Cesium Carbonate Mediated C-H Functionalization of Perhalogenated 12-vertex Carborane Anions

Sergio O. Lovera,^a Alex L. Bagdasarian^b, Juchen Guo,^c Hosea M. Nelson,^{*b} Vincent Lavallo^{*a}

- a. Departments of Chemistry, University of California Riverside, Riverside, CA 92521, USA. E-mail: vincent.lavallo@ucr.edu; <u>http://faculty.ucr.edu/~vincentl</u>
- b. Department of Chemistry and Chemical Engineering, Pasadena, CA 91125, USA. Email: hosea@caltech.edu; <u>http://www.thenelsonlab.com</u>
- c. Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA. Email: jguo@engr.ucr.edu; <u>http://www.cee.ucr.edu/jguo</u>

Supplementary Information

Contents

General Considerations	2
Synthesis and Characterization of Dianionic Species 2Cl ₁₁ , 2Br ₁₁ , and 2I ₁₁	3
General Alkylation Procedures	10
Purification and Characterization of compounds a-n	11
References	51

1. General Considerations

Cs(HCB₁₁Cl₁₁), Cs(HCB₁₁Br₁₁), Cs(HCB₁₁l₁₁)¹, mixture of endo and exo (1S,4S)-bicyclo[2.2.1]hept-5-en-2-ylmethyl 4-methylbenzenesulfonate² were synthesized according to literature procedures. Epichlorohydrin was distilled *in vacuo* and stored over 3Å molecular sieves. Cesium carbonate was stored in an MBraun glovebox and as used as needed. All other reagents were purchased from commercial vendors and used without further purification. Dry acetonitrile and CD₃CN was obtained via distillation from CaH₂ under Argon. Acetone was dried over MgSO₄. Nuclear magnetic resonance (NMR) spectroscopy was carried out using a Bruker Avance 600 MHz, and Bruker NEO 400 MHz (Prodigy LN₂ cryoprobe). NMR chemical shifts are reported in parts per million (ppm) with ¹H and ¹³C chemical shifts referenced to the residual non-deutero solvent. ¹H NMR Spectra taken in d6-Acetone contain signals indicative of HDO and H₂O at 2.81 and 2.84 respectively. Data for ¹H NMR spectra are as follows: chemical shift (ppm), multiplicity, coupling constant (Hz), integration. Multiplicities are as follows: s = singlet, d = doublet, t = triplet, dd = doublet of doublet, dt = doublet of triplet, ddd = doublet of doublet of doublet, td = triplet of doublet, h= heptet, and m = multiplet. High resolution mass spectra (HR-MS) were recorded utilizing an Agilent Technologies 1260 II HPLC system combined with an Agilent Technologies 6545 QTOF LC/MS.

2. Synthesis and Characterization of Dianionic Species 2Cl₁₁, 2Br₁₁, and 2l₁₁

A large excess of Cs_2CO_3 (10-12 eq) was added to ~50 mg of HNMe₃(**2X**₁₁) and stirred overnight. The volatiles were removed *in vacuo* and dried for several hours at room temperature before dissolving in CD₃CN for characterization.

Spectral Data for Dianionic Species 2Cl11

Figure 1: ¹¹B NMR spectra of Cs₂(2Cl₁₁) in CD₃CN

Figure 3: ¹H NMR spectra of $Cs_2(2Cl_{11})$ in CD₃CN showing the absence of the carborane proton

Figure 4: ¹¹B NMR spectra of mixtures of Cs(1Cl₁₁) and Cs₂(2Cl₁₁) with 1(bottom), 2, 3, 4 and 5(top) equivalents of Cs₂CO₃

Figure 5: ¹¹B NMR spectra of the mixture of Cs(1Cl₁₁) and Cs₂(2Cl₁₁) with 1 equivalent of Cs₂CO₃

Spectral Data for Dianionic Species 2Br11

Figure 7: ¹³C NMR spectra of Cs₂(2Br₁₁)

Figure 8: ¹H NMR spectra of $Cs_2(2Br_{11})$ in CD₃CN showing the absence of the carborane proton

Figure 9: ¹¹B NMR spectra of the mixture of **Cs(1Br**₁₁) and **Cs₂(2Br**₁₁) with 1 equivalent of Cs₂CO₃

Spectral Data for Dianionic Species 2111

Figure 10: ¹¹B NMR spectra of $Cs_2(2I_{11})$. Integrated peaks belong to $Cs_2(2I_{11})$ with the others belonging to residual $Cs(1I_{11})$

Figure 11: ¹³C NMR spectra of Cs₂(2I₁₁).

Figure 12: ¹H NMR spectra of $Cs_2(2l_{11})$ in CD₃CN showing the absence of the carborane proton

Figure 13: ¹¹B NMR spectra of the mixture of $Cs(1I_{11})$ and $Cs_2(2I_{11})$ with 1 equivalent of Cs_2CO_3

3. <u>General Alkylation Procedures</u>

50 mg (0.076 mmol) of CsHCB₁₁X₁₁ and 124 mg Cs₂CO₃ (0.38 mmol) were added to an oven-dried round-bottom flask. The desired electrophile (0.23 mmol) was then weighed and subsequently diluted with 3 mL of acetonitrile and added to the contents of the round bottom flask. An extra 2-3 mL of acetonitrile was used to transfer remaining electrophile. Reactions were stirred for 4 hours before being checked by HRMS for the absence of [HCB₁₁X₁₁] starting materials. Once the starting material was completely consumed, the reaction contents were filtered and solvent was removed *in vacuo*. Electrophiles used, further purification, and spectral data for each compound is reported below.

Attempted alkylation in aqueous media

30 mg (0.045 mmol) of CsHCB₁₁Cl₁₁ was dissolved in 5mL of DI H₂O and was subsequently charged with 73 mg (0.223 mmol) Cs₂CO₃. After stirring for 15 min, an ¹¹B NMR was taken and demonstrated no change associated with conversion to the nucleophilic Cs₂CB₁₁Cl₁₁. 34 mg (0.134 mmol) of ethyl 4-bromocrotonate (75% tech grade) was then added and stirred overnight. Evidence of product formation was not observed by ¹¹B NMR.

4. Purification and Characterization of compounds a-n

Figure 14: Synthesized compounds a-n

Electrophile used: *n***-Decyl lodide.** The recovered oily solid was triturated with hexanes and filtered. The filtered solid was then washed through the filter with acetone and pumped dry yielding Cs[C₁₀H₂₁CB₁₁Cl₁₁] in 96% yield.

¹H NMR (400 MHz, Acetonitrile-*d*₃) δ 2.31 – 2.24 (m, 2H), 1.92 – 1.78 (m, 2H), 1.29 (s, 14H), 0.88 (t, 3H).

¹¹B NMR (128 MHz, Acetonitrile) δ -2.28 (s, 1B), -9.28 (s, 5B), -10.90 (s, 5B). ¹³C NMR (101 MHz, CD₃CN) δ 32.57, 32.00, 30.55, 30.11, 29.96, 29.42, 25.12, 23.36, 14.38. *m/z* calcd for C₁₀H₂₁CB₁₁Cl₁₁⁻: 660.9259 Found: 660.9275

Figure 15: ¹H NMR spectra of compound **a** in CD₃CN

Figure 17: ¹¹B NMR of **a** in acetonitrile

Figure 18: HRMS spectrum of compound a

Figure 19: Zoomed in HRMS spectrum of compound a

Electrophile used: *n***-Decyl lodide.** The recovered oily solid was triturated with hexanes and filtered. The filtered solid was then washed through the filter with acetone and pumped dry yielding $Cs[C_{10}H_{21}CB_{11}Br_{11}]$ in 96% yield.

¹H NMR (400 MHz, Acetone-*d*₆) δ 2.44 – 2.36 (m, 1H), 2.02 (m, 1H), 1.31 (m, 14H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹¹B NMR (128 MHz, Acetone) δ -2.67, -8.89, -11.08.

¹³C NMR (101 MHz, CD₃CN) δ 37.24, 31.61, 29.24, 29.13, 29.01, 28.95, 28.40, 24.99, 22.41, 13.44 *m/z* calcd for C₁₀H₂₁CB₁₁Br₁₁⁻: 1151.3623 Found: 1151.3499

Figure 23: HRMS spectrum of compound b

Figure 24: Zoomed in HRMS spectrum of compound **b**

Purification and Characterization of c

Electrophile used: *n***-Decyl Iodide.** The recovered oily solid was triturated with hexanes and filtered. The filtered solid was then washed through the filter with acetone and pumped dry yielding $Cs[C_{10}H_{21}CB_{11}I_{11}]$ in 95% yield.

¹H NMR (400 MHz, Acetone-*d*₆) δ 2.54 (m, 2H), 2.19 (m, 2H), 1.29 (m, 14H), 0.88 (t, 3H).

¹¹B NMR (128 MHz, Acetone) δ -8.64, -12.01, -17.11, -19.57.

 ^{13}C NMR (101 MHz, CD_3CN) δ 47.63, 31.65, 29.15, 29.06, 28.97, 28.47, 28.39, 27.10, 22.44, 13.50.

m/z calcd for C₁₀H₂₁CB₁₁I₁₁: 1668.2236 Found: 1668.2023

Figure 25: ¹H NMR spectra of compound **c** in acetone-d₆

Figure 28: HRMS spectrum of c

Figure 29: Zoomed in HRMS spectrum of c

Electrophile: isopropyl iodide. The recovered oily solid was triturated with hexanes and filtered. The filtered solid was then washed through the filter with acetone and pumped dry yielding compound **d** in 89% yield.

¹H NMR (400 MHz, Acetone-*d*₆) δ 3.10 (hept, *J* = 7.1 Hz, 1H), 1.52 (d, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Acetone) δ 37.21, 21.99. ¹¹B NMR (128 MHz, Acetone) δ -1.68, -8.90, -10.94. *m/z* calcd for C₃H₇CB₁₁Cl₁₁⁻: 563.8127 Found: 563.8183

Figure 31: ¹³C NMR spectrum of compound **d** in d₆-Acetone

Figure 32: ¹¹B NMR spectrum of compound **d** in d₆-Acetone

Figure 33: HRMS spectrum of compound d

Figure 34: Zoomed in HRMS spectrum of compound d

Purification and Characterization of e

Electrophile: isopropyl iodide. The recovered oily solid was triturated with hexanes and filtered. The filtered solid was then washed through the filter with acetone and pumped dry yielding $Cs[C_3H_5CB_{11}Br_{11}]$ in 89% yield.

¹H NMR (600 MHz, Acetone- d_6) δ 3.12 (hept, J = 7.3 Hz, 1H), 1.61 (d, J = 7.2 Hz, 6H)

¹³C NMR (151 MHz, Acetone) δ 42.03, 23.86.

¹¹B NMR (128 MHz, Acetone) δ -2.52, -8.87, -12.14.

m/z calcd for C₃H₇CB₁₁Br₁₁⁻:1052.2564 Found: 1052.2403

Figure 36: ¹³C NMR spectrum of compound **e** in d₆-Acetone

Figure 38: HRMS spectrum of e

Figure 39: Zoomed in HRMS spectrum of e

Characterization of **f**

Electrophile: isopropyl iodide. Conversion to **f** is estimated from ¹¹B NMR and presence of product is confirmed by HRMS.

Figure 40: ¹¹B NMR spectrum of a crude mixture of compound **f** and starting materials after reacting 1 week at 85°C

Figure 41: HRMS spectrum of crude reaction mixture

Figure 42: zoomed in HRMS spectrum of crude reaction mixture

Purification and Characterization of g

Electrophile: epichlorohydrin. The recovered oily solid was triturated with hexanes and filtered. The filtered solid was then washed through the filter with acetone and pumped dry yielding Cs[C₃H₅OCB₁₁Cl₁₁⁻] in 89% yield.

¹H NMR (400 MHz, Acetone- d_6) δ 3.46 (dtd, J = 7.9, 3.9, 2.5 Hz, 1H), 2.77 (ddd, J = 4.9, 3.8, 1.1 Hz, 1H),

2.72 (dd, *J* = 15.6, 3.9 Hz, 1H), 2.57 (dd, *J* = 4.9, 2.5 Hz, 1H), 2.01 (dd, *J* = 15.6, 8.0 Hz, 1H).

 ^{13}C NMR (151 MHz, Acetone) δ 50.39, 47.42, 34.71.

¹¹B NMR (192 MHz, Acetone-*d*₆) δ -2.28, -9.78, -11.65.

m/*z* calcd for : 577.7920 Found: 577.7945

Figure 44: ¹³C NMR of **3** in d₆-Acetone

Figure 45: ¹¹B NMR spectrum of compound g in d₆-Acetone

Figure 46: HRMS spectrum of g

Purification and Characterization of h

Electrophile used: 90% Vinylbenzyl chloride. The recovered oily solid was triturated with hexanes and filtered. The filtered solid was then washed through the filter with acetone and pumped dry yielding Cs[C₉H₉CB₁₁Cl₁₁] in 96% yield.

¹H NMR (400 MHz, Acetone- d_6) δ 7.49 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 6.74 (dd, J = 17.7, 11.0 Hz, 1H), 5.82 (dd, J = 17.6, 1.1 Hz, 1H), 5.23 (dd, J = 10.9, 1.0 Hz, 1H), 3.66 (s, 2H).

 ^{13}C NMR (101 MHz, Acetone) δ 137.67, 137.49, 134.88, 131.50, 125.59, 114.18, 36.28.

¹¹B NMR (192 MHz, Acetone) δ -2.38, -9.84, -11.53.

m/z calcd for C₉H₉CB₁₁Cl₁₁: 637.8284 Found: 637.8326

Figure 47: ¹H NMR of **h** in d₆-Acetone

Figure 49: ¹¹B NMR of **h** in acetone

Figure 50: HRMS spectrum of compound h

Figure 51: Zoomed in HRMS spectrum of compound h

Purification and Characterization of i

Electrophile: (15,4S)-bicyclo[2.2.1]hept-5-en-2-ylmethyl 4-methylbenzenesulfonate. Diethyl ether was added to the recovered oily solid until a suspension formed consisting of mostly CsOTs. Absence of CsOTs was confirmed by ¹H NMR before filtering. The filtrate had its solvent removed *in vacuo* before being washed with a mixture of dichloromethane and hexanes.

¹H NMR (400 MHz, Acetone- d_6) δ 6.26 – 6.22 (dd, J = 5.7, 3.0 Hz), 6.10 (dd, J = 5.7, 3.0 Hz), 6.04 (dd, J = 5.8, 2.9 Hz), 2.98 – 2.90 (m), 2.78 (m), 2.57 – 2.22 (m), 1.51 (ddd, J = 11.2, 8.2, 2.4 Hz), 1.38 – 1.20 (m), 0.79 – 0.67 (m). ¹³C NMR (101 MHz, Acetone- d_6) δ 139.49, 137.72, 137.21, 132.68, 52.11, 50.51, 49.92, 48.77, 45.87, 44.08, 42.55, 38.24, 37.94, 36.47, 33.88, 33.73.

¹¹B NMR (128 MHz, Acetone) δ 0.03, -7.17, -8.97.

C₈H₁₁CB₁₁Cl₁₁: 627.8440 Found: 627.8473

Figure 53: ${}^{13}C$ NMR of i in d₆-Acetone

Figure 54: ¹¹B NMR of **i** in d₆-Acetone

Figure 55: HRMS spectrum of i

Figure 56: Zoomed in HRMS spectrum of i

Purification and Characterization of j

Electrophile: ethyl bromoacetate. The recovered solid was triturated with hexanes and filtered. The solid was collected and dissolved in warm water. 15 equivalents of trimethylammonium hydrochloride was added and allowed to cool while stirring. The white solid was filtered and compound **j** was collected in 95% yield.

¹H NMR (600 MHz, Acetone-*d*₆) δ 4.07 (q, *J* = 7.2 Hz, 2H), 3.22 (s, 9H), 3.08 (s, 2H), 1.26 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Acetone-*d*₆) δ 165.57, 61.96, 46.39, 35.08, 14.32.

¹¹B NMR (192 MHz, Acetone) δ -2.73, -9.76, -11.79.

m/z calculated C₄H₇O₂CB₁₁Cl₁₁⁻: 607.8026 Found: 607.7981

Figure 57: ¹H NMR of **j** in d₆-Acetone. Water signals appear at ~2.8 ppm and are broadened due to exchange with $HNMe_{3}^{+}$ cation

Figure 60: HRMS spectrum of j

Figure 61: Zoomed in HRMS spectrum of j

Electrophile: 75% tech. grade Ethyl 4-bromocrotonate. The recovered solid was triturated with hexanes and filtered. The solid was collected and dissolved in warm deionized water and filtered while hot. 5 equivalents of CsCl were added and **k** was recrystallized in 72% yield in two combined crops of crystals. ¹H NMR (400 MHz, Acetone- d_6) δ 7.26 (dt, J = 15.5, 7.8 Hz, 1H), 5.96 (dt, J = 15.4, 1.5 Hz, 1H), 4.16 (q, J = 7.1 Hz, 3H), 3.20 (d, J = 7.7 Hz, 3H), 1.25 (t, J = 7.1 Hz, 4H). ¹³C NMR (101 MHz, Acetone) δ 164.90, 139.68, 125.02, 59.90, 32.65, 13.69. ¹¹B NMR (128 MHz, Acetone) δ -2.50, -10.02, -11.84.

C₄H₇O₂CB₁₁Cl₁₁⁻: 633.8182 Found: 633. 8247

Figure 64: ¹¹B NMR of **k** in Acetone

Figure 65: HRMS spectrum of k

Figure 66: Zoomed in HRMS spectrum of k

Purification and Characterization of I

Electrophile used: 3-bromopropionitrile. The recovered oily solid was triturated with hexanes and filtered. The filtered solid was then washed through the filter with acetone and pumped dry yielding compound I in 92% yield.

¹H NMR (600 MHz, Acetone-*d*₆) δ 3.13 – 3.07 (m, 2H), 2.70 (m, 2H).

 ^{13}C NMR (151 MHz, Acetone) δ 118.85, 27.79, 14.07.

¹¹B NMR (192 MHz, Acetone) δ -1.25, -8.84, -10.77.

m/z calcd for: 574.7923 Found: 574.7952

Figure 67: ¹H NMR of I in d_6 -Acetone

Figure 70: HRMS spectrum of I

Figure 71: Zoomed in HRMS spectrum of I

Electrophile: bromoacetaldehyde diethyl acetal.

Note: Reaction was refluxed for at least 36 hours before work up. The recovered oily solid was triturated with hexanes and filtered. The filtered solid was then washed through the filter with acetone and pumped dry yielding compound **m** in 90% yield.

¹H NMR (600 MHz, Acetone- d_6) δ 5.13 (t, J = 4.4 Hz, 1H), 3.61 (dq, J = 9.3, 7.0 Hz, 2H), 3.46 (dq, J = 9.2, 7.1 Hz, 2H), 2.56 (d, J = 4.3 Hz, 2H), 1.17 (t, J = 7.0 Hz, 6H).

 13 C NMR (101 MHz, Acetone) δ 98.25, 62.35, 36.27, 15.08.

¹¹B NMR (128 MHz, acetone) δ -2.38, -9.82, -11.46.

m/z calcd for C₆H₁₃O₂CB₁₁Cl₁₁: 637.8495 Found: 637.8527

Figure 73: ¹³C NMR of **m** in d₆-Acetone

Figure 75: HRMS spectrum of m

Figure 76: Zoomed in HRMS spectrum of m

Electrophile: dibromoethane. The recovered oily solid was triturated with hexanes and filtered. The filtered solid was then washed through the filter with acetone and pumped dry yielding compound **n** in 92% yield ¹H NMR (400 MHz, Acetonitrile- d_3) δ 3.88 (ddd, J = 18.2 Hz, 2.9, 1.6 Hz, 2H), 2.84 – 2.76 (m, 2H).

Figure 77: ¹H NMR of **n** in CD₃CN

Figure 79: ¹¹B NMR of **n** in acetonitrile

Figure 80: HRMS spectrum of **n**

Figure 81: Zoomed in HRMS spectrum of **n**

References

- 1. Inorg. Chem., **1998**, 37, 6444-6451
- 2. RSC Advances, 2012, 2, 8672–8680