60.77, 50.55, 50.32, 14.20. HRMS (ESI): Calcd. for C₂₆H₂₄N₂O₂ [M+H]⁺: 397.1911; found: 397.1909.

(27) ethyl (4-(4-(methylthio)phenyl)-2-(quinolin-3-yl)benzyl)glycinate (3ja)

Yellow oil, 50.4 mg (57%), ¹H NMR (500 MHz, CDCl₃) δ 9.03 (s, 1H), 8.28 (s, 1H), 8.17 (d, J = 8.6 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.75 (t, J = 7.6 Hz, 1H), 7.66 – 7.62 (m, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.57 – 7.54 (m, 3H), 7.32 (d, J = 8.2 Hz, 2H), 4.08 (q, J = 7.2 Hz, 2H), 3.78 (s, 2H), 3.34 (s, 2H), 2.50 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.34, 151.36, 147.25, 139.81, 138.89, 138.14, 137.09, 136.58, 135.74, 134.00, 130.28, 129.64, 129.31, 128.97, 128.10, 127.73, 127.46, 127.07, 127.01, 126.74, 60.80, 50.55, 50.32, 15.87, 14.22. HRMS (ESI): Calcd. for C₂₇H₂₆N₂O₂S [M+H]⁺: 443.1788; found: 443.1782.

(28) N-benzyl-2-(quinolin-3-yl)benzyl amine (3ka)

Yellow oil, 45.4 mg (70%), ¹H NMR (500 MHz, CDCl₃) δ 8.99 (s, 1H), 8.24 (s, 1H), 8.19 (d, *J* = 8.6 Hz, 1H), 7.83 (d, *J* = 8.2 Hz, 1H), 7.76 (t, *J* = 7.8 Hz, 1H), 7.61 – 7.53 (m, 2H), 7.44 (t, *J* = 6.8 Hz, 1H), 7.40 (t, *J* = 6.8 Hz, 1H), 7.36 (d, *J* = 7.4 Hz, 1H), 7.21 – 7.14 (m, 5H), 3.77 (s, 2H), 3.72 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 151.39, 147.18, 140.02, 138.36, 138.26, 135.57, 134.18, 130.61, 129.76, 129.53, 129.33, 128.44, 128.35, 128.07, 128.03, 127.72, 127.45, 126.99, 126.97, 53.61, 51.03. HRMS (ESI): Calcd. for C₂₀H₁₉N₃O₄ [M+H]⁺: 325.1699; found: 325.1695.

(29) N-(4-methoxybenzyl)-2-(quinolin-3-yl)benzyl amine (3la)

Yellow oil, 46.8 mg (66 %), ¹H NMR (500 MHz, CDCl₃) δ 8.99 (s, 1H), 8.23 (s, 1H), 8.17 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 7.9 Hz, 1H), 7.77 – 7.74 (m, 1H), 7.61 – 7.57 (m, 2H), 7.43 (t, J = 7.3 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H), 7.35 (d, J = 7.4 Hz, 1H), 7.10 (t, J = 7.8 Hz, 1H), 6.79 – 6.76 (m, 2H), 6.71 (dd, J = 8.1, 2.3 Hz, 1H), 3.78 (s, 2H), 3.73 (s, 3H), 3.69 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 159.74, 151.41, 147.21, 141.63, 138.37, 138.16, 135.57, 134.17, 130.64, 129.75, 129.53, 129.38, 129.35, 128.46, 128.09, 127.73, 127.49, 126.99, 120.35, 113.61, 112.54, 55.21, 53.53, 50.96. HRMS (ESI): Calcd. for C₂₄H₂₂N₂O [M+H]⁺: 355.1805; found: 355.1801.

(30) N-(4-methylsulfonylbenzyl)-2-(quinolin-3-yl)benzyl amine (3ma)

Yellow oil, 57.9 mg (72 %), ¹H NMR (500 MHz, CDCl₃) δ 8.94 (s, 1H), 8.17 (s, 1H), 8.15 (d, *J* = 8.6 Hz, 1H), 7.81 (d, *J* = 8.2 Hz, 1H), 7.75 (t, *J* = 7.6 Hz, 1H), 7.67 (d, *J* = 8.2 Hz, 2H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.54 (d, *J* = 7.4 Hz, 1H), 7.44 – 7.36 (m, 2H), 7.35 – 7.30 (m, 3H), 3.76 (s, 2H), 3.72 (s, 2H), 2.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 151.27, 147.07, 146.60, 138.93, 138.35, 137.75, 135.41, 134.12, 130.64, 129.70, 129.67, 129.23, 128.65, 128.50, 127,94, 127.62, 127.33, 127.16, 52.83, 51.05, 44.50. HRMS (ESI): Calcd. for C₂₄H₂₂N₂O₂S [M+H]⁺: 403.1475; found: 403.1482.

(31) N-((perfluorophenyl)methyl)-benzyl)-2-(quinolin-3-yl)benzyl amine (3na)

White solid, m.p. 94-95 °C, 60.5 mg (73%), ¹H NMR (500 MHz, CDCl₃) δ 8.89 (s, 1H), 8.14 (d, J = 8.8 Hz, 2H), 7.80 (d, J = 8.2 Hz, 1H), 7.75 (t, J = 7.6 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.51 (d, J = 7.4 Hz, 1H), 7.43 – 7.37 (m, 2H), 7.33 (d, J = 7.2 Hz, 1H), 3.80 (s, 2H), 3.70 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 151.13, 147.13, 146.08, 144.14, 141.33, 139.31 – 138.25 (m), 138.48, 137.24, 136.21, 135.30, 133.76, 130.68, 129.88, 129.70, 129.29, 128.54, 127.85, 127.81, 127.47, 127.15, 112.92, 50.67, 40.24. ¹⁹F NMR (471 MHz, CDCl₃) δ -144.31 (dd, J = 22.9, 8.5 Hz), -155.08 (s), -155.12 (s), -155.15 (d, J = 20.8 Hz), -161.91 (td, J = 22.3, 8.6 Hz). HRMS (ESI): Calcd. for C₂₃H₁₅F₅N₂ [M+H]⁺: 415.1228; found: 415.1223.

(32) N-methyl-1-(2-(quinolin-3-yl)phenyl)methanamine (30a)

Yellow oil, 18.0 mg (36 %), ¹H NMR (500 MHz, CDCl₃) δ 8.96 (s, 1H), 8.22 (s, 1H), 8.16 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 8.2 Hz, 1H), 7.75 (t, *J* = 7.8 Hz, 1H), 7.61 – 7.59 (m, 2H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.4 Hz, 1H), 7.36 (d, *J* = 7.4 Hz, 1H), 3.76 (s, 3H), 2.35 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 151.36, 147.26, 138.36, 137.02, 135.74, 134.07, 130.73, 129.72, 129.62, 129.38, 128.63, 128.12, 127.78, 127.71, 127.17, 52.93, 35.70. MS (EI): m/z 248.3 [M]⁺. (33) N-(2-(quinolin-3-yl)benzyl)hexan-1-amine (3pa)

Yellow oil, 53.7mg (84 %), ¹H NMR (500 MHz, CDCl₃) δ 8.96 (s, 1H), 8.26 (s, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.73 (t, J = 8.0 Hz, 1H), 7.58 (d, J = 7.4 Hz, 3H), 7.42 (t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.4 Hz, 1H), 7.34 (d, J = 7.6 Hz, 1H), 3.75 (s, 2H), 2.51 (t, J = 7.4 Hz, 2H), 1.41 – 1.36 (m, 2H), 1.23 – 1.15 (m, 6H), 0.82 (t, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 150.23, 146.06, 137.12, 136.67, 134.54, 132.98, 129.47, 128.53, 128.44, 128.20, 127.37, 126.90, 126.60, 126.36, 125.92, 50.14, 48.36, 30.60, 28.55, 25.86, 21.49, 12.98. MS (EI): m/z 318.4 [M]⁺.

8. NMR spectra

¹H-NMR (500 MHz, CDCl₃) spectrum of 3aa

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3aa

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ab

¹H-NMR (500 MHz, CDCl₃) spectrum of 3ac

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ac

¹H-NMR (500 MHz, CDCl₃) spectrum of 3ad

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ad

¹H-NMR (500 MHz, CDCl₃) spectrum of 3ae

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ae

¹H-NMR (500 MHz, CDCl₃) spectrum of 3af

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3af

¹H-NMR (500 MHz, CDCl₃) spectrum of 3ag

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ag

¹⁹F-NMR (471 MHz, CDCl₃) spectrum of 3ag

¹H-NMR (500 MHz, CDCl₃) spectrum of 3ah

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ah

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ai

¹H-NMR (500 MHz, CDCl₃) spectrum of 3aj

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3aj

¹⁹F-NMR (471 MHz, CDCl₃) spectrum of 3aj

1	10	0	-10	-20	-20	- 40	-50	-60	-70	-90	-90	-100	-110	-120	-120	-140	-1.50	-160	-170	-190	-190	-200	-210	-2
· ·	10		10	- 20		-					20	100		100	100	140	1.00	100	110	100	1.50	200	210	
												f1 (ppm	0											

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ak

¹H-NMR (500 MHz, CDCl₃) spectrum of 3al

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3al

¹H-NMR (500 MHz, CDCl₃) spectrum of 3am

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3am

¹H-NMR (500 MHz, CDCl₃) spectrum of 3an

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3an

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ao

¹H-NMR (500 MHz, CDCl₃) spectrum of 3ap

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ap

¹H-NMR (500 MHz, CDCl₃) spectrum of 3ba

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ba

¹H-NMR (500 MHz, CDCl₃) spectrum 3ca

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ca

¹H-NMR (500 MHz, CDCl₃) spectrum of 3cd

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3cd

¹H-NMR (500 MHz, CDCl₃) spectrum of 3ci

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ci

¹H-NMR (500 MHz, CDCl₃) spectrum of 3da

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3da

¹H-NMR (500 MHz, CDCl₃) spectrum of 3ea S56

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ea

¹⁹F-NMR (471 MHz, CDCl₃) spectrum of 3ea

¹H-NMR (500 MHz, CDCl₃) spectrum of 3fa

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3fa

¹H-NMR (500 MHz, CDCl₃) spectrum of 3ga

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ga

¹H-NMR (500 MHz, CDCl₃) spectrum of 3ha

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ha

¹H-NMR (500 MHz, CDCl₃) spectrum of 3ia

¹³C-NMR (126 MHz, CDCl₃) spectrum 3ia

¹H-NMR (500 MHz, CDCl₃) spectrum of 3ja

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ja

¹H-NMR (500 MHz, CDCl₃) spectrum of 3ka

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ka

¹H-NMR (500 MHz, CDCl₃) spectrum of 3la

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3la

¹H-NMR (500 MHz, CDCl₃) spectrum of 3ma

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ma

¹H-NMR (500 MHz, CDCl₃) spectrum of 3na

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3na

¹⁹F-NMR (471 MHz, CDCl₃) spectrum of 3na S67

																					_	· · · · ·		_
30	10	0	-10	-20	-30	-40	-50	-60	-70	-30	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	
											1.023	f1 (ppm)											

¹³C-NMR (126 MHz, CDCl₃) spectrum of 30a

¹H-NMR (500 MHz, CDCl₃) spectrum of 30a

¹³C-NMR (126 MHz, CDCl₃) spectrum of 3pa

¹³C-NMR (126 MHz, CDCl₃) spectrum of 1k-1

¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of 4

¹³C-NMR (126 MHz, DMSO-*d*₆) spectrum of 4

