Supporting Information

Nitrative Bicyclization of 1,7-Diynes for Accessing Skeletally Diverse Tricyclic Pyrroles

Lu Wang,^a Yin Zhang,^a An-Qi Miao,^a Tian-Shu Zhang,^{*,b} Xiang Wang,^c Wen-Juan Hao,^{*,a} Shu-Jiang Tu^a and Bo Jiang^{*,a}

^aSchool of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China; email: wjhao@jsnu.edu.cn (WJH); jiangchem@jsnu.edu.cn (BJ)
^bSchool of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China; Email: zts11975@xzit.edu.cn
^cSchool of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, People's Republic of China

Contents

General Information	. S2
Optimization of the Reaction Conditions	S2-S3
Synthetic Applications of 3a	
Control Experiments	
X-Ray Structure of Product 31	S4
Radical-Trapping Experiment	S4
Intermediate Detection	
Mechanistic Investigations Control Experiment with H ₂ ¹⁸ O	.\$5-\$6
General Procedure for the Synthesis of Substrates 1	.\$7-\$8
Characterization Data of Compounds 1	.S9-S14
General Procedure for the Synthesis of Substrates 3	.S14
Characterization Data of Compounds 3a-3ff	.S14-S23
General Procedure for the Synthesis of Products 5	.S23
Characterization Data of Compounds 5a-5h	. S23-S25
General Procedure for the Synthesis of Products 7	. S25
Characterization Data of Compounds 7a-7e	S25-S27
General Procedure for the Scale-Up Experiment of 3a	S27
General Procedure for the Synthesis of 8	.S27
Characterization Data of Compounds 8	. S28
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 1	S29-S68
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 3a-3ff	. S69-S128
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 5a-5g , 7a-7e and 8	S129-S154

General Information

¹H NMR (¹³C NMR) spectra were measured on a Bruker DPX 400 MHz spectrometer in CDCl₃ (DMSO- d_6) with chemical shift (δ) given in ppm relative to TMS as internal standard [(s = singlet, d = doublet, t = triplet, brs = broad singlet, m = multiplet), coupling constant (Hz)]. HRMS (APCI and ESI) was determined by using microTOF-QII HRMS/MS instrument (BRUKER). X-Ray crystallographic analysis was performed with a Siemens SMART CCD and a Siemens P4 diffractometer. The melting points were measured with digital melting point detector.

	+ s Ph a	^t BuONO H solvent, <i>t</i>	l₂ 0 t, air 〔	O ₂ N N Ts 3a
entry	solvent	H ₂ O (mmol)	<i>t</i> (°C)	yield $(\%)^b$
1	DMSO	0.46	60	68
2	MeCN	0.46	60	trace
3	1,4-dioxane	0.46	60	trace
4	DMF	0.46	60	trace
5	DCE	0.46	60	36
6	Toluene	0.46	60	43
7	THF	0.46	60	65
8	DMSO	0.46	25	34
9	DMSO	0.46	80	70
10	DMSO	0.46	100	82
11	DMSO	0.46	110	66
12°	DMSO	0.46	100	58
13	DMSO	0.23	100	55
14	DMSO	0.69	100	57
15^{d}	DMSO	7.8	100	70

Table S1. Optimization of the Reaction Conditions for Forming 3a^a

^aReaction conditions: **1a** (0.2 mmol), ^{*i*}BuONO (**2**, 3.5 equiv.) and DMSO (3 mL) under air conditions for 5 h. ^bIsolated yield. ^cUnder Ar atmosphere. ^d**1a** (1.54 g, 4 mmol).

Table S2. Optimization of the Reaction Conditions for Forming 5a^a

Ć	Ph 4a	+ ^t BuONO <u> </u>	I₂O nt, <i>t</i> , air	O ₂ N NH Ph 5a
entry	solvent	H ₂ O (mmol)	<i>t</i> (°C)	yield $(\%)^b$
1	DMSO	0.46	100	40
2	DMSO	0.46	70	42
4	DMSO	0.46	50	48
5	DMSO	0.46	30	trace

6	THF	0.46	50	64	
7	Toluene	0.46	50	trace	
8	1,4-dioxane	0.46	50	20	
9	MeCN	0.46	50	40	

^a Reaction conditions: 4 (0.2 mmol), ^{*t*}BuONO (2, 3.5 equiv), and solvent (3 mL) under air conditions for 8 h.

Table S3. Optimization of the Reaction Conditions for Forming 7a^a

	OH 6a	+ ^t BuONO - Ph 2	H₂O, Additive Solvent, <i>T,</i> air	O2N OH 7a	IH ≻Ph
entry	solvent	H ₂ O (mmol)	additive (equiv)	<i>t</i> (°C)	yield $(\%)^b$
1	DMSO	0.46	-	100	25
2	DMSO	0.46	-	80	28
3	DMSO	0.46	-	60	31
4	THF	0.46	-	60	40
5	MeCN	0.46	-	60	32
6	DMF	0.46	-	60	trace
7	Toluene	0.46	-	60	22
8	1,4-dioxane	0.46	-	60	trace
9	THF	0.46	-	55	46
10	THF	0.46	-	50	43
11	THF	0.46	$Co(NO_3)_2 \bullet 6H_2O$	55	60
12	THF	0.46	$Co(C_5H_7O_2)_2$	100	trace
13	THF	0.46	$CH_3CO_2)_2Co\bullet 4H_2O$	100	20
14	THF	0.46	CoCl ₂	100	40

^aReaction conditions: **6a** (0.2 mmol), 'BuONO (**2**, 3.5 equiv), Co(NO₃)₂•6H₂O (1.0 equiv) and solvent (3 mL) under air conditions for 8 h.

The presence of the nitro group provides great possibilities for late-stage modifications (Scheme S1). For instance, treatment of 3a with Zn powder in the presence of HCl resulted in product 8 in 93% yield.¹

Scheme S1. Synthetic Application of 3a

To gain insight into this mechanism of the nitrative bicyclization, some controlled experiments were carried out (Scheme S2). Firstly, the formation of product **3a** was substantially inhibited and starting material **1a** was almost completely recovered with the existence of the dehydrating agents such as 4Å molecular sieve (4Å MS) and anhydrous magnesium, revealing that H₂O is crucial for this transformation (Scheme S2a). Then, the reaction process was severely suppressed when 2,2,6,6-tetramethyl-piperidine-*N*-oxyl (TEMPO) as the radical scavenger was placed into the reaction system, in which TEMPO-NO adduct was detected by HR-MS analysis (Scheme S2b),

indicating that a radical process may be included. Next, an ¹⁸O-labeling experiment gave a mixture of [¹⁸O]-**3a** and [¹⁶O]-**3a** with a 4.5:1 ratio (Scheme S2c), thus demonstrating that one of the oxygen atoms of the nitro group may come from H₂O and oxygen in air. Moreover, 1,7-diyne **1gg** with two internal alkyne units was subjected with standard conditions. The reaction did not proceed with starting material **1gg** being recovered (Scheme S2d). These results showed that the terminal alkyne at the 1,7-diyne substrate is essential for this transformation.

Scheme S2. Control Experiments

Figure S1 X-Ray Structure of 31 (2141386)

Radical-Trapping Experiment:

TEMPO as the radical trapping reagent - General procedure

To a 25-mL Pressure tube under air conditions, 1,7-diyne **1a** (0.2 mmol, 77 mg), *tert*-butyl nitrite (**2a**, 0.7 mmol, 72.1mg, 3.5 equiv) and TEMPO (0.6 mmol, 94 mg) in DMSO (3.0 mL, about 0.46 mmol H₂O in 3mL DMSO) was stirred at 100 °C for 5 hours. The corresponding product (**3a**) was not detected according to TLC analysis. After completion of the reaction, the solution was detected by HR-MS analysis (Figure S2).

Figure S2. Copy of HR-MS Spectrum of TEMPO-NO adduct [M+H]⁺

Intermediate Detection

To a 25-mL Pressure tube under air conditions, 1,7-diyne 1a (0.2 mmol, 77 mg), tert-butyl nitrite (2a, 0.7 mmol, 72.1mg, 3.5 equiv), H₂O (0.46 mmol, 8 mg,) and DMSO (3.0 mL, about 0.46 mmol H₂O in 3mL DMSO) was stirred at 100 °C for 1 hours. Then the reaction system was directly measured by LC-MS analysis. The key intermediates C and F were detected by HR-MS (Figures S3-S4).

Figure S4. Copy of HR-MS Spectrum of Intermediate F [M+Na]⁺

Mechanistic Investigations Control Experiment with H₂¹⁸O

To a 25-mL Pressure tube under air conditions, 1,7-diyne **1a** (0.2 mmol, 77 mg), *tert*-butyl nitrite (**2**, 0.7 mmol, 72.1 mg, 3.5 equiv), $H_2^{18}O$ (0.46 mmol, 10 mg,) and DMSO (3.0 mL, about 0.46 mmol H_2O in 3mL DMSO) was stirred at 100 °C for 5 hours until complete consumption of **1a** as monitored by TLC analysis. The product was detected by HRMS (Figure S5).

Figure S5. Copy of HR-MS Spectrum of O¹⁸-containing Product 3a [M-H]⁻

General procedure for the synthesis of substrates 1a-1ff²

Step 1: Under Ar conditions, a mixture of 2-iodoaniline (10.0 mmol), CuI (38 mg, 2 mol %), PdCl₂(PPh₃)₂ (140 mg, 2 mol %), and Et₃N (60 mL) was stirred at 50 °C in oil bath. Then, trimethylsilylacetylene (1.0 g, 10.5 mmol, 1.05 equiv) was dropwise added into the reaction system. The resulting reaction mixture was stirred until thin-layer chromatography (TLC) indicated complete consumption of the starting material., the residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to afford compound I (90-95% yield).

Step 2: To a solution of I (1.0 equiv) in CH_2Cl_2 (solvent, c = 0.2 M) was added pyridine (5.0 equiv), catalytic DMAP (2 mol %), and R⁴Cl (1.2 equiv) sequentially. After the reaction was completed at room temperature (monitored by TLC), the reaction mixture was quenched with 1 N HCl and extracted with CH_2Cl_2 . The combined organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was subjected to flash column chromatography (eluent: hexanes/EtOAc) on silica gel to afford product **V**.

Step 3: To an 100-mL oven-dried flask containing a magnetic stirring bar, **III** (9 mmol), PPh₃ (2.358 g, 9 mmol), and **II** (9 mmol) in distilled THF (30 mL), DIAD (diisopropyl azodicarboxylate, 9 mmol) was added dropwise at 0 $^{\circ}$ C under nitrogen. Then the solution stirred for 30 minutes and the temperature was warmed to room temperature slowly. The reaction was quenched by adding aqueous sodium hydroxide solution (0.5 M, 50 mL). The mixture was then diluted with Et₂O (50 mL) and washed with NaOH (0.5 M, 50 mL) and brine (50 mL) in sequence. The combined organic layers were dried with Na₂SO₄, and concentrated in vacuo after filtration. The residue was purified by flash chromatography on silica gel (eluted with petroleum ether/ethyl acetate = 10:1) to give pure compound **IV**.

Step 4: Under Ar conditions, compound **IV** (6 mmol), TBAF•3H₂O (4.8 mmol, 1.56 g, 0.8 equiv) and THF (10 mL) were added into a dried flask. Then, the mixture was cooled down to 0 °C. After stirring at this temperature for 1.0 h, and it was quenched by saturated aqueous NH₄Cl. Then the mixture was extracted with DCM and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (200-300 mesh) using mixtures of petroleum ether/ethyl acetate (5:1, v/v) afforded substrate **3** (78%-90% yield).

General procedure for the synthesis of substrate 1gg

Under Ar conditions, a mixture of **1a** (5 mmol), CuI (19 mg, 2 mol %), $PdCl_2(PPh_3)_2$ (70 mg, 2 mol %), iodobenzene (1.1 equiv) and Et_3N (20 mL) was stirred at 50 °C in oil bath. The resulting reaction mixture was stirred until thin-layer chromatography (TLC) indicated complete consumption of the starting material. The residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to afford product **1gg** (1.84 g, 80% yield).

Reference

- 1. B. M. Trost, D. A. Bringley and B. M. O'Keefe, Org. Lett. 2013, 15, 5630.
- (a) D. Wu, W.-J. Hao, Q. Rao, Y. Lu, S.-J. Tu and B. Jiang, *Chem. Commun.*, 2021, 57, 1911. (b) M. He, N. Chen, T. Zhou, Q. Li, H.-G. Li, M. Lang, J. Wang, S.-Y. Peng, *Org. Lett.*, 2019, 21, 9559.

N-(3-(4-ethylphenyl)prop-2-yn-1-yl)-N-(2-ethynylphenyl)-4-methylbenzenesulfonamide (1f)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.85 g, 69% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.73 (d, J = 8.0 Hz, 2H), 7.57–7.51 (m, 1H), 7.34–7.28 (m, 2H), 7.25 (d, J = 5.2 Hz, 3H), 7.13–7.05 (m, 4H), 4.74 (s, 2H), 3.12 (s, 1H), 2.61 (q, J = 7.6 Hz, 2H), 2.41 (s, 3H), 1.20 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 144.9, 143.6, 140.6, 137.2, 134.1, 131.5, 131.1, 129.5, 129.3, 128.6, 128.1, 127.8, 123.8, 119.7, 85.7, 82.8, 82.2, 80.0, 41.4, 28.8, 21.6, 15.4. HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₆H₂₃NO₂SNa 436.1347; Found 436.1346

N-(3-(4-(tert-butyl)phenyl)prop-2-yn-1-yl)-N-(2-ethynylphenyl)-4-methylbenzenesulfonamide (1g)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.87 g, 65% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.73 (d, J = 8.0 Hz, 2H), 7.57–7.51 (m, 1H), 7.34–7.28 (m, 3H), 7.27–7.23 (m, 4H), 7.13 (d, J = 8.0 Hz, 2H), 4.75 (s, 2H), 3.13 (s, 1H), 2.41 (s, 3H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 151.7, 143.6, 140.6, 137.2, 134.1, 131.3, 131.1, 129.5, 129.3, 128.6, 128.1, 125.2, 123.8, 119.5, 85.7, 82.8, 82.2, 80.0, 41.4, 34.8, 31.2, 21.6. HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₈H₂₇NO₂SNa 464.166; Found 464.1636

N-(3-(2-chlorophenyl)prop-2-yn-1-yl)-N-(2-ethynylphenyl)-4-methylbenzenesulfonamide (1k)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.51 g, 60% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.72 (d, J = 8.0 Hz, 2H), 7.57–7.51 (m, 1H), 7.36–7.28 (m, 4H), 7.26–7.18 (m, 4H), 7.13 (d, J = 7.2 Hz, 1H), 4.83 (s, 2H), 3.13 (s, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 143.7, 140.4, 137.0, 135.8, 134.2, 133.5, 131.3, 129.5, 129.4, 129.2, 128.7, 128.1, 126.4, 123.7, 122.4, 88.8, 82.3, 82.3, 80.0, 41.4, 21.6. HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₄H₁₈ClNO₂SNa 442.0644; Found 442.0641

N-(3-(4-cyanophenyl)prop-2-yn-1-yl)-N-(2-ethynylphenyl)-4-methylbenzenesulfonamide (1m)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.30 g, 56% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.69 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 3H), 7.36–7.28 (m, 4H), 7.27–7.24 (m, 3H), 4.76 (s, 2H), 3.07 (s, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 143.9, 140.4, 136.9, 134.3, 132.1, 132.0, 131.2, 129.6, 129.52, 128.9, 128.1, 127.4, 123.5, 118.4, 111.9, 88.4, 83.9, 82.4, 79.9, 41.3, 21.7. HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₅H₁₈N₂O₂SNa 433.0987; Found 433.0951

N-(3-cyclopropylprop-2-yn-1-yl)-N-(2-ethynylphenyl)-4-methylbenzenesulfonamide (10)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 1.99 g, 57% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.67 (d, J = 8.0 Hz, 2H), 7.53–7.48 (m, 1H), 7.34–7.28 (m, 2H), 7.25 (d, J = 5.2 Hz, 2H), 7.20–7.15 (m, 1H), 4.46 (s, 2H), 3.06 (s, 1H), 2.43 (s, 3H), 1.14–0.98 (m, 1H), 0.67–0.60 (m, 2H), 0.45–0.39 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 143.5, 140.7, 137.3, 134.1, 131.2, 129.4, 129.2, 128.5, 128.1, 123.7, 89.4, 82.1, 80.0, 77.3, 69.4, 41.1, 21.7, 7.99, 0.1. HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₁H₁₉NO₂SNa 372.1034; Found 372.1029

N-(2-ethynyl-3-methylphenyl)-4-methyl-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (1p)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 1.40 g, 35% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.76 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 12.0 Hz, 5H), 7.22–7.13 (m, 4H), 7.03 (d, J = 7.6 Hz, 1H), 4.73 (s, 2H), 3.39 (s, 1H), 2.46 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 143.5, 143.1, 140.8, 137.4, 131.5, 129.9, 129.4, 128.5, 128.4, 128.2, 128.1, 127.9, 123.8, 122.6, 86.5, 85.4, 83.8, 78.7, 41.4, 21.6, 21.1. HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₅H₂₁NO₃SNa 422.1191; Found 422.1198.

N-(2-ethynyl-4-methoxyphenyl)-4-methyl-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (1r)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.24 g, 54% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.72 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 7.2 Hz, 5H), 7.21 (d, J = 6.8 Hz, 2H), 7.14 (d, J = 8.8 Hz, 1H), 7.04 (d, J = 2.8 Hz, 1H), 6.83 (m, 1H), 4.73 (s, 2H), 3.79 (s, 3H), 3.10 (s, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 159.2, 143.5, 137.2, 133.2, 132.0, 131.6, 129.5, 128.4, 128.2, 128.1, 124.8, 122.5, 118.5, 115.6, 85.4, 83.8, 81.9, 79.9, 55.6, 41.6, 21.6. HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₅H₂₁NO₃SNa 438.1140; Found 438.1146.

methyl 4-ethynyl-3-((4-methyl-N-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)benzoate (1t)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.44 g, 55% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.21 (d, J = 2.0 Hz, 1H), 8.00–7.96 (m, 1H), 7.71 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.4 Hz, 1H), 7.29–7.24 (m, 5H),

7.19 (d, J = 7.2 Hz, 2H), 4.77 (s, 2H), 3.92 (s, 3H), 3.17 (s, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 165.6, 144.4, 144.0, 136.7, 135.4, 131.6, 131.2, 130.4, 130.3, 129.6, 128.6, 128.3, 128.1, 123.9, 122.2, 85.9, 83.2, 83.1, 79.1, 52.6, 41.2, 21.6. HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₆H₂₁NO₄SNa 466.1089; Found 466.1076

N-(2-ethynylphenyl)-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (1v)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.78 g, 75% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.90 (d, J = 8.0 Hz, 2H), 7.65–7.58 (m, 2H), 7.55–7.50 (m, 2H), 7.40–7.36 (m, 2H), 7.34–7.29 (m, 4H), 7.26 (d, J = 6.8 Hz, 2H), 4.84 (s, 2H), 3.13 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 140.4, 140.1, 134.3, 132.9, 131.6, 131.4, 129.5, 129.0, 128.8, 128.6, 128.3, 128.1, 123.7, 122.5, 85.7, 83.5, 82.3, 79.9, 41.5. HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₃H₁₇NO₂SNa 394.0878; Found 394.0851

N-(2-ethynylphenyl)-4-methoxy-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (1w)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 3.05g, 76% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.83 (d, J = 8.8 Hz, 2H), 7.62–7.58 (m, 1H), 7.39–7.36 (m, 2H), 7.35–7.30 (m, 4H), 7.26 (d, J = 7.2 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 4.80 (s, 2H), 3.88 (s, 3H), 3.20 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 163.2, 140.7, 134.2, 131.7, 131.6, 131.1, 130.3, 129.6, 129.4, 128.7, 128.5, 128.3, 123.8, 122.6, 114.3, 114.1, 85.6, 83.7, 82.3, 80.1, 55.7, 41.4. HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₄H₁₉NO₃SNa 424.0983; Found 424.0959

4-chloro-N-(2-ethynylphenyl)-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (1x)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.59g, 64% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.77 (d, J = 8.8 Hz, 2H), 7.58–7.53 (m, 1H), 7.43 (d, J = 8.4 Hz, 2H), 7.36–7.32 (m, 2H), 7.30–7.24 (m, 4H), 7.20 (d, J = 7.6 Hz, 2H), 4.76 (s, 2H), 3.11 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 140.1, 139.4, 138.6, 134.3, 131.5, 131.3, 129.5, 129.5, 129.2, 128.9, 128.6, 128.3, 123.5, 122.3, 85.8, 83.2, 82.4, 79.8, 41.6. HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₃H₁₆ClNO₂SNa 428.0488; Found 428.0486

N-(2-ethynylphenyl)-4-nitro-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (1y)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.37g, 57% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.28 (d, J = 8.0 Hz, 2H), 8.00 (d, J = 7.6 Hz, 2H), 7.58–7.52 (m, 1H), 7.40–7.35 (m, 2H), 7.34–7.26 (m, 3H), 7.26–7.19 (m, 3H), 4.80 (s, 2H), 3.05 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 150.2, 145.9, 139.6, 134.5, 131.5, 131.4, 129.8, 129.3, 129.3, 128.9, 128.5, 124.1, 123.3, 122.0, 86.2, 82.8, 82.6, 79.6, 41.9. HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₃H₁₆N₂O₄SNa 439.0728; Found 439.0725

N-(2-ethynylphenyl)-1-phenyl-N-(3-phenylprop-2-yn-1-yl)methanesulfonamide (1z)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.70g, 70% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.63–7.58 (m, 1H), 7.52–7.48 (m, 2H), 7.38–7.29 (m, 10H), 7.24–7.20 (m, 1H), 4.69 (s, 2H), 4.51 (s, 2H), 3.39 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 140.8, 134.3, 131.9, 131.7, 131.2, 129.8, 128.8, 128.8, 128.7, 128.5, 123.4, 122.5, 85.8, 84.0, 83.0, 80.7, 60.2, 41.9. HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₄H₂₀NO₂S 386.1215; Found 386.1211

N-(2-ethynylphenyl)-N-(3-phenylprop-2-yn-1-yl)cyclopropanesulfonamide (1aa)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.28g, 68% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.64 (s, 1H), 7.60 (d, *J* = 8.8 Hz, 1H), 7.42 (s, 1H), 7.38–7.27 (m, 6H), 4.77 (s, 2H), 3.35 (s, 1H), 2.71–2.63 (m, 1H), 1.16–1.10 (m, 2H), 1.02–0.96 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 140.8, 134.1, 132.0, 131.6, 129.7, 128.7, 128.5, 128.4, 123.5, 122.6, 85.5, 84.2, 82.5, 80.5, 41.5, 31.0, 6.1. HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₀H₁₈NO₂S 336.1058; Found 336.1057

N-(2-ethynylphenyl)-N-(3-phenylprop-2-yn-1-yl)isobutyramide (1bb)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.14g, 71% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.62 (d, *J* = 7.6 Hz, 1H), 7.47–7.35 (m, 3H), 7.31–7.25 (m, 5H), 5.27 (d, *J* = 17.6 Hz, 1H), 4.31 (d, *J* = 17.2 Hz, 1H), 3.27 (s, 1H), 2.41–2.33 (m, 1H), 1.10 (d, *J* = 6.4 Hz, 3H), 1.03 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 177.0, 143.5, 133.9, 131.7, 130.1, 129.9, 128.5, 128.3, 128.2, 123.1, 122.4, 84.7, 84.5, 82.9, 79.7, 38.0, 32.0, 19.9, 19.5. HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₁H₁₉NONa 324.1364; Found 324.1351

N-(2-ethynylphenyl)-N-(3-phenylprop-2-yn-1-yl)cyclopropanecarboxamide (1cc)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.03g, 68% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.63 (d, *J* = 7.6 Hz, 1H), 7.50–7.42 (m, 2H), 7.40–7.35 (m, 1H), 7.32–7.29 (m, 2H), 7.28–7.25 (m, 3H), 5.27 (d, *J* = 17.2 Hz, 1H), 4.36 (d, *J* = 17.6 Hz, 1H), 3.27 (s, 1H), 1.27–1.21 (m, 1H), 1.10–1.01 (m, 2H), 0.72–0.59 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 173.3, 143.5, 133.9, 131.7, 130.5, 129.9, 128.4, 128.4, 128.3, 128.2, 123.1, 122.7, 84.7, 84.4, 82.8, 79.7, 38.1, 12.8, 9.1, 8.6. HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₁H₁₈NO 300.1388; Found 300.1385

N-(2-ethynylphenyl)-N-(3-phenylprop-2-yn-1-yl)cyclohexanecarboxamide (1dd)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.28g, 67% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.62 (d, J = 6.8 Hz, 1H), 7.47–7.35 (m, 3H), 7.31–7.23 (m, 6H), 5.26 (d, J = 17.62 Hz, 1H), 4.29 (d, J = 17.2 Hz, 1H), 3.25 (s, 1H), 2.09–2.00 (m, 1H), 1.78 (d, J = 12.8 Hz, 1H), 1.70–1.44 (m, 6H), 1.23–1.12 (m, 1H), 1.06–0.87 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 175.9, 143.5, 133.9, 131.7, 130.1, 129.8, 128.5, 128.3, 128.2, 123.1, 122.4, 84.8, 84.4, 82.9, 79.7, 42.2, 37.8, 29.8, 29.2, 25.7, 25.5. HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₄H₂₃NONa 364.1677; Found 364.1690

N-(2-ethynylphenyl)-4-methyl-N-(3-phenylprop-2-yn-1-yl)benzamide (1ee)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.51g, 72% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.48 (d, J = 6.4 Hz, 1H), 7.35–7.28 (m, 4H), 7.27–7.16 (m, 6H), 6.96 (d, J = 7.2 Hz, 2H), 5.37 (d, J = 16.8 Hz, 1H), 4.58 (d, J = 17.2 Hz, 1H), 3.37 (s, 1H), 2.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 170.7, 144.7, 140.2, 133.8, 132.7, 131.8, 131.8, 130.7, 129.6, 128.7, 128.4, 128.3, 127.8, 123.0, 121., 84.6, 83.4, 80.2, 53.6, 39.2, 21.5. HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₅H₂₀NO 350.1545; Found 350.1543

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 74-(3-((N-(2-ethynylphenyl)-4-methylphenyl)sulfonamido)prop-1-yn-1-yl)benzoate (1ff)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 2.83g, 50% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.97 (d, *J* = 8.4 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.62–7.57 (m, 1H), 7.41–7.36 (m, 2H), 7.33 (s, 2H), 7.30 (d, *J* = 7.8 Hz, 3H), 5.01–4.92 (m, 1H), 4.82 (s, 2H), 3.16 (s, 1H), 2.47 (s, 3H), 2.15 (d, *J* = 11.2 Hz, 1H), 2.01–1.93 (m, 1H), 1.78 (d, *J* = 11.6 Hz, 2H), 1.69–1.58 (m, 3H), 1.18 (s, 2H), 1.02–0.93 (m, 7H), 0.83 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 165.5, 143.7, 140.5, 137.0, 134.2, 131.4, 131.1, 130.5, 129.5, 129.4, 129.4, 128.7, 128.1, 126.9, 123.7, 86.53, 84.9, 82.3, 79.9, 75.2, 47.3, 41.3, 41.0, 34.3, 31.5, 26.6, 23.7, 22.1, 21.6, 20.8, 16.6. HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₃₅H₃₈NO₄S 568.2522; Found 568.2519

4-methyl-N-(2-(phenylethynyl)phenyl)-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (1gg)

Isolation by column chromatography (PE/EA= 5/1 v/v) White solid; 1.84 g, 80% yield; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.75 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 9.2 Hz, 1H), 7.45–7.29 (m, 10H), 7.23 (d, J = 7.6 Hz, 3H), 7.15 (d, J = 8.0 Hz, 2H), 4.83 (s, 2H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 143.5, 139.9, 137.4, 133.4, 132.1, 131.8, 131.7, 131.6, 129.7, 129.6, 128.9, 128.7, 128.6, 128.4, 128.3, 128.2, 127.9, 127.3, 124.3, 122.9, 122.6, 94.5, 86.0, 85.4, 83.8, 51.7, 41.2, 21.5. HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₃₀H₂₄NO₂S 462.1528; Found 462.1524

General Procedure for the Synthesis of Product 3.

To a pressure tube were added 1,7-diyne **1a** (0.2 mmol, 77 mg), *tert*-butyl nitrite (**2**, 0.7 mmol, 72.1 mg, 3.5 equiv), and DMSO (3 mL, about 0.46 mmol H₂O in 3 mL). Then the mixture was stirred at 100 °C (metal bath temperature) for 8 h until complete consumption of starting material as monitored by TLC. After the reaction was finished, the reaction mixture was cooled to room temperature, diluted in ethyl acetate, and washed with H₂O. The aqueous phase was re-extracted with ethyl acetate. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (eluent, petroleum ether/ethyl acetate = 10:1) to afford the desired product **3a** as yellow solid in 82% yield.

1-nitro-3-phenyl-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3a)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 73.0 mg, 82% yield; mp: 240-241 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.24 (s, 1H), 8.27 (d, J = 7.2 Hz, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.63–7.43 (m, 7H), 6.90–6.80 (m, 4H), 4.85 (s, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 143.7, 136.5, 133.8, 131.4, 130.2, 130.0, 129.9, 129.2, 128.6, 128.5, 128.4, 128.0, 127.1, 127.0, 125.5, 119.68, 117.0, 43.5, 21.3. IR (KBr, ν , cm⁻¹): 3262, 1596, 1473, 1397, 1244, 1154, 1052, 844, 775; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₄H₂₀N₃O₄S 446.1175; Found 446.1176;

1-nitro-3-(p-tolyl)-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3b)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 80.8 mg, 88% yield; mp: 260-261 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm): 12.99 (s, 1H), 8.16 (d, *J* = 7.6 Hz, 1H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.55–7.48 (m, 4H), 7.43 (d, *J* = 8.0 Hz, 2H), 6.98 (d, *J* = 7.6 Hz, 2H), 6.61 (d, *J* = 8.0 Hz, 2H), 4.74 (s, 2H), 2.44 (s, 3H), 2.22 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm): 143.8, 139.6, 136.4, 133.6, 133.4, 132.6, 130.1, 129.5, 129.1, 128.8, 128.6, 128.5, 128.1, 126.5, 126.1, 118.7, 116.6, 43.7, 21.5, 21.1. IR (KBr, *v*, cm⁻¹): 3258, 1472, 1395, 1275, 1156, 1053, 842, 749; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₅H₂₂N₃O₄S 460.1331; Found 460.1332;

1-nitro-3-(m-tolyl)-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3c)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 76.2 mg, 83% yield; mp: 218-219 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.26 (s, 1H), 8.26 (d, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.52–7.43 (m, 3H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.22 (d, *J* = 12.4 Hz, 2H), 6.88–6.81 (m, 4H), 4.84 (s, 2H), 2.50 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 143.6, 139.8, 136.5, 133.8, 131.7, 131.0, 129.9, 129.8, 129.2, 128.5, 128.4, 128.3, 127.9, 127.6, 127.0, 125.5, 124.1, 119.6, 116.9, 43.5, 21.7, 21.2. IR (KBr, *v*, cm⁻¹): 3447, 1637, 1473, 1350, 1221, 1163, 1056, 855, 764; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₅H₂₂N₃O₄S 460.1331; Found 460.1331;

1-nitro-3-(o-tolyl)-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3d)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 71.6 mg, 78% yield; mp: 224-225 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.17 (s, 1H), 8.29 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.52–7.38 (m, 5H), 7.33 (d, J = 7.6 Hz, 1H), 6.95–6.86 (m, 4H), 4.59 (s, 2H), 2.29 (s, 3H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 143.8, 136.9, 136.4, 134.0, 131.8, 131.7, 131.0, 130.4, 129.9, 129.3, 129.2, 128.5, 128.5, 128.0, 127.9, 127.0, 126.9, 125.8, 118.7, 118.4, 43.78, 21.27, 19.9. IR (KBr, ν , cm⁻¹): 3263, 1596, 1474, 1392, 1273, 1162, 1059, 850, 765; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₅H₂₂N₃O₄S 460.1331; Found 460.1325;

3-(3,4-dimethylphenyl)-1-nitro-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3e)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 80.4 mg, 85% yield; mp: 238-239 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.23 (s, 1H), 8.26 (d, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.52–7.43 (m, 2H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.88–6.80 (m, 4H), 4.83 (s, 2H), 2.40 (s, 3H), 2.38 (s, 3H), 2.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 143.7, 139.4, 138.5, 136.5, 133.9, 132.0, 131.8, 131.2, 129.9, 129.2, 128.6, 128.3, 128.1, 127.9, 127.0, 126.0, 125.7, 124.5, 119.8, 116.7, 43.6, 21.3, 20.2, 19.9. IR (KBr, *v*, cm⁻¹): 3445, 1636, 1471, 1352, 1267, 1164, 1056, 855, 749; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₆H₂₄N₃O₄S 474.1488; Found 474.1487;

3-(4-ethylphenyl)-1-nitro-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3f)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 80.4 mg, 85% yield; mp: 213-214 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.21 (s, 1H), 8.27 (d, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.52–7.40 (m, 4H), 7.36 (d, *J* = 8.0 Hz, 2H), 6.92–6.79 (m, 4H), 4.84 (s, 2H), 2.77 (q, *J* = 7.6 Hz, 2H), 2.24 (s, 3H), 1.33 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 146.8, 143.7, 136.5, 133.9, 131.9, 131.8, 129.9, 129.5, 129.2, 128.6, 128.34, 127.9, 127.0, 127.0, 125.9, 125.6, 119.8, 116.8, 43.5, 28.9, 21.3, 15.4. IR (KBr, *v*, cm⁻¹): 3258, 1471, 1393, 1271, 1150, 1049, 834, 749; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₆H₂₄N₃O₄S 474.1488; Found 474.1489;

3-(4-(tert-butyl)phenyl)-1-nitro-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3g)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 76.2 mg, 76% yield; mp: 166-167 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.19 (s, 1H), 8.27 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.61 (d, J = 8.0 Hz, 2H), 7.53–7.42 (m, 2H), 7.38 (d, J = 8.0 Hz, 2H), 6.90–6.79 (m, 4H), 4.86 (s, 2H), 2.25 (s, 3H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 153.7, 143.7, 136.5, 133.8, 131.9, 131.7, 129.9, 129.2, 128.6, 128.3, 128.0, 127.0, 127.0, 126.8, 125.7, 125.6, 119.8, 116.8, 43.5, 35.1, 31.2, 21.3. IR (KBr, ν , cm⁻¹): 3218, 1476, 1395, 1242, 1165, 1059, 838, 765; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₈H₂₈N₃O₄S 502.1801; Found 502.1799;

3-(4-methoxyphenyl)-1-nitro-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3h)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 80.8 mg, 85% yield; mp: 227-228 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm): 12.92 (s, 1H), 8.17 (d, *J* = 7.6 Hz, 1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.55–7.45 (m, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.97 (d, *J* = 8.0 Hz, 2H), 6.62 (d, *J* = 8.0 Hz, 2H), 4.73 (s, 2H), 3.89 (s, 3H), 2.22 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm): 160.6, 143.8, 136.4, 133.6, 133.4, 132.4, 130.2, 129.5,

129.1, 128.8, 128.5, 128.1, 126.6, 126.5, 121.3, 118.9, 116.3, 115.0, 55.9, 43.7, 21.1. IR (KBr, *v*, cm⁻¹): 3445, 1634, 1469, 1391, 1265, 1156, 832, 745; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₅H₂₂N₃O₅S 476.1280; Found 476.1281;

3-(4-chlorophenyl)-1-nitro-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3i)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 63.2 mg, 66% yield; mp: 224-225 °C; ¹H NMR (400 MHz, DMSO- d_6) (δ , ppm): 13.14 (s, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.75–7.58 (m, 5H), 7.56–7.46 (m, 2H), 6.98 (d, J = 8.0 Hz, 2H), 6.62 (d, J = 8.0 Hz, 2H), 4.73 (s, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) (δ , ppm): 144.0, 136.5, 134.7, 133.7, 133.0, 131.8, 130.5, 129.7, 129.2, 129.0, 128.6, 128.3, 127.8, 126.6, 126.4, 118.6, 117.3, 43.7, 21.2. IR (KBr, v, cm⁻¹): 3459, 1471, 1338, 1262, 1161, 1016, 800, 764; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₄H₁₉ClN₃O₄S 480.0785; Found 480.0781;

3-(3-chlorophenyl)-1-nitro-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3j)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 71.9 mg, 75% yield; mp: 223-224 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.28 (s, 1H), 8.26 (d, *J* = 8.0 Hz, 1H), 7.81 (d, *J* = 7.6 Hz, 1H), 7.56–7.45 (m, 4H), 7.38 (s, 1H), 7.34 (d, *J* = 6.4 Hz, 1H), 6.89–6.81 (m, 4H), 4.82 (s, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 143.8, 136.5, 136.0, 133.8, 131.2, 130.2, 130.1, 130.0, 129.5, 129.2, 128.5, 128.3, 128.0, 126.9, 125.2, 125.2, 119.4, 117.5, 43.3, 21.2. IR (KBr, *v*, cm⁻¹): 3054, 1563, 1470, 1304, 1265, 1160, 1056, 847, 766; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₄H₁₉ClN₃O₄S 480.0785; Found 480.0783;

3-(2-chlorophenyl)-1-nitro-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3k)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 70.9 mg, 74% yield; mp: 217-218 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.56 (s, 1H), 8.25 (d, J = 7.6 Hz, 1H), 7.81 (d, J = 7.2 Hz, 1H), 7.63–7.58 (m, 1H), 7.53–7.43 (m, 4H), 7.37–7.32 (m, 1H), 6.91 (d, J = 8.0 Hz, 2H), 6.85 (d, J = 8.0 Hz, 2H), 4.71 (s, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 143.8, 136.4, 133.7, 132.6, 132.0, 131.4, 131.1, 129.9, 129.2, 128.6, 128.5, 128.0, 127.9, 127.9, 127.0, 125.6, 119.3, 118.5, 44.1, 21.2. IR (KBr, ν , cm⁻¹): 3272, 1596, 1470, 1306, 1238, 1163, 1059, 848, 764; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₄H₁₉ClN₃O₄S 480.0785; Found 480.0782;

3-(4-bromophenyl)-1-nitro-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3l)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 64.9 mg, 62% yield; mp: 245-246 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm): 13.14 (s, 1H), 8.15 (d, *J* = 7.6 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.54–7.46 (m, 2H), 6.98 (d, *J* = 7.6 Hz, 2H), 6.62 (d, *J* = 8.0 Hz, 2H), 4.73 (s, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm): 143.9, 136.5, 133.7, 133.1, 132.6, 131.8, 130.7, 129.7, 129.2, 129.0, 128.6, 128.3, 128.2, 126.6, 126.4, 123.5, 118.6, 117.3, 43.7, 21.2. IR (KBr, *v*, cm⁻¹): 3447, 1637, 1470, 1330, 1262, 1153, 1051, 843, 749; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₄H₁₉BrN₃O₄S 524.0280; Found 524.0279;

4-(1-nitro-5-tosyl-4,5-dihydro-2H-pyrrolo/3,4-c/quinolin-3-yl)benzonitrile (3m)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 65.8 mg, 70% yield; mp: 209-210 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm): 13.30 (s, 1H), 8.15 (d, *J* = 7.6 Hz, 1H), 8.09 (d, *J* = 8.0 Hz, 2H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.56–7.47 (m, 2H), 6.98 (d, *J* = 8.0 Hz, 2H), 6.62 (d, *J* = 8.0 Hz, 2H), 4.76 (s, 2H), 2.22 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm): 143.9, 136.4, 133.6, 133.4, 133.2, 130.7, 129.7, 129.3, 129.1, 128.9, 128.5, 128.2, 126.5, 126.1, 119.0, 118.4, 118.3, 112.0, 43.6, 21.1. IR (KBr, *v*, cm⁻¹): 3447, 1636, 1474, 1399, 1316, 1152, 845, 764; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₅H₁₉N₄O₄S 471.1127; Found 471.1125;

9-methyl-1-nitro-3-phenyl-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3p)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 70.3 mg, 71% yield; mp: 152-153 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.30 (s, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.63–7.53 (m, 3H), 7.48 (d, J = 8.0 Hz, 2H), 7.44–7.40 (m, 1H), 7.33 (d, J = 8.0 Hz, 1H), 6.90–6.83 (m, 4H), 5.33 (d, J = 16.0 Hz, 1H), 4.18 (d, J = 16.0 Hz, 1H), 2.25 (s, 3H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 143.4, 138.1, 137.4, 134.4, 131.4, 130.2, 130.1, 129.9, 129.0, 128.5, 128.4, 127.1, 126.4, 126.1, 125.7, 119.6, 118.9, 43.9, 31.6, 22.7, 21.2, 20.7, 14.2. IR (KBr, ν , cm⁻¹): 3340, 1733, 1470, 1275, 1163, 1090, 924, 749; HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₅H₂₁N₃O₄SNa 482.1150; Found 482.1161.

8-methyl-1-nitro-3-phenyl-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3q)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 79.9 mg, 87% yield; mp: 138-139 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.23 (s, 1H), 8.07 (s, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.63–7.52 (m, 3H), 7.44 (d, J = 7.2 Hz, 2H), 7.31 (d, J = 8.4 Hz, 1H), 6.89–6.81 (m, 4H), 4.82 (s, 2H), 2.46 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 143.6, 137.9, 134.0, 133.9, 132.0, 131.4, 130.8, 130.1, 130.0, 128.9, 128.6, 128.3, 127.1, 127.0, 125.2, 119.9, 117.1, 43.5, 21.6, 21.3. IR (KBr, v, cm⁻¹): 3189, 1470, 1394, 1271, 1195, 1161, 1054, 860, 766; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₅H₂₂N₃O₄S 460.1331; Found 460.1326;

8-methoxy-1-nitro-3-phenyl-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3r)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 76.0 mg, 80% yield; mp: 131-132 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.26 (s, 1H), 7.84 (d, J = 2.8 Hz, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.63–7.53 (m, 3H), 7.44 (d, J = 7.6 Hz, 2H), 7.07–7.02 (m, 1H), 6.91–6.81 (m, 4H), 4.82 (s, 2H), 3.90 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 158.7, 143.6, 133.6, 131.4, 130.1, 130.1, 129.9, 129.2, 128.5, 128.3, 127.0, 126.4, 119.8, 1167.0, 116.2, 112.7, 55.7, 43.6, 21.2. IR (KBr, v, cm⁻¹): 3005, 1663, 1478, 1349, 1275, 1163, 1089, 812, 750; HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₅H₂₁N₃O₅SNa 498.1100; Found 498.1113.

8-chloro-1-nitro-3-phenyl-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3s)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 67.1 mg, 70% yield; mp: 230-231 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.29 (s, 1H), 8.23 (d, J = 8.8 Hz, 1H), 7.82 (s, 1H), 7.63–7.53 (m, 3H), 7.47–7.40 (m, 3H), 6.88 (s, 4H), 4.84 (s, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 144.0, 137.7, 135.2, 133.8, 132.0, 131.6, 130.3, 130.0, 129.5, 129.3, 128.5, 128.4, 128.2, 127.1, 127.0, 124.0, 118.8, 116.7, 43.4, 21.3. IR (KBr, v, cm⁻¹): 3445, 1634, 1470, 1343, 1259, 1157, 1055, 849, 750; HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₄H₁₈ClN₃O₄SNa 502.0604; Found 502.0601;

methyl 1-nitro-3-phenyl-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline-7-carboxylate (3t)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 72.4 mg, 72% yield; mp: 203-204 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.35 (s, 1H), 8.94 (s, 1H), 8.16 (d, J = 8.8 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.63–7.55 (m, 3H), 7.45 (d, J = 7.6 Hz, 2H), 6.89–6.83 (m, 4H), 4.87 (s, 2H), 3.98 (s, 3H), 2.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 166.4, 144.0, 140.4, 133.9, 131.3, 130.8, 130.3, 130.0, 129.9, 129.5, 129.2, 128.6, 128.34, 127.1, 126.9, 125.5, 118.7, 116.9, 52.6, 43.4, 21.3. IR (KBr, ν , cm⁻¹):3445, 1698, 1471, 1353, 1267, 1161, 1038, 810, 746; HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₆H₂₁N₃O₆SNa 526.1049; Found 526.1043;

4-methyl-1-nitro-3-phenyl-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3u)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 78.1 mg, 85% yield; mp: 204-205 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.25 (s, 1H), 8.29 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.63–7.43 (m, 7H), 6.82 (m, 4H), 5.58–5.51 (m, 1H), 2.23 (s, 3H), 1.34 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 143.59, 133.96, 133.37, 132.05, 130.55, 130.46, 130.11, 130.02, 128.75, 128.36, 128.29, 127.86, 126.95, 126.83, 124.88,

122.12, 118.27, 48.76, 21.24, 21.04. IR (KBr, *v*, cm⁻¹): 3380, 1478, 1392, 1234, 1163, 1078, 1005, 896, 764; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₅H₂₂N₃O₄S 460.1331; Found 460.1330;

1-nitro-3-phenyl-5-(phenylsulfonyl)-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3v)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 67.3 mg, 78% yield; mp: 205-206 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.27 (s, 1H), 8.28 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.62–7.54 (m, 3H), 7.52–7.41 (m, 4H), 7.32–7.27 (m, 1H), 7.10–7.05 (m, 2H), 6.98 (d, J = 8.0 Hz, 2H), 4.86 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 137.2, 136.3, 132.5, 132.0, 131.3, 130.2, 130.0, 129.2, 128.5, 128.0, 127.8, 127.1, 127.0, 125.4, 119.6, 117.1, 43.4. IR (KBr, ν , cm⁻¹): 3425, 1636, 1474, 1350, 1268, 1165, 1088, 847, 766; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₃H₁₈N₃O₄S [M+H]⁺ 432.1018; Found 432.1012;

5-((4-methoxyphenyl)sulfonyl)-1-nitro-3-phenyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3w)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 75.6 mg, 82% yield; mp: 209-210 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.31 (s, 1H), 8.30–8.26 (m, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.61–7.53 (m, 3H), 7.51–7.42 (m, 4H), 6.89 (d, J = 9.2 Hz, 2H), 6.52 (d, J = 8.8 Hz, 2H), 4.84 (s, 2H), 3.72 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 162.9, 136.6, 132.1, 131.5, 130.2, 130.0, 129.4, 129.1, 128.6, 128.5, 127.9, 127.1, 125.5, 119.8, 117.2, 112.9, 55.8, 43.4. IR (KBr, v, cm⁻¹): 3347, 1593, 1474, 1346, 1267, 1155, 1021, 846, 766; HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₄H₁₉N₃O₅SNa 484.0943; Found 484.0941;

5-((4-chlorophenyl)sulfonyl)-1-nitro-3-phenyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3x)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 66.4 mg, 71% yield; mp: 222-223 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.42 (s, 1H), 8.31 (d, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.63–7.55 (m, 3H), 7.53–7.46 (m, 2H), 7.43 (d, *J* = 7.2 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 4.85 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 139.3, 136.1, 135.4, 132.1, 131.2, 130.2, 130.0, 130.0, 129.2, 128.6, 128.3, 128.2, 128.1, 127.0, 125.2, 119.1, 116.7, 43.4. IR (KBr, *v*, cm⁻¹): 3418, 1634, 1583, 1474, 1395, 1357, 1243, 1166, 1090, 847, 765; HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₃H₁₆ClN₃O₄SNa 488.0448; Found 488.0446;

1-nitro-5-((4-nitrophenyl)sulfonyl)-3-phenyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3y)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 66.7 mg, 70% yield; mp: 244-245 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm): 13.22 (s, 1H), 8.17 (d, *J* = 7.6 Hz, 1H), 8.06 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.64 (d, *J* = 4.0 Hz, 4H), 7.61–7.52 (m, 3H), 7.00 (d, *J* = 8.4 Hz, 2H), 4.81 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm): 149.7, 141.7, 135.6, 133.2, 132.7, 130.0, 129.6, 129.0, 128.8, 128.55, 128.2, 126.3, 123.6, 118.5, 117.0, 44.0. IR (KBr, *v*, cm⁻¹): 3445, 1635, 1531, 1473, 1362, 1274, 1161, 848, 749; HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₃H₁₆N₄O₆SNa 499.0688; Found 499.0683;

5-(benzylsulfonyl)-1-nitro-3-phenyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3z)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 60.5 mg, 68% yield; mp: 250-251 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm): 13.35 (s, 1H), 8.41 (d, *J* = 8.4 Hz, 1H), 7.60–7.48 (m, 5H), 7.41–7.35 (m, 2H), 7.33–7.27 (m, 2H), 7.25–7.19 (m, 2H), 7.12 (d, *J* = 7.6 Hz, 2H), 4.64 (s, 2H), 4.35 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm): 136.7, 133.6, 132.3, 131.2, 129.7, 129.5, 129.4, 1292, 129.1, 128.9, 128.6, 128.5, 126.6, 126.3, 124.9, 119.5, 119.2, 57.9, 43.1. IR (KBr, *v*, cm⁻¹): 3445, 1602, 1563, 1481, 1455, 1351, 1243, 1152, 1086, 901, 751; HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₄H₁₉N₃O₄SNa 468.0994; Found 468.0992;

5-(cyclopropylsulfonyl)-1-nitro-3-phenyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinoline (3aa)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 43.5 mg, 55% yield; mp: 230-231 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm): 13.45 (s, 1H), 8.51–8.47 (m, 1H), 7.67 (d, *J* = 7.6 Hz, 2H), 7.61–7.55 (m, 3H), 7.54 (d, *J* = 7.2 Hz, 1H), 7.50–7.44 (m, 2H), 4.75 (s, 2H), 1.92–1.86 (m, 1H), 0.55–0.48 (m, 2H), 0.41 (d, *J* = 11.2 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm): 136.8, 133.7, 132.7, 129.8, 129.6, 129.5, 129.2, 128.9, 128.5, 128.4, 127.6, 126.0, 119.3, 119.1, 43.4, 28.8, 5.2. IR (KBr, *v*, cm⁻¹): 3448, 1637, 1559, 1474, 1389, 1266, 1146, 749; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₀H₁₈N₃O₄S 396.1018; Found 396.1018;

2-methyl-1-(1-nitro-3-phenyl-2,4-dihydro-5H-pyrrolo[3,4-c]quinolin-5-yl)propan-1-one (3bb)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 54.2 mg, 75% yield; mp: 211-212 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.78 (s, 1H), 8.60–8.55 (m, 1H), 7.56–7.48 (m, 4H), 7.46 (d, J = 7.2 Hz, 1H), 7.43–7.38 (m, 2H), 7.33 (s, 1H), 3.17–3.09 (m, 1H), 1.04 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 177.4, 138.3, 132.7, 131.5, 129.8, 129.6, 129.3, 129.0, 128.7, 127.3, 126.7, 125.2, 124.5, 120.9, 120.5, 39.0, 30.5, 19.9. IR (KBr, ν , cm⁻¹): 3445, 1635, 1532, 1478, 1367, 1274, 1157, 1093, 849, 749; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₁H₂₀N₃O₃ 362.1505; Found 362.1505;

cyclopropyl(1-nitro-3-phenyl-2,4-dihydro-5H-pyrrolo[3,4-c]quinolin-5-yl)methanone (3cc)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 48.8 mg, 68% yield; mp: 240-241 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.67 (s, 1H), 8.60 (d, J = 6.8 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.51 (d, J = 4.4 Hz, 4H), 7.48–7.37 (m, 3H), 1.97–1.90 (m, 1H), 1.11 (s, 2H), 0.80 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 173.2, 138.4, 132.7, 131.4, 129.9, 129.7, 129.2, 128.9, 128.8, 127.3, 126.3, 125.5, 124.1, 120.6, 120.6, 39.1, 13.3, 9.8. IR (KBr, v, cm⁻¹): 3447, 1636, 1570, 1478, 1366, 1265, 1160, 748; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₁H₁₈N₃O₃ 360.1348; Found 360.1343;

cyclohexyl(1-nitro-3-phenyl-2,4-dihydro-5H-pyrrolo[3,4-c]quinolin-5-yl)methanone (3dd)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 59.4 mg, 74% yield; mp: 236-237 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.77 (s, 1H), 8.66–8.61 (m, 1H), 7.58 (d, J = 6.4 Hz, 4H), 7.52 (d, J = 6.8 Hz, 1H), 7.49–7.44 (m, 2H), 7.39–7.34 (m, 1H), 2.91–2.82 (m, 1H), 1.89–1.60 (m, 6H), 1.36–1.04 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 176.2, 138.3, 132.7, 131.4, 129.8, 129.6, 129.2, 128.9, 128.6, 127.3, 126.6, 125.4, 125.0, 124.4, 121.0, 120.5, 40.8, 38.9, 29.8, 25.7, 25.5. IR (KBr, v, cm⁻¹):3445, 1625, 1569, 1480, 1368, 1275, 1157, 1025, 853, 750; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₂₄H₂₄N₃O₃ 402.1818; Found 402.1822;

(1-nitro-3-phenyl-2,4-dihydro-5H-pyrrolo[3,4-c]quinolin-5-yl)(p-tolyl)methanone (3ee)

 O_2N

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 65.5 mg, 80% yield; mp: 136-137 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.78 (s, 1H), 8.58 (d, *J* = 7.6 Hz, 1H), 7.53 (d, *J* = 4.4 Hz, 4H), 7.50–7.46 (m, 1H), 7.24 (d, *J* = 7.2 Hz, 3H), 7.03 (d, *J* = 7.6 Hz, 3H), 6.70 (d, *J* = 8.0 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 169.5, 141.3, 139.2, 131.8, 131.5, 129.9, 129.7, 129.6, 128.9, 128.4, 127.3, 126.3, 125.6, 122.7, 120.4, 120.0, 40.2, 21.6. IR (KBr, *v*, cm⁻¹): 3448, 1629, 1570, 1479, 1365, 1247, 1145, 1026, 830, 747; HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₂₅H₁₉N₃O₃Na [M+Na]⁺ 432.1324; Found 432.1318;

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-(1-nitro-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinolin-3-yl)benzoate (3ff)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 77.8 mg, 62% yield; mp: 232-233 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.44 (s, 1H), 8.29–8.22 (m, 3H), 7.81 (d, J = 7.6 Hz, 1H), 7.54–7.43 (m, 4H), 6.88–6.77 (m, 4H), 5.03–4.96 (m, 1H), 4.85 (d, J = 4.0 Hz, 2H), 2.24 (s, 3H), 2.16 (d, J = 12.4 Hz, 1H), 2.05–1.97 (m, 1H), 1.80–1.73 (m, 2H), 1.65–1.54 (m, 2H), 1.21–1.11 (m, 2H), 1.01–0.92 (m, 7H), 0.84 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 165.2, 143.8, 136.5, 133.9, 132.6, 132.4, 132.1, 131.1, 130.1, 130.1, 129.2, 128.6, 128.4, 128.0, 127.0, 126.9, 125.3, 119.5, 118.0, 75.7, 47.4, 43.4, 41.1, 34.4, 31.6, 26.7, 23.7, 22.2, 21.3, 20.9, 16.7. IR (KBr, *v*, cm⁻¹): 3418, 3271, 2955, 2869, 1712, 1612, 1476, 1407, 1353, 1274, 1165, 1108, 957, 858, 765, 578; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₃₅H₃₈N₃O₆S 628.2481; Found 628.2477;

General Procedure for the Synthesis of Product 5.

To a pressure tube were added 1,7-diyne **4a** (0.2 mmol, 46.4 mg), *tert*-butyl nitrite (**2**, 0.7 mmol, 72.1 mg, 3.5 equiv), and THF (3 mL, about 0.46 mmol H₂O in 3 mL). Then the mixture was stirred in oil bath at 50 °C for 8 h until complete consumption of starting material as monitored by TLC. After the reaction was finished, the reaction mixture was cooled to room temperature, diluted in ethyl acetate, and washed with H₂O. The aqueous phase was re-extracted with ethyl acetate. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (eluent, petroleum ether/ethyl acetate = 15:1) to afford the desired product **5a** as yellow solid in 64% yield.

1-nitro-3-phenyl-2,4-dihydrochromeno[3,4-c]pyrrole (5a)

Isolation by column chromatography (PE/EA= 15/1 v/v) Yellow solid; 37.3 mg, 64% yield; mp: 209-210 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.57 (s, 1H), 8.61 (d, J = 7.2 Hz, 1H), 7.57–7.46 (m, 3H), 7.42 (d, J = 7.2 Hz, 2H), 7.31 (d, J = 8.0 Hz, 1H), 7.15–7.10 (m, 1H), 7.05 (d, J = 8.0 Hz, 1H), 5.21 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 155.0,

131.0, 130.7, 129.8, 129.6, 128.9, 128.5, 127.1, 122.4, 118.9, 117.8, 117.5, 116.9, 62.5. IR (KBr, v, cm⁻¹): 3445, 1634, 1532, 1456, 1304, 1237, 1108, 851, 747; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₃N₂O₃ 293.0926; Found 293.0924;

1-nitro-3-(p-tolyl)-2,4-dihydrochromeno[3,4-c]pyrrole (5b)

Isolation by column chromatography (PE/EA= 15/1 v/v) Yellow solid; 30.6 mg, 50% yield; mp: 229-230 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm): 13.26 (s, 1H), 8.46 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 3H), 7.15–7.10 (m, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 5.18 (s, 2H), 2.39 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm): 155.2, 139.5, 133.2, 132.8, 131.0, 130.0, 128.7, 128.2, 126.4, 122.5, 118.6, 118.0, 117.9, 117.0, 63.0, 21.5. IR (KBr, *v*, cm⁻¹): 3445, 1634, 1480, 1397, 1322, 1274, 1109, 810, 743; HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₁₈H₁₄N₂O₃Na 329.0902; Found 329.0897;

3-(3,4-dimethylphenyl)-1-nitro-2,4-dihydrochromeno[3,4-c]pyrrole (5c)

Isolation by column chromatography (PE/EA= 15/1 v/v) Yellow solid; 41.6 mg, 65% yield; mp: 230-231 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.53 (s, 1H), 8.61 (d, *J* = 8.0 Hz, 1H), 7.35–7.27 (m, 2H), 7.19 (s, 1H), 7.15–7.10 (m, 2H), 7.04 (d, *J* = 8.4 Hz, 1H), 5.20 (s, 2H), 2.34 (d, *J* = 5.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 155.0, 138.9, 138.2, 131.2, 131.0, 130.8, 128.5, 128.0, 126.4, 124.6, 122.4, 119.1, 117.9, 117.5, 116.5, 62.6, 20.0, 19.8. IR (KBr, *v*, cm⁻¹): 3445, 1634, 1557, 1441, 1371, 1265, 1109, 1045, 812, 743; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₁₉H₁₇N₂O₃ 321.1239; Found 321.1235;

3-(4-methoxyphenyl)-1-nitro-2,4-dihydrochromeno[3,4-c]pyrrole (5d)

Isolation by column chromatography (PE/EA= 15/1 v/v) Yellow solid; 36.7 mg, 57% yield; mp: 220-221 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.51 (s, 1H), 8.62 (d, J = 8.0 Hz, 1H), 7.38 – 7.29 (m, 3H), 7.16 – 7.10 (m, 1H), 7.05 (d, J = 8.8 Hz, 3H), 5.19 (s, 2H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 160.9, 155.1, 131.0, 128.6, 122.4, 121.3, 119.2, 117.9, 117.5, 116.2, 115.1, 62.6, 55.6. IR (KBr, v, cm⁻¹): 3445, 1651, 1538, 1447, 1373, 1255, 1183, 835, 740; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₁₈H₁₅N₂O₄ 323.1032; Found 323.1035;

3-(4-chlorophenyl)-1-nitro-2,4-dihydrochromeno[3,4-c]pyrrole (5e)

Isolation by column chromatography (PE/EA= 15/1 v/v) Yellow solid; 40.4 mg, 62% yield; mp: 232-233 °C; ¹H NMR (400 MHz, DMSO- d_6) (δ , ppm): 13.40 (s, 1H), 8.44 (d, J = 8.0 Hz, 1H), 7.65–7.58 (m, 4H), 7.36–7.31 (m, 1H), 7.15–7.10 (m, 1H), 7.06 (d, J = 8.0 Hz, 1H), 5.19 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6) (δ , ppm): 155.2, 134.5, 133.6, 131.2, 131.1, 130.5, 129.5, 128.2, 128.1, 122.5, 118.5, 117.9, 117.8, 117.6, 62.8. IR (KBr, v, cm⁻¹): 3445, 1634, 1473, 1319, 1275, 1099, 746; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₂ClN₂O₃ 327.0356; Found 327.0354;

8-methyl-1-nitro-3-phenyl-2,4-dihydrochromeno[3,4-c]pyrrole (5f)

Isolation by column chromatography (PE/EA= 15/1 v/v) Yellow solid; 36.7 mg, 60% yield; mp: 232-233 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.58 (s, 1H), 8.40 (s, 1H), 7.57–7.45 (m, 3H), 7.41 (d, *J* = 7.6 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 5.16 (s, 2H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 152.9, 132.7, 131.7, 130.8, 129.8, 129.7, 129.0, 128.7, 127.1, 119.2, 117.5, 117.2, 117.1, 62.6, 21.1. IR (KBr, *v*, cm⁻¹): 3445, 1634, 1465, 1377, 1275, 1152, 1018, 815, 749; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₁₈H₁₅N₂O₃ 307.1083; Found 307.1079;

8-chloro-1-nitro-3-phenyl-2,4-dihydrochromeno[3,4-c]pyrrole (5f)

Isolation by column chromatography (PE/EA= 15/1 v/v) Yellow solid; 43.0 mg, 66% yield; mp: 229-230 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 9.63 (s, 1H), 8.62 (s, 1H), 7.66–7.44 (m, 4H), 7.41 (d, J = 7.6 Hz, 2H), 6.98 (d, J = 8.8 Hz, 1H), 5.21 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6) (δ , ppm): 153.8, 133.4, 132.4, 130.4, 129.8, 129.4, 128.9, 128.7, 127.4, 126.0, 120.0, 119.6, 117.0, 116.4, 63.1. IR (KBr, v, cm⁻¹): 3459, 1634, 1456, 1376, 1274, 1116, 888, 748; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₂ClN₂O₃ 327.0356; Found 327.0357;

General Procedure for the Synthesis of Product 7

To a pressure tube were added 1,7-diyne **6a** (0.2 mmol, 49.2 mg), *tert*-butyl nitrite (**2**, 0.7 mmol, 72.1 mg, 3.5 equiv), $Co(NO_3)_2 \cdot 6H_2O(0.2 \text{ mmol}, 58.2 \text{ mg}, 1.0 \text{ equiv})$ and THF (3 mL, about 0.46 mmol H₂O in 3 mL). Then the mixture was stirred in oil bath at 55 °C for 8 h until complete consumption of starting material as monitored by TLC. After the reaction was finished, the reaction mixture was cooled to room temperature, diluted in ethyl acetate, and washed with H₂O. The aqueous phase was re-extracted with ethyl acetate. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (eluent, petroleum ether/ethyl acetate = 10:1) to afford the desired product **7a** as yellow solid in 60% yield.

1-nitro-3-phenyl-4,5-dihydro-2H-benzo[e]isoindol-5-ol (7a)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 36.7 mg, 60% yield; mp: 184-185 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm): 13.07 (s, 1H), 8.36–8.30 (m, 1H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.60–7.52 (m, 3H), 7.50–7.46 (m, 1H), 7.42–7.37 (m, 2H), 5.45 (d, *J* = 4.4 Hz, 1H), 4.73–4.66 (m, 1H), 2.97–2.90 (m, 1H), 2.78–2.71 (m, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm): 141.5, 134.5, 133.6, 129.9, 129.3, 129.1, 128.9, 127.7, 127.7, 127.5, 126.4, 122.2, 119.4, 67.9, 30.3. IR (KBr, *v*, cm⁻¹): 3418, 3266, 1473, 1398, 1245, 1161, 1052, 845, 775; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₁₈H₁₅N₂O₃ 307.1083; Found 307.1081;

1-nitro-3-(p-tolyl)-4,5-dihydro-2H-benzo[e]isoindol-5-ol (7b)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 39.7 mg, 62% yield; mp: 215-216 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm): 13.00 (s, 1H), 8.36–8.31 (m, 1H), 7.58 (d, *J* = 8.0 Hz, 3H), 7.42–7.37 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 5.44 (d, *J* = 4.8 Hz, 1H), 4.71–4.66 (m, 1H), 2.96–2.89 (m, 1H), 2.77–2.69 (m, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm): 141.6, 139.1, 134.9, 133.5, 129.8, 129.0, 128.9, 127.8, 127.8, 127.5, 127.1, 126.5, 122.5, 119.3, 68.0, 30.4, 21.5. IR (KBr, *v*, cm⁻¹): 3445, 1634, 1538, 1447, 1359, 1255, 1183, 835, 740; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₁₉H₁₇N₂O₃ 321.1239; Found 321.1239;

1-nitro-3-(m-tolyl)-4,5-dihydro-2H-benzo[e]isoindol-5-ol (7c)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 38.4 mg, 60% yield; mp: 202-203 °C; ¹H NMR (400 MHz, DMSO- d_6) (δ , ppm): 13.00 (s, 1H), 8.38–8.29 (m, 1H), 7.61–7.56 (m, 1H), 7.53 (s, 1H), 7.49–7.42 (m, 2H), 7.41–7.37 (m, 2H), 7.29 (d, J = 7.2 Hz, 1H), 5.44 (s, 1H), 4.73–4.65 (m, 1H), 2.98–2.90 (m, 1H), 2.79–2.70 (m, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) (δ , ppm): 141.5, 138.4, 134.7, 133.5, 130.0, 129.8, 129.4, 129.0, 128.9, 127.7, 127.7, 127.5, 126.4, 126.0, 122.2, 119.4, 67.9, 30.3, 21.5. IR (KBr, v, cm⁻¹): 3445, 1634, 1538, 1445, 1360, 1275, 1183, 835, 749; HRMS (ESI -TOF) m/z: [M+Na]⁺ Calcd for C₁₉H₁₆N₂O₃Na 343.1059; Found 343.1056;

3-(4-chlorophenyl)-1-nitro-4,5-dihydro-2H-benzo[e]isoindol-5-ol (7d)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 40.8 mg, 60% yield; mp: 203-204 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm): 13.13 (s, 1H), 8.36–8.28 (m, 1H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.64–7.55 (m, 3H), 7.43–7.36 (m, 2H), 5.45 (d, *J* = 4.8 Hz, 1H), 4.74–4.65 (m, 1H), 2.97–2.87 (m, 1H), 2.79–2.69 (m, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm): 141.5, 134.0, 133.7, 133.1, 130.6, 129.2, 128.9, 128.7, 127.7, 127.6, 127.5, 126.4, 122.1, 119.7, 67.9, 30.2. IR (KBr, *v*, cm⁻¹): 3445, 1634, 1474, 1361, 1275, 1092, 832, 749; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₁₈H₁₃ClN₂O₃ 341.0693; Found 341.0692;

3-(3-chlorophenyl)-1-nitro-4,5-dihydro-2H-benzo[e]isoindol-5-ol (7e)

Isolation by column chromatography (PE/EA= 10/1 v/v) Yellow solid; 39.4 mg, 58% yield; mp: 193-194 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm): 13.17 (s, 1H), 8.34–8.28 (m, 1H), 7.80 (s, 1H), 7.64–7.53 (m, 4H), 7.43–7.37 (m, 2H), 5.46 (d, *J* = 4.4 Hz, 1H), 4.73–4.67 (m, 1H), 2.97–2.90 (m, 1H), 2.80–2.72 (m, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm): 141.4, 133.9, 133.8, 132.6, 131.9, 131.0, 129.1, 129.0, 128.4, 127.6, 127.6, 127.5, 126.4, 122.0, 119.9, 67.8, 30.2. IR (KBr, *v*, cm⁻¹): 3440, 1634, 1458, 1390, 1275, 1202, 1025, 860, 749; HRMS (ESI -TOF) m/z: [M+H]⁺ Calcd for C₁₈H₁₄ClN₂O₃ 341.0693; Found 341.0694;

General Procedure for Scale-Up Experiment of 3a

To an 100-mL oven-dried flask under Ar conditions, 1,7-diyne (**1a**, 4 mmol, 1.54 g, 1 equiv), *t*BuONO(**2**, 14 mmol, 1.24 g, 3.5 equiv), H₂O (7.8 mmol, 0.14 g, 0.46 equiv) and DMSO (50 mL) were successively added. The resulting mixture was stirring in oil bath at 100 °C for 5 h. After the reaction was complete (by TLC), the reaction mixture was cooled to room temperature and washed with H₂O (80 ml) and extracted with ethyl acetate (3 ×50 mL). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel (eluent, petroleum ether/ethyl acetate = 10:1 v/v) to afford the desired product **3a** as yellow solid in 70% yield.

General Procedure for the Synthesis of Product 8

A suspension of **3a** (0.2 mmol, 89 mg, 1 equiv) in concentrated HCl (378 μ L, 4.56 mmol) and methanol (2.0 mL) was placed in an ambient water bath. Zinc dust (261.6 mg, 4.0 mmol) was carefully added with vigorous stirring over 1 minute, and the mixture was stirred for 10 minutes. The reaction was then quenched with sat. NaHCO₃ (30 mL) and extracted with ethyl acetate (3 x 15 mL). The combined organic layers were washed with brine, dried over anhydrous

 Na_2SO_4 and concentrated. The residue was purified by column chromatography (eluent, petroleum ether/ethyl acetate = 5:1) on silica gel to afford **8** (77.2 mg, 93%).

3-phenyl-5-tosyl-4,5-dihydro-2H-pyrrolo[3,4-c]quinolin-1-amine (8)

Blue solid; 77.2 mg, 93% yield; mp: 186-187 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm): 10.06 (s, 1H), 7.47–7.41 (m, 3H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.27–7.20 (m, 3H), 7.19–7.14 (m, 1H), 7.06–7.02 (m, 1H), 6.91 (d, *J* = 8.0 Hz, 2H), 6.75 (d, *J* = 8.0 Hz, 2H), 4.79 (s, 2H), 4.62 (s, 2H), 2.26 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm): 143.2, 137.4, 134.8, 133.1, 132.3, 131.2, 129.3, 128.4, 128.2, 127.7, 126.7, 124.7, 124.5, 122.9, 122.8, 117.2, 112.2, 98.1, 44.7, 21.4. IR (KBr, *v*, cm⁻¹): 3428, 1624, 1508, 1338, 1265, 1157, 1030, 809, 757; HRMS (ESI -TOF) m/z: [M-H]⁻ Calcd for C₂₄H₂₀N₃O₂S 414.1276; Found 414.1250;

¹H NMR Spectrum of Compound 1f

¹³C NMR Spectrum of Compound 1f

¹H NMR Spectrum of Compound 1g

¹³C NMR Spectrum of Compound 1g

¹H NMR Spectrum of Compound 1k

¹³C NMR Spectrum of Compound 1k

¹H NMR Spectrum of Compound 1m

¹³C NMR Spectrum of Compound 1m

¹H NMR Spectrum of Compound 10

¹³C NMR Spectrum of Compound 10

¹H NMR Spectrum of Compound 1p

¹³C NMR Spectrum of Compound 1p

400 MHz, CDCb

¹H NMR Spectrum of Compound 1r

¹³C NMR Spectrum of Compound 1r

400 MHz, CDCI₃

¹H NMR Spectrum of Compound 1t

¹³C NMR Spectrum of Compound 1t

¹H NMR Spectrum of Compound 1v

¹³C NMR Spectrum of Compound 1v

¹H NMR Spectrum of Compound 1w

¹³C NMR Spectrum of Compound 1w

¹H NMR Spectrum of Compound 1x

¹³C NMR Spectrum of Compound 1x

¹H NMR Spectrum of Compound 1y

¹³C NMR Spectrum of Compound 1y

¹H NMR Spectrum of Compound 1z

¹³C NMR Spectrum of Compound 1z

¹H NMR Spectrum of Compound 1aa

¹³C NMR Spectrum of Compound 1aa

¹H NMR Spectrum of Compound 1bb

¹³C NMR Spectrum of Compound 1bb

7.265 7.265 7.265 7.265 7.255 7.373 7.373 7.373 7.373 7.373 7.375 7.375 7.375 7.375 7.375 7.375 7.375 7.375 7.375 7.375 7.375 7.375 7.272 7.272 7.272 7.272 7.272 7.272 7.272	~5.288 ~5.245	~4.383 ~4.339	3.266	1.273 1.262 1.262 1.254 1.254 1.233 1.233 1.222 1.222 1.222 1.223 1.222 1.223 1.223 1.261 1.077 1.050	L0.691 L0.682 L0.671 L0.635 L0.635 L0.625 L0.625
---	------------------	------------------	-------	---	--

400 MHz, CDCl₃

¹H NMR Spectrum of Compound 1cc

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
--	--

100 MHz, CDCl₃

¹³C NMR Spectrum of Compound 1cc

¹H NMR Spectrum of Compound 1dd

¹³C NMR Spectrum of Compound 1dd

¹H NMR Spectrum of Compound 1ee

¹³C NMR Spectrum of Compound 1ee

¹H NMR Spectrum of Compound 1ff

¹³C NMR Spectrum of Compound 1ff

¹H NMR Spectrum of Compound 1gg

¹³C NMR Spectrum of Compound 1gg

¹H NMR Spectrum of Compound 3a

¹H NMR Spectrum of Compound 3a

¹H NMR Spectrum of Compound 3b

¹³C NMR Spectrum of Compound 3b

¹H NMR Spectrum of Compound 3c

¹³C NMR Spectrum of Compound 3c

¹H NMR Spectrum of Compound 3d

¹³C NMR Spectrum of Compound 3d

¹H NMR Spectrum of Compound 3e

¹³C NMR Spectrum of Compound 3e

¹H NMR Spectrum of Compound 3f

¹³C NMR Spectrum of Compound 3f

¹H NMR Spectrum of Compound 3g

¹³C NMR Spectrum of Compound 3g

¹H NMR Spectrum of Compound 3h

¹³C NMR Spectrum of Compound 3h

¹H NMR Spectrum of Compound 3i

¹³C NMR Spectrum of Compound 3i

¹H NMR Spectrum of Compound 3j

¹³C NMR Spectrum of Compound 3j

¹H NMR Spectrum of Compound 3k

¹³C NMR Spectrum of Compound 3k

¹H NMR Spectrum of Compound 31

¹³C NMR Spectrum of Compound 31

¹H NMR Spectrum of Compound 3m

¹³C NMR Spectrum of Compound 3m

¹H NMR Spectrum of Compound 3p

¹³C NMR Spectrum of Compound 3p

¹H NMR Spectrum of Compound 3q

¹³C NMR Spectrum of Compound 3q

¹H NMR Spectrum of Compound 3r

¹³C NMR Spectrum of Compound 3r

¹H NMR Spectrum of Compound 3s

¹³C NMR Spectrum of Compound 3s

¹H NMR Spectrum of Compound 3t

¹³C NMR Spectrum of Compound 3t

¹H NMR Spectrum of Compound 3u

¹³C NMR Spectrum of Compound 3u

¹H NMR Spectrum of Compound 3v

¹³C NMR Spectrum of Compound 3v

¹H NMR Spectrum of Compound 3w

¹³C NMR Spectrum of Compound 3w

¹H NMR Spectrum of Compound 3x

¹³C NMR Spectrum of Compound 3x

¹H NMR Spectrum of Compound 3y

¹³C NMR Spectrum of Compound 3y

¹H NMR Spectrum of Compound 3z

¹³C NMR Spectrum of Compound 3z

¹H NMR Spectrum of Compound 3aa

¹³C NMR Spectrum of Compound 3aa

¹H NMR Spectrum of Compound 3bb

¹³C NMR Spectrum of Compound 3bb

¹H NMR Spectrum of Compound 3cc

¹³C NMR Spectrum of Compound 3cc

¹H NMR Spectrum of Compound 3dd

¹³C NMR Spectrum of Compound 3dd

¹H NMR Spectrum of Compound 3ee

¹³C NMR Spectrum of Compound 3ee

¹H NMR Spectrum of Compound 3ff

¹³C NMR Spectrum of Compound 3ff

¹H NMR Spectrum of Compound 5a

¹³C NMR Spectrum of Compound 5a

¹H NMR Spectrum of Compound 5b

¹³C NMR Spectrum of Compound 5b

¹H NMR Spectrum of Compound 5c

¹³C NMR Spectrum of Compound 5c

¹H NMR Spectrum of Compound 5d

¹³C NMR Spectrum of Compound 5d

¹H NMR Spectrum of Compound 5e

¹³C NMR Spectrum of Compound 5e

¹H NMR Spectrum of Compound 5f

¹³C NMR Spectrum of Compound 5f

¹H NMR Spectrum of Compound 5g

¹³C NMR Spectrum of Compound 5g

¹H NMR Spectrum of Compound 7a

¹³C NMR Spectrum of Compound 7a

¹H NMR Spectrum of Compound 7b

¹³C NMR Spectrum of Compound 7b

¹H NMR Spectrum of Compound 7c

¹³C NMR Spectrum of Compound 7c

¹H NMR Spectrum of Compound 7d

¹³C NMR Spectrum of Compound 7d

¹H NMR Spectrum of Compound 7e

¹³C NMR Spectrum of Compound 7e

¹H NMR Spectrum of Compound 8

¹³C NMR Spectrum of Compound 8