Supporting Information

Transfer hydrogenation of pyridinium and quinolinium species using ethanol as a hydrogen source to access saturated N-heterocycles

Suman Yadav, Dhananjay Chaudhary, Naveen Kumar Maurya, Dharmendra Kumar, Km Ishu, and Malleswara Rao Kuram*

Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute,

Lucknow- 226031, U.P., India

Academy of Scientific & Innovative Research (AcSIR),

Ghaziabad 201002, India

Email: malleswara.kuram@cdri.res.in

TABLE OF CONTENTS

1	General Information	S2
2	Experimental procedures	S3
3	Characterization data of starting material	S8
4	Characterization data of isolated products	S13
5	Gram scale synthesis	S34
6	Control experiments	S33
7	Formation of Ir-H species	S36
8	Reference	S37
9	NMR Spectra	S40

1. General Information

Unless otherwise noted, all the reactions were performed using oven-dried schlenk tubes under nitrogen. The reactions were monitored by Merck silica gel 60 F_{254} precoated plates (0.25 mm) visualizing under UV light (254 nm) or I₂ staining. Temperature mentioned for any reaction is corresponding to the oil bath temperature. Column chromatography was performed using silica gel 60-120 Å or 100-200 Å mesh of Merck Company.

All the commercial reagents and anhydrous solvents were purchased from Sigma- Aldrich, Alfa Aesar, Merck, Spectrochem, Avra Synthesis Pvt. Ltd. and directly used as received without any further purification. Pentamethylcyclopentadienyl iridium dichloride dimer ([IrCp*Cl₂]₂) catalyst was purchased from TCI. 7-Methylquinoline was purchased from TCI that contain 25% 5-methylquinoline at maximum. 3-Ethylquinoline,¹ 3-Phenylquinoline,² 6-Phenylquinoline,³ and 6-ethylester quinoline⁴ were prepared according to literature procedures.

Analytical Methods

¹H, ¹³C and ¹⁹F nuclear magnetic resonance spectra were recorded on Bruker Advance III 400 MHz spectrometer at 25 °C. NMRs of the products were measured in CDCl₃. The chemical shifts in ¹H NMR and ¹³C{1H} NMR spectra are reported in parts per million (ppm) and are referenced to the residual solvent signal as the internal standard; ¹H NMR spectra (CDCl₃ δ 7.26 ppm) and ¹³C (CDCl₃ δ 77.16). The coupling constant (J) was reported in Hertz (Hz). Splitting patterns are denoted as "s" for singlet; "d" for doublet; "t" for triplet; "q" for quartet; "sext" for sextet; "sept" for septet; "m"for multiplet, "br" for broad; "dt" for doublet of triplets; "td" for triplet of doublets. ESI-HRMS were recorded on AGILENT 6520 Q-TOF spectrometer. IR spectra were recorded with Agilent Cary 630 FTIR Spectrometer.

2. Experimental Procedures

(a) General procedure for the synthesis of quinoline *N*-oxides:^{5a-d}

To a solution of the corresponding quinoline (0.5 mmol) in DCM (5 mL) was added m-CPBA (1.5 equiv) at 0 °C. The reaction mixture was allowed to stir at room temperature for 16-24 h. The reaction mixture was diluted with DCM and washed with NaHCO₃ followed by brine solution. The combined organic part was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel with 80% ethyl acetate in hexane to 100% ethyl acetate as the eluent. Pure quinoline *N*-oxides were obtained with 70–90% yields.

(b) General procedure for the synthesis of pyridinium and quinolinium salts:^{6a-h}

A mixture of the corresponding quinoline/pyridines (1.0 equiv) and benzyl bromides (2.0 equiv) in acetone/CH₃CN/toluene was stirred at reflux for 24-30 h. The solvent was removed under reduced pressure. Resulting precipitate was washed with diethyl ether and dried under vacuum to give the desired pyridinium and quinolinium salts.

Acetone was used as a solvent for 3b-3d, 3f, 3h-3l, 3n-3p, 3r, 3s, 5e, and 5f-5h.

Acetonitrile was used as a solvent for 3m, 3q, 5a-5d, 5i, and 5j.

Toluene was used as a solvent for **3e** and **3g**.

(c) Substrates employed in the reaction:

S4

Quinolinium Salts:

(e) General procedure for the transfer hydrogenation of quinolines N-oxides (Condition A):

To an oven dried Schlenk tube, was charged with quinoline N-oxide (1) (0.5 mmol), $[IrCp*Cl_2]_2$ (2.0 mol %), Ligand (4.0 mol %) and Cs₂CO₃ (1.0 equiv.), and exchanged with nitrogen and vacuum three times. Then ethanol (3.6 mL) and H₂O (10 equiv.) was added in the reaction tube under N₂ atm. The reaction mixture was stirred at 90 °C for 20-24 h. Upon completion, the reaction mixture was cooled, diluted with DCM, filtered through Celite and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (1-10% hexane/ethyl acetate as eluent) to yield the corresponding product.

(f) General procedure for the transfer hydrogenation of pyridinium and quinolinium salts (Condition B):

To an oven dried Schlenk tube, was charged with N-heteroarenium Salts (**3** or **5**) (0.5 mmol), $[IrCp*Cl_2]_2$ (2 mol %), Ligand (4 mol %), KI (3.0 equiv) and DABCO (1.0 equiv.), and exchanged with nitrogen and vacuum three times. After adding ethanol (5-6 mL), the reaction mixture was stirred at 90 °C for 20-24 h. Upon completion, the reaction mixture was cooled, diluted with DCM, filtered through Celite and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (1-10% hexane/ethyl acetate as eluent) to yield the corresponding product.

(g) Optimization of the reaction conditions with quinoline N-oxide:

^aReaction conditions: **1a** (0.068 mmol), $[IrCp*Cl_2]_2$ (2 mol %), **L** (4 mol %), Cs_2CO_3 (1 equiv.), H_2O (10 equiv.), ethanol (1 mL) at 90 °C for 20 h under N₂. ¹HNMR yield using 1,3,5-trimethoxybenzene as internal standard. n.d. = not detected. ^bIsolated yield.

(h) Optimization of the reaction conditions with pyridinium salt:

Entry	Deviation from the standard conditions	Yield (%) of 4c
1	None	78 ^b
2	Without base	n.d.
3	Without ligand	33
4	With L5 instead of L1	62
5	With L6 instead of L1	64%
6	With CyJohnPhos instead of L1	n.d.
7	With 1,10-phen instead of L1	n.d.
8	With PPh_3 instead of L1	n.d.
9	MeOH instead of ethanol	75
10	[Ir(COD)Cl ₂] ₂ instead of [IrCp*Cl ₂] ₂ -catalyst	n.d.
11	Pyridine N-oxide instead of pyridinium salt	n.d.
13	70 °C	Trace
14	KI (1.0 equiv)	60
15	KI (2.0 equiv)	64

^aReaction conditions: **3c** (0.036 mmol), [IrCp*Cl₂]₂ (2.0 mol %), **L1** (4.0 mol %), DABCO (1.0 equiv.), KI (3.0 equiv.), ethanol (1 mL) at 90 °C for 24 h under N₂.(b) isolated yield.

3. Characterization data of Starting material

3-ethylquinoline 1-oxide (1I)

^O The representative general procedure **2(a)** was followed, using 3-Ethylquinoline (250 mg, 1.6 mmol) for 24 h. Purification by column chromatography (eluted with 90% EtOAc in hexane) furnished **11** (236 mg, 85% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃): δ 8.60 (d, J = 8.7 Hz, 1H), 8.39 (d, J = 0.9 Hz, 1H), 7.71 (d, J = 8.2 Hz, 1H), 7.62–7.59 (m, 1H), 7.53–7.50 (m, 1H), 7.47 (s, 1H), 2.67 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ139.8, 137.4, 136.6, 130.3, 129.5, 128.7, 127.6, 124.6, 119.5, 26.2, 14.7.

HRMS (ESI): Exact mass calculated for C₁₁H₁₁NO [M+H]⁺: 174.0924, found: 174.0917.

1-benzyl-3-methoxypyridin-1-ium bromide (3c)

The representative general procedure **2(b)** was followed, using 3-methoxy pyridine (300 mg, 2.7 mmol) reflux for 24 h to give **3c** (750 mg, 99%) as a yellow solid.

¹**H NMR (400 MHz, DMSO-d₆):** δ 9.31 (br, 1H), 8.91–8.89 (m, 1H), 8.27 (d, J = 8.7 Hz, 1H), 8.12–8.08 (m, 1H), 7.63 (br, 2H), 7.42 (br, 2H), 5.93 (br, 2H), 4.02 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆): δ158.6, 137.5, 134.9, 133.2, 131.2, 129.8, 129.6, 129.3, 129.2, 63.5, 58.1.

Melting point: 143-145 °C;

HRMS (ESI): Exact mass calculated for $C_{13}H_{14}NO [M]^+$: 200.1070, found: 200.1073.

1-benzyl-5-ethyl-2-methylpyridin-1-ium bromide (3d)

The representative general procedure 2(b) was followed, using 5-ethyl-2-methylpyridine (300 mg, 2.5 mmol) reflux for 24 h to give **3d** (600 mg, 82%) as a white solid.

¹**H** NMR (400 MHz, D_2O): δ 8.59 (s, 1H), 8.26 (d, J = 8.2 Hz, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.40–7.39 (br, 3H), 7.18–7.16 (m, 2H), 5.72 (s, 2H), 2.76 (q, J = 7.6 Hz, 2H), 2.65 (s, 3H), 1.21 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, DMSO-d₆): δ153.4, 145.9, 145.5, 142.4, 133.7, 130.4, 129.7, 129.2, 127.8, 60.7, 25.2, 19.9, 14.8.

Melting point: 170-172 °C;

HRMS (ESI): Exact mass calculated for C₁₅H₁₈N [M]⁺: 212.1434, found: 212.1442.

1-benzyl-2,6-dimethylpyridin-1-ium bromide (3f)

The representative general procedure 2(b) was followed, using 2,6dimethylpyridine (300 mg, 2.8 mmol) reflux for 24 h to give **3f** (470 mg, 60%) as a sticky solid.

¹**H NMR (400 MHz, DMSO-d₆):** δ 8.49 (t, J = 7.9 Hz, 1H), 8.02 (d, J = 7.9 Hz, 2H), 7.45–7.38 (m, 3H), 7.05 (d, J = 6.9 Hz, 2H), 5.92 (s, 2H), 2.76 (s, 6H).

¹³C NMR (100 MHz, DMSO-d₆): δ156.7, 145.7, 132.8, 129.8, 128.7, 128.5, 126.0, 55.9, 21.5.

HRMS (ESI): Exact mass calculated for C₁₄H₁₆N [M]⁺: 198.1277, found: 198.1281.

2,3-dimethyl-1-(4-nitrobenzyl)pyridin-1-ium bromide (3g)

 O_2N The representative general procedure **2(b)** was followed, using 2,3dimethylpyridine (250 mg, 2.3 mmol) reflux for 24 h to give **3g** (550 mg, 74%) as a white solid.

¹**H** NMR (400 MHz, D_2O): δ 8.68 (br, 1H), 8.33 (d, J = 6.9 Hz, 1H), 8.21 (br, 2H), 7.83–7.79 (m, 1H), 7.31 (d, J = 8.3 Hz, 2H), 5.96 (s, 2H), 2.59 (s, 3H), 2.48 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆): δ 155.6, 147.9, 146.8, 144.7, 141.3, 139.8, 128.9, 125.6, 124.6, 60.6, 19.8, 17.6.

Melting point: 190-192 °C;

HRMS (ESI): Exact mass calculated for $C_{14}H_{15}N_2O_2$ [M]⁺: 243.1128, found: 243.1138.

2-methyl-1-(4-nitrobenzyl)pyridin-1-ium bromide (3h)

 O_2N The representative general procedure **2(b)** was followed, using 2methylpyridine (200 mg, 2.1 mmol) reflux for 24 h to give **3h** (600 mg, 92%) as a white solid.

¹**H NMR (400 MHz, D₂O):** δ 8.83(br, 1H), 8.47-8.44 (m, 1H), 8.21-8.18 (m, 2H), 7.97–7.94 (m, 2H), 7.37 (d, J = 8.1 Hz, 2H), 5.94 (s, 2H), 2.71 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆): δ 156.4, 148.0, 146.9, 146.7, 140.9, 130.9, 129.3, 126.6, 124.7, 59.9, 20.5.

Melting point: 205-207 °C;

HRMS (ESI): Exact mass calculated for C₁₃H₁₃N₂O₂ [M]⁺: 229.0972, found: 229.0984.

4-methyl-1-(4-nitrobenzyl)pyridin-1-ium bromide (3i)

 O_2N The representative general procedure **2(b)** was followed, using 4methylpyridine (250 mg, 2.7 mmol) reflux for 24 h to give **3i** (730 mg, 87%) as a white solid.

¹**H NMR (400 MHz, D₂O):** δ 8.68 (d, J = 6.6 Hz, 2H), 8.22 (d, J = 8.8 Hz, 2H), 7.86 (d, J = 6.4 Hz, 2H), 7.55 (d, J = 8.7 Hz, 2H), 5.82 (s, 2H), 2.60 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆): δ161.4, 148.3, 144.5, 141.9, 130.4, 129.3, 124.6, 61.6, 22.0.

Melting point: 178-180 °C;

HRMS (ESI): Exact mass calculated for C₁₃H₁₃N₂O₂ [M]⁺: 229.0972, found: 229.0986.

3-methoxy-1-(4-nitrobenzyl)pyridin-1-ium bromide (3k)

The representative general procedure 2(b) was followed, using 3- methoxypyridine (200 mg, 1.8 mmol) and 4-nitrobenzyl bromide (1.2 equiv) reflux for 24 h to give 3k (510 mg, 87%) as a yellow solid.

¹**H** NMR (400 MHz, D_2O): δ 8.60 (br, 1H), 8.50 (d, J = 5.9 Hz, 1H), 8.23 (d, J = 8.7 Hz, 2H), 8.12 (dd, J = 8.9 Hz, 2.3 Hz, 1H), 7.97–7.94 (m, 1H), 7.57 (d, J = 8.7 Hz, 2H), 5.87 (s, 2H), 3.96 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆): δ 158.8, 148.3, 141.7, 137.9, 133.6, 131.6, 130.5, 129.5, 124.5, 62.5, 58.1.

Melting point: 188-190 °C;

HRMS (ESI): Exact mass calculated for C₁₃H₁₃N₂O₃ [M]⁺: 245.0921, found: 245.0928.

3-methoxy-1-(4-methylbenzyl)pyridin-1-ium bromide (3l)

The representative general procedure **2(b)** was followed, using 3methoxypyridine (200 mg, 1.8 mmol) and 4-methylbenzyl bromide (1.2 equiv) reflux for 24 h to give **31** (470 mg, 89%) as a sticky solid.

¹**H NMR (400 MHz, D₂O):** δ 8.49 (s, 1H), 8.42 (d, *J* = 5.8 Hz, 1H), 8.02 (d, *J* = 8.9 Hz, 1H), 7.89–7.81 (m, 1H), 7.31–7.29 (m, 2H), 7.25 (br, 2H), 5.64 (s, 2H), 3.93 (s, 3H), 2.27 (s, 3H).

¹³**C NMR** (**100 MHz**, **D**₂**O**): *δ* 158.8, 140.5, 136.4, 131.9, 130.5, 130.1, 129.7, 128.9, 128.6, 64.6, 57.2, 20.3.

HRMS (ESI): Exact mass calculated for C₁₄H₁₆NO [M]⁺: 214.1226, found: 214.1229.

1-(4-nitrobenzyl)-3-phenylpyridin-1-ium bromide (3p)

 O_2N° The representative general procedure **2(b)** was followed, using 3-phenylpyridine (250 mg, 1.6 mmol) and 4-nitrobenzyl bromide (1.2 equiv) reflux for 24 h to give **3p** (567 mg, 95%) as a white solid.

¹**H NMR (400 MHz, DMSO-d₆):** δ 9.79 (s, 1H), 9.21 (d, *J* = 5.3 Hz, 1H), 9.02–8.99 (m, 1H), 8.31–8.28 (m, 3H), 7.96–7.88 (m, 4H), 7.66–7.58 (m, 3H), 6.14 (s, 2H).

¹³C NMR (100 MHz, DMSO-d₆): δ 148.4, 143.9, 143.8, 143.7, 141.7, 140.6, 133.5, 130.8, 130.6, 129.9, 129.1, 128.1, 124.6, 62.7.

Melting point: 216-218 °C;

HRMS (ESI): Exact mass calculated for C₁₈H₁₅N₂O₂ [M]⁺: 291.1128, found: 291.1137.

3-formyl-1-(4-nitrobenzyl)pyridin-1-ium bromide (3q)

 O_2N The representative general procedure **2(b)** was followed, using nicotinaldehyde (250 mg, 2.3 mmol) and 4-nitrobenzyl bromide (1.2 equiv) reflux for 24 h to give **3q** (557 mg, 75%) as a white solid.

¹**H NMR (400 MHz, DMSO-d₆):** δ 10.17 (s, 1H), 9.82 (s, 1H), 9.45 (d, *J* = 5.9 Hz, 1H), 9.07 (dt, *J* = 8.0 Hz, 1.3 Hz, 1H), 8.41 (dd, *J* = 6.3 Hz, 1H), 8.31 (d, *J* = 8.8 Hz, 2H), 7.85 (d, *J* = 8.7 Hz, 2H), 6.16 (s, 2H).

¹³C NMR (100 MHz, DMSO-d₆): δ189.1, 148.9, 148.5, 147.2, 145.9, 141.2, 135.4, 130.8, 129.6, 124.6, 62.9.

Melting point: 228-230 °C;

HRMS (ESI): Exact mass calculated for C₁₃H₁₁N₂O₃ [M+CH₃OH]⁺: 275.1026, found: 275.1035.

1-(3-bromobenzyl)pyridin-1-ium bromide (3r)

Br The representative general procedure **2(b)** was followed, using pyridine (250 mg, 3.2 mmol) and 3-bromobenzyl bromide (1.2 equiv) reflux for 24 h to give **3r** (947 mg, 90%) as a white solid.

¹**H NMR (400 MHz, DMSO-d₆):** δ9.35–9.29 (br, 2H), 8.66 (t, *J* = 7.7 Hz, 1H), 8.23–8.19 (m, 2H), 7.91–7.89 (m, 1H), 7.63–7.62 (br, 2H), 7.44–7.40 (m, 1H), 5.98 (br, 2H).

¹³C NMR (100 MHz, DMSO-d₆): δ146.6, 145.4, 137.2, 132.7, 132.2, 131.8, 129.0, 128.6, 122.7, 62.4.

Melting point: 102-104 °C;

HRMS (ESI): Exact mass calculated for C₁₂H₁₁BrN [M]⁺: 248.0069, found: 248.0074.

1-benzyl-2-methylquinolin-1-ium bromide (5j)

The representative general procedure **2(b)** was followed, using 2-methylquinoline (750 mg, 5.2 mmol) and benzyl bromide (1.2 equiv) reflux for 24 h to give **5j** (408 mg, 25%) as a white solid.

¹**H** NMR (400 MHz, DMSO-d₆): δ 9.27 (d, J = 8.5 Hz, 1H), 8.48 (d, J = 8.1 Hz, 1H), 8.41 (d, J = 8.9 Hz, 1H), 8.26 (d, J = 8.5 Hz, 1H), 8.18–8.13 (m, 1H), 7.98 (t, J = 7.5 Hz, 1H), 7.40–7.32 (m, 3H), 7.13 (d, J = 6.8 Hz, 2H), 6.35 (s, 2H), 3.09 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆): δ162.2, 147.2, 139.4, 135.9, 133.7, 131.2, 129.7, 128.9, 128.6, 126.3, 126.2, 119.7, 54.9, 23.3.

Melting point: 185-187 °C;

HRMS (ESI): Exact mass calculated for C₁₇H₁₆N [M]⁺: 234.1277, found: 234.1283.

4. Characterization data of isolated products

1,2,3,4-tetrahydroquinoline (2a):⁷

The representative general procedure **A** was followed, using **1a** (73 mg, 0.5 mmol) for 19 h. Purification by column chromatography (eluted with 3% EtOAc in hexane) furnished **2a** (47 mg, 70% yield) as a colourless oil. $R_f 0.51$ (10% EtOAc in hexane).

¹**H NMR (500 MHz, CDCl₃):** δ 6.95–6.92 (m, 2H), 6.58 (t, *J* = 7.9 Hz, 1H), 6.43 (d, *J* = 7.8 Hz, 1H), 3.59 (br s, 1H), 3.27–3.25 (m, 2H), 2.74 (t, *J* = 6.3 Hz, 2H), 1.94–1.89 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ144.9, 129.6, 126.8, 121.5, 116.9, 114.2, 42.0, 27.0, 22.3.

HRMS (ESI): Exact mass calculated for C₉H₁₁N [M+H]⁺: 134.0970, found: 134.0961.

6-methyl-1,2,3,4-tetrahydroquinoline (2b):^{7a}

The representative general procedure **A** was followed, using **1b** (80 mg, 0.5 mmol) for 20 h. Purification by column chromatography (eluted with 3% EtOAc in hexane) furnished **2b** (47 mg, 64% yield) as colourless oil. $R_f 0.51$ (10% EtOAc in hexane).

¹**H NMR (400 MHz, CDCl₃):** δ 6.78–6.76 (m, 2H), 6.40 (d, J = 8.6 Hz, 1H), 3.26–3.24 (m, 2H), 2.72 (t, J = 6.4 Hz, 2H), 2.19 (s, 3H), 1.95–1.89 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ142.4, 130.1, 127.3, 126.3, 121.6, 114.5, 42.2, 26.9, 22.5, 20.4.

HRMS (ESI): Exact mass calculated for C₁₀H₁₃N [M+H]⁺: 148.1126, found: 148.1117.

7-methyl-1,2,3,4-tetrahydroquinoline (2c):^{7a}

The representative general procedure **A** was followed, using **1c** (80 mg, 0.5 mmol) for 20 h. Purification by column chromatography (eluted with 2% EtOAc in hexane) furnished **2c** (62 mg, 84% yield) as Yellow oil. $R_f 0.5$ (10% EtOAc in hexane).

¹**H NMR (300 MHz, CDCl₃):** δ 6.86 (d, J = 7.6 Hz, 1H), 6.46 (dd, J = 7.6, 1.0 Hz, 1H), 6.33 (s, 1H), 3.32–3.29 (m, 2H), 2.75 (t, J = 6.4 Hz, 2H), 2.25 (s, 3H), 1.99–1.91 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 144.6, 136.4, 129.4, 118.6, 117.9, 114.8, 42.0, 26.6, 22.4, 21.1. HRMS (ESI): Exact mass calculated for C₁₀H₁₃N [M+H]⁺: 148.1126, found: 148.1116.

8-methyl-1,2,3,4-tetrahydroquinoline (2d)^{7a}

The representative general procedure **A** was followed, using **1d** (80 mg, 0.5 mmol) for 21 h. Purification by column chromatography (eluted with 3% EtOAc in hexane) furnished **2d** (39 mg, 53% yield) as colourless oil. $R_f 0.51$ (10% EtOAc in hexane).

¹**H NMR (400 MHz, CDCl₃):** δ 6.80–6.75 (m, 2H), 6.47 (t, J = 7.4 Hz, 1H), 3.54 (br s, 1H), 3.29–3.27 (m, 2H), 2.70 (t, J = 6.4 Hz, 2H), 1.99 (s, 3H), 1.89–1.83 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ142.7, 127.9, 127.4, 121.2, 120.9, 116.4, 42.4, 27.3, 22.2, 17.2.

HRMS (ESI): Exact mass calculated for C₁₀H₁₃N [M+H]⁺: 148.1126, found: 148.1118.

ethyl 1,2,3,4-tetrahydroquinoline-6-carboxylate (2e)7g

The representative general procedure **A** was followed, using **1e** (109 mg, 0.5 mmol), $[IrCp*Cl_2]_2$ (5 mol%), **L1** (10 mol%) and Cs₂CO₃ (1.5 equiv.) for 21 h. Purification by column chromatography (eluted with 10% EtOAc in hexane) furnished **2e** (80 mg, 78% yield) as yellow solid. R_f 0.2 (10% EtOAc in hexane).

¹**H NMR (400 MHz, CDCl₃):** δ 7.59–7.56 (m, 2H), 6.31 (d, J = 9.0 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.28–3.26 (m, 2H), 2.69 (t, J = 6.3 Hz, 2H), 1.88–1.82 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 167.1, 148.7, 131.2, 129.0, 119.9, 117.8, 112.6, 60.1, 41.7, 26.9, 21.5, 14.5.

HRMS (ESI): Exact mass calculated for C₁₂H₁₅NO₂ [M+H]⁺: 206.1181, found: 206.1166.

6-phenyl-1,2,3,4-tetrahydroquinoline (2f)^{7f}

The representative general procedure **A** was followed, using **1f** (111 mg, 0.5 mmol) for 19 h. Purification by column chromatography (eluted with 3% EtOAc in hexane) furnished **2f** (51 mg, 49% yield) as colourless oil. $R_f 0.51$ (10% EtOAc in hexane).

¹**H NMR** (**400 MHz, CDCl**₃): *δ*7.44 (d, *J* = 7.4 Hz, 2H), 7.29 (t, *J* = 7.7 Hz, 2H), 7.17–7.13 (m, 3H), 6.44 (d, *J* = 7.9 Hz, 1H), 3.24–3.22 (m, 2H), 2.74 (t, *J* = 6.4 Hz, 2H) 1.91–1.85 (m, 2H).

¹³**C NMR (100MHz, CDCl₃):** *δ* 143.2, 140.4, 128.8, 127.5, 127.1, 125.2, 124.8, 124.5, 120.5, 113.4, 40.9, 26.1, 21.1.

HRMS (ESI): Exact mass calculated for C₁₅H₁₅N [M+H]⁺: 210.1283, found: 210.1274.

6-fluoro-1,2,3,4-tetrahydroquinoline (2g)^{7b}

The representative general procedure **A** was followed, using **1g** (82 mg, 0.5 mmol) for 19 h. Purification by column chromatography (eluted with 5% EtOAc in hexane) furnished **2g** (58 mg, 77% yield) as colourless oil. $R_f 0.41$ (10% EtOAc in hexane).

¹**H NMR (400 MHz, CDCl₃):** δ 6.69–6.65 (m, 2H), 6.41 (dd, J = 9.4 Hz, 4.8 Hz, 1H), 3.27–3.25 (m, 2H), 2.74 (t, J = 6.5 Hz, 2H), 1.95–1.89 (m, 2H).

¹³**C NMR (100 MHz, CDCl₃):** δ 155.5 (J^1 = 233.0 Hz), 140.9, 122.8 (J^3 = 6.6 Hz), 115.6 (J^2 = 21.6 Hz), 114.9 (J^3 = 7.5 Hz), 113.2 (J^2 = 22.0 Hz), 42.1, 27.0, 21.9.

¹⁹**F NMR (376 MHz):** δ –128.4Hz.

HRMS (ESI): Exact mass calculated for C₉H₁₀FN [M+H]⁺: 152.0876, found: 152.0868.

6-chloro-1,2,3,4-tetrahydroquinoline (2h)^{7b}

The representative general procedure **A** was followed, using **1h** (89 mg, 0.5 mmol) for 19 h. Purification by column chromatography (eluted with 3% EtOAc in hexane) furnished **2h** (42 mg, 50% yield) as yellow oil. $R_f 0.51$ (10% EtOAc in hexane).

¹**H NMR (400 MHz, CDCl₃):** δ 6.82–6.79 (m, 2H), 6.30–6.27 (m, 1H), 3.69 (br s, 1H), 3.20–3.17 (m, 2H), 2.63 (t, J = 6.4 Hz, 2H), 1.85–1.79 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 143.2, 129.0, 126.5, 122.8, 121.1, 115.1, 41.8, 26.9, 21.7.

HRMS (ESI): Exact mass calculated for C₉H₁₀ClN [M+H]⁺: 168.0580, found: 168.0576.

6-bromo-1,2,3,4-tetrahydroquinoline (2i)^{7b}

The representative general procedure **A** was followed, using **1i** (111mg, 0.5 mmol) for 19 h. Purification by column chromatography (eluted with 5% EtOAc in hexane) furnished **2i** (65 mg, 62% yield) as yellow oil. $R_f 0.3$ (10% EtOAc in hexane).

¹**H NMR (400 MHz, CDCl₃):** δ 6.97–6.93 (m, 2H), 6.25 (d, J = 8.4 Hz, 1H), 3.21-3.18 (m, 2H), 2.64 (t, J = 6.4 Hz, 2H), 1.86-1.79 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 143.7, 131.9, 129.4, 123.4, 115.5, 108.2, 41.8, 26.8, 21.7.

HRMS (ESI): Exact mass calculated for C₉H₁₀BrN [M+H]⁺: 212.0075, found: 212.0062.

5-bromo-1,2,3,4-tetrahydroquinoline (2j)^{7c}

The representative general procedure **A** was followed, using **1j** (111 mg, 0.5 mmol) for 19 h. Purification by column chromatography (eluted with 3% EtOAc in hexane) furnished **2j** (87 mg, 82% yield) as yellow oil. $R_f 0.51$ (10% EtOAc in hexane).

¹H NMR (500 MHz, CDCl₃): δ 6.85–6.77 (m, 2H), 6.38 (d, J = 7.8 Hz, 1H), 3.25–3.22 (m, 2H), 2.75 (t, J = 6.5 Hz, 2H), 1.96–1.92 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 146.5, 127.6, 125.9, 120.8, 120.7, 113.2, 41.5, 27.7, 22.2.

HRMS (ESI): Exact mass calculated for C₉H₁₀BrN [M+H]⁺: 212.0075, found: 212.0068.

3-methyl-1,2,3,4-tetrahydroquinoline (2k)^{7a}

The representative general procedure **A** was followed, using **1k** (80 mg, 0.5 mmol), Cs_2CO_3 (1.5 equiv), without water at 85 °C for 24 h. Purification by column chromatography (eluted with 3% EtOAc in hexane) furnished **2k** (68 mg, 92% yield) as colourless oil. R_f 0.51 (10% EtOAc in hexane).

¹**H NMR (400 MHz, CDCl₃):** δ 6.97–6.92 (m, 2H), 6.59 (t, *J* = 7.3 Hz, 1H), 6.47 (d, *J* = 7.9 Hz, 1H), 3.27–3.23 (m, 1H), 2.90–2.85 (m, 1H), 2.79–2.74 (m, 1H), 2.42 (dd, *J* = 16.0 Hz, 10.2 Hz, 1H), 2.10–1.98 (m, 1H), 1.03 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ144.3, 129.6, 126.7, 121.1, 116.9, 113.9, 48.9, 35.5, 27.2, 19.1.

HRMS (ESI): Exact mass calculated for C₁₀H₁₃N [M+H]⁺: 148.1126, found: 148.1114.

3-ethyl-1,2,3,4-tetrahydroquinoline (2l)^{7e}

The representative general procedure **A** was followed, using **11** (87 mg, 0.5 mmol),), Cs_2CO_3 (1.5 equiv), without water at 85 °C for 24 h. Purification by column chromatography (eluted with 3% EtOAc in hexane) furnished **21** (65 mg, 81% yield) as colourless oil. R_f 0.51 (10% EtOAc in hexane).

¹**H** NMR (400 MHz, CDCl₃): δ 6.89–6.86 (m, 2H), 6.52 (td, J = 7.3 Hz, 1.0 Hz, 1H), 6.40 (d, J = 7.6 Hz, 1H), 3.27–3.23 (m, 1H), 2.86–2.81 (m, 1H), 2.77–2.71 (m, 1H), 2.35 (dd, J = 16 Hz, 10.2 Hz 1H), 1.80–1.69 (m, 1H), 1.34–1.27 (m, 2H), 0.91 (t, J =7.5 Hz, 3H).

¹³C NMR (125MHz, CDCl₃): δ 144.6, 129.6, 126.7, 121.1, 116.9, 113.9, 47.0, 34.0, 33.4, 26.6, 11.5.

HRMS (ESI): Exact mass calculated for C₁₁H₁₅N [M+H]⁺: 162.1283, found: 162.1275.

3-phenyl-1,2,3,4-tetrahydroquinoline (2m)^{7d}

The representative general procedure **A** was followed, using **1m** (45 mg, 0.2 mmol), Cs_2CO_3 (1.5 equiv), without water at 85 °C for 24 h. Purification by column chromatography (eluted with 5% EtOAc in hexane) furnished **2m** (35 mg, 84% yield) as yellow oil. R_f 0.3 (10% EtOAc in hexane).

¹**H NMR (400 MHz, CDCl₃):** δ 7.28–7.24 (m, 2H), 7.18–7.15 (m, 3H), 6.95–6.92 (m, 2H), 6.57 (td, *J*=7.3, 0.9 Hz, 1H), 6.46 (d, *J* = 7.5 Hz, 1H), 3.93 (br s, 1H), 3.39–3.35 (m, 1H), 3.28-3.22 (m, 1H), 3.10–3.03 (m, 1H), 2.97–2.86 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 144.0, 143.9, 129.6, 128.6, 127.2, 127.0, 126.7, 121.4, 117.1, 114.0, 48.4, 38.7, 34.6.

HRMS (ESI): Exact mass calculated for $C_{15}H_{15}N [M+H]^+$: 210.1283, found: 210.1288.

4-methyl-1,2,3,4-tetrahydroquinoline (2n)^{7a}

The representative general procedure **A** was followed, using **1n** (80 mg, 0.5 mmol), Cs_2CO_3 (1.5 equiv), without water at 85 °C for 24 h. Purification by column chromatography (eluted with 3% EtOAc in hexane) furnished **2n** (28 mg, 38% yield) as colourless oil. R_f 0.51 (10% EtOAc in hexane).

¹**H** NMR (400 MHz, CDCl₃): δ 6.98 (d, J = 7.6 Hz, 1H), 6.90–6.86 (m, 1H), 6.55 (td, J = 7.4 Hz, 1.2 Hz, 1H), 6.39 (dd, J = 7.9 Hz, 1.1 Hz, 1H), 3.28–3.16 (m, 2H), 2.88–2.80 (m, 1H), 1.94–1.87 (m, 1H), 1.64–1.56 (m, 1H), 1.21 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ144.3, 128.4, 126.7, 126.6, 116.9, 114.2, 39.0, 30.2, 29.9, 22.6.

HRMS (ESI): Exact mass calculated for C₁₀H₁₃N [M+H]⁺: 148.1126, found: 148.1117.

2-methyl-1,2,3,4-tetrahydroquinoline (20)7a

The representative general procedure **A** was followed, using **10** (80 mg, 0.5 mmol), Cs_2CO_3 (1.5 equiv), without water at 85 ^{0}C for 24 h. Purification by column chromatography (eluted with 3% EtOAc in hexane) furnished **20** (17 mg, 23% yield) as colourless oil. R_f 0.41 (10% EtOAc in hexane).

¹**H** NMR (400 MHz, CDCl₃): δ 6.89–6.86 (m, 2H), 6.52 (td, J = 7.4 Hz, 1.0 Hz, 1H), 6.40-6.38 (m, 1H), 3.36–3.28 (m, 1H), 3.10 (br s, 1H), 2.79–2.71 (m, 1H), 2.67–2.61 (m, 1H), 1.88–1.82 (m, 1H), 1.56–1.46 (m, 1H), 1.13 (d, J = 6.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 144.7, 129.3, 126.7, 121.2, 117.0, 114.0, 47.2, 30.1, 26.6, 22.6. HRMS (ESI): Exact mass calculated for C₁₀H₁₃N [M+H]⁺: 148.1126, found: 148.1113.

1-benzylpiperidine (4a)^{8a}

The title compound was prepared according to General Procedure **B** using salt **3a** (125 mg, 0.5 mmol) for 24 h. The crude material was purified by column chromatography (95:5 Hexane: EtOAc) to give amine **4a** (70 mg, 79%) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃):** *δ* 7.25–7.19 (m, 4H), 7.18–7.13 (m, 1H), 3.39 (s, 2H), 2.29 (br, 4H), 1.52–1.47 (m, 4H), 1.38–1.31 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 138.5, 129.3, 128.1, 126.9, 63.9, 54.4, 25.9, 24.4.

HRMS (ESI): Exact mass calculated for $C_{12}H_{17}N [M+H]^+$: 176.1439, found: 176.1437.

IR (neat) (cm⁻¹): 2926, 2857, 2798, 1738, 1618, 1455, 1384, 1269, 1110, 1072, 737.

1-benzyl-3-methylpiperidine (4b)^{8b}

The title compound was prepared according to General Procedure **B** using salt **3b** (66 mg, 0.25 mmol), KI (2.0 equiv) for 24h. The crude material was purified by column chromatography (95:5 Hexane: EtOAc) to give amine **4b** (30 mg, 63%) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.24–7.20 (m, 4H), 7.19–7.14 (m, 1H), 3.40 (s, 2H), 2.74–2.69 (m, 2H), 1.78 (td, J = 10.9, 3.7 Hz, 1H), 1.63–1.43 (m, 6H), 0.76 (d, J = 6.3 Hz, 3H).

¹³C NMR (100MHz, CDCl₃): δ 128.7, 119.8, 118.5, 117.3, 53.9, 52.2, 44.3, 23.4, 21.5, 15.9, 10.1.

HRMS (ESI): Exact mass calculated for C13H19N [M+H]⁺ : 190.1596, found: 190.1598.

IR (neat) (cm⁻¹): 2927, 2793, 2757, 1732, 1612, 1452, 1383, 1156, 1117, 1070, 904, 858, 738, 698.

1-benzyl-3-methoxypiperidine (4c)

The title compound was prepared according to General Procedure **B** using salt 3c (80 mg, 0.29 mmol), KI (2.0 equiv) for 24 h. The crude material was purified by column chromatography (93:7 Hexane: EtOAc) to give amine 4c (46 mg, 78%) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃): δ 7.24–7.15 (m, 5H), 3.46 (dd, J = 17.5Hz, 13.1Hz, 2H), 3.25 (s, 3H), 3.23–3.20 (m, 1H), 2.85–2.82 (m, 1H), 2.59–2.54 (m, 1H), 2.00–1.85 (m, 3H), 1.69–1.61 (m, 1H), 1.49–1.39 (m, 1H), 1.21–1.11 (m, 1H).

¹³C NMR (100MHz, CDCl₃): δ138.0, 129.2, 128.1, 126.9, 76.3, 63.3, 57.7, 56.0, 53.4, 29.8, 23.1.

HRMS (ESI): Exact mass calculated for $C_{13}H_{19}NO [M+H]^+$: 206.1545, found: 206.1548.

IR (neat) (cm⁻¹): 2932, 2861, 2803, 1731, 1611, 1452, 1382, 1157, 1101, 740, 699.

1-benzyl-5-ethyl-2-methylpiperidine (4d)

The title compound was prepared according to General Procedure **B** using salt **3d** (146 mg, 0.5 mmol). The crude material was purified by column chromatography (95:5 Hexane: EtOAc) to give amine **4d** (65 mg, 60%) as a colourless oil.

¹**H NMR (500 MHz, CDCl₃):** δ 7.27–7.13 (m, 5H), 3.98 (d, J = 13.6 Hz, 1H), 3.11 (d, J = 13.6 Hz, 1H), 2.73–2.69 (m, 1H), 2.10–2.04 (m, 1H), 1.69–1.65 (m, 1H), 1.60–1.55 (m, 1H), 1.47 (t,

11.1 Hz, 1H), 1.33–1.25 (m, 2H), 1.12 (d, J = 6.1 Hz, 3H), 1.09–0.93 (m, 2H), 0.82–0.75 (m, 1H), 0.72 (t, J = 7.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 139.3, 129.2, 128.0, 126.6, 59.3, 58.2, 56.9, 37.9, 35.0, 31.0, 27.2, 21.0, 11.3.

HRMS (ESI): Exact mass calculated for C₁₅H₂₃N [M+H]⁺ : 218.1909, found: 218.1899.

IR (neat) (cm⁻¹): 2923, 2786, 1612, 1452, 1380, 1114, 1067, 734, 697.

1-benzyloctahydro-1H-cyclopenta[b]pyridine (4e)^{8c}

The title compound was prepared according to General Procedure **B** using salt 3e (145 mg, 0.5 mmol). The crude material was purified by column chromatography (95:5 Hexane: EtOAc) to give amine 4e (26 mg, 24%) as a colourless oil.

¹**H** NMR (500 MHz, CDCl₃): δ 7.25–7.13 (m, 5H), 3.69 (d, J = 13.8 Hz, 1H), 3.21 (d, J = 13.8 Hz, 1H), 2.71 (q, J = 5.1 Hz, 1H), 2.50–2.46 (m, 1H), 2.08–2.03 (m, 1H), 1.92–1.87 (m, 1H), 1.82–1.74 (m, 2H), 1.56–1.41 (m, 6H), 1.38–1.31 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 139.9, 128.8, 128.0, 126.5, 64.0, 59.7, 49.8, 39.1, 28.1, 25.9, 25.5, 23.1, 21.5.

HRMS (ESI): Exact mass calculated for $C_{15}H_{21}N [M+H]^+$: 216.1752, found: 216.1757.

IR (neat) (cm⁻¹): 2923, 2786, 1612, 1452, 1380, 1067, 1114, 734, 697.

1-benzyl-2,6-dimethylpiperidine (4f)^{8a}

The title compound was prepared according to General Procedure **B** using salt **3f** (139 mg, 0.5 mmol). The crude material was purified by column chromatography (95:5 Hexane: EtOAc) to give amine **4f** (51 mg, 50%, 64:36 dr) as an orange oil as an inseparable mixture of diasteroisomers. The major diastereomer was identified as **cis** by comparison with literature data.^{8a}

Data for the major diastereomer:

¹**H NMR (500 MHz, CDCl₃):** δ 7.30 (d, J = 7.7 Hz, 2H), 7.20 (t, J = 7.6 Hz, 2H), 7.13–7.09 (m, 1H), 3.73 (s, 2H), 2.42–2.39 (m, 2H), 1.52–1.45 (m, 3H), 1.24–1.21 (m, 3H), 0.99 (d, J = 6.2 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ 142.1, 128.0, 127.9, 126.0, 57.3, 53.7, 34.6, 24.3, 22.1.

Data for the minor diastereomer:

¹**H NMR (500 MHz, CDCl₃):** δ 7.30 (d, J = 7.7 Hz, 2H), 7.20 (t, J = 7.6 Hz, 2H), 7.13–7.09 (m, 1H), 3.84 (d, J = 14.0 Hz, 1H), 3.33 (d, J = 14.0 Hz, 1H), 2.82 (m, 2H), 1.58–1.53 (m, 3H), 1.29–1.26 (m, 3H), 0.93 (d, J = 6.5 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ 141.5, 128.3, 128.0, 126.3, 53.7, 49.6, 32.8, 19.4, 15.9.

HRMS (ESI): Exact mass calculated for C₁₄H₂₁N [M+H]⁺ : 204.1752, found: 204.1745.

IR (neat) (cm-1): 2925, 2857, 1732, 1606, 1455, 1380, 1311, 1063, 724.

2,3-dimethyl-1-(4-nitrobenzyl)piperidine (4g)^{8a}

The title compound was prepared according to General Procedure **b** using salt 3g (162 mg, 0.5 mmol). The crude material was purified by column chromatography (90:10 Hexane: EtOAc) to give amine 4g (20 mg, 16%) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃): δ 8.08 (d, J = 8.6 Hz, 2H), 7.45 (d, J = 8.3 Hz, 2H), 3.64 (d, J = 14.7 Hz, 1H), 3.52 (d, J = 14.7 Hz, 1H), 2.69–2.65 (m, 1H), 2.42–2.37 (m, 1H), 2.19 (dt, J = 11.4, 4.3 Hz, 1H), 1.87–1.79 (m, 1H), 1.54–1.35 (m, 3H), 1.27–1.17 (m, 1H), 0.83 (d, J = 6.7 Hz, 3H), 0.79 (d, J = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 148.7, 146.9, 128.9, 123.4, 58.6, 58.2, 46.9, 34.9, 27.7, 24.9, 17.8, 6.9.

HRMS (ESI): Exact mass calculated for $C_{14}H_{20}N_2O_2 [M+H]^+$: 249.1603, found: 249.1604.

IR (neat) (cm⁻¹): 2925, 2341, 1605, 1520, 1449, 1382, 1344, 1063, 850, 737, 691.

2-methyl-1-(4-nitrobenzyl)piperidine (4h)

The title compound was prepared according to General Procedure **b** using salt **3h** (155 mg, 0.5 mmol). The crude material was purified by column chromatography (90:10 Hexane: EtOAc) to give amine **4h** (63 mg, 54%) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃): δ 8.08 (d, J = 8.7 Hz, 2H), 7.45 (d, J = 8.7 Hz, 2H), 3.98 (d, J = 14.5 Hz, 1H), 3.2 (d, J = 14.5 Hz, 1H), 2.59 (dt, J = 11.4, 3.8 Hz, 1H), 2.33–2.26 (m, 1H), 1.97–1.90 (m, 1H), 1.63–1.59 (m, 2H), 1.49–1.37 (m, 2H), 1.35–1.24 (m, 2H), 1.06 (d, J = 6.2 Hz, 3H).

¹³CNMR(100MHz,CDCl₃): δ 148.4, 146.9, 129.3, 123.4, 58.0, 56.7, 52.5, 34.6, 25.9, 23.7, 19.3.

HRMS (ESI): Exact mass calculated for $C_{13}H_{18}N_2O_2 [M+H]^+$: 235.1447, found: 235.1451.

IR (neat) (cm⁻¹): 2928, 2856, 2793, 1738, 1602, 1520, 1382, 1345, 1110, 1074, 853, 769, 736.

4-methyl-1-(4-nitrobenzyl)piperidine ((4i)

The title compound was prepared according to General Procedure **b** using salt **3i** (155 mg, 0.5 mmol) for 27 h. The crude material was purified by column chromatography (90:10 Hexane: EtOAc) to give amine **4i** (66 mg, 56%) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 8.08 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 8.8 Hz, 2H), 3.48 (s, 2H), 2.74–2.69 (m, 2H), 1.91 (td, J = 11.5 Hz, 2.4 Hz, 2H), 1.55–1.51 (m, 2H), 1.35–1.24 (m, 1H), 1.22–1.12 (m, 2H), 0.85 (d, J = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 147.1, 147.0, 129.4, 123.4, 62.6, 54.1, 34.3, 30.6, 21.8.

HRMS (ESI): Exact mass calculated for $C_{13}H_{18}N_2O_2 [M+H]^+$: 235.1447, found: 235.1436.

IR (neat) (cm⁻¹): 2923, 2864, 2799, 1602, 1520, 1453, 1382, 1109, 1025, 979, 854, 694.

1-benzyl-4-methylpiperidine (4j)^{8b}

The title compound was prepared according to General Procedure **b** using salt **3j** (132 mg, 0.5 mmol). The crude material was purified by column chromatography (95:5 Hexane: EtOAc) to give amine **4j** (44 mg, 46%) as a colourless oil.

¹**H** NMR (400 MHz, CDCl₃): δ 7.13–7.02 (m, 5H), 3.29 (s, 2H), 2.65 (d, J = 11.6 Hz, 2H), 1.74 (td, J = 11.4 Hz, 1.8 Hz, 2H), 1.41–1.38 (m, 2H), 1.21–1.12 (m, 1H), 1.07 (qd, J = 3.6 Hz, 2H), 0.72 (d, J = 6.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ138.7, 129.3, 128.1, 126.9, 63.6, 53.9, 34.4, 30.8, 21.9.

HRMS (ESI): Exact mass calculated for C₁₃H₁₉N [M+H]⁺: 190.1596, found: 190.1590.

IR (neat) (cm⁻¹): 2923, 2858, 1619, 1384, 1063, 756, 457.

3-methoxy-1-(4-nitrobenzyl)piperidine (4k)

The title compound was prepared according to General Procedure **B** using salt $3\mathbf{k}$ (162 mg, 0.5 mmol) for 27 h. The crude material was purified by column chromatography (90:10 Hexane: EtOAc) to give amine $4\mathbf{k}$ (90 mg, 72%) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 8.7 Hz, 2H), 7.43 (d, J = 8.8 Hz, 2H), 3.53 (s, 2H), 3.26 (s, 3H), 3.24–3.21 (m, 1H), 2.77 (dd, J = 10.6 Hz, 3.4 Hz, 1H), 2.54–2.49 (m, 1H), 2.07–1.95 (m, 2H), 1.90–1.86 (m, 1H), 1.72–1.65 (m, 1H), 1.51–1.40 (m, 1H), 1.25–1.21 (m, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 147.1, 146.5, 129.4, 123.5, 76.1, 62.3, 57.9, 56.1, 53.6, 29.5, 23.0.

HRMS (ESI): Exact mass calculated for C13H18N2O3 [M+H]⁺ : 251.1396, found: 251.1386.

IR (neat) (cm⁻¹): 2933, 2859, 2913, 1737, 1602, 1454, 1381, 1158, 1015, 942, 858, 741, 697, 491.

3-methoxy-1-(4-methylbenzyl)piperidine (4l)

The title compound was prepared according to General Procedure **B** using salt **3l** (147 mg, 0.5 mmol) for 27 h. The crude material was purified by column chromatography (95:5 Hexane: EtOAc) to give amine **4l** (73 mg, 68%) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.11 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 7.8 Hz, 2H), 3.44 (d, J = 13.0 Hz, 1H), 3.39 (d, J = 13.0 Hz, 1H), 3.25 (s, 3H), 3.24–3.19 (m, 1H), 2.84–2.82 (m, 1H), 2.57–2.52 (m, 1H), 2.25 (s, 3H), 1.98–1.84 (m, 3H), 1.68–1.60 (m, 1H), 1.48–1.35 (m, 1H), 1.21–1.10 (m, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 136.5, 134.9, 129.2, 128.8, 76.3, 63.0, 57.7, 56.1, 53.3, 29.9, 23.2, 21.1.

HRMS (ESI): Exact mass calculated for C₁₄H₂₂NO [M+H]⁺ : 220.1701, found: 220.1695.

IR (neat) (cm⁻¹): 2932, 2863, 2801, 1618, 1512, 1450, 1382, 1158, 942, 873, 807, 602, 484.

1-(cyclohexylmethyl)piperidine (4m)

The title compound was prepared according to General Procedure **B** using salt **3m** (128 mg, 0.5 mmol) for 24 h. The crude material was purified by column chromatography (97:3 Hexane: EtOAc) to give amine **4m** (50 mg, 55%) as a colourless oil.

¹**H NMR (400 MHz, CDCl₃);** δ 2.25 (br, 3H), 2.01 (d, J = 7.0 Hz, 2H), 1.71–1.56 (m, 5H), 1.53–1.47 (m, 4H), 1.45–1.31 (m, 3H), 1.20–1.06 (m, 4H), 0.84–0.74 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 66.7, 55.2, 35.2, 32.2, 26.8, 26.2, 25.9, 24.6.

HRMS (ESI): Exact mass calculated for $C_{12}H_{23}N [M+H]^+$: 182.1909, found: 182.1905.

IR (neat) (cm⁻¹): 2924, 2861, 1734, 1632, 1454, 1384, 1255, 1104, 949, 761.

ethyl 1-benzyl-1,4,5,6-tetrahydropyridine-3-carboxylate (4n)^{8d}

The title compound was prepared according to General Procedure **B** using salt **3n** (161 mg, 0.5 mmol), Cs_2CO_3 (1.0 equiv) and KI (1.0 equiv) for 24 h. The crude material was purified by column chromatography (95:5 Hexane: EtOAc) to give amine **4n** (45 mg, 37%) as a yellow oil.

¹**H NMR (500 MHz, CDCl₃);** δ 7.47 (br, 1H), 7.29-7.26 (m, 1H), 7.23-7.19 (m, 1H), 7.14 (d, J = 7.2 Hz, 2H), 4.21 (s, 2H), 4.08 (q, J = 7.1 Hz, 2H), 2.92–2.90 (m, 2H), 2.22 (t, J = 6.3 Hz, 2H), 1.74–1.69 (m, 2H), 1.19 (t, J = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 168.8, 146.2, 137.1, 128.7, 127.7, 127.4, 94.9, 59.7, 58.9, 45.5, 21.3, 20.0, 14.7.

HRMS (ESI): Exact mass calculated for C₁₅H₁₉NO₂ [M+H]⁺ : 246.1494, found: 246.1484.

IR (neat) (cm⁻¹): 2929, 2856, 1674, 1614, 1442, 1382, 1295, 1261, 1151, 1091, 735, 699.

1-(4-nitrobenzyl)-5-phenyl-1,2,3,4-tetrahydropyridine (4p+4p')^{8e,8b}

The title compound was prepared according to General Procedure **B** using salt **3p** (287 mg, 0.75 mmol), IrCp*Cl₂ (2.5 mol%), Ligand (8 mol%), KI (3.0 equiv) and DABCO (1.0 equiv), for 48 h. The crude material was purified by column chromatography (99.5:0.5; DCM:MeOH) to give amine **4p+4p**' (54 mg, 24%) colourless oil as an inseparable mixture of partial and fully hydrogenated product.

1H NMR of product 4p:

¹**H** NMR (500 MHz, CDCl₃): δ 8.19 (d, J = 8.7 Hz, 2H), 7.50 (d, J = 8.6 Hz, 2H), 7.73 - 7.22 (m, 4H), 7.16 - 7.15 (m, 1H), 6.08 - 6.06 (m, 1H), 3.70 (s, 2H), 3.29 - 3.28 (m, 2H), 2.56 (t, J = 5.74 Hz, 2H), 2.31 - 2.27 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): *δ* 147.3, 146.5, 139.9, 135.2, 129.5, 128.4, 127.2, 124.9, 123.6, 122.5, 61.9, 54.7, 49.5, 26.3.

HRMS (ESI): Exact mass calculated for $C_{18}H_{18}N_2O_2 [M+H]^+$: 295.1447, found: 295.1445.

1H NMR of product 4p':

¹**H** NMR (500 MHz, CDCl₃): δ 8.08 (d, J = 8.7 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 7.21 - 7.17 (m, 2H), 7.13 - 7.09 (m, 3H), 3.53 (d, J = 3.9 Hz, 2H), 2.86 - 2.73 (m, 3H), 2.03 - 1.95 (m, 2H), 1.88 - 1.85 (m, 1H), 1.73 - 1.60 (m, 2H), 1.39 (qd, J = 12.4 Hz, J = 4.5 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 147.1, 146.7, 144.4, 129.4, 128.4, 127.2, 126.4, 123.5, 62.6, 61.2, 54.0, 42.9, 31.5, 25.8.

HRMS (ESI): Exact mass calculated for $C_{18}H_{20}N_2O_2 [M+H]^+$: 297.1603, found: 297.1617.

3-methyl-1-(4-nitrobenzyl)piperidine (4q')

The title compound was prepared according to General Procedure **B** using salt **3q** (323mg, 1.0 mmol), $[IrCp*Cl_2]_2$ (4.0 mol%), **L1** (8.0 mol%), KI (3.0 equiv) and DABCO (1.0 equiv) for 48 h. The crude material was purified by column chromatography (95:5; Hexane:EA)) to give amine **4q'** (27 mg, 11%) colourless oil.

¹**H** NMR (400 MHz, CDCl₃): δ 7.97 (d, J=8.7 Hz, 2H), 7.31 (d, J = 8.8 Hz, 2H), 3.35 (s, 2H), 2.57–2.51 (m, 2H), 1.73 (td, J = 11.1, 3.2 Hz, 1H), 1.54–1.32 (m, 5H), 0.74–0.68 (m, 1H), 0.65 (d, J = 6.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 147.1, 129.4, 123.4, 62.7, 62.0, 54.2, 32.8, 31.1, 25.5, 19.6.

HRMS (ESI): Exact mass calculated for $C_{13}H_{18}N_2O_2 [M+H]^+$: 235.1447, found: 235.1444.

IR (neat) (cm⁻¹): 2926, 2856, 2796, 1731, 1603, 1522, 1453, 1383, 1345, 1110, 1066, 857, 740, 695.

1-benzyl-1,2,3,4-tetrahydroquinoline (6a)^{8h}

The title compound was prepared according to General Procedure **B** using salt **5a** (150 mg, 0.5 mmol) for 24 h. The crude material was purified by column chromatography (100:0 Hexane: EtOAc) to give amine **6a** (77 mg, 70%) as a colourless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.24–7.12 (m, 5H), 6.89–6.86 (m, 2H), 6.48 (t, *J* = 7.3 Hz, 1H), 6.42 (d, *J* = 8.4 Hz, 1H), 4.38 (s, 2H), 3.28–3.25 (m, 2H), 2.73 (t, *J* = 6.3 Hz, 2H), 1.95–1.89 (m, 2H).

¹³CNMR(100MHz,CDCl₃): δ 145.7, 139.0, 129.0, 128.6, 127.2, 126.8, 126.6, 122.3, 115.9, 111. 0, 55.2, 49.9, 28.3, 22.4.

HRMS (ESI): Exact mass calculated for $C_{16}H_{17}N [M+H]^+$: 224.1439, found: 224.1433.

1-benzyl-6-methyl-1,2,3,4-tetrahydroquinoline (6b)^{8h}

The title compound was prepared according to General Procedure **B** using salt **5b** (157 mg, 0.5 mmol). The crude material was purified by column chromatography (99:1 Hexane: EtOAc) to give amine **6b** (83 mg, 70%) as a colourless oil.

¹**H NMR (400 MHz, CDCl₃):** *δ*7.24–7.09 (m, 5H), 6.71–6.68 (m, 2H), 6.33 (d, *J* = 8.2 Hz, 1H), 4.34 (s, 2H), 3.23–3.19 (m, 2H), 2.71–2.65 (m, 2H), 2.12 (s, 3H), 1.93–1.86 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 143.6, 139.3, 129.8, 128.6, 127.6, 126.8, 126.7, 125.0, 122.4, 111.3, 55.5, 49.9, 28.2, 22.6, 20.3.

HRMS (ESI): Exact mass calculated for $C_{17}H_{19}N [M+H]^+$: 238.1596, found: 238.1598.

1-benzyl-6-methoxy-1,2,3,4-tetrahydroquinoline (6c)^{8h}

The title compound was prepared according to General Procedure **B** using salt **5c** (165 mg, 0.5 mmol). The crude material was purified by column chromatography (98:2; Hexane:EtOAc) to give amine **6c** (114 mg, 90%) as a colourless oil.

¹**H NMR (400 MHz, CDCl₃);** *δ* 7.23–7.09 (m, 5H), 6.51–6.46 (m, 2H), 6.37–6.34 (m, 1H), 4.31 (s, 2H), 3.61 (s, 3H), 3.19–3.17 (m, 2H), 2.69 (t, *J* = 6.2 Hz, 2H), 1.95–1.86 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 150.9, 140.4, 139.4, 128.6, 126.8, 126.7, 123.8, 115.3, 112.5, 112.3, 56.0, 55.8, 49.9, 28.5, 22.6.

HRMS (ESI): Exact mass calculated for C₁₇H₁₉NO [M+H]⁺ : 254.1545, found: 254.1543.

1-benzyl-7-methyl-1,2,3,4-tetrahydroquinoline (6d)

The title compound was prepared according to General Procedure **B** using salt **5d** (157 mg, 0.5 mmol). The crude material was purified by column chromatography (99:1; Hexane:EtOAc) to give amine **6d** (109 mg, 92%) as a colourless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.25–7.11 (m, 5H), 6.78 (d, J = 7.4 Hz, 1H), 6.33–6.27 (m, 2H), 4.38 (s, 2H), 3.24–3.21 (m, 2H), 2.68 (t, J = 5.9 Hz, 2H), 2.09 (s, 3H), 1.90–1.86 (m, 2H)

¹³C NMR (100 MHz, CDCl₃): δ 145.6, 139.2, 136.8, 128.9, 128.6, 126.8, 126.7, 119.4, 116.8, 111.6, 55.2, 49.8, 27.9, 22.3, 21.7.

HRMS (ESI): Exact mass calculated for C₁₇H₁₉N [M+H]⁺ : 238.1596, found: 238.1581.

1-benzyl-6-chloro-1,2,3,4-tetrahydroquinoline (6e)

The title compound was prepared according to General Procedure **B** using salt **5e** (67 mg, 0.2 mmol). The crude material was purified by column chromatography (98:2 Hexane:EtOAc) to give amine **6e** (24 mg, 47%) as a colourless oil.

¹**H NMR (500 MHz, CDCl₃):** δ 7.25–7.14 (m, 5H), 6.86–6.79 (m, 2H), 6.31 (d, J = 8.7 Hz, 1H), 4.37 (s, 2H), 3.29–3.27 (m, 2H), 2.69 (t, J = 6.3 Hz, 2H), 1.94–1.89 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 144.1, 138.4, 128.7, 128.6, 126.9, 126.8, 126.5, 123.9, 120.3, 112.0, 55.2, 49.9, 28.1, 22.2.

HRMS (ESI): Exact mass calculated for $C_{16}H_{16}CIN [M+H]^+$: 258.1050, found: 258.1051.

1-benzyl-6-fluoro-1,2,3,4-tetrahydroquinoline (6f)

The title compound was prepared according to General Procedure **B** using salt **5f** (84 mg, 0.26 mmol). The crude material was purified by column chromatography (96:4; Hexane:EtOAc) to give amine **6f** (29 mg, 47%) as a colourless oil.

¹**H** NMR (400 MHz, CDCl₃): δ 7.27–7.15 (m, 5H), 6.65–6.56 (m, 2H), 6.31 (dd, J = 8.9, 4.7 Hz, 1H), 4.36 (s, 2H), 3.27–3.24 (m, 2H), 2.72 (t, J = 6.3 Hz, 2H), 1.96–1.90 (m, 2H).

¹³C NMR (125MHz, CDCl₃): δ 154.8 (d, J = 232.5 Hz), 142.1, 138.9, 128.6, 126.8, 126.6, 123.7 (d, J = 6.7 Hz), 115.4 (d, J = 21.7 Hz), 113.1 (d, J = 21.5 Hz), 111.7 (d, J = 7.3 Hz), 55.8, 49.9, 28.3, 22.3.

¹⁹**F** NMR (**376** MHz, CDCl₃); δ-130.12.

HRMS (ESI): Exact mass calculated for C₁₆H₁₆FN [M+H]⁺ : 242.1345, found: 242.1342.

1-benzyl-5-bromo-1,2,3,4-tetrahydroquinoline (6g)

The title compound was prepared according to General Procedure **B** using salt **5g** (90 mg, 0.24 mmol). The crude material was purified by column chromatography (98:2; Hexane:EtOAc) to give amine **6g** (31 mg, 43%) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.26–7.15 (m, 5H), 6.77–6.69 (m, 2H), 6.36 (d, J = 8.0 Hz, 1H), 4.40 (s, 2H), 3.29–3.27 (m, 2H), 2.79 (t, J = 6.5 Hz, 2H), 1.98–1.92 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ147.2, 138.4, 128.7, 127.8, 126.9, 126.5, 125.6, 121.5, 119.9, 110.2, 55.6, 49.8, 28.7, 22.2.

HRMS (ESI): Exact mass calculated for $C_{16}H_{16}BrN [M+H]^+$: 302.0544, found: 302.0545.

1-benzyl-3-methyl-1,2,3,4-tetrahydroquinoline (6h)^{8h}

The title compound was prepared according to General Procedure **B** using salt **5h** (157 mg, 0.5 mmol). The crude material was purified by column chromatography (99:1; Hexane:EtOAc) to give amine **6h** (115 mg, 97%) as a colourless oil.

¹**H NMR (400 MHz, CDCl₃):** δ7.25–7.12 (m, 5H), 6.89–6.88 (m, 2H), 6.51–6.41 (m, 2H), 4.39 (s, 2H), 3.21–3.17 (m, 1H), 2.97–2.91 (m, 1H), 2.75–2.71 (m, 1H), 2.45–2.39 (m, 1H), 2.12–2.03 (m, 1H), 0.98–0.95 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 145.2, 139.0, 129.2, 128.6, 127.2, 126.8, 126.6, 121.9, 115.9, 110.8, 56.9, 55.2, 36.6, 27.4, 19.1.

HRMS (ESI): Exact mass calculated for $C_{17}H_{19}N [M+H]^+$: 238.1596, found: 238.1595.

1-benzyl-4-methyl-1,2,3,4-tetrahydroquinoline (6i)⁸ⁱ

The title compound was prepared according to General Procedure **B** using salt **5i** (157 mg, 0.5 mmol). The crude material was purified by column chromatography (99:1; Hexane:EtOAc) to give amine **6i** (26 mg, 22%) as a blue oil.

¹**H** NMR (400 MHz, CDCl₃): δ 7.25–7.14 (m, 5H), 7.00–6.99 (m, 1H), 6.91–6.88 (m, 1H), 6.53 (td, J = 7.4, 0.9 Hz, 1H), 6.43 (d, J = 8.2 Hz, 1H), 4.41 (s, 2H), 3.36–3.32 (m, 1H), 3.26–3.22 (m, 1H), 2.91–2.85 (m, 1H), 2.01–1.95 (m, 1H), 1.69–1.64 (m, 1H), 1.24 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 144.9, 138.9, 128.6, 127.9, 127.3, 127.1, 126.8, 126.6, 115.9, 110.0, 55.2, 46.7, 31.1, 29.7, 22.3.

HRMS (ESI): Exact mass calculated for $C_{17}H_{19}N [M+H]^+$: 238.1596, found: 238.1595.

1-ethyl-2-methyl-1,2,3,4-tetrahydroquinoline (6j)

The title compound was prepared according to General Procedure **B** using salt **5j** (157 mg, 0.5 mmol). The crude material was purified by column chromatography (99:1; Hexane:EtOAc) to give amine **6j** (78 mg, 66%) as a colourless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.24–7.12 (m, 5H), 6.92 (d, J = 7.3 Hz, 1H), 6.88–6.84 (m, 1H), 6.49 (td, , J = 7.3 Hz, 0.9 Hz, 1H), 6.32 (d, J = 8.2 Hz, 1H), 4.43 (dd, , J = 17.3 Hz, 2H), 3.54–3.47 (m, 1H), 2.88–2.80 (m, 1H), 2.67 (dt, J = 16.1, 4.6 Hz, 1H), 2.01–1.92 (m, 1H), 1.79–1.72 (m, 1H), 1.10 (d, J=6.4 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 144.8, 139.5, 128.8, 128.5, 127.1, 126.6, 126.3, 121.8, 115.5, 111.4, 53.4, 53.0, 28.2, 24.1, 19.0.

HRMS (ESI): Exact mass calculated for C₁₇H₁₉N [M+H]⁺ : 238.1596, found: 238.1598.

1-(3-bromobenzyl)piperidine (4r)^{8g}

The title compound was prepared according to General Procedure **B** using salt 3r (165 mg, 0.5 mmol). The crude material was purified by column chromatography (95:5; Hexane:EtOAc) to give amine 4r (71 mg, 56%) as a yellow oil.

¹**H NMR (500 MHz, CDCl₃):** δ 7.41 (br, 1H), 7.28 (d, J = 7.9 Hz, 1H), 7.18-7.15 (m, 1H), 7.10-7.07 (m, 1H), 3.35 (s, 2H), 2.28 (br, 4H), 1.52–1.47 (m, 4H), 1.38–1.34 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 141.3, 131.9, 129.9, 129.7, 127.7, 122.3, 63.2, 54.5, 25.9 24.3.

HRMS (ESI): Exact mass calculated for $C_{12}H_{16}BrN [M+H]^+$: 254.0544, found: 254.0540.

IR (neat) (cm⁻¹): 2929, 2858, 2794, 2317, 1600, 1384, 1064, 875, 771, 671.

1-(4-bromobenzyl)piperidine (4s)^{8f}

The title compound was prepared according to General Procedure **B** using salt **3s** (329 mg, 1.0 mmol). The crude material was purified by column chromatography (95:5; Hexane:EtOAc) to give amine **4s** (173 mg, 69%) as a yellow oil.

¹**H NMR (500 MHz, CDCl₃):** δ 7.33 (d, J = 8.3 Hz, 2H), 7.11 (d, J = 8.2 Hz, 2H), 3.32 (s, 2H), 2.26 (br, 4H), 1.50–1.46 (m, 4H), 1.36–1.33 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ137.8, 131.2, 130.8, 120.6, 63.1, 54.5, 25.9, 24.3.

HRMS (ESI): Exact mass calculated for $C_{12}H_{16}BrN [M+H]^+$: 254.0544, found: 254.0545.

IR (neat) (cm⁻¹): 2931, 2855, 2791, 1621, 1484, 1443, 1384, 1304, 1153, 1109, 1013, 906, 806, 493.

5. Gram scale synthesis of 4a: General procedure **B** was followed with **3a** (1.0 g, 3.99 mmol), [IrCp*Cl₂]₂ (63mg, 2.0 mol %), **L1** (24 mg, 4.0 mol %), KI (1.99 g, 3.0 equiv.) and DABCO (0.448 g, 1.0 equiv.) and ethanol (8.0 mL) at 90 °C for 24 h. The residue was purified by column chromatography to give **4a** as a yellow oil (344 mg, 49% yield).

6. Control experiment

(a) Synthesis of 1-benzyl-1,2,3,6-tetrahydropyridine (4a'):9

The benzylpyridinium bromide (**3a**) (300mg, 1.19 mmol) was dissolved in MeOH (5 ml), and cooled to 0 $^{\circ}$ C, then NaBH₄ (1.5 equiv.) was added portion wise. The reaction mixture was stirred at 0 $^{\circ}$ C for 4 h. The reaction was quenched with water and extracted with ethyl acetate, resulting solution was washed with brine, dried over Na₂SO₄, concentrated on rotary evaporator to give 1-benzyl-1,2,3,6-tetrahydropyridine(**4a'**) in 80% yield (165 mg, 0.952 mmol) as a yellow oil and used for next reaction without column purification.

¹H NMR (400 MHz, CDCl₃): δ 7.28–7.14 (m, 5H), 5.69–5.55 (m, 2H), 3.49 (s, 2H), 2.90–2.87 (m, 2H), 2.47 (t, J = 5.7 Hz, 2H), 2.11–2.05 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ138.4, 129.2, 128.2, 127.1, 125.4, 125.6, 62.9, 52.8, 49.7, 26.2.

(b) Transfer hydrogenation of 1,2-dihydroquinoline with EtOH

The general procedure **B** was followed using **4a'** (10mg, 0.058 mmol), ethanol (0.5 mL) for 23 h. The yield of **4a** is 80%, determined by NMR using 1,3,5-trimethoxybenzene as an internal standard.

(c) Study of the Conversion of CH₃CHO to EtOAc¹⁰

To study the formation of EtOAc as a byproduct, we conducted NMR experiments. Treatment of CH₃CHO (0.2 mmol) with ethanol (1.7 mmol), [IrCp*Cl₂]₂ (5 mol%), and base (1 equiv) in CDCl₃ (0.5 mL) in 3h at rt led to the conversion of CH₃CHO to EtOAc (eq **A**) (Identified in 1H NMR, Figure 1). Without the Iridium catalyst, EtOAc was not detected in NMR spectra (eq **B**) (Figure 2). Therefore, the acetaldehyde generated may be converted to ethyl acetate under Ir-catalyzed conditions, avoiding catalyst poisoning in the optimized reaction conditions.¹⁰

Figure 1:1H NMR (400 MHz, CDCl₃) with Iridium metal.

Figure 2: 1H NMR (400 MHz, CDCl₃) without Iridium metal.

7. Formation of Iridium Hydride:¹¹ To study the formation of Iridium hydride, $[IrCp*Cl_2]_2$ (1.0 equiv), L1 (2 equiv) and base (Cs₂CO₃ or DABCO, 1 equiv) was dissolved in ethanol and stirred at 90 °C for 12 h. NMR analysis of the crude reaction mixture provided the formation of Ir-H.¹¹

Figure 3:1H NMR (400 MHz, CDCl₃, Cs₂CO₃ base) spectrum from (-35 ppm to 0 ppm range).

Figure 4: 1H NMR (400 MHz, CDCl₃, DABCO base) spectrum from (-35 ppm to 0 ppm range).

8. References

- Anand, N.; Koley, S.; Ramulu, B. J.; Singh, M. S. Metal-free aerobic one-pot synthesis of substituted/annulated quinolines from alcohols via indirect Friedländer annulation. *Org. Biomol. Chem.* 2015, 13, 9570.
- (2) Yan, R.; Liu, X.; Pan, C.; Zhou, X.; Li, X.; Kang, X.; Huang, G. Aerobic Synthesis of Substituted Quinoline from Aldehyde and Aniline: Copper-Catalyzed Intermolecular C-H Active and C-C Formative Cyclization. Org. Lett. 2013, 15, 4876.
- (3) Preindl, J.; Chakrabarty, S.; Waser, J. Dearomatization of electron poor six-membered N-heterocycles through [3 + 2] annulation with aminocyclopropanes. *Chem. Sci.* **2017**, *8*, 7112.
- (4) Sagi, K.; Fujita, K.; Sugiki, M.; Takahashi, M.; Takehana, S.; Tashiro, K.; Kayahara, T.; Yamanashi, M.; Fukuda, Y.; Oono, S.; Okajima, A.; Iwata, S.; Shoji, M.; Sakurai, K. Optimization of a coagulation factor VIIa inhibitor found in factor Xa inhibitor library. *Bioorg. Med. Chem.* 2005, 13, 1487.
- (5) (a) Li, P.; Zhao, J.; Xia, C.; Li, F. The development of carbene-stabilized N–O radical coupling strategy in metal-free regioselective C–H azidation of quinolone N-oxides. *Org. Chem. Front.* 2015, *2*, 1313. (b) Bering, L.; Antonchick, A. P. Regioselective Metal-Free Cross Coupling of Quinoline N-Oxides with

Boronic Acids. Org. Lett. **2015**, 17, 3134. (c) Biswas, A.; Karmakar, U.; Nandi, S.; Samanta, R. Copper-Catalyzed Direct, Regioselective Arylamination of N-Oxides: Studies To Access Conjugated π -Systems. J. Org. Chem. **2017**, 82, 8933. (d) Zhang, Y.; Zhang, S.; Xu, G.; Li, M.; Tang, C.; Fan, W. Cu-Catalyzed carbamoylation versus amination of quinoline N-oxide with formamides. Org. Biomol. Chem., **2019**, 17, 309.

- (6) (a) Renom-Carrasco, M.; Gajewski, P.; Pignataro, L.; de Vries, J. G.; Piarulli, U.; Gennari, C.; Lefort, L. Asymmetric Hydrogenation of 3-Substituted Pyridinium Salts. Chem. Eur. J. 2016, 22, 9528. (b) Qu, B.; Mangunuru, H. P. R.; Wei, X.; Fandrick, K. R.; Desrosiers, J.-N.; Sieber, J. D.; Kurouski, D.; Haddad, N.; Samankumara, L. P.; Lee, H.; Savoie, J.; Ma, S.; Grinberg, N.; Sarvestani, M.; Yee, N. K.; Song, J. J.; Senanayake, C. H. Synthesis of Enantioenriched 2-Alkyl Piperidine Derivatives through Asymmetric Reduction of Pyridinium Salts. Org. Lett. 2016, 18, 4920. (c) Peng, H.; Li, T.; Tian, D.; Yang, H.; Xu, G.; Tang, W. Metal-free reduction of unsaturated carbonyls, quinones, and pyridinium salts with tetrahydroxydiboron/water. Org. Biomol. Chem. 2021, 19, 4327. (d) Wang, R.; Gu, X.; Li, Q.; Gao, J.; Shi, B.; Xu, G.; Zhu, T.; Tian, H.; Zhao, C. Aggregation Enhanced Responsiveness of Rationally Designed Probes to Hydrogen Sulfide for Targeted Cancer Imaging. J. Am. Chem. Soc. 2020, 142, 15084. (e) Shirota, H.; Matsuzaki, H.; Ramati, S.; Wishart, J. F. Effects of Aromaticity in Cations and Their Functional Groups on the Low-Frequency Spectra and Physical Properties of Ionic Liquids. J. Phys. Chem. B 2015, 119, 9173. (f) Yau, H. M.; Croft, A. K.; Harper, J. B. 'One-pot' Hammett plots: a general method for the rapid acquisition of relative rate data. Chem. Commun. 2012, 48, 8937. (g) Yang, J.; Zhao, H.; Tan, Z.; Cao, L.; Jiang, H.; Ci, C.; Dixneuf, P. H.; Zhang, M. syn-Selective Construction of Fused Heterocycles by Catalytic Reductive Tandem Functionalization of N-Heteroarenes. ACS Catal. 2021, 11, 9271. (h) Tan, Z.; Ci, C.; Yang, J.; Wu, Y.; Cao, L.; Jiang, H.; Zhang, M. Catalytic Conversion of N-Heteroaromatics to Functionalized Arylamines by Merging Hydrogen Transfer and Selective Coupling. ACS Catal. 2020, 10, 5243.
- (7) (a) Yang, C.-H.; Chen, X.; Li, H.; Wei, W.; Yang, Z.; Chang, J. Iodine catalyzed reduction of quinolines under mild reaction conditions. *Chem. Commun.* 2018, *54*, 8622. (b) Cui, X.; Huang, W.; Wu, L. Zirconium-hydride-catalyzed transfer hydrogenation of quinolines and indoles with ammonia borane. *Org. Chem. Front.* 2021, *8*, 5002. (c) Butt, M.; Zhao, Y.; Feng, X.; Lu, Y.; Jin, T.; Yamamoto, Y.; Bao, M. Unsupported Nanoporous Gold-Catalyzed Chemoselective Reduction of Quinolines Using Formic Acid as a Hydrogen Source. *ChemistrySelect* 2019, *4*, 6572. (d) Wang, Y.; Dong, B.; Wang, Z.; Cong, X.; Bi, X. Silver-Catalyzed Reduction of Quinolines in Water. *Org. Lett.* 2019, *21*, 3631. (e) Zhang, J.; An, Z.; Zhu, Y.; Shu, X.; Song, H.; Jiang, Y.; Wang, W.; Xiang, X.; Xu, L.; He, J. Ni⁰/Ni^{δ+} Synergistic Catalysis on a Nanosized Ni Surface for Simultaneous Formation of C−C and C−N Bonds. *ACS Catal.* 2019, *9*, 11438. (f) Clohessy, T, A.; Roberts, A.; Manas, E. S.; Patel, V. K.; Anderson, N. A.; Watson, A. J. B. Chemoselective One-Pot Synthesis of Functionalized Aminoazaheterocycles Enabled by COware. *Org. Lett.* 2017, *19*, 6368. (g) Wu, J.; Barnard, J. H.; Zhang, Y.; Talwar, D.; Robertson, C. M.; Xiao, J. Robust cyclometallated Ir(III) catalysts for the homogeneous hydrogenation of N-heterocycles under mild conditions. *Chem. Commun.* 2013, *49*, 7052.
- (8) (a) Wu, J.; Tang, W.; Pettman, A.; Xiao, J. Efficient and Chemoselective Reduction of Pyridines to Tetrahydropyridines and Piperidines *via* Rhodium-Catalyzed Transfer Hydrogenation. *Adv. Synth. Catal.* 2013, 355, 35. (b) Chamberlain, A. E. R.; Paterson, K. J.; Armstrong, R. J.; Twin, H. C.; Donohoe, T. J. A hydrogen borrowing annulation strategy for the stereocontrolled synthesis of saturated aza-heterocycles. *Chem. Commun.* 2020, 56, 3563. (c) Qu, B.; Mangunuru, H. P. R.; Wei, X.; Fandrick, K. R.; Desrosiers, J.-N.; Sieber, J. D.; Kurouski, D.; Haddad, N.; Samankumara, L. P.; Lee, H.; Savoie, J.; Ma, S.; Grinberg, N.; Sarvestani, M.; Yee, N. K.; Song, J. J.; Senanayake, C. H. Synthesis of Enantioenriched 2-Alkyl Piperidine Derivatives through Asymmetric Reduction of Pyridinium Salts. *Org. Lett.* 2016, *18*, 4920. (d) He, Y.; Wang, F.; Zhang, X.; Fan, X. C(sp³)–H dehydrogenation and C(sp²)–H alkoxy carbonylation of inactivated cyclic amines towards functionalized N-heterocycles. *Chem. Commun.* 2017, *53*, 4002. (e) Renom-Carrasco, M.; Gajewski, P.; Pignataro, L.; de Vries, J. G.; Piarulli, U.; Gennari, C.; Lefort, L. Asymmetric Hydrogenation of 3-Substituted Pyridinium Salts. *Chem. Eur. J.* 2016, *22*, 9528. (f) Taylor, N. J.; Emer,

E.; Preshlock, S.; Schedler, M.; Tredwell, M.; Verhoog, S.; Mercier, J.; Genicot, C.; Gouverneur, V. Derisking the Cu-Mediated ¹⁸F-Fluorination of Heterocyclic Positron Emission Tomography Radioligands. *J. Am. Chem. Soc.* **2017**, *139*, 8267. (g) Tan, P. W.; Haughey, M.; Dixon, D. J. Palladium(II)-catalysed ortho-arylation of N-benzylpiperidines. *Chem. Commun.* **2015**, *51*, 4406. (h) Kaga, A.; Hayashi, H.; Hakamata, H.; Oi, M.; Uchiyama, M.; Takita, R.; Chiba, S. Nucleophilic Amination of Methoxy Arenes Promoted by a Sodium Hydride/Iodide Composite. *Angew. Chem. Int. Ed.* **2017**, *56*, 11807. (i) Vieira, T. O.; Alper, H. Rhodium(I)-catalyzed hydroaminomethylation of 2-isopropenylanilines as a novel route to 1,2,3,4-tetrahydroquinolines. *Chem. Commun.* **2007**, 2710.

- (9) Karabiyikoglu, S.; Brethomé, A. V.; Palacin, T.; Paton, R. S.; Fletcher, S. P. Enantiomerically enriched tetrahydropyridine allyl chlorides. *Chem. Sci.* **2020**, *11*, 4125.
- (10) (a) Y. Wang, Z. Huang, X. Leng, H. Zhu, G. Liu and Z. Huang, J. Am. Chem. Soc., 2018, 140, 4417; (b) Wang, Y.; Huang, Z.; Huang, Z. Catalyst as colour indicator for endpoint detection to enable selective alkyne trans-hydrogenation with ethanol. Nature catalysis 2019, 2, 529.
- (11) Itoh, S.; Yoshimura, K.; Tsukamoto, Y.; Obora, Y. Iridium Complex-Catalyzed C2-Extension of Primary Alcohols with Ethanol via a Hydrogen Autotransfer Reaction. *J. Org. Chem.* **2020**, *85*, 11952.

9. NMR Spectra

Figure S-1: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 11

Figure S-2: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 11

Figure S-3 HRMS spectrum of compound 11

Figure S-4: ¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 3c

Figure S-5: ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 3c

Figure S-6 HRMS spectrum of compound 3c

Figure S-7: ¹H NMR (400 MHz, D₂O) spectrum of compound 3d

Figure S-8: ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 3d

Figure S-9 HRMS spectrum of compound 3d

Figure S-10: ¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 3f

Figure S-11: ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 3f

Figure S-12 HRMS spectrum of compound 3f

Figure S-13: ¹H NMR (400 MHz, D₂O) spectrum of compound 3g

Figure S-14: ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 3g

Figure S-15 HRMS spectrum of compound 3g

Figure S-16: ¹H NMR (400 MHz, D₂O) spectrum of compound 3h

Figure S-17: ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 3h

Figure S-18 HRMS spectrum of compound 3h

Figure S-19: ¹H NMR (400 MHz, D₂O) spectrum of compound 3i

Figure S-20: ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 3i

Figure S-21 HRMS spectrum of compound 3i

Figure S-22: ¹H NMR (400 MHz D₂O) spectrum of compound 3k

Figure S-23: ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 3k

Figure S-24 HRMS spectrum of compound 3k

Figure S-25: ¹H NMR (400 MHz, D₂O) spectrum of compound 3l

Figure S-26: ¹³C NMR (100 MHz, D₂O) spectrum of compound 3l

Figure S-27 HRMS spectrum of compound 31

Figure S-28: ¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 3p

Figure S-29: ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound **3p**

Figure S-30 HRMS spectrum of compound 3p

Figure S-31: ¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 3q

Figure S-32: ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 3q

Figure S-33 HRMS spectrum of compound 3q

Figure S-34: ¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 3r

Figure S-35: ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 3r

Figure S-36 HRMS spectrum of compound 3r

Figure S-37: ¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 5j

Figure S-38: ¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 5j

Figure S-39 HRMS spectrum of compound 5j

Figure S-40: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 2a

Figure S-41: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 2a

Figure S-42 HRMS spectrum of compound 2a

Figure S-43: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2b

Figure S-44: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2b

Figure S-45: HRMS spectrum of compound 2b

Figure S-46: ¹H NMR (300 MHz, CDCl₃) spectrum of compound 2c

Figure S-47: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 2c

Figure S-48 HRMS spectrum of compound 2c

Figure S-49: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2d

Figure S-50: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2d

Figure S-51 HRMS spectrum of compound 2d

Figure S-52: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2e

Figure S-53: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2e

Figure S-54 HRMS spectrum of compound 2e

Figure S-55: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2f

Figure S-56: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2f

Figure S-57 HRMS spectrum of compound 2f

Figure S-58: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2g

Figure S-59: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2g

Figure S-60: ¹⁹F NMR (376 MHz, CDCl₃) spectrum of compound 2g

Figure S-61 HRMS spectrum of compound 2g

Figure S-62: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2h

Figure S-63: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2h

Figure S-64 HRMS spectrum of compound 2h

Figure S-65: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2i

Figure S-66: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 2i

Figure S-67: HRMS spectrum of compound 2i

Figure S-68: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 2j

Figure S-69: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 2j

Figure S-70: HRMS spectrum of compound 2j

Figure S-71: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2k

Figure S-72: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2k

Figure S-73: HRMS spectrum of compound 2k

Figure S-74: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2l

Figure S-75: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 2l

Figure S-76: HRMS spectrum of compound 21

Figure S-77: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2m

Figure S-78: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2m

Figure S-79: HRMS spectrum of compound 2m

Figure S-80: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2n

Figure S-81: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2n

Figure S-82: HRMS spectrum of compound 2n

Figure S-83: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 20

Figure S-84: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 20

Figure S-85: HRMS spectrum of compound 20

Figure S-86: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4a

Figure S-87: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4a

Figure S-88: HRMS spectrum of compound 4a

Figure S-89: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4b

Figure S-90: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4b

Figure S-91: HRMS spectrum of compound 4b

Figure S-92: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4c

Figure S-93: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4c

Figure S-94: HRMS spectrum of compound 4c

Figure S-95: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4d

Figure S-96: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4d

Figure S-97: HRMS spectrum of compound 4d

Figure S-98: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4e

Figure S-99: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4e

Figure S-100: HRMS spectrum of compound 4e

Figure S-101: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4f

Figure S-102: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4f

Figure S-103: HRMS spectrum of compound 4f

S91

Figure S-104: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4g

Figure S-105: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4g

Figure S-106: HRMS spectrum of compound 4g

Figure S-107: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4h

Figure S-108: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4h

Figure S-109: HRMS spectrum of compound 4h

Figure S-110: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4i

Figure S-111: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4i

Figure S-112: HRMS spectrum of compound 4i

Figure S-113: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4j

Figure S-114: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4j

Figure S-115: HRMS spectrum of compound 4j

Figure S-116: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4k

Figure S-117: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4k

Figure S-118: HRMS spectrum of compound 4k

Figure S-119: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4l

Figure S-120: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4l

Figure S-121: HRMS spectrum of compound 4l

Figure S-122: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4m

Figure S-123: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4m

Figure S-124: HRMS spectrum of compound 4m

Figure S-125: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4n

Figure S-126: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4n

Figure S-127: HRMS spectrum of compound 4n

Figure S-128: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4p

Figure S-129: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4p'

Figure S-130: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4p + 4p'

Figure S-131: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4p + 4p'

Figure S-132: HRMS spectrum of compound 4p

Figure S-133: HRMS spectrum of compound 4p'

Figure S-134: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4q'

Figure S-135: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4q'

Figure S-136: HRMS spectrum of compound 4q'

Figure S-137: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 6a

Figure S-138: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6a

Figure S-139: HRMS spectrum of compound 6a

Figure S-140: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 6b

Figure S-141: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6b

Figure S-142: HRMS spectrum of compound 6b

Figure S-143: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 6c

Figure S-144: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6c

Figure S-145: HRMS spectrum of compound 6c

Figure S-146: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 6d

Figure S-147: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6d

Figure S-148: HRMS spectrum of compound 6d

Figure S-149: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 6e

Figure S-150: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 6e

Figure S-151: HRMS spectrum of compound 6e

Figure S-152: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 6f

Figure S-153: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 6f

Figure S-154: HRMS spectrum of compound 6f

Figure S-155: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 6g

Figure S-156: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6g

Figure S-157: HRMS spectrum of compound 6g

Figure S-158: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 6h

Figure S-159: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6h

Figure S-160: HRMS spectrum of compound 6h

Figure S-161: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 6i

Figure S-162: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 6i

Figure S-163: HRMS spectrum of compound 6i

Figure S-164: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 6j

Figure S-165: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 6j

Figure S-166: HRMS spectrum of compound 6j

Figure S-167: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4r

Figure S-168: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4r

Figure S-169: HRMS spectrum of compound 4r

Figure S-170: ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4s

Figure S-171: ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4s

Figure S-172: HRMS spectrum of compound 4s