Pd/Cu bimetallic catalysis to access highly fluorinated biaryls from aryl halides and fluorinated arenes

Jaime Ponce-de-León, Guillermo Marcos-Ayuso, Juan A. Casares* and Pablo Espinet*

IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071-Valladolid (Spain)

*To whom correspondence should be addressed:

juanangel.casares@uva.es, espinet@qi.uva.es

Table of Content

L
L
5
5
5
5
5
5
5
7
7
3
3
3
Э
9
)
)
)
L
L
L
2
2

X-ray structure of 3bn, 3fn and 3gn13
Synthesis of Palladium Intermediates 13
<i>cis</i> -[Pd(C ₆ F ₅) ₂ (XPhos)] (7) and its X-ray structure13
[PdBr(C ₆ F ₅)(XPhos)] (8)15
[PdBr(<i>p</i> -C ₆ H ₄ F)(XPhos)] (9)15
Fluxionality of [PdBr(C ₆ F ₅)(XPhos)] (8)15
Stoichiometric Studies
C-H activation
Reductive elimination from <i>cis</i> -[Pd(C ₆ F ₅) ₂ (XPhos)] (7) and oxidative addition to [PdBr(C ₆ F ₅)(XPhos)] (8)
Cu to Pd aryl transmetalation19
Detection of reaction intermediates 21
KIE Experiments 22
X-ray Crystallographic Data 22
NMR Spectra 25
References

General Experimental Section

All the manipulations were performed in a dry glovebox or by means of standard Schlenk techniques under N₂ or Ar atmosphere. Solvents were dried using a solvent purification system SPS PS-MD-5 or distilled from appropriate drying agents,¹ and were sparged with nitrogen gas. Solvents for experiments in an inert atmosphere were stored into flamedried Schlenk flasks over freshly activated 3 or 4 Å molecular sieves. Commercially available chemicals were purchased from Sigma Aldrich, Alfa Aesar, Fluorochem and Acros Organics and were used without further purification. CyPhos-HF and CyPhos-FF, ² [CuCl(NHC)] complexes,³ [Cu(C₆F₅)(IPr)]⁴ and C₆F₅–D,⁵ were prepared by reported methods. Flash chromatography was carried out using silica gel (230-240 mesh). Chemical yields refer to pure isolated substances.

NMR spectra were recorded with Bruker Avance 400 Ultrashield and Varian 500/54 Premium Shielded instruments. Chemical shifts are reported in ppm referenced to tetramethylsilane (¹H), CCl₃F (¹⁹F), and 85% H₃PO₄ (³¹P), with positive shifts downfield, at 298 K unless otherwise stated. In the ¹⁹F and ³¹P NMR spectra registered in non-deuterated solvents, a coaxial tube containing acetone- d_6 was used to maintain the ²H lock signal.

HRMS (EI) were performed with a MALDI Bruker Autoflex at the LTI facilities of Valladolid University (Spain).

Optimization of Catalytic Conditions

Screening reactions were conducted on a 0.160 mmol scale of aryl halide, in 2.0 mL of solvent (0.08 M). [Pd] precatalyst (0.016 mmol), [Cu] precatalyst (0.032 mmol) and base (0.160 mmol) were added to a flame-dried screwed-capped Schlenk flask with a magnetic stirrer. Then, the corresponding aryl halide (**1a**, 0.160 mmol), arene (**2n**, 0.160 mmol) and solvent (2 mL) were added to the flask. α, α, α -trifluorotoluene was added as internal standard (12.5 µL, 0.100 mmol). The Schlenk was placed in an oil bath at 80 °C and stirred for 22 hours. Then, it was taken out of the bath, cooled to room temperature, and an aliquot was checked by ¹⁹F NMR. **3an** was obtained in 74 % yield employing the standard conditions stated in the image.

Table ESI1. Control experiments

When the reaction was carried out in the absence of one or both precatalyst, only traces of coupling product were observed (Table ESI1).

Entry	Conditions	3an (%)ª	4a/3aa (%)ª
1	Standard	74	4/4
2	No Cu	2	3/3
3	No Pd	<1	-/-
4	No Cu, no Pd	<1	-/-

Standard conditions: **1a** (0.16 mmol), **2n** (0.16 mmol), XPhos-Pd-G3 (5 %), [CuCl(IPr)] (10 %), Cs₂CO₃ (0.16 mmol), dioxane (2 mL), 80 °C, 22 h. ^a Yield determined by ¹⁹F NMR.

Table ESI2. Variation of the aryl halide

Employing 2-chloro-1,3-difluorobenzene gave the product in a similar yield (entry 2). However, when 1,3-difluoro-2-iodobenzene was used the yield diminished (entry 3).

Entry	Aryl halide	3an (%)ª	4a/3aa (%)ª
1	Aryl bromide	74	4/4
2	Aryl chloride	70	5/1
3	Aryl iodide	38	4/2

Standard conditions: *Aryl halide* (0.16 mmol), **2n** (0.16 mmol), XPhos-Pd-G3 (5 %), [CuCl(IPr)] (10 %), Cs₂CO₃ (0.16 mmol), dioxane (2 mL), 80 °C, 22 h. ^a Yield determined by ¹⁹F NMR.

Table ESI3. Variation of the copper ligand

Different [CuCl(NHC)] precatalyst were tested. Only [CuCl(IPr)] gave the product in good yield.

Entry	Ligand	3an (%)ª	4a/3aa (%)ª
1	ⁱ Pr N N i _{Pr} IPr	74	4/4
2		9	2/-
3		2	-/-
4	N N IDm	2	-/-
5	$\begin{array}{c} Ph & {\searrow} N & {\searrow} Ph \\ & {\searrow} N & {\searrow} Ph \\ & {\vdots} Bz \end{array}$	1	-/-

Standard conditions: **1a** (0.16 mmol), **2n** (0.16 mmol), XPhos-Pd-G3 (5 %), [*CuCl(L)*] (10 %), Cs₂CO₃ (0.16 mmol), dioxane (2 mL), 80 °C, 22 h. ^a Yield determined by ¹⁹F NMR.

Table ESI4. Variation of palladium ligand

Different L-Pd-G3 complexes as well as [Pd(allyl)Cl(IPr)] were tested as precatalyst. The use of bulky ^tBu phosphines (^tBuXPhos, ^tBuBrettPhos, P^tBu₃) was detrimental for the catalysis.

Entry	Ligand	3an (%)ª	4a/3aa (%)ª	Entry	Ligand	3an (%)ª	4a/3aa (%)ª
1	^{'Pr} ^{'Pr} ^{'Pr} VPhos	74	4/4	7	MeO 'Pr 'Pr BrettPhos	4	2/1
2	^{iPr} ^{iPr} ^t BuXPhos	27	5/-	8	MeO 'Pr 'Pr 'Pr 'Pr 'Pr 'Pr 'Pr	1	3/-
3	^{'PrO} RuPhos	17	5/-	9	MeO SPhos	12	4/-
4	PCy2 NMe2 DavePhos	5	6/0	10	JohnPhos	<1	4/-
5	$F \rightarrow F = F = F$ $F \rightarrow F = F$ $F \rightarrow F = F$ $F \rightarrow F = F$	5	0/1	11	$F \rightarrow F \rightarrow$	<1	0/3
6	P ^t Bu₃	10	5/-	12	[Pd(allyl)Cl(IPr)]	<1	0/1

Standard conditions: **1a** (0.16 mmol), **2n** (0.16 mmol), *L-Pd-G3* (5 %), [CuCl(IPr)] (10 %), Cs₂CO₃ (0.16 mmol), dioxane (2 mL), 80 °C, 22 h. ^a Yield determined by ¹⁹F NMR.

Table ESI5. Solvent Screening

Different solvents where tested, the use of toluene diminished the reaction yield, while employing a coordinating solvent such as acetonitrile did not afford the coupling product (Table ESI5).

Entry	Conditions	3an (%)ª	4a/3aa (%)ª
1	1,4-dioxane	74	4/4
2	THF	64	8/-
3	Toluene	18	3/2
4	Acetonitrile	<1	6/-

Standard conditions: **1a** (0.16 mmol), **2n** (0.16 mmol), XPhos-Pd-G3 (5 %), [CuCl(IPr)] (10 %), Cs₂CO₃ (0.16 mmol), *solvent* (2 mL), 80 °C, 22 h. ^a Yield determined by ¹⁹F NMR.

Table ESI6. Base Screening

CsOH gave the product in a moderate yield (Table ESI6, entry 2), while the use of other carbonate salts did not afford the product, probably due to their lower solubility (entries 3,4). Employing NaO^tBu yielded 17% of product, moreover, activation of the para C-F bond of the C₆F₅ moiety was also observed (entry 5). K₃PO₄ was not efficient either (entry 6).

Entry	Conditions	3an (%) ^a	4a/3aa (%)ª
1	Cs ₂ CO ₃	74	4/4
2	CsOH	55	4/5
3	K ₂ CO ₃	3	4/2
4	Na ₂ CO ₃	<1	-/-
5	NaO ^t Bu	17	4/2
6	K ₃ PO ₄	3	3/2

Standard conditions: **1a** (0.16 mmol), **2n** (0.16 mmol), XPhos-Pd-G3 (5 %), [CuCl(IPr)] (10 %), *base* (0.16 mmol), dioxane (2 mL), 80 °C, 22 h. ^a Yield determined by ¹⁹F NMR.

Table ESI7. Temperature Screening

Lower yields were obtained when other temperatures were tested (60 – 100 $^{\circ}$ C) (Table ESI7).

Entry	T (°C)	3an (%)ª	4a/3aa (%)ª
1	60	53	3/2
2	70	46	2/3
3	80	74	4/4
4	90	52	2/3
5	100	40	4/-

Standard conditions: **1a** (0.16 mmol), **2n** (0.16 mmol), XPhos-Pd-G3 (5 %), [CuCl(IPr)] (10 %), Cs₂CO₃ (0.16 mmol), dioxane (2 mL), *temperature*, 22 h. ^a Yield determined by ¹⁹F NMR.

Table ESI8. Concentration Effect

Reducing the amount of copper precatalyst vastly reduced the product yield (Table ESI8, entry 2). Increasing the concentration in the system slightly increased the yield, obtaining the product in 80 % yield (Table ESI8, entry 4). At this concentration, reducing the amount of catalysts to a half led to a much lower yield (Table ESI8, entry 5).

Entry	[Ar-Br] (M)	3an (%) ª	4a/3aa (%)ª
1	0.04	46	16/-
2	0.04 ^b	6	1/2
3	0.08	74	4/4
4	0.32	80	2/3
5	0.32 ^c	20	1/2

Standard conditions: **1a** (0.16 mmol), **2n** (0.16 mmol), XPhos-Pd-G3 (5 %), [CuCl(IPr)] (10 %), Cs₂CO₃ (0.16 mmol), dioxane (*V*), 80 °C, 22 h. ^a Yield determined by ¹⁹F NMR. ^b [CuCl(IPr)] (5 %). ^c XPhos-Pd-G3 (2.5 %), [CuCl(IPr)] (5 %).

General Procedure for Catalysis

To a flame-dried screwed-capped Schlenk flask with a magnetic stirrer, XPhos-Pd-G3 precatalyst (27.1 mg, 0.032 mmol), [CuCl(IPr)] (31.2 mg, 0.064 mmol) and Cs_2CO_3 (209.0 mg, 0.640 mmol) were added. Then, the corresponding aryl bromide (**1**, 0.640 mmol), fluorinated arene (**2**, 0.640 mmol) and dioxane (2 mL) were added to the flask. The Schlenk was placed in an oil bath at 80 °C and stirred for 22 hours. Then, the flask was taken out of the bath and 5 mL of aqueous saturated NH₄Cl solution were added. The aqueous layer was extracted with Et₂O (3 x 5 mL). The organic fraction was dried over MgSO₄ and filtered through a short path of silica gel. The coloured solution was concentrated and the residue was purified by flash column chromatography.

Reported yields are average of two runs.

Catalysis Products Characterization

2,2',3,4,5,6,6'-heptafluoro-1,1'-biphenyl (3an)

Following general procedure with 2-bromo-1,3-difluorobenzene (**1a**) and pentafluorobenzene (**2n**). The product was obtained as a colourless volatile liquid after column chromatography employing *n*-pentane as eluent (125.5 mg, 70 % yield).

HRMS (EI) Calculated for $C_{12}H_3F_7$ [M]⁺: 280.0123. Experimental [M]⁺: 280.0116.

¹**H NMR** (499.72 MHz, Chloroform-*d*) δ 7.48 (tt, *J* = 8.5, 6.4 Hz, 1H), 7.09 – 7.04 (m, 1H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 160.3 (dd, *J* = 252.5, 5.7 Hz, 2C), 144.6 (d, *J* = 254.9 Hz, 2C), 141.7 (d, *J* = 242.6 Hz, 1C), 137.7 (d, *J* = 255.2 Hz, 2C), 132.1 (t, *J* = 10.2 Hz, 2C), 111.6 (d, *J* = 25.1 Hz, 2C). C_{ipso} not observed.

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -110.17 – -110.31 (m), -137.91 – -138.05 (m), -152.60 (tt, *J* = 20.8, 2.0 Hz), -161.74 – -161.90 (m).

2,2',3,3',4,5,6-heptafluoro-1,1'-biphenyl (3bn)

Following general procedure with 1-bromo-2,3-difluorobenzene (**1b**) and pentafluorobenzene (**2n**). The product was obtained as a colourless volatile liquid after column chromatography employing *n*-pentane as eluent (148.8 mg, 83 % yield).

HRMS (EI) Calculated for C₁₂H₃F₇ [M]⁺: 280.0123. Experimental [M]⁺: 280.0127.

¹**H NMR** (499.72 MHz, Chloroform-*d*) δ 7.36 – 7.28 (m, 1H), 7.25 – 7.18 (m, 1H), 7.16 – 7.08 (m, 1H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 151.1 (dd, *J* = 249.0, 11.8 Hz, 1C), 148.50 (dd, *J* = 252.3, 13.1 Hz, 1C), 144.5 (dddt, *J* = 250.0, 11.1, 7.4, 3.9 Hz, 2C), 141.6 (dddd, *J* = 255.6, 13.4, 8.3, 5.0 Hz, 1C), 139.6 – 136.2 (dm, *J* = 253.0 Hz, 2C), 126.9 (d, *J* = 3.7 Hz, 1C), 124.6 (dd, *J* = 7.0, 4.8 Hz, 1C), 119.0 (d, *J* = 17.2 Hz, 1C), 116.5 (d, *J* = 12.5 Hz, 1C), 109.2 (tt, *J* = 18.5, 3.5 Hz, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -136.21 – -136.53 (m, 1F), -136.85 – -137.16 (m, 1F), -139.98 – -140.15 (m, 2F), -153.10 (tt, J = 20.6, 1.7 Hz, 1F), -161.52 – -161.73 (m, 2F).

2,2',3,4,5,5',6-heptafluoro-1,1'-biphenyl (3cn)

Following general procedure with 2-bromo-1,4-difluorobenzene (1c) and pentafluorobenzene (2n). The product was obtained as a colourless volatile liquid after column chromatography employing *n*-pentane as eluent (156.0 mg, 87 % yield).

HRMS (EI) Calculated for $C_{12}H_3F_7 [M]^+$: 280.0123. Experimental [M]⁺: 280.0129.

¹H NMR (499.72 MHz, Chloroform-*d*) δ 7.22 – 7.14 (m, 2H), 7.11 – 7.03 (m, 1H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 158.5 (d, J = 244.0 Hz, 1C), 156.2 (d, J = 247.2 Hz, 1C), 144.4 (d, J = 254.2 Hz, 2C), 141.6 (d, J = 255.5 Hz, 1C), 137.9 (d, J = 252.7 Hz, 2C), 118.6 (d, J = 24.9 Hz), 118.5 (dd, J = 23.5, 8.8 Hz, 1C), 117.5 (dd, J = 24.6, 8.8 Hz, 1C), 115.5 (dd, J = 18.0, 9.6 Hz, 1C), 109.3 (s, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -117.98 – -118.17 (m, 1F), -118.55 – -118.72 (m, 1F), -140.06 (dddd, *J* = 22.9, 11.4, 7.2, 3.1 Hz, 2F), -152.98 (t, *J* = 21.1 Hz, 1F), -161.44 – -161.62 (m, 2F).

2,2',3,4,4',5,6-heptafluoro-1,1'-biphenyl (3dn)

HRMS (EI) Calculated for C₁₂H₃F₇ [M]⁺: 280.0123. Experimental [M]⁺: 280.0119.

¹H NMR (499.72 MHz, Chloroform-*d*) δ 7.38 – 7.30 (m, 1H), 7.06 – 6.96 (m, 2H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 164.1 (dd, J = 252.6, 11.8 Hz, 1C), 160.4 (dd, J = 253.4, 12.2 Hz, 1C), 146.1 – 143.3 (m, J = 242.7 Hz, 2C), 143.0 – 140.1 (m, J = 253.0 Hz, 1C), 139.4 – 135.9 (m, J = 247.8 Hz, 2C), 133.0 (dd, J = 9.9, 3.8 Hz, 1C), 112.1 (dd, J = 21.6, 3.8 Hz, 1C), 110.4 (d, J = 16.3 Hz, 1C), 109.5 (td, J = 18.5, 4.1 Hz, 1C), 104.9 (t, J = 25.5 Hz, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -106.69 – -106.80 (m, 1F), -108.13 (h, *J* = 9.7 Hz, 1F), -140.28 – -140.42 (m, 2F), -153.63 (t, *J* = 20.8 Hz, 1F), -161.74 – -161.94 (m, 2F).

2,2',3,4,5,6-hexafluoro-1,1'-biphenyl (3en)

Following general procedure with 1-bromo-2-fluorobenzene (**1n**) and pentafluorobenzene (**2n**). The product was obtained as a colourless liquid after column chromatography employing *n*-pentane as eluent (151.0 mg, 90 % yield).

HRMS (EI) Calculated for C₁₂H₄F₆ [M]⁺: 262.0217. Experimental [M]⁺: 262.0221.

¹**H NMR** (499.72 MHz, Chloroform-*d*) δ 7.52 – 7.47 (m, 1H), 7.39 – 7.34 (m, 1H), 7.28 (td, *J* = 7.5, 1.1 Hz, 1H), 7.26 – 7.20 (m, 1H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 160.1 (d, *J* = 250.7 Hz, 1C), 144.5 (dddt, *J* = 248.9, 11.0, 7.3, 3.8 Hz, 2C), 141.3 (dtt, *J* = 254.7, 13.4, 5.1 Hz, 1C), 139.2 – 136.4 (dm, *J* = 251.2 Hz, 2C), 132.1 (t, *J* = 1.9 Hz, 1C), 131.9 (d, *J* = 8.5 Hz, 1C), 124.5 (d, *J* = 3.8 Hz, 1C), 116.2 (s, 1C), 114.4 (dq, *J* = 15.8, 2.0 Hz, 1C), 110.3 (td, *J* = 18.6, 4.0 Hz, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -112.73 – -113.12 (m, 1F), -140.29 – -140.52 (m, 2F), -154.29 (t, *J* = 20.7 Hz, 1F), -162.18 – -162.34 (m, 2F).

2,3,4,4',5,6-hexafluoro-1,1'-biphenyl (3fn)

 C_6F_5 Following general procedure with 1-bromo-4-fluorobenzene (**1f**) and pentafluorobenzene (**2n**). The product was obtained as a colourless solid after column chromatography employing *n*-pentane as eluent (137.6 mg, 82 % yield).

HRMS (EI) Calculated for C₁₂H₄F₆ [M]⁺: 262.0217. Experimental [M]⁺: 262.0215.

¹H NMR (499.72 MHz, Chloroform-*d*) δ 7.45 – 7.37 (m, 2H), 7.24 – 7.15 (m, 2H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 163.3 (d, J = 249.9 Hz, 1C), 144.3 (dddt, J = 247.7, 11.1, 7.5, 3.9 Hz, 2C), 142.0 – 139.4 (m, J = 251.9 Hz, 1C), 139.3 – 136.5 (m, J = 248.5 Hz, 2C), 132.2 (dd, J = 8.5, 2.1 Hz, 2C), 122.4 (s, 1C), 116.1 (d, J = 21.9 Hz, 2C), 115.1 (td, J = 17.1, 4.1 Hz, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -111.33 (tt, *J* = 8.3, 5.4 Hz, 1F), -143.36 (m, 2F), -155.25 (t, *J* = 21.1 Hz, 1F), -161.21 – -163.05 (m, 2F).

2,3,4,5,6-pentafluoro-4'-(trifluoromethyl)-1,1'-biphenyl (3gn)

Following general procedure with 4-bromobenzotrifluoride (**1g**) and pentafluorobenzene (**2n**). The product was obtained as a colourless solid after column chromatography employing *n*-pentane as eluent (163.8 mg, 82 % yield).

HRMS (EI) Calculated for C₁₃H₄F₈ [M]⁺: 312.0185. Experimental [M]⁺: 312.0190.

¹**H NMR** (499.72 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 8.1 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 2H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 144.3 (d, *J* = 248.9 Hz, 2C), 141.1 (d, *J* = 255.2 Hz, 1C), 138.1 (d, *J* = 253.1 Hz, 2C), 131.6 (q, *J* = 32.8 Hz, 1C), 130.8 (s, 2C), 130.3 (s, 1C), 126.0 – 125.7 (m, 2C), 123.9 (q, *J* = 271.7 Hz, 1C), 114.7 (td, *J* = 17.0, 4.1 Hz, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -62.99 (s, 3F), -142.90 – -143.02 (m, 2F), -153.78 (t, *J* = 21.0 Hz, 1F), -161.32 – -161.50 (m, 2F).

2,3,3',4,5,5',6-heptafluoro-1,1'-biphenyl (3hn)

Following general procedure with 1-bromo-3,5-difluorobenzene (1h) and pentafluorobenzene (2n). The product was obtained as a colourless solid after column chromatography employing *n*-pentane as eluent (148.8 mg, 83 % yield).

HRMS (EI) Calculated for C₁₂H₃F₇ [M]⁺: 280.0123. Experimental [M]⁺: 280.0126.

¹H NMR (499.72 MHz, Chloroform-*d*) δ 7.00 – 6.96 (m, 2H), 6.93 (tt, *J* = 8.8, 2.3 Hz, 1H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 163.1 (dd, *J* = 249.8, 12.9 Hz, 2C), 144.2 (d, *J* = 249.7 Hz, 2C), 141.2 (d, *J* = 255.8 Hz, 1C), 138.1 (d, *J* = 251.8 Hz, 2C), 129.3 (d, *J* = 11.3 Hz, 1C), 114.0 (t, *J* = 14.8 Hz, 1C), 113.8 – 112.4 (m, 2C), 105.2 (t, *J* = 25.0 Hz, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -101.14 – -112.97 (m, 2F), -138.39 – -145.19 (m, 2F), -153.35 (t, *J* = 21.0 Hz, 1F), -156.20 – -164.29 (m, 2F).

2,3,3',4,4',5,6-heptafluoro-1,1'-biphenyl (3in)

Following general procedure with 4-bromo-1,2-difluorobenzene (1i) and pentafluorobenzene (2n). The product was obtained as a colourless solid after column chromatography employing *n*-pentane as eluent (141.6 mg, 79 % yield).

HRMS (EI) Calculated for C₁₂H₃F₇ [M]⁺: 280.0123. Experimental [M]⁺: 280.0128.

¹H NMR (499.72 MHz, Chloroform-*d*) δ 7.33 – 7.27 (m, 2H), 7.21 – 7.14 (m, 1H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 151.1 (dd, J = 252.0, 12.1 Hz, 1C), 150.5 (dd, J = 249.7, 12.7 Hz, 1C), 145.5 – 142.8 (m, J =248.6 Hz, 2C), 142.3 – 139.6 (m, J =254.3 Hz, 1C), 139.4 – 136.5 (m, J = 252.9 Hz, 2C), 126.9 (dq, J = 5.9, 2.6 Hz, 1C), 123.1 (s, 1C), 119.7 (d, J = 19.0 Hz, 1C), 118.0 (d, J = 17.7 Hz, 1C), 114.1 (td, J = 17.2, 16.8, 4.5 Hz, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -135.55 – -135.69 (m, 1F), -136.26 – -136.40 (m, 1F), -143.00 – -143.11 (m, 2F), -154.10 (t, *J* = 21.0 Hz, 1F), -161.35 – -161.60 (m, 2F).

2,2',3,4,5,6-hexafluoro-5'-(trifluoromethyl)-1,1'-biphenyl (3jn)

Following general procedure with 1-bromo-3-fluoro-5-(trifluoromethyl)benzene (**1j**) and pentafluorobenzene (**2n**). The product was obtained as a colourless volatile liquid after column

chromatography employing *n*-pentane as eluent (179.6 mg, 85 % yield).

HRMS (EI) Calculated for $C_{13}H_3F_9$ [M]⁺: 330.0091. Experimental [M]⁺: 330.0083.

¹**H NMR** (499.72 MHz, Chloroform-*d*) δ 7.83 – 7.76 (m, 1H), 7.71 – 7.65 (m, 1H), 7.37 (t, *J* = 8.8 Hz, 1H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 162.0 (d, *J* = 257.0 Hz, 1C), 144.6 (dddt, *J* = 250.3, 11.0, 7.7, 3.9 Hz, 2C), 141.9 (dtt, *J* = 256.3, 13.4, 5.1 Hz, 1C), 139.7 – 136.4 (dm, *J* = 251.9 Hz, 2C), 130.1 – 129.7 (m, 1C), 129.3 (dq, *J* = 9.5, 3.7 Hz, 1C), 127.6 (qd, *J* = 33.6,

3.6 Hz, 1C), 123.6 (q, *J* = 272.0 Hz, 1C), 117.2 (d, *J* = 23.0 Hz, 1C), 115.5 (dq, *J* = 17.4, 2.0 Hz, 1C), 108.9 (td, *J* = 18.2, 4.1 Hz, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -62.48 (s, 3F), -104.00 – -109.23 (m, 1F), -138.19 – -141.72 (m, 2F), -152.79 (t, *J* = 20.6 Hz, 1F), -158.37 – -165.37 (m, 2F).

2,3,4,4',5,5',6-heptafluoro-2'-methyl-1,1'-biphenyl (3kn)

Following general procedure with 1-bromo-4,5-difluoro-2methylbenzene (1k) and pentafluorobenzene (2n). The product was obtained as a colourless volatile liquid after column chromatography employing *n*-pentane as eluent (156.3 mg, 83 % yield).

HRMS (EI) Calculated for C₁₃H₅F₇ [M]⁺: 294.0279. Experimental [M]⁺: 294.0285.

¹**H NMR** (499.72 MHz, Chloroform-*d*) δ 7.16 (dd, *J* = 11.1, 7.9 Hz, 1H), 7.04 (dd, *J* = 10.4, 7.9 Hz, 1H), 2.15 (s, 3H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 150.9 (dd, J = 251.2, 12.4 Hz, 1C), 148.5 (dd, J = 247.8, 13.0 Hz, 1C), 144.3 (dddt, J = 247.4, 10.9, 7.2, 3.8 Hz, 2C), 141.3 (dtt, J = 254.9, 13.3, 5.1 Hz, 1C), 139.3 – 136.3 (dm, J = 251.6 Hz, 2C), 135.0 (dd, J = 6.3, 3.9 Hz, 1C), 122.1 (dp, J = 6.2, 1.9 Hz, 1C), 119.7 (d, J = 18.3 Hz, 1C), 119.3 (d, J = 17.4 Hz, 1C), 113.8 (td, J = 19.4, 4.1 Hz, 1C), 19.2 (s, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -136.59 (ddd, *J* = 21.5, 11.0, 7.8 Hz, 1F), -140.39 - -140.76 (m, 2F), -141.37 (dt, *J* = 21.5, 9.2 Hz, 1F), -154.29 (t, *J* = 20.7 Hz, 1F), -161.80 --161.96 (m, 2F).

2,2',3,4,4',5,6,6'-octafluoro-1,1'-biphenyl (3ln)

Following general procedure with 2-bromo-1,3,5-trifluorobenzene (1I) and pentafluorobenzene (2n). The product was obtained as a colourless volatile liquid after column chromatography employing *n*-pentane as eluent (137.4 mg, 72 % yield).

HRMS (EI) Calculated for C₁₂H₂F₈ [M]⁺: 298.0029. Experimental [M]⁺: 298.0036.

¹**H NMR** (499.72 MHz, Chloroform-*d*) δ 6.88 – 6.81 (m, 2H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 164.3 (dt, J = 253.2, 15.3 Hz, 1C), 160.9 (ddd, J = 253.3, 15.2, 9.0 Hz, 2C), 144.8 (dddt, J = 250.6, 11.1, 7.3, 3.9 Hz, 2C), 142.1 (dtt, J = 256.1, 13.4, 5.2 Hz, 1C), 139.6 – 136.2 (dm, J = 251.6 Hz, 2C), 103.6 (td, J = 18.8, 4.0 Hz, 1C), 101.5 – 100.7 (m, 2C), 100.6 (d, J = 3.2 Hz, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -104.08 (p, *J* = 8.2 Hz, 1F), -107.12 (p, *J* = 8.0 Hz, 2F), -138.09 – -138.29 (m, 2F), -152.31 (tt, *J* = 20.8, 2.7 Hz, 1F), -161.68 – -161.88 (m, 2F).

2,3,3',4,4',5,5',6-octafluoro-1,1'-biphenyl (3mn)

Following general procedure with 5-bromo-1,2,3-trifluorobenzene (**1m**) and pentafluorobenzene (**2n**). The product was obtained as a colourless volatile liquid after column chromatography employing *n*-pentane as eluent (135.5 mg, 71 % yield).

HRMS (EI) Calculated for C₁₂H₂F₈ [M]⁺: 298.0029. Experimental [M]⁺: 298.0025.

¹**H NMR** (499.72 MHz, Chloroform-*d*) δ 7.09 (t, *J* = 6.9 Hz, 1H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 151.5 (ddd, J = 251.4, 10.1, 4.2 Hz, 2C), 144.3 (dddt, J = 249.7, 10.8, 7.4, 4.0 Hz, 2C), 142.6 – 140.0 (dm, J = 256.0 Hz, 1C), 140.6 (dt, J = 255.7, 15.2 Hz, 1C), 139.4 – 136.4 (dm, J = 252.3 Hz, 2C), 122.4 – 122.0 (m, 1C), 115.0 (ddt, J = 17.0, 4.8, 2.2 Hz, 2C), 113.3 (t, J = 16.6 Hz, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -132.88 – -133.04 (m, 2F), -142.68 – -142.81 (m, 2F), -152.93 (t, *J* = 21.0 Hz, 1F), -157.91 (tt, *J* = 20.7, 6.5 Hz, 1F), -160.80 – -161.00 (m, 2F).

perfluoro-1,1'-biphenyl (3nn)

Following general procedure with bromopentafluorobenzene (1n) and pentafluorobenzene (2n). The product was obtained as a colourless solid after column chromatography employing *n*-pentane as eluent (136.9 mg, 64 % yield).

HRMS (EI) Calculated for C₁₂F₁₀ [M]⁺: 333.9840. Experimental [M]⁺: 333.9837.

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 144.8 (ddt, *J* = 253.2, 11.4, 3.4 Hz, 4C), 144.5 – 141.1 (m, *J* = 258.2 Hz, 2C), 139.9 – 136.5 (m, *J* = 252.1 Hz, 4C), 102.1 – 101.1 (m, 2C).

¹⁹**F NMR** (376.21 MHz, Chloroform-*d*) δ -135.34 – -139.60 (m), -149.81 (t, *J* = 21.0 Hz), -160.23 – -160.45 (m).

2,2',3,5,6,6'-hexafluoro-4-methoxy-1,1'-biphenyl (3ap)

Following general procedure with 2-bromo-1,3difluorobenzene (**1a**) and 1,2,4,5-tetrafluoroanisole (**2p**). The product was obtained as a colourless liquid after column chromatography employing *n*-pentane as eluent (78.5 mg, 42 %

yield).

HRMS (EI) Calculated for C₁₃H₆F₆O [M]⁺: 292.0323. Experimental [M]⁺: 292.0319.

¹**H NMR** (499.72 MHz, Chloroform-*d*) δ 7.44 (tt, *J* = 8.5, 6.4 Hz, 1H), 7.04 (dd, *J* = 8.4, 7.5 Hz, 2H), 4.15 (t, *J* = 1.5 Hz, 3H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 160.5 (dd, *J* = 251.9, 6.3 Hz, 2C), 144.7 (dddd, *J* = 248.7, 12.1, 7.6, 3.9 Hz, 2C), 142.3 – 139.7 (d of m, *J* = 247.0 Hz, 2C), 139.0 (tt, *J* = 11.7, 3.6 Hz, 1C), 131.6 (t, *J* = 10.2 Hz, 1C), 112.2 – 110.9 (m, 2C), 104.7 (tt, *J* = 20.2, 2.2 Hz, 1C), 102.1 (t, *J* = 19.2 Hz, 1C), 62.1 (td, *J* = 3.9, 1.6 Hz, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -110.39 (p, *J* = 7.7 Hz, 2F), -140.01 – -140.26 (m, 2F), -158.06 – -158.27 (m, 2F).

4-(2,6-difluorophenyl)-2,3,5,6-tetrafluoropyridine (3aq)

Following general procedure with 2-bromo-1,3-difluorobenzene (**1a**) and 2,3,5,6-tetrafluoropyridine (**2q**). The product was obtained as a colourless solid after column chromatography employing *n*-pentane as eluent (144.8 mg, 86 % yield).

HRMS (EI) Calculated for C₁₁H₃F₆N [M]⁺: 263.0170. Experimental [M]⁺: 263.0173.

¹**H NMR** (499.72 MHz, Chloroform-*d*) δ 7.56 (tt, *J* = 8.5, 6.5 Hz, 1H), 7.11 (t, *J* = 8.1 Hz, 2H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 159.8 (dd, *J* = 254.2, 6.1 Hz, 2C), 143.5 (dddd, *J* = 246.1, 16.7, 13.1, 3.0 Hz, 2C), 141.4 – 137.4 (d of m, *J* = 262.2 Hz, 2C), 133.3 (t, *J* = 10.2 Hz, 1C), 122.5 (tt, *J* = 17.3, 3.7 Hz, 1C), 112.0 (dd, *J* = 20.8, 4.0 Hz, 2C), 103.5 (t, *J* = 19.9 Hz, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -90.18 (tt, *J* = 26.8, 13.4 Hz, 2F), -109.52 (dh, *J* = 17.2, 9.2, 8.8 Hz, 2F), -139.35 (dpd, *J* = 23.2, 14.3, 7.5 Hz, 2F).

2,2',3,5,6,6'-hexafluoro-1,1'-biphenyl (3as)

Following general procedure with 2-bromo-1,3-difluorobenzene (**1a**) and 1,2,4,5-tetrafluorobenzene (**2s**). The product was obtained as a colourless solid after column chromatography employing *n*-pentane as eluent (100.7 mg, 60 % yield).

HRMS (EI) Calculated for C₁₂H₄F₆ [M]⁺: 262.0217. Experimental [M]⁺: 262.0213.

¹**H NMR** (499.72 MHz, Chloroform-*d*) δ 7.47 (tt, *J* = 8.4, 6.4 Hz, 1H), 7.18 (tt, *J* = 9.5, 7.4 Hz, 1H), 7.10 – 7.01 (m, 2H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 160.5 (dd, *J* = 252.3, 6.2 Hz, 2C), 147.4 – 144.7 (dm, *J* = 252.2 Hz, 2C), 144.3 (ddt, *J* = 252.1, 16.0, 4.8 Hz, 2C), 132.1 (t, *J* = 10.2 Hz, 1C), 111.8 (dd, *J* = 20.7, 4.5 Hz, 2C), 110.0 (tdd, *J* = 18.3, 3.7, 1.8 Hz, 1C), 107.5 – 106.2 (m, 1C), 105.1 (tt, *J* = 20.3, 2.3 Hz, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -110.31 (p, *J* = 7.4 Hz, 2F), -138.72 – -139.12 (m, 4F).

2,3,3',4',5,5',6-heptafluoro-4-methoxy-1,1'-biphenyl (3mp)

Following general procedure with 5-bromo-1,2,3trifluorobenzene (**1m**) and 1,2,4,5-tetrafluoroanisole (**2p**). The product was obtained as a colourless solid after column chromatography employing *n*-pentane as eluent (49.6 mg,

25 % yield).

HRMS (EI) Calculated for C₁₃H₅F₇O [M]⁺: 310.0229. Experimental [M]⁺: 310.0234.

¹**H NMR** (499.72 MHz, Chloroform-*d*) δ 7.22 – 6.89 (m, 2H), 4.14 (t, *J* = 1.5 Hz, 3H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 151.4 (ddd, *J* = 250.8, 10.1, 4.3 Hz, 2C), 145.5 – 143.1 (dm, *J* = 247.7 Hz, 2C), 141.3 (ddt, *J* = 248.2, 15.6, 4.4 Hz, 2C), 140.3 (dt, *J* = 255.0, 14.9 Hz, 1C), 138.9 – 137.0 (m, 1C), 123.2 (tdd, *J* = 8.6, 5.5, 2.5 Hz, 1C), 114.9 (ddt, *J* = 17.2, 5.2, 2.4 Hz, 2C), 111.5 – 110.5 (m, 1C), 62.3 (t, *J* = 4.0 Hz, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -133.71 (dd, J = 20.7, 8.3 Hz, 2F), -144.93 – -145.03 (m, 2F), -157.36 – -157.50 (m, 2F), -159.05 (tt, J = 20.5, 6.6 Hz, 1F).

2,3,5,6-tetrafluoro-4-(3,4,5-trifluorophenyl)pyridine (3mq)

Following general procedure with 5-bromo-1,2,3trifluorobenzene (**1m**) and 1,2,4,5-tetrafluoropyridine (**2q**). The product was obtained as a colourless liquid after column chromatography employing *n*-pentane as eluent (95.4 mg, 53 %

yield).

HRMS (EI) Calculated for C₁₁H₂F₇N [M]⁺: 281.0075. Experimental [M]⁺: 281.0078.

¹**H NMR** (499.72 MHz, Chloroform-*d*) δ 7.26 – 7.21 (m, 2H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 151.5 (ddd, *J* = 252.5, 10.2, 4.1 Hz, 2C), 145.5 – 142.7 (m, 2C), 141.1 (dt, *J* = 258.3, 15.0 Hz, 1C), 140.3 – 137.6 (m, 2C), 130.7 – 129.7 (m, 1C), 121.7 – 121.1 (m, 1C), 115.0 – 114.4 (m, 2C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -89.19 – -89.46 (m, 2F), -132.08 (dd, *J* = 20.7, 7.5 Hz, 2F), -144.54 – -144.72 (m, 2F), -155.61 (tt, *J* = 20.5, 6.7 Hz, 1F).

2,3,3',4',5,5',6-heptafluoro-1,1'-biphenyl (3ms)

Following general procedure with 5-bromo-1,2,3trifluorobenzene (**1m**) and 1,2,4,5-tetrafluorobenzene (**2s**). The product was obtained as a colourless solid after column chromatography employing *n*-pentane as eluent (104.0 mg, 58 %

yield).

HRMS (EI) Calculated for C₁₂H₃F₇ [M]⁺: 280.0123. Experimental [M]⁺: 280.0117.

¹H NMR (499.72 MHz, Chloroform-*d*) δ 7.19 – 7.07 (m, 3H).

¹³C{¹H} NMR (125.67 MHz, Chloroform-*d*) δ 151.4 (ddd, J = 250.9, 10.1, 4.1 Hz, 2C), 146.5 (dddd, J = 249.3, 14.7, 10.4, 4.2 Hz, 2C), 143.8 (ddt, J = 248.7, 14.5, 4.1 Hz, 2C), 140.5 (dt, J = 255.4, 15.0 Hz, 1C), 123.2 (tdt, J = 8.3, 5.2, 2.6 Hz, 1C), 118.7 (t, J = 16.2 Hz, 1C), 115.6 – 114.03 (m, 2C), 106.3 (t, J = 22.6 Hz, 1C).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -133.49 (dd, *J* = 20.4, 7.9 Hz, 2F), -137.99 – -138.17 (m, 2F), -143.59 (ddd, *J* = 21.0, 12.9, 7.2 Hz, 2F), -158.43 (td, *J* = 14.1, 7.0 Hz, 1F).

X-ray structure of 3bn, 3fn and 3gn

X-ray quality crystals of compounds **3bn**, **3fn** and **3gn** were obtained by slow evaporation of an *n*-pentane solution of the corresponding biaryls. Their X-ray structures are shown in Figure ESI1, Figure ESI2 and Figure ESI3, respectively.

Figure ESI1. X-ray structure of **3bn**. Selected bond distances (Å) and angles (°): C2-C3 = 1.484, C1-C2-C3-C4 = 120.70.

Figure ESI2. X-ray structure of **3fn**. Selected bond distances (Å) and angles (°): C2-C3 = 1.487, C1-C2-C3-C4 = 123.02.

Figure ESI3. X-ray structure of **3gn**. Selected bond distances (Å) and angles (°): C2-C3 = 1.489, C1-C2-C3-C4 = 122.70.

Synthesis of Palladium Intermediates

cis-[Pd(C₆F₅)₂(XPhos)] (7) and its X-ray structure

In a flame-dried Schlenk, cis-[Pd(C₆F₅)₂(THF)₂] (97.5 mg, 0.167 mmol) and XPhos (86.2, 0.177 mmol) were dissolved in 3 mL of CH₂Cl₂ at room temperature. The solution was stirred for 1 hour, *n*-hexane (3 mL) was added to induce precipitation of the product and the solvent was removed under vacuum. The colourless solid obtained was sonicated with *n*-pentane, filtered under air and

washed with *n*-pentane (2 x 5 mL). It was dried under vacuum affording the title compound as a colourless solid (130.7 mg, 86 % yield).

X-ray-quality crystals were grown by slow diffusion of a CH_2Cl_2/n -hexane mixture at -20 °C.

The X-ray structure of **7** (Figure ESI4) shows a P,C-chelating coordination of XPhos involving predominantly C1 of the distal ring (the Kochi hapticity of this interaction is h = 1.37).⁶ The most remarkable structural aspect of **7** is the small C2-Pd-C3 angle (82.3°) forced by the crowding with the biaryl phosphine. This forced angle shortens the distance between C2 and C3 to 2.69 Å, reducing the activation energy for aryl-aryl reductive elimination. Another $[Pd(C_6F_5)_2(PPh_2(biaryl))]$ structure was previously reported.⁷

Figure ESI4. X-ray structure of *cis*-[Pd(C₆F₅)₂(XPhos)] (**7**). H atoms omitted for clarity. Selected bond distances (Å) and angles (°): Pd1–P1 = 2.328, Pd1–C1 = 2.478, Pd1–C2 = 2.013, Pd1–C3 = 2.080. P1–Pd1–C1 = 81.58, P1–Pd1–C2 = 91.72, C2–Pd1–C3 = 82.32, C1–Pd1–C3 = 104.32. Pd1–C distances to the two distal ring atoms *ortho* to C1 = 2.784, 3.002.

HRMS (EI) Calculated for $C_{45}H_{49}F_{10}NaPPd$ [M+Na]⁺: 939.2356. Experimental [M+Na]⁺: 939.2381.

¹**H NMR** (499.72 MHz, Chloroform-*d*) δ 7.68 – 7.62 (m, 1H), 7.50 – 7.41 (m, 2H), 7.06 (s, 2H), 6.89 – 6.85 (m, 1H), 2.47 (hept, J = 6.7 Hz, 2H), 2.15 – 2.00 (m, 5H), 1.86 – 1.78 (m, 2H), 1.77 – 1.64 (m, 14H), 1.31 – 1.17 (m, 6H), 0.99 (d, J = 6.9 Hz, 6H), 0.87 (d, J = 6.6 Hz, 6H), 0.80 – 0.68 (m, 2H).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -111.10 – -111.46 (m, 2F), -112.88 (t, J = 27.4 Hz, 2F), -160.41 (t, J = 20.2 Hz, 1F), -162.44 (t, J = 20.2 Hz, 1F), -163.07 – -163.31 (m, 2F), -163.61 – -163.82 (m, 2F).

¹³P{¹H} NMR (202.30 MHz, Chloroform-*d*) δ 27.8 (s).

[PdBr(C₆F₅)(XPhos)] (8)

In a flame-dried Schlenk, cis-[Pd(CH₂TMS)₂(COD)] (97.5 mg, 0.167 mmol), XPhos (86.2 mg, 0.177 mmol) and C₆F₅Br (**1n**, 42 μ L, 0.33 mmol) were dissolved in 3 mL of THF. The solution was stirred for 3 hours at room temperature, *n*-hexane (3 mL) was added and the mixture was removed under vacuum. The yellowish residue obtained was sonicated with *n*-hexane (*it may be fully redissolved*)

and a precipitate appears upon stirring (*overnight stirring is recommended*). It was filtered under air and washed with n-pentane (3 x 5 mL). The solid obtained was dried under vacuum affording the title compound as a yellowish solid (80.7 mg, 57 % yield).

In solution this solid shows an equilibria between several species, as observed by low temperature NMR (*vide infra, fluxionality of [PdBr*(C_6F_5)(*XPhos)]*) which precluded a detailed characterization.

HRMS (EI) Calculated for $C_{39}H_{49}F_5PPd$ [M-Br]⁺: 749.2536. Experimental [M-Br]⁺: 749.2556.

[PdBr(p-C₆H₄F)(XPhos)] (9)

This complex was prepared following the procedure described to obtain **8** employing 1-bromo-4-fluorobencene (**1f**, 30 μ L, 0.27 mmol). The title compound was obtained as a colourless solid (69.2 mg, 67 % yield). The complex is observed as a *cis/trans* isomer mixture in solution. (*Major isomer* 88%, *minor isomer* 12%, based on ¹⁹F and ³¹P NMR)

HRMS (EI) Calculated for C₃₉H₅₃FPPd [M-Br]⁺: 677.2913. Experimental [M-Br]⁺: 677.2935.

¹**H NMR** (499.72 MHz, Chloroform-*d, only for major isomer*) δ 7.66 (td, J = 6.2, 3.2 Hz, 1H), 7.45 – 7.39 (m, 2H), 7.13 (s, 2H), 6.99 – 6.93 (m, 2H), 6.87 (dt, J = 6.1, 3.3 Hz, 1H), 6.77 – 6.68 (m, 2H), 3.12 (hept, J = 6.8 Hz, 1H), 2.44 (hept, J = 6.8 Hz, 2H), 2.20 (dtd, J = 12.6, 10.0, 3.0 Hz, 2H), 1.96 (bs, 2H), 1.80 (d, J = 12.4 Hz, 2H), 1.75 – 1.65 (m, 6H), 1.59 (d, J = 6.8 Hz, 8H), 1.39 (d, J = 6.9 Hz, 6H), 1.24 – 1.08 (m, 6H), 0.89 (d, J = 6.7 Hz, 6H), 0.74 – 0.56 (m, 2H).

¹⁹**F NMR** (470.17 MHz, Chloroform-*d*) δ -122.64 – -122.75 (m, *minor isomer*), -122.78 – -122.90 (m, *major isomer*).

¹³P{¹H} NMR (202.30 MHz, Chloroform-*d*) δ 28.5 (d, J = 2.6 Hz, *minor isomer*), 26.5 (d, J = 3.0 Hz, *major isomer*).

Fluxionality of [PdBr(C₆F₅)(XPhos)] (8)

A solution of **8** in CDCl₃ was analysed by ¹⁹F and ³¹P NMR at room temperature (Figure ESI5). When a closer look to the ortho fluorine region of the C₆F₅ moiety is taken in the¹⁹F spectra, it is possible to distinguish a broad signal (-112.1 ppm) and two doublets (-114.8 and -115.8 ppm) in an integer ratio of 45:4:1 (Figure ESI6, top). This behaviour is also

observed for the para and meta fluorine atoms of the C_6F_5 moiety, although signal overlapping precludes a clean analysis of this region of the spectra. To obtain more information, ¹⁹F and ³¹P NMR spectra acquisition was performed at 233 K (Figure ESI7). At this temperature, the broad signal observed in the ortho region of the ¹⁹F NMR at room temperature is resolved in at least 5 sharp signals (mainly doublets and triplets), along with the doublets previously observed at room temperature (Figure ESI6, bottom).

Based on the analysis of the NMR spectra, an equilibrium between different species is proposed (Scheme ESI1). The sharp doublets can be assigned to the cis and trans monomers of (8). The broad signal observed at room temperature is due to signal coalescence of species in equilibrium, which can be proposed as μ -Br Pd dimers. These dimeric species have two intrinsic isomers, syn and anti, along with conformational isomers due to the unrestricted rotation of the biaryl moiety of the ligand in solution. This kind of ligand fluxionality in halogen-bridged Pd dimers with Buchwald-type phosphine ligands has been previously reported.⁸ Moreover, aryl exchange between the Pd species does not take place as no signals of *cis*-[Pd(C₆F₅)₂(XPhos)] (7) are observed in the spectra.

Scheme ESI1. Dynamic equilibria of **8** in solution. For clarity, only one dimeric species is shown and ⁱPr substituents have been omitted in it.

Figure ESI5. ¹⁹F (top, A) and ³¹P (bottom, B) NMR spectra of 8 at 298 K in CDCl₃.

Figure ESI6. Ortho fluorine spectra region of 8 at 298 K (top, A) and 233 K (bottom, B).

Figure ESI7. ¹⁹F (top, A) and ³¹P (bottom, B) NMR spectra of 8 at 233 K in CDCl₃.

Stoichiometric Studies

C-H activation

In a flame-dried Schlenk under N₂ atmosphere, [CuCl(IPr)] (15.8 mg, 32.4 μ mol), Cs₂CO₃ (10.6 mg, 32.4 μ mol) and C₆F₅H (5.0 μ L, 45.0 μ mol) were dissolved in 1 mL of dioxane. The solution was stirred at 40 °C. After 2 hours, an aliquot of the mixture was analysed by ¹⁹F NMR, showing full conversion to the C–H activation product, [Cu(C₆F₅)(IPr)] (**5**) (Figure ESI8).⁹

85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170

Figure ESI8. ¹⁹F NMR spectra after 1 hour (A, bottom) and 2 hours (B, top) of the C–H activation experiment.

Reductive elimination from cis-[Pd(C₆F₅)₂(XPhos)] (7) and oxidative addition to [PdBr(C₆F₅)(XPhos)] (8)

In a flame-dried Schlenk under N₂ atmosphere, **7** (7.10 mg, 7.75 μ mol) and C₆BrF₅ (**1n**, 3.0 μ L, 23.2 μ mol, 3 eq) were dissolved in 500 μ L of dioxane. The mixture was stirred in an oil bath at 80 °C. The reaction was followed by ¹⁹F and ³¹P NMR. After 180 min, signals of **7** had fully disappeared and only signals of **8** were observed in the ¹⁹F NMR spectra (Figure ESI9).

Figure ESI9. Ortho fluorine region of the ¹⁹F NMR spectra at 298 K. A (bottom): mixture of *cis*-[Pd(C_6F_5)₂(XPhos)] (**7**) and C_6F_5Br (**1n**) at room temperature; B (middle) mixture after 60 min at 80 °C; C (middle) mixture after 120 min at 80 °C; D (top) mixture after 180 min at 80 °C.

Cu to Pd aryl transmetalation

In a flame-dried NMR tube under N₂ atmosphere, $[Cu(C_6F_5)(IPr)]$ (5) (5.00 mg, 8.1 µmol) and the corresponding oxidative addition Pd complex, **8** or **9** (1 eq, 8.1 µmol), were dissolved in 500 µL of dioxane at room temperature. The tube was vigorously shaken and ¹⁹F and ³¹P NMR spectra were acquired.

When complex **8** was employed, disappearance of its broad signals and formation of the signals corresponding to *cis*-[Pd(C₆F₅)₂(XPhos)] (**7**) was observed (Figure ESI10). In contrast, for **9** not only transmetalation but also reductive elimination took place. Hence, formation of the coupling product p-C₆H₄F–C₆F₅ (**3fn**) was observed. This transformation finished in less than 2 hours at room temperature, when no remaining **5** was observed (Figure ESI11, top).

Figure ESI10. ¹⁹F NMR spectra of the reaction between **8** and **5** in dioxane at 298 K. A (bottom): acquisition after tube preparation. B (middle): acquisition after 2 hours at 298 K. C (top) acquisition after 4 hours at 298 K.

Figure ESI11. ¹⁹F NMR spectra of the reaction between **9** and **5** in dioxane at room temperature. A (bottom): acquisition after tube preparation. B (top): acquisition after 2 hours at 298 K.

Detection of reaction intermediates

Following the general procedure for catalysis, when an aliquot of the reaction employing C_6BrF_5 (**1n**) and C_6F_5H (**2n**) was analysed by NMR before hydrolysis, signals of complexes **5** and **7** were detected in the ¹⁹F NMR spectra (Figure ESI12). This observation suggests that the reductive elimination is the rate determining step in this reaction.

^{111.4 -111.6 -111.8 -112.0 -112.2 -112.4 -112.6 -112.8 -113.0 -113.2 -113.4 -113.6 -113.8 -114.0 -114.2 -114.4 -114.6 -114.}

Figure ESI12. Ortho region of the ¹⁹F NMR spectra of an aliquot of the catalysis employing **1n** and **2n** as substrates before hydrolysis.

KIE Experiments

KIE experiments were performed by measuring the ratio of product formation between the activation of deuterated and protic reagents in experiments carried out in separated vessels (Figure ESI13, Table ESI9). KIE experiments were conducted following the general procedure for catalysis. α, α, α -trifluorotoluene was added as internal standard. C₆F₅–D was employed instead of C₆F₅–H in the deuterium labelled experiments.

Figure ESI13. KIE experiments employing two different aryl bromides (1f, 1n).

Aryl Bromide	Arene	Time (h)	[Product] (M)	Product Yield (%)	KIE _{H/D}
1f	2n	1	0.032	10.1	4.0
1f	2n- <i>D</i>	1	0.008	2.5	4.0
1f	2n	3	0.168	52.4	4.0
1f	2n- <i>D</i>	3	0.042	13.2	4.0
1n	2n	3	0.036	11.2	1 5
1n	2n-D	3	0.023	7.4	1.5

Table ESI9. Product formation in the KIE experiments.

X-ray Crystallographic Data

A crystal was attached to a glass fiber and transferred either to an Agilent Supernova diffractometer with an Atlas CCD area detector (Valladolid University facilities). The crystal was kept at constant temperature during data collection. Data collection was performed with Mo-K α radiation ($\lambda = 0.71073$ Å). Data integration, scaling and empirical absorption correction were carried out using the CrysAlisPro program package.¹⁰ Using Olex2,¹¹ the structure was solved with the olex2.solve¹² structure solution program and refined with ShelX program.¹³ The non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed at idealized positions and refined using the riding model. Refinement proceeded smoothly to give the residuals shown in Table ESI10 and Table ESI11. CCDC contains the supporting crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44-1223/336-033; E-mail: <u>deposit@ccdc.cam.ac.uk</u>].

Identification code	3bn	3fn	3gn
CCDC deposition N°	2131398	2131399	2131400
Empirical formula	$C_{12}H_3F_7$	$C_{12}H_4F_6$	$C_{13}H_4F_8$
Formula weight	280.14	262.15	312.16
Temperature/K	294	294	294
Crystal system	triclinic	monoclinic	monoclinic
Space group	P-1	P21/c	P21/c
a/Å	7.3590(9)	13.3244(14)	14.5626(17)
b/Å	7.5748(9)	5.9453(5)	5.8525(7)
c/Å	9.8836(10)	13.0908(15)	14.0383(11)
α/°	75.019(9)	90	90
β/°	79.707(9)	108.653(13)	93.599(10)
γ/°	78.279(10)	90	90
Volume/Å ³	516.46(11)	982.55(19)	1194.1(2)
Z	2	4	4
$\rho_{calc}g/cm^3$	1.801	1.772	1.736
µ/mm⁻¹	0.194	0.183	0.189
F(000)	276	520	616
Crystal size/mm ³	0.539 × 0.491 × 0.082	0.744 × 0.479 × 0.189	0.423 × 0.329 × 0.102
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	Μο Κα (λ = 0.71073)
20 range for data collection/°	6.674 to 58.896	7.576 to 58.966	6.614 to 59.4
	-9 ≤ h ≤ 9,	-18 ≤ h ≤ 14,	-19 ≤ h ≤ 16,
Index ranges	-7 ≤ k ≤ 9,	-7 ≤ k ≤ 5,	-8 ≤ k ≤ 4,
	-12 ≤ ≤ 13	-12 ≤ ≤ 17	-14 ≤ ≤ 19
Reflections collected	4325	4255	5001
Independent reflections	2392 [R _{int} = 0.0258,	2292 [R _{int} = 0.0346,	2778 [R _{int} = 0.0289,
······	R _{sigma} = 0.0517]	R _{sigma} = 0.0526]	R _{sigma} = 0.0508]
Data/restraints/parameters	2392/0/172	2292/0/163	2778/0/227
Goodness-of-fit on F ²	1.066	0.963	1.03
Final R indexes [I>=2a (I)]	$R_1 = 0.0504$, $wR_2 =$	$R_1 = 0.0581$, $wR_2 =$	$R_1 = 0.0532, wR_2 =$
	0.1023	0.1328	0.1182
Final R indexes [all data]	$R_1 = 0.1160, wR_2 =$	$R_1 = 0.1060, wR_2 =$	$R_1 = 0.1408$, $wR_2 =$
	0.1472	0.1862	0.1764
Largest diff. peak/hole / e Å ⁻³	0.16/-0.23	0.35/-0.37	0.16/-0.21

Table ESI10. Crystal data and structure refinements for compounds 3bn, 3fn and 3gn.

Identification code	[Pd(C ₆ F ₅) ₂ (XPhos)] (7)
CCDC deposition N°	2131401
Empirical formula	$C_{45}H_{49}F_{10}PPd$
Formula weight	917.16
Temperature/K	294
Crystal system	monoclinic
Space group	P21/c
a/Å	20.2800(5)
b/Å	11.8689(3)
c/Å	17.7116(4)
α/°	90
β/°	104.392(2)
γ/°	90
Volume/Å ³	4129.42(18)
Z	4
$\rho_{calc}g/cm^3$	1.475
µ/mm⁻¹	0.565
F(000)	1880
Crystal size/mm ³	0.286 × 0.177 × 0.145
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	6.826 to 59.26
Index ranges	-25 ≤ h ≤ 27,
	-16 ≤ k ≤ 15,
	-15≤ ≤23
Reflections collected	17887
Independent reflections	$9636 [R_{int} = 0.0289,$
Data/roctraints/naramotors	$R_{sigma} = 0.0553$
	9030/1/342
	1.045
Final R indexes $[I > 2\sigma(I)]$	$K_1 = 0.0441, WR_2 = 0.0775$
Final R indexes [all data]	$R_1 = 0.0837, wR_2 = 0.0987$
Largest diff. peak/hole / e Å ⁻³	0.44/-0.48

Table ESI11. Crystal data and structure refinements for compound 7.

NMR Spectra

Figure ESI14. ¹H NMR of *cis*-[Pd(C₆F₅)₂(XPhos)] (7) in CDCl₃.

Figure ESI15. ¹⁹F NMR of *cis*-[Pd(C₆F₅)₂(XPhos)] (**7**) in CDCl₃.

Figure ESI16. ³¹P{¹H} NMR of *cis*-[Pd(C₆F₅)₂(XPhos)] (7) in CDCl₃.

Figure ESI17. ¹H NMR of [PdBr(*p*-C₆H₄F)(XPhos)] (9) in CDCl₃.

Figure ESI18. ¹⁹F NMR of $[PdBr(p-C_6H_4F)(XPhos)]$ (9) in CDCl₃.

Figure ESI19. ³¹P{¹H} NMR of $[PdBr(p-C_6H_4F)(XPhos)]$ (9) in CDCl₃.

Figure ESI20. ¹H NMR of 2,2',3,4,5,6,6'-heptafluoro-1,1'-biphenyl (3an) in CDCl₃.

4

Figure ESI21. ¹⁹F NMR of 2,2',3,4,5,6,6'-heptafluoro-1,1'-biphenyl (3an) in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Figure ESI22. ${}^{13}C{}^{1}H$ NMR of 2,2',3,4,5,6,6'-heptafluoro-1,1'-biphenyl (**3an**) in CDCl₃.

12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 -1.0 -2

Figure ESI23. ¹H NMR of 2,2',3,3',4,5,6-heptafluoro-1,1'-biphenyl (3bn) in CDCl₃.

Figure ESI24. ¹⁹F NMR of 2,2',3,3',4,5,6-heptafluoro-1,1'-biphenyl (**3bn**) in CDCl₃.

152.33 149.82 149.82 149.82 149.82 149.56 147.51 145.58 145.56 145.56 145.56 145.56 143.27 145.56 143.27 145.56 143.27 143.23 145.56 143.23 143.26 144.26 144.26 144.26 144.26 14

 13 C NMR (101 MHz, Chloroform-d) $\tilde{6}$ 151.09 (dd, J = 249.0, 11.8 Hz), 148.50 (dd, J = 252.3, 13.1 Hz), 144.49 (ddi, J = 250.0, 11.1, 7.4, 3.9 Hz), 141.63 (dddd, J = 255.6, 13.4, 8.3, 5.0 Hz), 139.60 – 136.18 (m), 126.85 (d, J = 3.7 Hz), 124.57 (dd, J = 7.0, 4.8 Hz), 118.98 (d, J = 17.2 Hz), 116.54 (d, J = 12.5 Hz), 109.17 (tt, J = 18.5, 3.5 Hz). H (dddt) E (d) 126.8 144.5 J (dd) F (m) C(d) 151.1 138.0 119.0 D (dd) A (tt) 124.6 109.2 I (dd) 148.5 G (dddd) 8 (d) 116.5 141.6 111

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure 25.** ¹³C{¹H} NMR of 2,2',3,3',4,5,6-heptafluoro-1,1'-biphenyl (**3bn**) in CDCl₃.

Figure ESI26. ¹H NMR of 2,2',3,4,5,5',6-heptafluoro-1,1'-biphenyl (3cn) in CDCl₃.

118.07 118.07 118.08 118.08 118.09 118.11 118.11 118.11 118.15 118.55

Figure ESI27. 19 F NMR of 2,2',3,4,5,5',6-heptafluoro-1,1'-biphenyl (3cn) in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure ESI28.** ¹³C{¹H} NMR of 2,2',3,4,5,5',6-heptafluoro-1,1'-biphenyl (**3cn**) in CDCl₃.

Figure ESI29. ¹H NMR of 2,2',3,4,4',5,6-heptafluoro-1,1'-biphenyl (3dn) in CDCl₃.

Figure ESI30. ¹⁹F NMR of 2,2',3,4,4',5,6-heptafluoro-1,1'-biphenyl (3dn) in CDCl₃.

165.18 165.09 165.09 165.09 155.09 155.05 155.05 155.05 155.05 155.05 155.55 15

 $^{13}\mathrm{C}$ NMR (126 MHz, Chloroform-d) ð 164.13 (dd, J=252.6, 11.8 Hz), 160.43 (dd, J=253.4, 12.2 Hz), 146.09 – 143.32 (m, J=242.7 Hz), 142.97 – 140.08 (m, J=253.0 Hz), 139.35 – 135.85 (m, J=247.7 Hz), 133.04 (dd, J=9.3 SH z), 112.14 (dd, J=16.3 Hz), 109.48 (td, J=18.5, 4.1 Hz), 109.49 (t, J=25.5 Hz).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure ESI31.** ¹³C{¹H} NMR of 2,2',3,4,4',5,6-heptafluoro-1,1'-biphenyl (**3dn**) in CDCl₃.

Figure ESI32. ¹H NMR of 2,2',3,4,5,6-heptafluoro-1,1'-biphenyl (3en) in CDCl₃.

Figure ESI33. ¹⁹F NMR of 2,2',3,4,5,6-heptafluoro-1,1'-biphenyl (3en) in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure ESI34.** ¹³C{¹H} NMR of 2,2',3,4,5,6-heptafluoro-1,1'-biphenyl (**3en**) in CDCl₃.

Figure ESI35. ¹H NMR of 2,3,4,4',5,6-hexafluoro-1,1'-biphenyl (3fn) in CDCl₃.

Figure ESI36. ¹⁹F NMR of 2,3,4,4',5,6-hexafluoro-1,1'-biphenyl (3fn) in CDCl₃.

164.32 165.33 165.33 165.33 165.23 165.23 165.23 165.24 165.24 165.25 16

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure ESI37.** ¹³C{¹H} NMR of 2,3,4,4',5,6-hexafluoro-1,1'-biphenyl (**3fn**) in CDCl₃.

Figure ESI38. ¹H NMR of 2,3,4,5,6-pentafluoro-4'-(trifluoromethyl)-1,1'-biphenyl (**3gn**) in CDCl₃.

Figure ESI39.¹⁹F NMR of 2,3,4,5,6-pentafluoro-4'-(trifluoromethyl)-1,1'-biphenyl (**3gn**) in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Figure ESI40. ¹³C ^{1}H NMR of 2,3,4,5,6-pentafluoro-4'-(trifluoromethyl)-1,1'-biphenyl (3gn) in CDCl₃.

Figure ESI41. ¹H NMR of 2,3,3',4,5,5',6-heptafluoro-1,1'-biphenyl (3hn) in CDCl₃.

Figure ESI42. ¹⁹F NMR of 2,3,3',4,5,5',6-heptafluoro-1,1'-biphenyl (3hn) in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure ESI43.** ¹³C{¹H} NMR of 2,3,3',4,5,5',6-heptafluoro-1,1'-biphenyl (**3hn**) in CDCl₃.

Figure ESI44. ¹H NMR of 2,3,3',4,4',5,6-heptafluoro-1,1'-biphenyl (3in) in CDCl₃.

Figure ESI45. ¹⁹F NMR of 2,3,3',4,4',5,6-heptafluoro-1,1'-biphenyl (3in) in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Figure ESI46. ¹³C{¹H} NMR of 2,3,3',4,4',5,6-heptafluoro-1,1'-biphenyl (3in) in CDCl₃.

Figure ESI47. ¹H NMR of 2,2',3,4,5,6-hexafluoro-5'-(trifluoromethyl)-1,1'-biphenyl (**3jn**) in CDCl₃.

Figure ESI48. ¹⁹F NMR of 2,2',3,4,5,6-hexafluoro-5'-(trifluoromethyl)-1,1'-biphenyl (**3jn**) in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Figure ESI49. ¹³C{¹H} NMR of 2,2',3,4,5,6-hexafluoro-5'-(trifluoromethyl)-1,1'-biphenyl (**3jn**) in CDCl₃.

Figure ESI50. ¹H NMR of 2,3,4,4',5,5',6-heptafluoro-2'-methyl-1,1'-biphenyl (**3kn**) in CDCl₃.

Figure ESI51. ¹⁹F NMR of 2,3,4,4',5,5',6-heptafluoro-2'-methyl-1,1'-biphenyl (3kn) in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Figure ESI52. ${}^{13}C{}^{1}H$ NMR of 2,3,4,4',5,5',6-heptafluoro-2'-methyl-1,1'-biphenyl (**3kn**) in CDCl₃.

Figure ESI53. ¹H NMR of 2,2',3,4,4',5,6,6'-octafluoro-1,1'-biphenyl (3In) in CDCl₃.

Figure ESI54. ¹⁹F NMR of 2,2',3,4,4',5,6,6'-octafluoro-1,1'-biphenyl (3In) in CDCl₃.

Figure ESI55. ¹³C{¹H} NMR of 2,2',3,4,4',5,6,6'-octafluoro-1,1'-biphenyl (**3In**) in CDCl₃.

Figure ESI56. ¹H NMR of 2,3,3',4,4',5,5',6-octafluoro-1,1'-biphenyl (3mn) in CDCl₃.

132.93 132.95 132.95 132.95 132.95 132.95 132.95 132.95 132.95 142.75 145.75 145.75 145.75 145.75 145.75 145.75 145.75 145.75 145.75 145.75 145.75 145.75 145.75 14

Figure ESI57. ¹⁹F NMR of 2,3,3',4,4',5,5',6-octafluoro-1,1'-biphenyl (**3mn**) in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure ESI58.** ¹³C{¹H} NMR of 2,3,3',4,4',5,5',6-octafluoro-1,1'-biphenyl (**3mn**) in CDCl₃.

Figure ESI59. ¹⁹F NMR of perfluoro-1,1'-biphenyl (**3nn**) in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Figure ESI60. ${}^{13}C{}^{1}H$ NMR of perfluoro-1,1'-biphenyl (**3nn**) in CDCl₃.

Figure ESI61. ¹H NMR of 2,2',3,5,6,6'-hexafluoro-4-methoxy-1,1'-biphenyl (3ap) in CDCl₃.

Figure ESI62. ¹⁹F NMR of 2,2',3,5,6,6'-hexafluoro-4-methoxy-1,1'-biphenyl (**3ap**) in $CDCI_3$.

161.65 159.60 159.60 159.60 145.95 145.95 145.95 145.75 14

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Figure ESI63. ${}^{13}C{}^{1}H$ NMR of 2,2',3,5,6,6'-hexafluoro-4-methoxy-1,1'-biphenyl (**3ap**) in CDCl₃.

Figure ESI64. ¹H NMR of 4-(2,6-difluorophenyl)-2,3,5,6-tetrafluoropyridine (**3aq**) in CDCl₃.

Figure ESI65. ¹⁹F NMR of 4-(2,6-difluorophenyl)-2,3,5,6-tetrafluoropyridine (**3aq**) in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Figure ESI66. ${}^{13}C{}^{1}H$ NMR of 4-(2,6-difluorophenyl)-2,3,5,6-tetrafluoropyridine (3aq) in CDCl₃.

Figure ESI67. ¹H NMR of 2,2',3,5,6,6'-hexafluoro-1,1'-biphenyl (3as) in CDCl₃.

Figure ESI68. ¹⁹F NMR of 2,2',3,5,6,6'-hexafluoro-1,1'-biphenyl (3as) in CDCl₃.

161.49 161.49 159.43 159.43 147.18 147.18 147.18 147.18 147.18 147.18 145.37 145.37 145.37 145.37 145.37 145.37 145.37 145.37 145.37 145.37 145.33 145.37 145.33 145.37 145.33 145.37 145.33 145.33 145.32 14

Figure ESI69. ${}^{13}C{}^{1}H$ NMR of 2,2',3,5,6,6'-hexafluoro-1,1'-biphenyl (**3as**) in CDCl₃.

Figure ESI70. ¹H NMR of 2,3,3',4',5,5',6-heptafluoro-4-methoxy-1,1'-biphenyl (**3mp**) in $CDCI_3$.

Figure ESI71. ¹⁹F NMR of 2,3,3',4',5,5',6-heptafluoro-4-methoxy-1,1'-biphenyl (**3mp**) in $CDCl_3$.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Figure ESI72. ¹³C{¹H} NMR of 2,3,3',4',5,5',6-heptafluoro-4-methoxy-1,1'-biphenyl (**3mp**) in $CDCl_3$.

Figure ESI73. ¹H NMR of 2,3,5,6-tetrafluoro-4-(3,4,5-trifluorophenyl)pyridine (**3mq**) in CDCl₃.

Figure ESI74. ¹⁹F NMR of 2,3,5,6-tetrafluoro-4-(3,4,5-trifluorophenyl)pyridine (**3mq**) in CDCl₃.

152.771 152.66 152.66 155.26 155.26 155.26 155.26 155.25 1

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Figure ESI75. ${}^{13}C{}^{1}H$ NMR of 2,3,5,6-tetrafluoro-4-(3,4,5-trifluorophenyl)pyridine (**3mq**) in CDCl₃.

Figure ESI76. ¹H NMR of 2,3,3',4',5,5',6-heptafluoro-1,1'-biphenyl (3ms) in CDCl₃.

Figure ESI77. ¹⁹F NMR of 2,3,3',4',5,5',6-heptafluoro-1,1'-biphenyl (**3ms**) in CDCl₃.

Figure ESI78. ¹³C{¹H} NMR of 2,3,3',4',5,5',6-heptafluoro-1,1'-biphenyl (**3ms**) in CDCl₃.

References

¹ D. B. G. Williams and M. Lawton, Drying of Organic Solvents: Quantitative Evaluation of the Efficiency of Several Desiccants, *J. Org. Chem.*, 2010, **75**, 8351–8354.

² Ponce-de-León, J.; Infante, R.; Pérez-Iglesias, M.; Espinet, P. Fluorinated vs Nonfluorinated PR₂(biaryl) Ligands and Their [AuCl(L)] Complexes: Synthesis, X-ray Structures, and Computational Study of Weak Interactions. Bond, No Bond, and Beyond. *Inorg. Chem.*, **2020**, *59*, 16599–16610

³ Santoro, O.; Collado, A.; Slawin, A. M. Z.; Nolan, S. P.; Cazin, C. S. J. A general synthetic route to [Cu(X)(NHC)] (NHC = N-heterocyclic carbene, X = Cl, Br, I) complexes. *Chem. Commun.*, **2013**, *49*, 10483–10485.

⁴ Xie, W.; Chang, S. [Cu(NHC)]-Catalyzed C–H Allylation and Alkenylation of both Electron-Deficient and Electron-Rich (Hetero)arenes with Allyl Halides. *Angew. Chem., Int. Ed.*, **2016**, *55*, 1876–1880.

⁵ Salamanca, V.; Albéniz, A. C. Deuterium Exchange between Arenes and Deuterated Solvents in the Absence of a Transition Metal: Synthesis of D-Labeled Fluoroarenes. *Eur. J. Org. Chem.*, **2020**, *22*, 3206–3212

⁶ For the definition and metal coordination examples of Kochi hapticity see: (a) Vasilyev, A. V.; Lindeman, S. V.; Kochi, J. K. Noncovalent Binding of the Halogens to Aromatic Donors. Discrete Structures of Labile Br₂ Complexes with Benzene and Toluene. *Chem. Commun.*, **2001**, 909–910. (b) Ogawa, K.; Kitagawa, T.; Ishida, S.; Komatsu, K. Synthesis and Structure of a New Tetrakis(pentafluorophenyl)borate Salt of the Silver(I) Cation with Novel Trigonal Planar Tris(benzene) Coordination. *Organometallics*, **2005**, *24*, 4842– 4844. (c) Falceto, A.; Carmona, E.; Alvarez, S. Electronic and Structural Effects of Low-Hapticity Coordination of Arene Rings to Transition Metals. *Organometallics*, **2014**, *33*, 6660–6668.

⁷ Gu, L.; Wolf, L. M.; Thiel, W.; Lehmann, C. W.; Alcarazo, M. Reductive Elimination of C₆F₅–C₆F₅ from Pd(II) Complexes: Influence of α-Dicationic Chelating Phosphines. *Organometallics*, **2018**, *37*, 665–672.

⁸ Pérez-Iglesias, M.; Infante, R.; Casares, J. A.; Espinet, P. Intriguing Behavior of an Apparently Simple Coupling Promoter Ligand, $PPh_2(p-C_6H_4-C_6F_5)$, in Their Pd Complexes. *Organometallics*, **2019**, *38*, 3688–3695.

 9 19 F NMR signals attributed to **7** match with a pure sample of [Cu(C₆F₅)(IPr)].

¹⁰CrysAlisPro Software system, version 1.171.33.51, 2009, Oxford Diffraction Ltd, Oxford, UK.

¹¹O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, IUCr. OLEX2: A Complete Structure Solution, Refinement and Analysis Program, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.

¹²L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment – *Olex2* dissected, *Acta Cryst.*, 2015, **A71**, 59–75.

¹³G. M. Sheldrick, Crystal structure refinement with SHELXL, *Acta Cryst.*, 2015, **C71**, 3–8.