Supplementary Information for

Silver-Catalyzed Chemodivergent Assembly of Aminomethylated Isochromenes and Naphthols

Bangkui Yu, ${ }^{a}$ Renbin Huang, ${ }^{a}$ Renren Li, ${ }^{a}$ Haocheng Zhang, ${ }^{\text {a }}$ and Hanmin Huang ${ }^{*, a, b}$
${ }^{a}$ Department of Chemistry, School of Chemistry and Material Science, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, P. R. China.
${ }^{b}$ State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.
*Corresponding author: hanmin@ustc.edu.cn

Table of contents

1. General Information 2
2. Optimization of the Reaction Conditions 3
3. General Procedure for the Catalytic Reaction 4
4. Preparation and Spectral Data of Substrates 5
5. Products Characterization 20
6. Mechanistic Experiments 48
7. X-ray Single Crystal Data for Compound 3aa, 4aa, and 5aa 51
8. References 57
9. NMR Spectra of Materials and Products 58

1. General Information

All non-aqueous reactions and manipulations were using standard Schlenk techniques. All solvents before using were dried by standard methods and stored under N_{2} atmosphere. All reactions were monitored by TLC with silica gel-coated plates. NMR spectra were recorded on BRUKER Avence III 400 MHz or 500 MHz NMR spectrometers. Chemical shifts were reported in parts per million (ppm) down field from TMS with the solvent resonance as the internal standard. NMR data are reported as follows: chemical shift, multiplicity, coupling constants (Hz) and integration. Coupling constants (J) were reported in Hz and referred to apparent peak multiplications. High resolution mass spectra (HRMS) were recorded on Bruker Micro TOF-QII mass instrument (ESI). Single crystal X-ray diffraction analyses were recorded on Bruker SMART APEX II. All commercially available compounds were purchased from Adamas or Energy Chemical. Aminals used here were known compounds and synthesized according to the reported methods. ${ }^{1-2}$ Enynals used here were synthesized according to the reported methods. ${ }^{3}$ Flash column chromatography was performed using 200-300 mesh silica gels.

2. Optimization of the Reaction Conditions

Table S1. Optimization of the reaction conditions ${ }^{a}$

The mixture of $N, N, N^{\prime}, N^{\prime}$-tetrabenzylmethanediamine 2a ($146.2 \mathrm{mg}, 0.36 \mathrm{mmol}$), Lewis acid ($0.03 \mathrm{mmol}, 10 \mathrm{~mol} \%$), 2-(but-3-en-1-yn-1-yl)benzaldehyde $\mathbf{1 a}$ (46.8 mg , $0.30 \mathrm{mmol})$ and solvent $(1.0 \mathrm{~mL})$ was added to a 25 mL flame-dried Young-type tube under nitrogen atmosphere. The reaction mixture was stirred at designed temperature for 12 hours, and then cooled to room temperature. The solvent was removed under reduced pressure, the crude product was purified by flash chromatography on basic alumina (petroleum ether/ethyl acetate $=100 / 1$ to $50 / 1$) directly to give the desired products 3aa and 4aa.

 1a Entry					
	LA	solve	T/0		d/\%
				3aa	4aa
1	$\mathrm{Sc}(\mathrm{OTf})_{3}$	DME	100	N.D.	N.D.
2	AuCl_{3}	DME	100	73	trace
3	AgOtf	DME	100	78	15
4	AgClO_{4}	DME	100	60	29
5	AgSbF_{6}	DME	100	64	26
6	AgOtf	DME	60	87	N.D.
7	AgOtf	$\mathrm{CH}_{3} \mathrm{CN}$	100	39	48
8	AgOtf	anisole	100	32	52
9	AgClO_{4}	anisole	100	22	63
10	$\mathrm{AgClO}_{4}(20 \mathrm{~mol} \%)$	anisole	100	23	59
11	AgOtf	anisole	120	25	58
12	AgClO_{4}	anisole	120	7	71

${ }^{a}$ Reaction conditions: 1a $(0.3 \mathrm{mmol})$, $\mathbf{2 a}(0.36 \mathrm{mmol})$, LA ($10 \mathrm{~mol} \%$), solvent (1.0 $\mathrm{mL}), 12 \mathrm{~h} .{ }^{b}$ Isolated yield.

3. General Procedure for the Catalytic Reaction

The mixture of aminal 2 (0.36 mmol), AgOTf ($7.7 \mathrm{mg}, 10 \mathrm{~mol} \%$), alkyne-tethered aldehyde $1(0.30 \mathrm{mmol})$ and $\mathrm{DME}(1.0 \mathrm{~mL})$ were added to a 25 mL flame-dried Young-type tube under N_{2} atmosphere. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ in an oil bath for 12 hours, and then cooled to room temperature. The solvent was removed under reduced pressure, the residue was purified by flash chromatography on basic alumina (petroleum ether/ethyl acetate $=200 / 1$ to $50 / 1$) to give the desired product $\mathbf{3}$ as colorless oil.

The mixture of aminal $2(0.36 \mathrm{mmol}), \mathrm{AgClO}_{4}(6.2 \mathrm{mg}, 10 \mathrm{~mol} \%)$, enyne-tethered aldehyde $1(0.30 \mathrm{mmol})$ and anisole (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N_{2} atmosphere. The reaction mixture was stirred at $120{ }^{\circ} \mathrm{C}$ in an oil bath for 12 hours, and then cooled to room temperature. The solvent was removed under reduced pressure, the residue was purified by flash chromatography on silica gels (petroleum ether/ethyl acetate $=50 / 1$ to 20/1) to give the desired product 4 as colorless oil.

4. Preparation and Spectral Data of Substrates

4.1. Preparation of Enynal Derivatives

General Procedure A. Synthesis of enynal substrate 1a

Enynals $\mathbf{1 a - 1 q}$ were synthesized by using 2-ethynylaromatic aldehyde ${ }^{3}$ as starting materials according to the General Procedure A.

Step 1. The mixture of copper (I) iodide ($285 \mathrm{mg}, 1.5 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium ($346 \mathrm{mg}, 0.3 \mathrm{mmol}$) were dissolved in triethylamine (30 mL) under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$. 2-Ethynylbenzaldehyde (3.9 g , 30 mmol) and vinyl bromide (1.0 M in THF, $36 \mathrm{~mL}, 36 \mathrm{mmol}$) were added and the resulting mixture was stirred at $45^{\circ} \mathrm{C}$ in an oil bath until complete conversion of the starting material. The reaction mixture was cooled to room temperature and filtered. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate $=100 / 1$ to 20/1) to afford 2-(but-3-en-1-yn-1-yl)benzaldehyde ($4.02 \mathrm{~g}, 86 \%$ yield).

General Procedure B. Synthesis of alkyne-tethered aldehyde substrate 1r

Alkyne-tethered aldehydes 1r-1zc were synthesized by using 2-bromobenzaldehyde as starting materials according to the General Procedure B.

Step 1. The mixture of copper (I) iodide ($95 \mathrm{mg}, 0.5 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium ($116 \mathrm{mg}, 0.1 \mathrm{mmol}$) were dissolved in triethylamine $(10 \mathrm{~mL})$ under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C} .2$-Bromobenzaldehyde $(1.85 \mathrm{~g}$, 10 mmol) and ethynylbenzene ($1.53 \mathrm{~g}, 15 \mathrm{mmol}$) were added and the resulting
mixture was stirred at $45^{\circ} \mathrm{C}$ in an oil bath until complete conversion of the starting material. The reaction mixture was cooled to room temperature and filtered. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate $=100 / 1$ to 20/1) to afford 2-(phenylethynyl)benzaldehyde ($1.7 \mathrm{~g}, 83 \%$ yield).

General Procedure C. Synthesis of alkyne-tethered aldehyde substrate $\mathbf{1 z d}^{4}$

Step 1. $\mathrm{Tf}_{2} \mathrm{O}(24 \mathrm{mmol}, 4.0 \mathrm{~mL})$ was added dropwise to a solution of estrone (20 mmol, 5.4 g) and $\mathrm{NEt}_{3}(30 \mathrm{mmol}, 4.2 \mathrm{~mL})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After that, the mixture was stirred at room temperature until estrone had been consumed (monitored by TLC). The reaction was quenched by water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent under reduced pressure, the residue was purified by flash column chromatography (petroleum ether/ethyl acetate $=$ 10/1) to afford substrate $\mathbf{1 z d} \mathbf{- 1}$ ($7.08 \mathrm{~g}, 88 \%$ yield).

Step 2. The mixture of copper (I) iodide ($95 \mathrm{mg}, 0.5 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium ($116 \mathrm{mg}, 0.1 \mathrm{mmol}$) were dissolved in triethylamine (10 mL) under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$. $\mathbf{1 z d}-\mathbf{1}(4.02 \mathrm{~g}, 10 \mathrm{mmol})$ and ethynyltrimethylsilane ($2 \mathrm{~mL}, 15 \mathrm{mmol}$) were added and the resulting mixture was stirred at $45^{\circ} \mathrm{C}$ in an oil bath until complete conversion of the starting material. The reaction mixture was cooled to room temperature and filtered. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate $=20 / 1$ to $10 / 1$) to afford $\mathbf{1 z d} \mathbf{- 2}(2.7 \mathrm{~g}$, 78% yield).

Step 3. 1zd-2 (1.75 g , 5 mmol) was dissolved in anhydrous $\mathrm{MeOH}(20 \mathrm{~mL})$ under N_{2} atmosphere at room temperature. $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1 \mathrm{mmol})$ was added and stirred at room temperature until complete conversion of the starting material. The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent under reduced pressure, the crude product $\mathbf{1 z d} \mathbf{- 3}$ was used for the next step directly without further purification.

Step 4. The mixture of copper (I) iodide ($190 \mathrm{mg}, 1 \mathrm{mmol})$ and tetrakis(triphenylphosphine)palladium ($230 \mathrm{mg}, 0.2 \mathrm{mmol}$) were dissolved in triethylamine (30 mL) under N_{2} atmosphere at $0^{\circ} \mathrm{C}$. The crude $\mathbf{1 z d} \mathbf{- 3}(1.11 \mathrm{~g}, 4 \mathrm{mmol})$ and 2-bromobenzaldehyde ($0.7 \mathrm{~mL}, 6 \mathrm{mmol}$) were added and the resulting mixture was stirred at $45^{\circ} \mathrm{C}$ in an oil bath until complete conversion of the starting material. The reaction mixture was cooled to room temperature and filtered. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate $=100 / 1$ to $20 / 1$) to afford $\mathbf{1 z d}(1.04 \mathrm{~g}$, 68% yield).

General Procedure D. Synthesis of 2-(but-3-en-1-yn-1-yl)benzaldehyde-D 1a-D

Step 1. The mixture of copper (I) iodide ($190 \mathrm{mg}, 1.0 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium ($232 \mathrm{mg}, 0.2 \mathrm{mmol}$) were dissolved in triethylamine (10 mL) under N_{2} atmosphere at $0^{\circ} \mathrm{C}$. 1-Bromo-2-iodobenzene (4.02 g , 20 mmol) and ethynyltrimethylsilane ($3.2 \mathrm{~mL}, 24 \mathrm{mmol}$) were added and the resulting mixture was stirred at $45^{\circ} \mathrm{C}$ in an oil bath until complete conversion of the starting material. The reaction mixture was cooled to room temperature and filtered. After
evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate $=20 / 1$ to $10 / 1$) to afford ((2-bromophenyl)ethynyl)trimethylsilane ($4.1 \mathrm{~g}, 81 \%$ yield).

Step 2. ((2-Bromophenyl)ethynyl)trimethylsilane ($3.8 \mathrm{~g}, 15 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{MeOH}(20 \mathrm{~mL})$ under N_{2} atmosphere at room temperature. $\mathrm{K}_{2} \mathrm{CO}_{3}(207$ $\mathrm{mg}, 1.5 \mathrm{mmol}$) was added and stirred at room temperature until complete conversion of the starting material. The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent under reduced pressure, the crude product 1-bromo-2-ethynylbenzene was used for the next step directly without further purification.

Step 3. The mixture of copper (I) iodide ($95 \mathrm{mg}, 0.5 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium ($116 \mathrm{mg}, 0.1 \mathrm{mmol}$) were dissolved in triethylamine (10 mL) under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$. The crude 1-bromo-2-ethynylbenzene ($1.8 \mathrm{~g}, 10 \mathrm{mmol}$) and vinyl bromide (1.0 M in THF, 12 $\mathrm{mL}, 12 \mathrm{mmol}$) were added and the resulting mixture was stirred at $45^{\circ} \mathrm{C}$ in an oil bath until complete conversion of the starting material. The reaction mixture was cooled to room temperature and filtered. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate $=100 / 1$ to 20/1) to afford 1-bromo-2-(but-3-en-1-yn-1-yl)benzene ($1.6 \mathrm{~g}, 78 \%$ yield).

Step 4. The n-butyllithium (2.5 M in hexane, $2.4 \mathrm{~mL}, 6 \mathrm{mmol}$) was added dropwise to a solution of 1-bromo-2-(but-3-en-1-yn-1-yl)benzene ($1.0 \mathrm{~g}, 5 \mathrm{mmol}$) in THF (20 ml) at $-78{ }^{\circ} \mathrm{C}$. After one hour, the N, N-dimethylformamide- $d_{7}(0.6 \mathrm{~mL}, 8 \mathrm{mmol})$ was added dropwise to the solution and stirred at $-78{ }^{\circ} \mathrm{C}$ for additional 30 minutes. The reaction mixture was quenched by saturated ammonium chloride solution (10 mL) extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$.After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate $=$ 100/1 to 20/1) to afford 1a-D ($573 \mathrm{mg}, 73 \%$ yield).

4.2. Substrates Characterization

2-(but-3-en-1-yn-1-yl)benzaldehyde (1a)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $4.02 \mathrm{~g}, 86 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.53(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=17.6 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=$ $17.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=11.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.8,135.9,133.8,133.3,128.8,128.6,127.3,126.8,116.7,95.0,85.5 ;$ HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 157.0653$, found: 157.0649.

2-(but-3-en-1-yn-1-yl)benzaldehyde-D (1a-D)

The title compound was prepared according to the general procedure D and purified by column chromatography to give yellow oil, $573 \mathrm{mg}, 73 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.91 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.46$ (m, $1 \mathrm{H}), 6.03-6.11(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 191.7,191.5,191.2,135.8,133.9,133.3,128.8,128.6$, 127.3, 126.8, 116.7, 94.9, 85.5; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{DO}[\mathrm{M}+\mathrm{H}]^{+}$: 158.0716, found: 158.0712.

2-(but-3-en-1-yn-1-yl)-4-methylbenzaldehyde (1b)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $6.1 \mathrm{~g}, 72 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.61(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}$, $1 \mathrm{H}), 7.36$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.19 (dd, $J=17.6 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.95 (dd, $J=17.6$ $\mathrm{Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=11.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.0,144.6,133.6,133.5,129.6,128.2,127.1,126.5,116.6,94.3$, 85.6, 21.4; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 171.0810$, found: 171.0812 .

2-(but-3-en-1-yn-1-yl)-4-methoxybenzaldehyde (1c)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $5.6 \mathrm{~g}, 75 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.38(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J$ $=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=17.5 \mathrm{~Hz}, 11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.81(\mathrm{dd}, J=17.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=11.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.4,163.8,129.7,129.5,128.9,128.8,117.1,116.6$, 115.7, 94.7, 85.4, 55.8; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 187.0759$, found: 187.0758.

2-(but-3-en-1-yn-1-yl)-5-((tert-butyldimethylsilyl)oxy)benzaldehyde (1d)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $0.62 \mathrm{~g}, 69 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.47(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{dd}, J=17.6 \mathrm{~Hz}, 11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.75$ (dd, $J=17.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=11.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.98$ (s, 9H), $0.22(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.7, 156.4, 137.4, 134.8, 127.8, 126.3, 119.9, 117.7, 116.9, 93.6, 85.5, 25.7, 18.3, -4.3; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 287.1467$, found: 287.1472.

2-(but-3-en-1-yn-1-yl)-3-fluorobenzaldehyde (1e)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $4.5 \mathrm{~g}, 76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.47(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.45(\mathrm{~m}, 1 \mathrm{H})$, 7.31-7.36 (m, 1H), $6.07(\mathrm{dd}, J=17.6 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=17.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.69(\mathrm{dd}, J=11.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=3 \mathrm{~Hz}), 164.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=252 \mathrm{~Hz}\right), 137.4,129.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}\right), 129.4,123.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$
$3 \mathrm{~Hz}), 121.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 116.5,115.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=16 \mathrm{~Hz}\right), 100.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right)$, 78.6; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-109.2; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{FO}[\mathrm{M}+\mathrm{H}]{ }^{+}$: 175.0559, found: 175.0557.

2-(but-3-en-1-yn-1-yl)-4-fluorobenzaldehyde (1f)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $3.2 \mathrm{~g}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.44(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=$ $9.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=18.0 \mathrm{~Hz}, 11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.84-5.88 (m, 1H), 5.69-5.71 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.1,166.8(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=255 \mathrm{~Hz}\right), 132.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 129.5,129.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9\right.$ $\mathrm{Hz}), 119.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=19 \mathrm{~Hz}\right), 116.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=17 \mathrm{~Hz}\right), 116.3,96.0,84.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right)$; ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-103.3$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{FO}[\mathrm{M}+\mathrm{H}]^{+}$: 175.0559, found: 175.0558 .

2-(but-3-en-1-yn-1-yl)-5-fluorobenzaldehyde (1g)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $7.1 \mathrm{~g}, 82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 10.46 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.53-7.59 (m, 2H), 7.24-7.29 (m, $1 \mathrm{H}), 6.02(\mathrm{dd}, J=17.2 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=17.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}$, $J=11.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1 \mathrm{~Hz}\right), 163.7$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=251 \mathrm{~Hz}\right), 137.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}\right), 135.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}\right), 128.8,122.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=3 \mathrm{~Hz}), 121.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 116.5,113.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 94.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}\right)$, 84.4; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-108.9; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{FO}[\mathrm{M}+\mathrm{H}]^{+}$: 175.0559 , found: 175.0559 .

2-(but-3-en-1-yn-1-yl)-6-fluorobenzaldehyde (1h)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $4.2 \mathrm{~g}, 65 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.50(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (dd, $J=10.0 \mathrm{~Hz}, 9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ (dd, $J=17.5 \mathrm{~Hz}, 11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=18.0$ $\mathrm{Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=11.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $188.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 163.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=261 \mathrm{~Hz}\right), 134.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}\right), 129.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=4 \mathrm{~Hz}), 129.1,127.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 124.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 116.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right)$, 116.5, 95.4, $85.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5 \mathrm{~Hz}\right) ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-116.1; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{FO}[\mathrm{M}+\mathrm{H}]^{+}: 175.0559$, found: 175.0554.

2-(but-3-en-1-yn-1-yl)-4-chlorobenzaldehyde (1i)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $4.8 \mathrm{~g}, 84 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 10.60 (d, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99$ (dd, $J=8.4 \mathrm{~Hz}, 0.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.69 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.57(\mathrm{~m}, 1 \mathrm{H}), 6.18$ (dd, $J=17.6 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.98$ (dd, $J=17.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dd}, J=11.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.6,140.4,134.3,133.0,129.5,129.3,128.7,128.3,116.4,96.1$, 84.2; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}: 191.0264$, found: 191.0263.

2-(but-3-en-1-yn-1-yl)-5-chlorobenzaldehyde (1j)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $6.3 \mathrm{~g}, 83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.43(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.50(\mathrm{~m}, 2 \mathrm{H}), 6.02$ (dd, $J=17.2 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=17.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66-5.69(\mathrm{~m}, 1 \mathrm{H}) ;$ ${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.2,136.9,135.2,134.5,133.7,129.0,127.1,125.0$, 116.4, 95.8, 84.4; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClO}[\mathrm{M}+\mathrm{H}]^{+}$: 191.0264, found: 191.0257.

2-(but-3-en-1-yn-1-yl)-5-(trifluoromethyl)benzaldehyde (1k)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $5.4 \mathrm{~g}, 78 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.53(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.78-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=17.5 \mathrm{~Hz}, 11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (dd, $J=17.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J=11.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.3,136.1,133.9,132.9,131.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=34 \mathrm{~Hz}\right), 130.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=4\right.$ $\mathrm{Hz}), 130.0,126.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=271 \mathrm{~Hz}\right), 124.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=5 \mathrm{~Hz}\right), 116.2,97.5,84.2 ;{ }^{19} \mathrm{~F}$ NMR (470 MHz, CDCl_{3}) δ-63.2; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 225.0527, found: 225.0525 .

2-(but-3-en-1-yn-1-yl)-4,5-difluorobenzaldehyde (11)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $1.29 \mathrm{~g}, 78 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.44(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=$ $9.0 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.03$ (dd, $J=17.5 \mathrm{~Hz}, 11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (dd, $J=17.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=11.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 190.1,166.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=256 \mathrm{~Hz}\right), 132.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=10\right.$ $\mathrm{Hz}), 129.5,129.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=11 \mathrm{~Hz}\right), 119.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right), 116.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right)$, 116.3, 96.0, $84.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-103.3 ;$ HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 193.0465$, found: 193.0460.

2-(pent-3-en-1-yn-1-yl)benzaldehyde (1m)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $3.9 \mathrm{~g}, 66 \%$ yield ($Z: E=59: 41$). ${ }^{1} \mathrm{H}$ NMR
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.74(\mathrm{~s}, 0.38 \mathrm{H}), 10.70(\mathrm{~s}, 0.62 \mathrm{H})$,
6.29-6.36 (m, 0.39H), 5.92-5.95 (m, 1H), 2.16-2.18 (m, 1.24H), 2.04-2.06 (m, 1.78H); ${ }^{13}{ }^{1}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.8,191.7,141.7,140.5,135.7,135.6,133.7,133.7$, 133.2, 133.1, 128.3, 128.2, 127.3, 127.3, 127.2, 127.1, 110.3, 109.6, 95.4, 93.3, 89.5, 83.3, 18.9, 16.5; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 171.0810$, found: 171.0813.

(E)-2-(4-phenylbut-3-en-1-yn-1-yl)benzaldehyde (1n)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $1.92 \mathrm{~g}, 83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.58(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.92(\mathrm{~m}, 1 \mathrm{H})$, $7.51-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.39(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.8,142.9,136.0,135.8$, 133.8, 133.2, 129.2, 128.9, 128.6, 127.4, 127.1, 126.6, 107.3, 96.0, 87.2; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 233.0966$, found: 233.0964 .

2-(3-methylbut-3-en-1-yn-1-yl)benzaldehyde (10)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $1.37 \mathrm{~g}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.54(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.40-7.44(m, 1H), $5.48(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.8,135.9,133.8,133.3,128.6,127.2,127.0,126.4$, 123.5, 97.6, 83.9, 23.3; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 171.0810$, found: 171.0809 .

3-(but-3-en-1-yn-1-yl)picolinaldehyde (1p)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $372 \mathrm{mg}, 79 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$10.55(\mathrm{~s}, 1 \mathrm{H}), 8.79-8.80(\mathrm{~m}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.07$ (dd, $J=17.6 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=17.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ (dd, $J=11.2 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 190.9, 154.6, 146.0, 134.8, 131.9, 130.8, 123.4, 116.0, 94.5, 85.1; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 158.0606$, found: 158.0605 .

3-(but-3-en-1-yn-1-yl)thiophene-2-carbaldehyde (1q)

The title compound was prepared according to the general procedure A and purified by column chromatography to give yellow oil, $1.3 \mathrm{~g}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.12$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=5.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02$ (dd, $J=17.5 \mathrm{~Hz}, 11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=17.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.67(\mathrm{dd}, J=11.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.1,143.7$, 134.0, 131.6, 130.8, 129.2, 116.4, 94.7, 82.1; HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$: 163.0218 , found: 163.0215 .

2-(phenylethynyl)benzaldehyde (1r)

The title compound was prepared according to the general procedure B and purified by column chromatography to give yellow oil, $1.7 \mathrm{~g}, 83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.65$ $(\mathrm{s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.56-7.60 (m, 3H), 7.43-7.47 (m, 1H), 7.38-7.40 (m, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 191.8,135.9,133.9,133.3,131.8,129.2,128.7,128.6,127.4,127.0,122.4$, 96.4, 85.0; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 207.0810$, found: 207.0809 .

2-((4-(dimethylamino)phenyl)ethynyl)benzaldehyde (1s)

$1 s$

The title compound was prepared according to the general procedure B and purified by column chromatography to give yellow solid, $1.02 \mathrm{~g}, 82 \%$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.66(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.59(\mathrm{~m}$, $2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~s}$, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.3,150.6,135.4,133.8,133.0,132.9,128.2$, 127.7, 127.1, 111.8, 108.8, 98.4, 83.3, 40.2; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NONa}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 272.1046$, found: 272.1054.

2-(pyridin-2-ylethynyl)benzaldehyde (1t)

The title compound was prepared according to the general procedure B and purified by column chromatography to give yellow oil, $515 \mathrm{mg}, 83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.66(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.64-8.66(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=7.6$ $\mathrm{Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.74$ (m, 2H), 7.57-7.62 (m, 2H), 7.47-7.51 (m, 1H), 7.28-7.31 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.1, 150.2, 142.5, 136.3, 136.2, 133.7, 133.6, 129.3, 127.4, 127.3, 125.5, 123.4, 95.0, 84.4; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 208.0762$, found: 208.0766.

2-(thiophen-3-ylethynyl)benzaldehyde (1u)

The title compound was prepared according to the general procedure B and purified by column chromatography to give yellow oil, $859 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.60(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.43$ $(\mathrm{m}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=4.8 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.6,135.8,133.8,133.1,129.7,129.7,128.6,127.3$, 126.8, 125.8, 121.4, 91.6, 84.6; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 213.0374$, found: 213.0377.

2-(oct-1-yn-1-yl)benzaldehyde (1v)

The title compound was prepared according to the general procedure B and purified by column
chromatography to give yellow oil, $1.82 \mathrm{~g}, 85 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.54(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.39(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.67$ (m, 2H), 1.43-1.50 (m, 2H), 1.31-1.36 (m, 4H), 0.91 (t, $J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.2, 136.1, 133.7, 133.4, 128.1, 127.9, 127.0, 98.3, 76.4, 31.4, 28.7, 28.6, 22.6, 19.7, 14.1; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 215.1436$, found: 215.1437.

2-(cyclopropylethynyl)benzaldehyde (1w)

The title compound was prepared according to the general procedure B and purified by column chromatography to give yellow oil, $1.39 \mathrm{~g}, 82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.49(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.51(\mathrm{~m}, 2 \mathrm{H})$, 7.34-7.37 (m, 1H), 1.49-1.54 (m, 1H), 0.92-0.96 (m, 2H), 0.85-0.87 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.1,136.2,133.7,133.4,127.9,127.8,127.0,101.3$, 71.6, 9.0, 0.4; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 171.0810$, found: 171.0808 .

2-(3,3-dimethylbut-1-yn-1-yl)benzaldehyde (1x)

The title compound was prepared according to the general procedure B and purified by column chromatography to give yellow oil, $1.51 \mathrm{~g}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.54(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.50(\mathrm{~m}$, $2 \mathrm{H}), 7.35-7.38(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.3,135.9$, 133.7, 133.3, 128.0, 127.9, 126.9, 106.2, 75.0, 30.9, 28.4; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 187.1123$, found: 187.1126.

2-(4-((tert-butyldimethylsilyl)oxy)but-1-yn-1-yl)benzaldehyde (1y)

The title compound was prepared according to the general procedure B and purified by column chromatography to give yellow oil, $1.0 \mathrm{~g}, 72 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.59(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.59(\mathrm{~m}, 2 \mathrm{H})$,
7.41-7.45 (m, 1H), $3.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.15$ (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.2, 136.1, 133.8, 133.4, 128.1, 127.7, 127.0, 95.1, 77.4, 61.7, 26.0, 24.1, 18.4, -5.2; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{SiNa}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 311.1438$, found: 311.1438 .

4-(2-formylphenyl)but-3-yn-1-yl acetate (1z)

The title compound was prepared according to the general procedure B and purified by column chromatography to give yellow oil, $766 \mathrm{mg}, 71 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.51-10.51(\mathrm{~m}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.55(\mathrm{~m}, 2 \mathrm{H})$, 7.39-7.43 (m, 1H), $4.29(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.7,170.7,136.0,133.6,133.3,128.3,126.9,126.9$, 93.2, 77.7, 61.9, 20.7, 20.0; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 217.0865$, found: 217.0855.

2-(5-chloropent-1-yn-1-yl)benzaldehyde (1za)

The title compound was prepared according to the general procedure B and purified by column chromatography to give yellow oil, $854 \mathrm{mg}, 83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.51(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.42(\mathrm{~m}$, $1 \mathrm{H}), 3.72(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-2.13(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.9,136.1,133.8,133.5,128.3,127.3,127.2,95.8,77.5,43.7$, 31.2, 17.1; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}: 207.0577$, found: 207.0572.

2-(3-hydroxybut-1-yn-1-yl)benzaldehyde (1zb)

The title compound was prepared according to the general procedure B and purified by column chromatography to give yellow oil, $705 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.48(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.52(\mathrm{~m}, 2 \mathrm{H})$,
7.39-7.43 (m, 1H), $4.82(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 1 \mathrm{H}), 1.59(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.0,135.9,133.9,133.4,128.8,127.5,126.2,98.4,79.6$, 58.7, 24.2; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 175.0759 , found: 175.0751.

6-(2-formylphenyl)hex-5-ynenitrile (1zc)

The title compound was prepared according to the general procedure B and purified by column chromatography to give yellow oil, $615 \mathrm{mg}, 78 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.48(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.44$ $(\mathrm{m}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-2.03(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 191.5,136.0,133.7,133.5,128.4,127.4,126.6,119.0$, 94.5, 78.1, 24.4, 18.7, 16.3; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 198.0919$, found: 198.0916.

2-(($(8 R, 9 S, 13 S, 14 S)-13-m e t h y l-17-o x o-7,8,9,11,12,13,14,15,16,17-d e c a h y d r o-6 H-c$ yclopenta[a]phenanthren-3-yl)ethynyl)benzaldehyde (1zd)

The title compound was prepared according to the general procedure C and purified by column chromatography to give yellow solid, $1.04 \mathrm{~g}, 68 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.65(\mathrm{~d}, ~ J$ $=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.61 (dd, $J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55-7.59 (m, $1 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.36(\mathrm{~m}, 3 \mathrm{H}), 2.91-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{dd}, J=18.8 \mathrm{~Hz}$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.20(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.67(\mathrm{~m}$, 6 H), $0.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.7,191.9,141.4,137.0,135.9$, 133.9, 133.2, 132.3, 129.1, 128.6, 127.3, 127.3, 125.7, 119.7, 96.7, 84.4, 50.6, 48.0, 44.6, 38.0, 35.9, 31.7, 29.2, 26.4, 25.7, 21.7, 13.9; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 383.2011, found: 383.2018.

5. Products Characterization

N, N-dibenzyl-4-((dibenzylamino)methyl)-3-vinyl-1H-isochromen-1-amine (3aa)

 The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $142 \mathrm{mg}, 85 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.08-7.28 (m, 24H), 6.80 (dd, $J=17.0 \mathrm{~Hz}, 11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}$, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}$, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.41-3.53(\mathrm{~m}$, 4 H) ${ }^{13}{ }^{13} \mathrm{C}$ NR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9,139.5,139.3,133.6,129.8,129.4,128.8$, 128.40, 128.38, 128.2, 127.9, 127.0, 126.6, 125.5, 123.2, 116.6, 109.3, 86.9, 58.4, 52.2, 49.7; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 563.3062$, found: 563.3053.

Figure S1. The ORTEP drawing of product 3aa

4-((bis(4-methylbenzyl)amino)methyl)- N, N-bis(4-methylbenzyl)-3-vinyl-1H-isoch romen-1-amine (3ab)

The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, $144 \mathrm{mg}, 78 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.02-7.22 (m, 20 H), 6.79 (dd, $J=16.8 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.97 (dd, $J=16.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J$ $=10.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H})$,
3.63 (d, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.37-3.53 (m, 6H), 2.28 ($\mathrm{s}, 12 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 149.8,136.5,136.4,136.4,136.3,133.7,130.0,129.4,129.0,128.8,128.7$, $128.5,127.8,126.5,125.5,123.3,116.4,109.5,86.9,57.9,51.8,49.5,21.2,21.2$; HRMS (ESI) calcd for $\mathrm{C}_{44} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 619.3688$, found: 619.3691 .

4-((bis(4-methoxybenzyl)amino)methyl)- N, N-bis(4-methoxybenzyl)-3-vinyl-1H-is

 ochromen-1-amine (3ac)

The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, $178 \mathrm{mg}, 87 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.10-7.17 (m, 12 H), 6.75-6.85 (m, 9H), 5.97 (dd, $J=16.8 \mathrm{~Hz}$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=10.8 \mathrm{~Hz}$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.79(\mathrm{~m}, 14 \mathrm{H}), 3.57-3.62(\mathrm{~m}$, 2 H), 3.48-3.52 (m, 3H), 3.37 (d, J = $13.2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.7,158.7$, $149.8,133.6,131.7,131.4,130.5,130.0,129.9,128.5,127.8,126.5,125.6,123.2$, 116.4, 113.7, 113.5, 109.4, 86.6, 57.4, 55.3, 55.3, 51.3, 49.3; HRMS (ESI) calcd for $\mathrm{C}_{44} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 683.3485$, found: 683.3494.

4-((bis(4-(tert-butyl)benzyl)amino)methyl)-N,N-bis(4-(tert-butyl)benzyl)-3-vinyl-1 H-isochromen-1-amine (3ad)

The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, $200 \mathrm{mg}, 85 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.32$ (m, $1 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 11 \mathrm{H}), 7.12-7.20(\mathrm{~m}, 6 \mathrm{H})$, 7.03-7.09 (m, 2H), 6.79 (dd, $J=16.8 \mathrm{~Hz}, 10.8 \mathrm{~Hz}$, 1 H), 5.95 (dd, $J=16.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (s,
$1 \mathrm{H}), 5.32$ (dd, $J=10.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.69-3.79(\mathrm{~m}, 2 \mathrm{H})$, 3.40-3.60 (m, 6H), 1.28 (s, 18H), $1.27(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9$, $149.8,136.6,136.4,133.8,130.0,129.2,128.6,128.5,128.4,127.8,126.5,125.5$, $125.3,125.3,125.0,123.3,116.4,109.5,87.1,58.0,51.7,49.5,34.6,31.6,31.6$; HRMS (ESI) calcd for $\mathrm{C}_{56} \mathrm{H}_{71} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 787.5566$, found: 787.5577.

4-((bis(4-fluorobenzyl)amino)methyl)- N, N-bis(4-fluorobenzyl)-3-vinyl-1 H -isochr omen-1-amine (3ae)

The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, $146 \mathrm{mg}, 77 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.11-7.21 (m, 11H), $7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.95(\mathrm{~m}, 8 \mathrm{H}), 6.76(\mathrm{dd}, J$ $=16.8 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=16.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.73 (d, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.61 (d, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.50-3.55 (m, 3H), 3.38-3.42 (m, 3H); ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=244 \mathrm{~Hz}\right), 161.1,149.8,135.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 134.7$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 133.3,130.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 129.5,128.1$, $128.1,126.8,125.7,123.0,116.9,115.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 115.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=20 \mathrm{~Hz}\right)$, 109.0, 86.7, 57.4, 51.3, 49.3; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.6,-115.7$; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{35} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 635.2686$, found: 635.2687.

4-((bis(3-fluorobenzyl)amino)methyl)- N, N-bis(3-fluorobenzyl)-3-vinyl-1H-isochr omen-1-amine (3af)

The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, $150 \mathrm{mg}, 79 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.13-7.23(\mathrm{~m}, 8 \mathrm{H}), 6.83-7.01(\mathrm{~m}, 12 \mathrm{H}), 6.75(\mathrm{dd}$, $J=16.8 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.97 (dd, $J=16.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.77$ (s, 1H), 5.39 (dd, $J=10.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (d, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.42-3.59$ $(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $244 \mathrm{~Hz}), 163.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245 \mathrm{~Hz}\right), 149.8,142.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}\right), 141.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right)$, 133.2, $129.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 129.3,128.3,128.0,127.1,125.6$, $124.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 124.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 123.0,117.2,116.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right)$, $115.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 114.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 114.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 109.0,87.0$, 58.0, 51.9, 49.7; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.3,-113.6$; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{35} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 635.2686$, found: 635.2687.

4-((bis(2-fluorobenzyl)amino)methyl)- N, N-bis(2-fluorobenzyl)-3-vinyl-1 H -isochr omen-1-amine (3ag)

The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, $151 \mathrm{mg}, 79 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.35-7.39 (m, 2H), 7.22-7.26 (m, 3H), 7.07-7.20 (m, 7H), 7.01-7.05 (m, 2H), 6.88-6.97 (m, 6H), 6.78 (dd, J $=16.8 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=16.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (d, $J=14.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.76 (d, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.51-3.63$ $(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=244 \mathrm{~Hz}\right), 162.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245\right.$ $\mathrm{Hz}), 149.9,133.6,131.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 129.6,128.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=3 \mathrm{~Hz}), 128.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 128.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=13 \mathrm{~Hz}\right), 126.6,126.0,125.9,125.8$, $125.5,124.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 123.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 123.2,117.3,115.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=16\right.$ $\mathrm{Hz}), 115.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=16 \mathrm{~Hz}\right), 109.1,87.9,50.6,49.9,45.6 ;{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$,
CDCl_{3}) δ-118.1, -118.4; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{35} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 635.2686, found: 635.2703.

4-((bis(4-chlorobenzyl)amino)methyl)- N, N-bis(4-chlorobenzyl)-3-vinyl-1H-isochr omen-1-amine (3ah)

The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, $172 \mathrm{mg}, 82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.17-7.23 (m, 9H), 7.12-7.16 (m, 10H), 7.05 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.75 (dd, $J=17.0 \mathrm{~Hz}, 11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=16.5 \mathrm{~Hz}, 1.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.76 (s, 1H), 5.38 (dd, $J=10.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71$ (d, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.50-3.54(\mathrm{~m}, 3 \mathrm{H}), 3.39-3.43(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8,137.7,137.4,133.2,133.0,132.9,130.6,130.0,129.4$, 128.6, 128.4, 128.2, 128.0, 126.9, 125.7, 123.0, 117.1, 108.9, 86.8, 57.5, 51.5, 49.4; HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{Cl}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 709.1705$, found: 709.1700.

N-benzyl-4-((benzyl(methyl)amino)methyl)-N-methyl-3-vinyl-1H-isochromen-1-a mine (3ai)

The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, $79 \mathrm{mg}, 64 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.46 (dd, $J=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.19-7.33 (m, 13H), 6.82 (dd, $J=16.8 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-5.99(\mathrm{~m}, 2 \mathrm{H}), 5.33$ (dd, $J=10.8$ $\mathrm{Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.50(\mathrm{ABq}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{ABq}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8,139.5,139.4,133.5,129.9,129.3,128.7$, 128.6, 128.4, 128.3, 128.2, 128.2, 128.1, 127.1, 126.7, 125.9, 123.1, 116.6, 109.4,
91.5, 62.0, 56.2, 53.3, 42.0, 36.1; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 411.2436, found: 411.2442 .

4-((1-morpholino-3-vinyl-1H-isochromen-4-yl)methyl)morpholine (3aj)

The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, $91 \mathrm{mg}, 88 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.56 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.33$ (m, 1H), 7.20-7.25 (m, 2H), 6.75 (dd, $J=16.8 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.90$ (dd, $J=16.8 \mathrm{~Hz}, 1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.77$ (s, 1H), 5.31 (dd, $J=10.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.64-3.67 (m, 8H), 3.38 (ABq, $J=13.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.91-2.94 (m, 2H), 2.68-2.73 (m, 2H), $2.50(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9,133.6$, 128.5, 128.4, 127.6, 126.7, 126.0, 123.0, 117.1, 108.2, 91.8, 67.4, 67.2, 54.3, 53.5, 47.6; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 343.2022$, found: 343.2031.
N, N-dibenzyl-4-((dibenzylamino)methyl)-6-methyl-3-vinyl-1H-isochromen-1-ami ne (3ba)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $140 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.15-7.28(\mathrm{~m}, 20 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}$) , 6.82 (dd, $J=16.8 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.98(\mathrm{dd}, J=16.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.39-3.60(\mathrm{~m}, 6 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9,139.7,139.4,137.5,133.3,129.5,128.7,128.4$, $128.3,128.2,127.5,126.99,126.98,126.95,125.4,123.6,116.5,109.2,86.9,58.6$, 52.0, 49.6, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 577.3219$, found: 577.3229.

N,N-dibenzyl-7-((tert-butyldimethylsilyl)oxy)-4-((dibenzylamino)methyl)-3-vinyl-

1 H -isochromen-1-amine (3ca)

The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, $158 \mathrm{mg}, 76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17-7.30(\mathrm{~m}, 20 \mathrm{H}), 7.03$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J$ $=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.40-3.57(\mathrm{~m}, 6 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}$, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.6,148.2,139.6,139.3,131.6,129.4,128.7$, $128.4,128.3,128.1,127.2,127.0,124.9,119.9,116.5,115.6,109.5,86.9,58.4,52.2$, 49.9, 25.9, 18.4, -4.2; HRMS (ESI) calcd for $\mathrm{C}_{46} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 693.3876$, found: 693.3853.
N, N-dibenzyl-4-((dibenzylamino)methyl)-5-fluoro-3-vinyl-1 H -isochromen-1-ami ne (3da)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $137 \mathrm{mg}, 79 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.30 (d, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.10-7.28(\mathrm{~m}, 18 \mathrm{H})$, 6.93-6.97 (m, 1H), 6.72 (dd, $J=17.0 \mathrm{~Hz}, 10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.94 (dd, $J=16.5 \mathrm{~Hz}, 2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=10.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.70-3.76 (m, 4H), 3.59 (d, $J=13.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.46 (d, $J=13.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=250 \mathrm{~Hz}\right), 150.9,139.7,139.1,134.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5\right.$ $\mathrm{Hz}), 129.2,128.9,128.7,128.5,128.0,127.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 126.8,122.64,122.56$, $121.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 116.8,116.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}\right), 109.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5 \mathrm{~Hz}\right), 87.4$, $57.8,52.7,51.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-112.2 ;$ HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 581.2968$, found: 581.2978.

N, N-dibenzyl-4-((dibenzylamino)methyl)-6-fluoro-3-vinyl-1H-isochromen-1-ami ne (3ea)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $136 \mathrm{mg}, 78 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14-7.25(\mathrm{~m}, 21 \mathrm{H}), 6.88(\mathrm{dd}, J=11.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.79-6.85 (m, 2H), $6.01(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H})$, $5.40(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~d}$, $J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.36-3.48(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $243 \mathrm{~Hz}), 150.6,139.3,139.0,136.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 129.4,128.7$, 128.4, 128.3, 128.0, 127.1, 127.1, 127.1, $125.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 117.6,113.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 110.0(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right), 108.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 86.7,58.5,52.1,49.8 ;{ }^{19} \mathrm{~F}$ NMR $(470 \mathrm{MHz}$, CDCl_{3}) δ-114.1; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 581.2968$, found: 581.2981.

N, N-dibenzyl-4-((dibenzylamino)methyl)-7-fluoro-3-vinyl-1H-isochromen-1-ami ne (3fa)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $149 \mathrm{mg}, 86 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14-7.24(\mathrm{~m}, 20 \mathrm{H}), 7.03(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ $(\mathrm{dd}, J=9.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{dd}, J=$ $16.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.67 (d, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.39-3.50(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245 \mathrm{~Hz}\right), 149.1,149.1,139.4,139.0$, $132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}\right), 129.4,128.7,128.5,128.2,128.0,127.2$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}\right), 125.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 116.7,115.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 112.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ 23 Hz), 108.8, 86.5, 58.4, 52.2, 49.8; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.0$; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 581.2968$, found: 581.2964.

N, N-dibenzyl-4-((dibenzylamino)methyl)-8-fluoro-3-vinyl-1H-isochromen-1-ami ne (3ga)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $166 \mathrm{mg}, 95 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.17-7.24 (m, 20H), 7.02 (dd, $J=14.0 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.79-6.87 (m, 3H), $6.15(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=17.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.41(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.55-3.65(\mathrm{~m}, 5 \mathrm{H})$, 3.37-3.46 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=246 \mathrm{~Hz}\right.$), 150.7, $139.3,138.9,135.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 129.5,129.2,129.1,128.8,128.2,128.2,128.1$, $127.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=13 \mathrm{~Hz}\right), 118.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 117.6,116.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=15 \mathrm{~Hz}\right), 113.4(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 108.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 81.3,58.4,52.0,49.4 ;{ }^{19} \mathrm{~F}$ NMR $(470 \mathrm{MHz}$, CDCl_{3}) δ-119.5; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 581.2968$, found: 581.2961.
N, N-dibenzyl-6-chloro-4-((dibenzylamino)methyl)-3-vinyl-1H-isochromen-1-ami ne (3ha)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $146 \mathrm{mg}, 82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.10-7.28(\mathrm{~m}, 23 \mathrm{H}), 6.80(\mathrm{dd}, J=16.5 \mathrm{~Hz}, 10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.01(\mathrm{dd}, J=17.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H})$, 5.41-5.43 (m, 1H), $3.82(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.36-3.56(\mathrm{~m}$, 6 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.7,139.3,139.0,135.4,134.1,129.3,128.7$, 128.4, 128.4, 128.0, 128.0, 127.2, 127.1, 126.8, 126.5, 123.2, 117.7, 108.2, 86.7, 58.6, 52.1, 49.8; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 597.2673, found: 597.2665.

N, N-dibenzyl-7-chloro-4-((dibenzylamino)methyl)-3-vinyl-1H-isochromen-1-ami ne (3ia)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $160 \mathrm{mg}, 89 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17-7.28(\mathrm{~m}, 21 \mathrm{H}), 6.97-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{dd}, J=16.4$ $\mathrm{Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.98 (dd, $J=16.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (s, $1 \mathrm{H}), 5.39(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (d, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.55 (d, $J=13.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.38-3.50 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $149.9,139.3,138.9,132.2,131.9,131.5,129.4,128.8,128.5,128.2,128.1,127.9$, 127.2, 127.1, 125.4, 124.8, 117.3, 108.6, 86.4, 58.4, 52.2, 49.6; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 597.2673$, found: 597.2648.

N, N-dibenzyl-4-((dibenzylamino)methyl)-7-(trifluoromethyl)-3-vinyl-1H-isochro men-1-amine (3ja)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $155 \mathrm{mg}, 82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44$ (s, 1H), 7.13-7.31 (m, 22H), 6.80 (dd, $J=16.8 \mathrm{~Hz}$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ (dd, $J=16.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (s, $1 \mathrm{H}), 5.44$ (dd, $J=10.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82 (d, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.67 (d, $J=13.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.42-3.58 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.5$, 139.3, 138.7, $137.1,130.1,129.4,128.8,128.5,128.3,128.0,127.9,127.3,127.2,125.5$ (q, $J_{\mathrm{C}-\mathrm{F}}=$ $270 \mathrm{~Hz}), 124.7,123.5,122.5,118.3,108.3,86.8,58.5,52.3,49.6 ;{ }^{19}$ F NMR (470 MHz , CDCl_{3}) δ-62.2; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{38} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 631.2936, found: 631.2945.

N, N-dibenzyl-4-((dibenzylamino)methyl)-6,7-difluoro-3-vinyl-1H-isochromen-1-a mine (3ka)

The title compound was prepared according to the general procedure and purified by column chromatography to give
colorless oil, $168 \mathrm{mg}, 94 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14-7.26(\mathrm{~m}, 20 \mathrm{H})$, 6.93-7.01 (m, 2H), 6.78 (dd, $J=17.0 \mathrm{~Hz}, 11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~s}$, $1 \mathrm{H}), 5.40(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.53(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.33-3.47(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.3$ $\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=244 \mathrm{~Hz}, 13 \mathrm{~Hz}\right), 151.0\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=246 \mathrm{~Hz}, 13 \mathrm{~Hz}\right), 149.9,139.2,138.8$, $131.0\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}, 4 \mathrm{~Hz}\right), 129.4,128.7$, 128.6, 128.5, 128.4, 127.7, 127.3 (d, $J_{\mathrm{C}-\mathrm{F}}$ $=4 \mathrm{~Hz}), 126.4\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=5 \mathrm{~Hz}, 3 \mathrm{~Hz}\right), 117.6,114.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=19 \mathrm{~Hz}\right), 112.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ 20 Hz), 107.9, 86.2, 58.5, 52.2, 49.9; ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-138.8,-138.9$, -139.6, -139.6; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 599.2874, found: 599.2873.

N, N-dibenzyl-4-((dibenzylamino)methyl)-3-(prop-1-en-1-yl)-1H-isochromen-1-a mine (3la)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $140 \mathrm{mg}, 81 \%$ yield ($Z / E=65: 35$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11-7.28(\mathrm{~m}, 25 \mathrm{H}), 6.49-6.49(\mathrm{~m}, 1 \mathrm{H})$, 5.76-5.77 (m, 1H), 3.86-3.97 (m, 2H), 3.67-3.73 (m, 2H), 3.39-3.59 (m, 6H), $2.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1.04 \mathrm{H}), 1.95(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1.96 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,150.2,139.7,139.4,134.1,133.9,130.6,129.5,129.4$, 129.2, 128.8, 128.7, 128.4, 128.4, 128.2, 128.1, 127.9, 127.8, 127.0, 127.0, 127.0, $126.9,126.2,126.0,125.4,125.2,123.3,122.9,122.7,121.9,108.6,107.0,87.6,87.1$, 58.5, 52.7, 52.2, 50.4, 49.7, 18.8, 16.6; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 577.3219, found: 577.3238.

N, N-dibenzyl-4-((dibenzylamino)methyl)-3-styryl-1 H -isochromen-1-amine (3ma)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $162 \mathrm{mg}, 85 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 7 \mathrm{H})$, 7.23-7.28 (m, 12H), 7.14-7.21 (m, 8H), $5.85(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ (d, $J=12.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.51-3.64 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.3,139.6$, $139.2,137.4,134.0,130.8,129.8,129.4,128.9,128.8,128.4,128.3,128.2,128.2$, $128.0,127.3,127.1,127.0,126.5125 .6,122.8,120.2,110.1,87.2,58.6,52.3,49.8 ;$ HRMS (ESI) calcd for $\mathrm{C}_{46} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 639.3375$, found: 639.3365 .

N, N-dibenzyl-4-((dibenzylamino)methyl)-3-(prop-1-en-2-yl)-1H-isochromen-1-a mine (3na)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $145 \mathrm{mg}, 84 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.27(\mathrm{~m}, 9 \mathrm{H}), 7.08-7.18(\mathrm{~m}, 14 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.69$ (d, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.50-3.57(\mathrm{~m}, 4 \mathrm{H}), 3.38(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.09$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.4, 139.7, 139.3, 139.1, 133.2, 129.4, 128.7, 128.7, 128.3, 128.1, 127.6, 127.0, 126.9, 126.2, 125.2, 123.7, 118.8, 106.2, 87.8, 58.5, 52.4, 51.0, 22.4; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 577.3219$, found: 577.3214.

N, N-dibenzyl-5-((dibenzylamino)methyl)-6-vinyl-8H-pyrano[3,4-b]pyridin-8-ami ne (3oa)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $122 \mathrm{mg}, 72 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.45 (dd, $J=4.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44 (dd, $J=7.6 \mathrm{~Hz}, 0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15-7.33(\mathrm{~m}, 20 \mathrm{H}), 7.00(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ (dd, $J=17.2 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{dd}, J=17.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.31$ (dd, $J=10.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.67-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.53(\mathrm{~s}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.1,152.6,149.1,140.3,138.8,133.2,129.8$,
$129.3,128.7,128.5,128.1,127.3,126.9,124.8,121.1,116.7,111.2,87.4,58.6,52.2$, 46.7; HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 564.3015 , found: 564.3019.
N, N-dibenzyl-4-((dibenzylamino)methyl)-3-phenyl-1 H -isochromen-1-amine (3pa)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $165 \mathrm{mg}, 90 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.44-7.52 (m, 5H), 7.22-7.32 (m, 9H), 7.09-7.20 (m, 14H), 7.01 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80$ (d, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.42-3.55 (m, 4H), 3.23 (d, $J=13.2 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,139.5,139.3,136.1,133.4,130.0,129.4,128.9,128.8,128.7$, 128.4, 128.2, 128.0, 127.7, 127.0, 126.9, 126.4, 125.2, 123.7, 107.5, 88.7, 58.3, 52.5, 50.9; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 613.3219$, found: 613.3209.

Figure S2. The ORTEP drawing of product 3pa
N, N-dibenzyl-4-((dibenzylamino)methyl)-3-(4-(dimethylamino)phenyl)- $\mathbf{1 H}$-isochr omen-1-amine (3qa)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $137 \mathrm{mg}, 70 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 5 \mathrm{H}), 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.10-7.19(\mathrm{~m}, 14 \mathrm{H}), 6.99$
(d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.82(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, 2 H), 3.04 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.2, 150.7, 139.7, 139.5, 134.1, 131.1, 129.4, 129.0, 128.7, 128.4, 128.0, 127.5, 126.9, 126.8, 125.9, 124.9, 123.7, 123.6, 111.6, 106.4, 88.5, 58.2, 52.7, 51.0, 40.5; HRMS (ESI) calcd for $\mathrm{C}_{46} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 656.3641$, found: 656.3637.

N, N-dibenzyl-4-((dibenzylamino)methyl)-3-(pyridin-2-yl)-1H-isochromen-1-amin

 e (3ra)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $134 \mathrm{mg}, 73 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13-7.29(\mathrm{~m}, 25 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.90(\mathrm{~m}, 4 \mathrm{H})$, $3.49(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.1, 151.0, 148.7, 139.8, 139.2, 136.5, 133.5, 129.4, 129.2, 128.7, 128.4, 128.0, $127.8,127.0,126.8,126.8,125.2,124.4,124.3,123.1,110.3,88.7,58.5,52.5,49.7$; HRMS (ESI) calcd for $\mathrm{C}_{43} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 614.3171$, found: 614.3170 .

N, N-dibenzyl-4-((dibenzylamino)methyl)-3-(thiophen-3-yl)-1H-isochromen-1-ami ne (3sa)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $141 \mathrm{mg}, 76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{dd}, J=2.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.37(\mathrm{~m}, 12 \mathrm{H})$, 7.09-7.19 (m, 14H), $5.86(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.58 (ABq, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.0,139.4,139.2,136.8,133.6,129.4,129.0,128.8$, 128.7, 128.4, 128.1, 127.8, 127.1, 126.9, 126.4, 126.3, 125.3, 125.0, 123.5, 107.8,
88.4, 58.2, 52.6, 50.8; HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{OSNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 641.2597, found: 641.2598 .
N, N-dibenzyl-4-((dibenzylamino)methyl)-3-hexyl-1H-isochromen-1-amine (3ta)
 The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $145 \mathrm{mg}, 78 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.08-7.29 (m, $24 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{ABq}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.49(\mathrm{~m}$, $2 \mathrm{H}), 1.63-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.42(\mathrm{~m}, 6 \mathrm{H}), 0.95(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.5,139.8,139.5,134.0,129.4,128.8,128.4,128.3,128.1,127.8$, $127.0,126.9,125.6,125.3,122.2,104.8,87.5,58.4,52.4,50.8,32.0,31.2,29.5,28.3$, 22.9, 14.3; HRMS (ESI) calcd for $\mathrm{C}_{44} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 621.3845$, found: 621.3848 .
N, N-dibenzyl-3-cyclopropyl-4-((dibenzylamino)methyl)-1H-isochromen-1-amine (3ua)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $138 \mathrm{mg}, 80 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 7.11-7.26 (m, 21H), 7.03-7.09 (m, 3H), $5.64(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~d}$, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.43-3.65(\mathrm{~m}, 8 \mathrm{H}), 1.99-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.00-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.73-0.79$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.7,139.9,139.3,134.3,129.5,128.7$, $128.4,128.1,128.1,127.9,127.0,126.9,125.2,125.2,121.6,104.9,87.4,58.4,52.4$, 50.3, 11.4, 6.2, 6.0; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 599.3033$, found: 599.3020 .

N, N-dibenzyl-3-(tert-butyl)-4-((dibenzylamino)methyl)-1H-isochromen-1-amine (3va)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $131 \mathrm{mg}, 74 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-7.34(\mathrm{~m}, 10 \mathrm{H}), 7.10-7.18(\mathrm{~m}, 14 \mathrm{H}), 5.50-5.52(\mathrm{~m}, 1 \mathrm{H})$, $4.01(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.55-3.77(\mathrm{~m}, 6 \mathrm{H}), 3.42-3.45(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.39(\mathrm{~m}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.0,139.7,139.4,134.8,129.4,129.2,128.6,128.4$, $128.0,127.2,127.0,126.9,125.7,124.1,123.8,106.5,88.4,58.2,53.1,50.1,38.5$, 30.9; HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 615.3346$, found: 615.3348 .

N,N-dibenzyl-3-(2-((tert-butyldimethylsilyl)oxy)ethyl)-4-((dibenzylamino)methyl) -1H-isochromen-1-amine (3wa)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $170 \mathrm{mg}, 82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.15-7.32 (m, 24H), $5.82(\mathrm{~s}, 1 \mathrm{H}), 3.91-4.03(\mathrm{~m}$, $4 \mathrm{H}), 3.62-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.39-3.56(\mathrm{~m}, 4 \mathrm{H}), 2.74-2.85(\mathrm{~m}$, $2 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8$, 139.7, 139.4, 133.6, 129.5, 128.7, 128.4, 128.3, 128.2, 127.8, 127.0, 127.0, 125.8, $125.4,122.5,106.3,87.4,61.7,58.3,52.3,50.9,35.2,26.2,18.6,-5.0,-5.0$; HRMS (ESI) calcd for $\mathrm{C}_{46} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 695.4033$, found: 695.4047.

2-(1-(dibenzylamino)-4-((dibenzylamino)methyl)-1H-isochromen-3-yl)ethyl acetate (3xa)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $156 \mathrm{mg}, 84 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ § 7.11-7.25 (m, 24H), $5.80(\mathrm{~s}, 1 \mathrm{H}), 4.37-4.42(\mathrm{~m}$, 2 H), 3.87 (d, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.56-3.67 (m, 4H), 3.30-3.49 (m, 4H), 2.75-2.87 (m, 2H), $1.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.1, 151.7, 139.6, 139.2, 133.3, 129.4, 128.7, 128.4, 128.3, 128.1, 127.9, 127.0,
127.0, 126.1, 125.5, 122.4, 106.8, 87.7, 62.3, 58.4, 52.2, 50.4, 30.4, 21.1; HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 645.3088$, found: 645.3100 .

N, N-dibenzyl-3-(3-chloropropyl)-4-((dibenzylamino)methyl)-1H-isochromen-1-a mine (3ya)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $130 \mathrm{mg}, 71 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.11-7.28(m, 24H), $5.76(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45-3.67(\mathrm{~m}, 8 \mathrm{H}), 3.32(\mathrm{ABq}, J=13.5 \mathrm{~Hz}$, 2 H), 2.53-2.66 (m, 2H), 2.05-2.17 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4$, 139.7, 139.2, 133.6, 129.4, 128.7, 128.4, 128.2, 127.9, 127.1, 127.0, 125.9, 125.4, 122.3, 105.8, 87.8, 58.5, 52.4, 50.6, 44.9, 30.9, 28.3; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}: 613.2986$, found: 613.2993.

1-(1-(dibenzylamino)-4-((dibenzylamino)methyl)-1H-isochromen-3-yl)ethan-1-ol (3za)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $97 \mathrm{mg}, 56 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.17-7.28 (m, 24H), 5.87-5.92 (m, 1H), 4.55-4.56 (m, 1H), 3.29-3.92 (m, 10H), 1.38-1.45 (m, 3H), $1.25(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.7,157.4,139.2,138.3,138.2,133.7,133.6,129.7,129.7$, 129.6, 128.9, 128.8, 128.6, 128.4, 128.4, 128.3, 128.2, 128.2, 127.4, 127.2, 127.1, $126.3,126.0,121.1,121.1,105.1,104.6,88.0,88.0,65.7,65.4,58.7,58.6,52.3,52.0$, 49.6, 49.3, 19.5, 19.4; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 603.2982$, found: 603.2987.

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $137 \mathrm{mg}, 76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.11-7.35 (m, 24H), $5.78(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.30-3.72(\mathrm{~m}, 8 \mathrm{H}), 2.51-2.62(\mathrm{~m}, 2 \mathrm{H})$, 2.28-2.37 (m, 2H), 1.93-1.96 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.6,139.6$, $139.1,133.3,129.4,128.7,128.4,128.3,128.2,128.0,127.1,127.1,126.1,125.5$, 122.2, 119.8, 106.2, 88.0, 58.5, 52.3, 50.3, 29.7, 23.8, 17.0; HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 604.3328$, found: 604.3330.
($8 R, 9 S, 13 S, 14 S)$-3-(1-(dibenzylamino)-4-((dibenzylamino)methyl)-1H-isochrome n-3-yl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenant hren-17-one (3zba)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, 173 mg , 73% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 6 \mathrm{H})$, 7.18-7.26 (m, 10H), 7.09-7.15 (m, 9H), 7.04 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.54 (s, 2H), 3.43 (dd, $J=13.6 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{dd}, J=13.6 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.99-3.01 (m, 2H), 2.49-2.56 (m, 2H), $2.41(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-2.21(\mathrm{~m}, 4 \mathrm{H})$, $1.63-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.60(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $220.9,153.8,153.8,140.5,139.6,139.3,136.3,133.6,130.5,130.4,129.3,129.0$, $128.9,128.7,128.4,128.0,127.6,127.5,127.4,127.0,126.8,126.3,125.2,125.1$, 125.1, 123.7, 107.4, 107.3, 88.8, 88.7, 77.4, 58.2, 52.6, 51.0, 50.7, 48.1, 44.7, 38.2, 36.0, 31.8, 29.7, 26.7, 25.8, 21.8, 14.0; HRMS (ESI) calcd for $\mathrm{C}_{56} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 789.4420, found: 789.4409.

N, N-dibenzyl-1-(1-methoxy-3-phenyl-1H-isochromen-4-yl)methanamine (3ak)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $102 \mathrm{mg}, 76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.43-7.46 (m, 5H), 7.13-7.30 (m, 14H), $5.92(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1,139.7$, 135.6, 130.6, 130.1, 129.6, 128.9, 128.7, 128.3, 128.1, 128.0, 126.9, 126.6, 125.3, 124.5, 110.1, 99.8, 57.7, 55.8, 50.7; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 448.2277, found: 448.2281.
N, N-dibenzyl-1-(3-phenyl-1-propoxy-1 H -isochromen-4-yl)methanamine (3al)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $106 \mathrm{mg}, 75 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.41-7.46 (m, 5H), 7.13-7.28 (m, 14H), $6.00(\mathrm{~s}, 1 \mathrm{H}), 3.90-3.96$ (m, 1H), 3.62-3.73 (m, 4H), 3.37 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (d, J $=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.57(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 150.2,139.7,135.7,130.8,130.1,129.6,128.8,128.5,128.4,128.2,128.0$, 126.9, 126.5, 125.1, 124.4, 110.2, 98.6, 69.9, 57.7, 50.6, 23.0, 10.7; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 476.2590$, found: 476.2593 .

N, N-dibenzyl-1-(1-butoxy-3-phenyl-1H-isochromen-4-yl)methanamine (3am)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $99.7 \mathrm{mg}, 68 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.41-7.48 (m, 5H), 7.13-7.30 (m, 14H), $5.99(\mathrm{~s}, 1 \mathrm{H})$, $3.95-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.36(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.08(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.74(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.2,139.8,135.7,130.8,130.1,129.5$, $128.8,128.5,128.4,128.2,128.0,126.9,126.5,125.1,124.4,110.2,98.7,68.0,57.7$,
50.6, 31.8, 19.4, 13.9; HRMS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 490.2746$, found: 490.2757.
N, N-dibenzyl-1-(1-isopropoxy-3-phenyl-1H-isochromen-4-yl)methanamine (3an)

The title compound was prepared according to the general procedure and purified by column chromatography to give colorless oil, $87 \mathrm{mg}, 62 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.41-7.47 (m, 5H), 7.13-7.27 (m, 14H), 6.08 (s, 1H), 4.29-4.36 (m, $1 \mathrm{H}), 3.69(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~d}$, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,139.7,135.8,130.9,130.1,129.6$, $128.8,128.6,128.4,128.2,128.0,126.8,126.5,124.8,124.4,110.3,96.1,68.8,57.6$, 50.6, 23.5, 21.6; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 476.2590$, found: 476.2595 .

1,3-bis((dibenzylamino)methyl)naphthalen-2-ol (4aa)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $120 \mathrm{mg}, 71 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.59(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.19-7.28(\mathrm{~m}, 9 \mathrm{H}), 4.07(\mathrm{~s}$, $2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8,139.0,138.1$, 133.3, 129.6, 129.4, 128.6, 128.4, 128.3, 128.2, 128.1, 127.5, 127.2, 125.9, 125.7, 123.4, 122.7, 114.9, 58.5, 58.1, 55.5, 49.6; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 563.3062, found: 563.3059.

Figure S3. The ORTEP drawing of product 4aa

1,3-bis((dibenzylamino)methyl)-7-methylnaphthalen-2-ol (4ba)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $121 \mathrm{mg}, 70 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.49$ (s, 0.88 H), 7.64 (s, $1 \mathrm{H}), 7.54-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.37(\mathrm{~m}, 20 \mathrm{H}), 7.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 2 \mathrm{H}), 3.62-3.63(\mathrm{~m}, 8 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8$, $139.4,137.9,135.3,133.6,129.6,129.4,128.6,128.3,128.0,127.8,127.5,127.1$, 126.6, 125.0, 124.5, 122.9, 114.6, 58.5, 58.0, 55.8, 49.3, 22.1; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 577.3219$, found: 577.3223.

1,3-bis((dibenzylamino)methyl)-7-methoxynaphthalen-2-ol (4ca)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $117 \mathrm{mg}, 66 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.47(\mathrm{~s}, 0.87 \mathrm{H})$, $7.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 12 \mathrm{H}), 7.18-7.29(\mathrm{~m}, 9 \mathrm{H}), 6.89$ (dd, $J=8.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 157.8,155.4,139.7,137.6,134.9,129.5,129.5,129.4$, 128.7, 128.3, 128.0, 127.6, 127.0, 123.7, 122.3, 115.5, 114.8, 102.7, 58.6, 58.0, 56.3, 55.7, 49.3; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 593.3168$, found: 593.3177.

1,3-bis((dibenzylamino)methyl)-8-fluoronaphthalen-2-ol (4da)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $85 \mathrm{mg}, 49 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.65(\mathrm{~s}, 0.63 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 12 \mathrm{H}), 7.20-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{dd}, J=12.5 \mathrm{~Hz}$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=15 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 3.66-3.68(\mathrm{~m}$, $8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=249 \mathrm{~Hz}\right), 156.7,139.5,137.5$, $131.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5 \mathrm{~Hz}\right), 129.6,129.3,128.8,128.6,128.4,127.9$, 127.6, 127.0, 125.0 (d, $\left.J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 122.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}\right), 122.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 111.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right)$, $111.4,58.5,58.3,53.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=16 \mathrm{~Hz}\right), 52.6 ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.0$; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 581.2968$, found: 581.2976.

1,3-bis((dibenzylamino)methyl)-7-fluoronaphthalen-2-ol (4ea)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $115 \mathrm{mg}, 66 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.68(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H})$,
7.50-7.53 (m, 2H), 7.02-7.36 (m, 20H), 6.98 (dd, $J=8.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H})$,
$3.80(\mathrm{~s}, 2 \mathrm{H}), 3.61-3.61(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=243\right.$ $\mathrm{Hz}), 155.6,139.1,137.7,134.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}\right), 130.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 129.5,129.4$, 128.6, 128.4, 128.0, 127.6, 127.2, 125.3, $124.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 115.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}\right)$, $112.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}\right), 107.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 58.6,58.1,55.8,49.4 ;{ }^{19} \mathrm{~F}$ NMR (470 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-114.6; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 581.2968$, found: 581.2970.

1,3-bis((dibenzylamino)methyl)-6-fluoronaphthalen-2-ol (4fa)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $118 \mathrm{mg}, 68 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.51(\mathrm{~s}, 0.94 \mathrm{H}), 7.80(\mathrm{dd}, J=9.2 \mathrm{~Hz}, 5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.36(\mathrm{~m}, 21 \mathrm{H}), 7.08-7.13(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H})$, $3.61(\mathrm{~s}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=240 \mathrm{~Hz}\right.$), 154.0, 139.2, 137.6, 130.4, 129.5, 129.4, 128.9 (d, $J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}$), 128.7, 128.3, 127.6, 127.2, 127.2, 126.9, $126.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 115.8,115.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}\right), 110.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=20 \mathrm{~Hz}\right)$, 58.5, 58.1, 55.9, 49.3; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-120.1$; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 581.2968$, found: 581.2972.

1,3-bis((dibenzylamino)methyl)-5-fluoronaphthalen-2-ol (4ga)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $104 \mathrm{mg}, 60 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.78(\mathrm{~s}, 0.90 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.28-7.38 (m, 12H), 7.20-7.24 (m, 9H), 6.88 (dd, d, $J=10.4 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (s, $2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=248\right.$ $\mathrm{Hz}), 155.6,139.0,137.8,135.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 129.5,129.4,128.6,128.3,127.6$, $126.1,125.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 120.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}\right), 119.5,119.5,118.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=15\right.$ $\mathrm{Hz}), 115.3,106.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=20 \mathrm{~Hz}\right), 58.5,58.1,55.8,49.6 ;{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$,
CDCl_{3}) δ-123.5; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 581.2968$, found: 581.2970 .

7-chloro-1,3-bis((dibenzylamino)methyl)naphthalen-2-ol (4ha)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $114 \mathrm{mg}, 64 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.71$ (s, 0.95 H), 7.95 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.33(\mathrm{~m}, 10 \mathrm{H}), 7.23-7.29$ (m, 7H), 7.15-7.21 (m, 4H), 3.97 (s, 2H), 3.78 ($\mathrm{s}, 2 \mathrm{H}$), 3.58-3.60 (m, 8H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.5,139.1,137.6,134.3,131.8,129.4,129.4,128.7,128.5$, 127.9, 127.6, 127.2, 126.6, 125.7, 123.6, 123.0, 114.8, 58.6, 58.1, 55.9, 49.1; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 597.2673$, found: 597.2667.

6-chloro-1,3-bis((dibenzylamino)methyl)naphthalen-2-ol (4ia)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $111 \mathrm{mg}, 62 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.66$ (s, 0.91 H), 7.74 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.37(\mathrm{~m}, 21 \mathrm{H}), 4.01(\mathrm{~s}$, 2 H), 3.81 ($\mathrm{s}, 2 \mathrm{H}$), 3.61-3.61 (m, 8H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.9,139.0$, 137.6, 131.7, 129.5, 129.4, 129.1, 128.7, 128.3, 127.6, 127.2, 127.1, 126.9, 126.5, $126.3,125.5,115.5,58.5,58.1,55.8,49.2$; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{ClN}_{2} \mathrm{O}$ [M+H]+: 597.2673, found: 597.2672.

6-chloro-1,3-bis((dibenzylamino)methyl)naphthalen-2-ol (4ja)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $109 \mathrm{mg}, 58 \%$ yield.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.81(\mathrm{~s}, 0.85 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.36(\mathrm{~m}, 20 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H})$, 3.61-3.63 (m, 8H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.7,139.1,137.3,132.5,129.5$, 129.3, 128.7, 128.7, 128.4, 127.8, 127.8, 127.7, 127.5, 127.2, $126.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=271 \mathrm{~Hz}\right)$, $122.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 118.5,118.4,116.6,58.7,58.2,56.2,49.0 ;{ }^{19}$ F NMR (470 MHz , CDCl_{3}) δ-61.4; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{38} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 631.2936$, found: 631.2941 .

1,3-bis((dibenzylamino)methyl)-6,7-difluoronaphthalen-2-ol (4ka)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $113 \mathrm{mg}, 63 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.60(\mathrm{~s}, 0.73 \mathrm{H}), 7.60(\mathrm{dd}, J=13.2 \mathrm{~Hz}, 8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.35(\mathrm{~m}, 21 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 3.60-3.61(\mathrm{~m}, 8 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 151.0\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=246 \mathrm{~Hz}, 15\right.$ $\mathrm{Hz}), 149.0\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=240 \mathrm{~Hz}, 11 \mathrm{~Hz}\right), 139.2,137.3,130.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 129.5$, 129.4, 128.7, 128.4, 127.7, 127.2, $127.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 125.6,124.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}\right)$, $115.7,113.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=15 \mathrm{~Hz}\right), 110.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=19 \mathrm{~Hz}\right), 58.6,58.1,56.2,49.1 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-137.7,-137.8,-142.5,-142.5$; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 621.2688$, found: 621.2678 .

4,6-bis((dibenzylamino)methyl)benzo[b]thiophen-5-ol (4la)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $80 \mathrm{mg}, 47 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $11.12(\mathrm{~s}, 0.85 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, 7.22-7.34 (m, 18H), $3.96(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.61-3.62(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.6,139.5,138.7,138.3,131.2,129.5,129.3,128.6,128.4,127.4$, 127.3, 126.2, 123.1, 122.3, 121.7, 116.5, 58.4, 58.1, 54.9, 51.4; HRMS (ESI) calcd for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 569.2627$, found: 569.2625.

3-(1-(dibenzylamino)ethyl)-1-((dibenzylamino)methyl)naphthalen-2-ol (4ma)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $112 \mathrm{mg}, 65 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.84(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.34(\mathrm{~m}, 22 \mathrm{H}), 4.26(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{ABq}, J=12.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.67-3.78(\mathrm{~m}, 4 \mathrm{H}), 3.46-3.59(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.7,139.9,137.9,133.8,129.6,129.5,129.4,128.6,128.2$, $128.2,128.0,127.6,126.9,126.8,125.6,124.2,122.7,116.2,58.5,55.5,54.0,48.8$, 10.9; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 577.3219$, found: 577.3224 .

3-((dibenzylamino)(phenyl)methyl)-1-((dibenzylamino)methyl)naphthalen-2-ol

 (4na)

The title compound was prepared according to the general procedure and purified by column chromatography to give white solid, $111 \mathrm{mg}, 58 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.34(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.65(\mathrm{~m}, 2 \mathrm{H})$, $7.51(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 20 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{~s}$, $2 \mathrm{H}), 3.85(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.56-3.60(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.0,139.4,138.4,133.0,129.8,129.7,129.5,129.0$, 128.6, 128.5, 128.4, 128.1, 127.5, 127.3, 127.2, 125.9, 122.7, 122.6, 114.4, 65.0, 58.3, 54.1, 50.3; HRMS (ESI) calcd for $\mathrm{C}_{46} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 639.3375$, found: 639.3380 .

1,3-bis((benzyl(methyl)amino)methyl)naphthalen-2-ol (4ab)

The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, $77 \mathrm{mg}, 63 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.98 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}$, $1 \mathrm{H}), 7.39-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.35(\mathrm{~m}, 11 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H})$, $3.86(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), \underset{\mathrm{s} 45}{2.26-2.27}(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 155.1,138.8,137.8,133.4,129.5,129.4,128.6,128.4,128.3,128.2,128.2$, $127.5,127.2,126.0,125.7,123.1,122.8,114.9,62.0,61.7,59.5,53.1,41.9,41.7$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 411.2436$, found: 411.2426 .

1,3-bis((dipropylamino)methyl)naphthalen-2-ol (4ac)

The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, $67 \mathrm{mg}, 60 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}$, $1 \mathrm{H}), 7.37-7.40(\mathrm{~m}, 1 \mathrm{H}), ~ 7.24-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 2.48-2.52(\mathrm{~m}$, $8 \mathrm{H}), 1.53-1.61(\mathrm{~m}, 8 \mathrm{H}), 0.83-0.90(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.5$, $132.9,128.2,128.2,127.6,127.5,125.6,122.6,122.4,114.1,56.1,56.0,55.6,51.2$, 20.1, 19.9, 12.1, 12.1; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 371.3062$, found: 371.3058.

1,3-bis(morpholinomethyl)naphthalen-2-ol (4ad)

The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, $62 \mathrm{mg}, 61 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}$, $1 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.31(\mathrm{~m}, 1 \mathrm{H}), 4.03-4.04(\mathrm{~m}$, $2 \mathrm{H}), 3.71-3.79(\mathrm{~m}, 10 \mathrm{H}), 2.59-2.60(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8$, $133.4,128.8,128.2,128.1,126.2,124.5,122.9,122.7,113.5,67.0,66.9,60.3,54.2$, 53.4, 53.3; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 343.2022$, found: 343.2018.

1,3-bis((4,4-difluoropiperidin-1-yl)methyl)naphthalen-2-ol (4ae)

The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, $71 \mathrm{mg}, 58 \%$ yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ $(\mathrm{s}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H})$, 2.71-2.72 (m, 8H), 1.96-2.10 (m, 8H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8,133.4$, $128.8,128.3,128.2,126.4,124.7,124.5,124.1,123.1,122.8,122.1,121.7,119.7$, $119.3,114.2,59.2,52.9,50.0,49.9,49.9,49.8,34.2,34.2,34.0,33.9,33.8,33.7 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-97.9$, -98.0, -98.1, -98.3; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 411.2060$, found: 411.2058 .

6. Mechanistic Experiments

To gain insights into the possible mechanism of this reaction, some mechanism experiments were conducted.

Figure S4. The proposed reaction mechanism.

Control experiments

The mixture of aminal 2a ($146 \mathrm{mg}, 0.364 \mathrm{mmol}$), $\mathrm{AgClO}_{4}(6.2 \mathrm{mg}, 10 \mathrm{~mol} \%)$, 2-(but-3-en-1-yn-1-yl)benzaldehyde 1a-D ($47 \mathrm{mg}, 0.30 \mathrm{mmol}$) and anisole (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N_{2} atmosphere. The reaction mixture was stirred at $120^{\circ} \mathrm{C}$ in an oil bath for 12 hours, and then cooled to room temperature. The solvent was removed under reduced pressure, the residue was
purified by flash chromatography on silica gels (petroleum ether/ethyl acetate $=50 / 1$ to $20 / 1$) to give the desired product $\mathbf{4 a a - D}(101 \mathrm{mg}, 60 \%)$ as white solid.

1,3-bis((dibenzylamino)methyl)naphthalen-4-d-2-ol (4aa-D)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.61(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, 7.17-7.33 (m, 18H), $4.07(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.62-3.63(\mathrm{~m}$, 8 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.7,139.0,138.0$, $133.3,129.5,129.3,128.6,128.3,128.0,127.5,127.2,125.8,125.6,123.4,122.7$, 114.8, 58.4, 58.1, 55.4, 49.6; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{DN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 564.3125$, found: 564.3123.

The mixture of aminal $\mathbf{2 a}$ ($146 \mathrm{mg}, 0.36 \mathrm{mmol}$), $\mathrm{AgClO}_{4}(6.2 \mathrm{mg}, 10 \mathrm{~mol} \%)$, 2-(pent-3-en-1-yn-1-yl)benzaldehyde $\mathbf{1 m}(51 \mathrm{mg}, 0.30 \mathrm{mmol})$ and anisole (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N_{2} atmosphere. The reaction mixture was stirred at $120^{\circ} \mathrm{C}$ in an oil bath for 12 hours, and then cooled to room temperature. The solvent was removed under reduced pressure, the residue was purified by flash chromatography on silica gels (petroleum ether/ethyl acetate $=50 / 1$ to 20/1) to give the desired product $4 \mathrm{ma}(112 \mathrm{mg}, 65 \%)$ as white solid.

The mixture of $1 H$-isochromen 3aa ($112 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{AgClO}_{4}(4.2 \mathrm{mg}, 10$ $\mathrm{mol} \%$) and anisole (1.0 mL) were added to a 25 mL flame-dried Young-type tube
under N_{2} atmosphere. The reaction mixture was stirred at $120^{\circ} \mathrm{C}$ in an oil bath for 12 hours, and then cooled to room temperature. The solvent was removed under reduced pressure, the residue was purified by flash chromatography on silica gels (petroleum ether/ethyl acetate $=50 / 1$ to 20/1) to give the desired product $\mathbf{4 a a}(78 \mathrm{mg}, 70 \%)$ as white solid.

Reaction profile

Parallel experiments: The mixture of $N, N, N^{\prime}, N^{\prime}$-tetrabenzylmethanediamine 2a (97 $\mathrm{mg}, 0.24 \mathrm{mmol}$), $\mathrm{AgClO}_{4}(4.2 \mathrm{mg}, 10 \mathrm{~mol} \%)$, 2-(but-3-en-1-yn-1-yl)benzaldehyde 1a $(47 \mathrm{mg}, 0.20 \mathrm{mmol})$ and anisole (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N_{2} atmosphere. The reaction mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for designed time and then cooled to room temperature. The yields of 3aa and 4aa were determined by ${ }^{1} \mathrm{H}$ NMR analysis with 1,3,5-trimethoxybenzene as internal standard.

Figure S5. Reaction profile of the catalytic reaction.

7. X-ray Single Crystal Data for Compound 3aa, 3pa, and 4aa

Sample preparation: Compound 3aa (20 mg) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$ in a 10 mL sample vial, and then $\mathrm{Et}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ were added carefully to form a two-phase interface. The resulting mixture was left at room temperature under airtight conditions until the white crystals precipitated.

3aa

The ellipsoid contour percent probability level is 75%.

Crystal data and structure refinement for 3aa
Identification code 3aa
Empirical formula $\quad \mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}$

Formula weight 562.72
Temperature/K 293(2)
Crystal system triclinic
Space group P-1
a / \AA 11.3021(8)
b/Å
11.3449(7)
c/Å 15.1031(10)
$\alpha{ }^{\circ} \quad 89.431(5)$
$\beta /{ }^{\circ} \quad 68.393(7)$
$\gamma /{ }^{\circ} \quad$ 64.454(7)
Volume/Å3 1598.7(2)
Z
2

$\rho c a l c g / \mathrm{cm} 3$	1.169
$\mu / \mathrm{mm}-1$	0.069
$\mathrm{~F}(000)$	600.0
Crystal size/mm3	$0.3 \times 0.2 \times 0.1$
Radiation	$\mathrm{Mo} \mathrm{K} \alpha(\lambda=0.71073)$
2Θ range for data collection ${ }^{\circ}$	6.764 to 59.092
Index ranges	$-14 \leq \mathrm{h} \leq 9,-15 \leq \mathrm{k} \leq 15,-20 \leq 1 \leq 20$
Reflections collected	11798
Independent reflections	$7408[\mathrm{Rint}=0.0245, \mathrm{Rsigma}=0.0506]$
Data/restraints/parameters	$7408 / 0 / 388$
Goodness-of-fit on F2	1.052
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0625, \mathrm{wR} 2=0.1284$
Final R indexes [all data]	$\mathrm{R} 1=0.1091, \mathrm{wR} 2=0.1527$
Largest diff. peak/hole /e $\AA-3$	$0.17 /-0.23$

3pa
The ellipsoid contour percent probability level is 60%.

Crystal data and structure refinement for 3pa

Identification code	YB
Empirical formula	C_{44}
Formula weight	612
Temperature/K	293

Crystal system monoclinic
Space group $\quad \mathrm{P} 2_{1} / \mathrm{n}$

a / \AA	$9.8246(2)$
b / \AA	$16.0677(3)$
c / \AA	$21.9664(5)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$91.832(2)$
$\gamma /{ }^{\circ}$	90

Volume $/ \AA^{3} \quad 3465.82(12)$
Z 4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3} \quad 1.174$
$\mu / \mathrm{mm}^{-1} \quad 0.535$
$\mathrm{F}(000) \quad 1307.7$
Crystal size $/ \mathrm{mm}^{3} \quad 0.15 \times 0.12 \times 0.1$
Radiation $\quad \mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 8.06$ to 146.04
Index ranges
$-11 \leq h \leq 12,-13 \leq k \leq 19,-26 \leq 1 \leq 27$

Reflections collected	13959
Independent reflections	$6743\left[\mathrm{R}_{\mathrm{int}}=0.0207, \mathrm{R}_{\text {sigma }}=0.0270\right]$
Data/restraints/parameters	$6743 / 0 / 424$
Goodness-of-fit on F^{2}	1.051
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0474, \mathrm{wR}_{2}=0.1190$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0623, \mathrm{wR}_{2}=0.1331$
Largest diff. peak/hole $/ \mathrm{e}^{\AA-3} 0.16 /-0.21$	

The ellipsoid contour percent probability level is 75%.

Crystal data and structure refinement for 4aa

Identification code 4aa	
Empirical formula	$\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	562.72
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	12.1191(4)
b/Å	12.6465(4)
c/Å	12.9053(4)
$\alpha /{ }^{\circ}$	96.455(3)
$\beta /{ }^{\circ}$	115.408(3)
γ°	109.434(3)
Volume/Å3	1607.44(10)
Z	2
pcalcg/cm3	1.163
μ / mm - 1	0.531
F(000)	600.0
Crystal size/mm3	$0.21 \times 0.15 \times 0.11$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	7.77 to 146.092
Index ranges	$-13 \leq \mathrm{h} \leq 15,-15 \leq \mathrm{k} \leq 15,-15 \leq 1 \leq 15$
Reflections collected	11050
Independent reflections	6212 [Rint $=0.0185$, Rsigma $=0.0234]$

Data/restraints/parameters 6212/1/389
Goodness-of-fit on F2 0.996
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R} 1=0.0882, \mathrm{wR} 2=0.2846$
Final R indexes [all data] $\quad \mathrm{R} 1=0.0956, \mathrm{wR} 2=0.2960$
Largest diff. peak/hole / e Å-3 0.74/-0.30

8. References

1. Heaney, H.; Papageorgiou, G.; Wilkins, R. F. The generation of iminium ions using chlorosilanes and their reactions with electron rich aromatic heterocycles. Tetrahedron 1997, 53, 2941-2958.
2. Rosenau, T.; Potthast, A.; Kosma, P. Studies on the carbenium-iminium ions derived from N-methylmorpholine- N-oxide (NMMO). Tetrahedron 2004, 60, 301-306.
3. Yu, B.; Yu, H.; Huang, H. Palladium-catalyzed chemoselective aminomethylative cyclization and aromatizing allylic amination: access to functionalized naphthalenes. Org. Lett. 2020, 22, 8962-8966.
4. Yang, Z.; Koenigs, R. M. Photoinduced palladium-catalyzed dicarbofunctionalization of terminal alkynes. Chem. Eur. J. 2021, 27, 3694-3699.
5. NMR Spectra of Materials and Products
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) spectra for 1 a

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 1 a
LRR-X210327-standard-100M(in CDCl3)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{1 a} \mathbf{~} \mathbf{D}$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 1a-D

YBK-X210924-1 (in CDCl3)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{1 b}$
LRR-X210327-4-CH3-400M(in CDCl3)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{1 b}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 c}$
YBK-X21X19-1 (in CDCl3)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 1 c
YBK-X21X19-1-4 (in CDCl3)

$\stackrel{\infty}{i n}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 1 d

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 1d

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 1 e

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 1 e
LRR-X210327-3-F-100M(in CDCl3)

$\stackrel{\text { セ. }}{\text { ¢ }}$	m「.
응	¢ ¢
V	1

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 1 e
LRR-X210327-3-F-376M(in CDCl3)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 1 f

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 1 f
LRR-X210327-4-F-125M (in CDCl3)

M~.
M~.

${ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 1 f

LRR-X210327-4-F-470M(in CDCl3)

n
$\stackrel{n}{0}$
$\stackrel{1}{1}$
1

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{1 g}$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 1 g
LRR-X210327-5-F-100M (in CDCl3)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 g}$

LRR-X210327-5-F-376M (in CDCl3)

0
∞
0
\vdots
\vdots

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{1 h}$
LRR-X210327-6-F-500M(in CDC13)

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 h}$

${ }^{19}$ F NMR ($\mathbf{4 7 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 h}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{1 i}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 i}$
LRR-X210327-4-Cl-100M(in CDCl3)
-呙

$\begin{array}{llllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & \mathbf{8 0} & \mathbf{7 0} & \mathbf{6 0} & \mathbf{5 0} & \mathbf{4 0} & \mathbf{3 0} & \mathbf{2 0} & \mathbf{1 0} & \mathbf{0} & \mathbf{p p m}\end{array}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{1 j}$
.RR-X210327-5-Cl-400M (in CDCl3
$\stackrel{\infty}{\stackrel{\infty}{7}} \underset{\stackrel{n}{+}}{\stackrel{+}{+}}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 j}$
LRR-X210327-5-Cl-100M(in CDCl3)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 k}$
LRR-X210327-5-3F-500M(in CDCl3)

12	11	10	9	8	7	6	5	4	3	2	1	0	

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 1 k

${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 1 k
LRR-X210327-5-CF3-470M(in CDCl3) N

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 11

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 11

${ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 11

LRR-X210327-2F-470M (in CDC13)

n
\dot{n}
$\stackrel{\rightharpoonup}{3}$
\vdots
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 m}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 1 m

$$
\begin{aligned}
& \text { LRR-X210327-Xi-2-CH3-125M(in CDCl3) }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 n}$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{1 n}$
LRR-X210327-Ph-100M(in CDCl3)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 10

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 10
LRR-X210327-2-CH3-125M(in CDCl3)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{1 p}$
LRR-X210702-Py (in CDCl3)

 $\Lambda \Omega$ \qquad

${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 p}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{1 q}$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 q}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $1 \mathbf{r}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 1 r

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 1 s

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 1 s

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{1 t}$

${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 t}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 u}$

${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectra for 1 u

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 1 v

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 v}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 w}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 w}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{1 x}$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 x}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 1 y

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 y}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{1 z}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 1 z

$$
\begin{aligned}
& \sim 0 \\
& \dot{\sim} \dot{\circ} \\
& \text { No }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 1 za

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 1za

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 z b}$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 z b}$
LRR-X210707-2-OH-125M(in CDCl3)

S121
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{1 z c}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 1 zc

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{1 z d}$
YBK-X210803-2 (in CDCl3)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{1 z d}$

S125
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{3 a a}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3aa

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3ab

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ab

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ac

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ac

${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ad

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ad
YBK-X210630-3 (in CDCl3)

○. …

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ae

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ae

S135
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ae
YBK-X210427-1-4-F-A (in CDCl3)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3af

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3af

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3af

YBK-X210427-4-3-F (in CDCl3)

${ }^{1} \mathbf{H}^{2}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{3 a g}$

\qquad
\qquad

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ag

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{3 a g}$

YBK-X210427-5-2-F (in CDCl3)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3ah

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ah

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ai

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ai

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3) spectra for 3aj

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3aj

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3ba

S149
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ba
YBK-X210423-1-4-CH3 (in CDCl3)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3ca

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ca

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3da

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectra for 3da
YBK-X210513-3 (in CDCl3)

${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3da
YBK-X210513-3 (in CDCl3)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ea

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectra for 3ea
YBK-X210417-1-4-F (in CDCl3)

${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ea
YBK-X210417-1-4-F (in CDCl3)

${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3fa
YBK-X210416-4-5-F (in CDCl3)

3fa

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3fa

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3fa

YBK-X210416-5-F (in CDCl3)
良

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3ga

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectra for 3ga

${ }^{19}$ F NMR (470 MHz, CDCl 3) spectra for 3ga
YBK-X210419-6 (in CDCl3)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3ha

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectra for 3ha

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ia

```
YBK-X210416-2-5-Cl (in CDCl3)
```


${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ia
YBK-X210416-2-5-Cl (in CDCl3)

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) spectra for $\mathbf{3 j a}$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{3 j a}$

```
YBK-X210419-5 (in CDCl3)
```


${ }^{19}$ F NMR (470 MHz, CDCl 3) spectra for $\mathbf{3 j a}$
YBK-X210419-5 (in CDCl3)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3ka

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ka

${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ka
(in CDCl3)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 31a

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3la

```
YBK-X210702-1-CH3 (in CDCl3)
```


${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3 ma

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ma

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3na

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3na

S180
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3 oa

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectra for 30 a
YBK-X210701-1 (in CDCl3)

品

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3pa
YBK-X210423-5-Ph (in CDCl3)

 1 11 \qquad

S183
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3pa
YBK-X210423-5-Ph (in CDCl3)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for $\mathbf{3 q a}$

S185
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3qa

YBK-X210702-3-NMe2 (in CDCl3)
 N.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3 ra

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectra for 3ra

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3sa

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) spectra for 3sa

```
YBK-X210701-3 (in CDCl3)
```


${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3ta
YBK-X210701-2 (in CDCl3)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ta
YBK-X210701-4 (in CDCl

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3ua
YBK-X210630-5 (in CDCl3)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ua

${ }^{1} \mathrm{H}^{2}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3va

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3va
YBK-X210701 (in CDC13)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3wa

${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) spectra for 3wa
YBK-X210713-1-TBS (in CDCl3)

	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\sim} \times$	「m.	mの	\sim	\sim	${ }^{\circ}$	00
N	$\stackrel{\sim}{\infty}$		-i	~웅	$\stackrel{\sim}{m}$	$\stackrel{\circ}{\circ}$	∞	¢
\|		1/		$1 /$				V

${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3xa

YBK-X210709-3 (in CDCl3)

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3xa

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3ya

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) spectra for 3ya

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3za

YBK-X210718-1 (in CDCl3)

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) spectra for 3za

```
YBK-X210718-1 (in CDCl3)
```


${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3zaa

YBK-X210716-2-CN (in CDCl3)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3zaa
YBK-X210719-1-CN (in CDCl3)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3zba

${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3zba

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3ak

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3ak

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3al

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 3al

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3am
YBK-X210731-2 (in CDCl3)

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3 am

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3an
YBK-X210731-iPr (in CDCl3)

S215
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 3an

```
YBK-X210731-1 (in CDCl3)
```


${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 4aa

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 4aa

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3) spectra for 4aa-D

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra for 4aa-D
YBK-X210924-3 (in CDCl3)

吴No.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for 4ba
YBK-X210929-1-4-Me (in CDCl3)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra for $\mathbf{4 b a}$
YBK-X210929-1-Me (in CDCl3)


~~~

\({ }^{1}\) H NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for \(\mathbf{4 c a}\)

\({ }^{13} \mathrm{C}\) NMR ( \(\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}\) ) spectra for 4 ca

\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) spectra for 4da

\({ }^{13} \mathrm{C}\) NMR ( \(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\) ) spectra for 4da
YBK-X21X21-3-F (jn CDCl3)


\({ }^{19}\) F NMR (470 MHz, \(\mathrm{CDCl}_{3}\) ) spectra for 4da

YBK-X21X21-2-3-F (in CDCl3)


0
\(\underset{7}{7}\)
\(\overrightarrow{1}\)
1

\({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for 4ea
YBK-X210929-2-4-F (in CDCl3)



4ea

\({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for 4ea
YBK-X210929-4-F (in CDCl3)


\({ }^{19}\) F NMR (470 MHz, \(\mathrm{CDCl}_{3}\) ) spectra for 4ea
YBK-X210929-4-F (in CDCl3)


\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) spectra for \(\mathbf{4 f a}\)

\({ }^{13} \mathrm{C}\) NMR（ \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ）spectra for 4 fa
ybk－x210928－2－5－F（in CDCl3）
\begin{tabular}{|c|c|c|}
\hline & 『～の & ぃーの \\
\hline  & \(\stackrel{\sim}{*}\) & \(\infty\) \\
\hline  & & n \(n\) \\
\hline ） & & V1 \\
\hline
\end{tabular}


\({ }^{19}\) F NMR ( \(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for \(\mathbf{4 f a}\)

YBK-X210928-2-5-F (in CDC13)


\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) spectra for \(\mathbf{4 g a}\)

\({ }^{13} \mathrm{C}\) NMR ( \(\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for 4ga
YBK-X210929-8-6-F (in CDCl3)



\({ }^{19}\) F NMR ( \(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for 4ga
YBK-X210929-5-6-F (in CDCl3)


\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) spectra for 4ha

\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for 4ha





\({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for 4ia

\({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for 4ia


\({ }^{1} \mathrm{H}\) NMR ( \(\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}\) ) spectra for \(\mathbf{4 j a}\)

\({ }^{13} \mathrm{C}\) NMR ( \(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\) ) spectra for \(\mathbf{4 j a}\)
YBK-X21X26-CF3 (in CDCl3)





\({ }^{19}\) F NMR ( \(\mathbf{4 7 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\) ) spectra for \(\mathbf{4} \mathbf{j a}\)
YBK-X21X26-CF3 (in CDCl3)
\(\ddot{+}\)
\(\dot{i}\)
1
\(i\)


\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) spectra for \(\mathbf{4 k a}\)

\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for 4 ka
YBK-X210927-1 (in CDCl3)

\({ }^{19}\) F NMR ( \(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for \(\mathbf{4 k a}\)
YBK-X210927-1 (in CDCl3)

-


\({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for 4la

\({ }^{13} \mathrm{C}\) NMR ( \(\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) spectra for 4la
YBK-X21X17-1 (in CDCl3)



\({ }^{1} \mathbf{H}^{2}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for \(\mathbf{4 m a}\)

\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for 4 ma
YBK-X210928-1-Me (in CDCl3)


\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) spectra for 4na

\({ }^{13} \mathrm{C}\) NMR ( \(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\) ) spectra for 4 na
YBK-X21X27-Ph (in CDCl3)



\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) spectra for \(\mathbf{4 a b}\)
YBK-X21X07-1 (in CDCl3)



\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for \(\mathbf{4 a b}\)
YBK-X21X07-1 (in CDCl3)




\({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) spectra for \(\mathbf{4 a c}\)
YBK-X21X21-nPr (in CDCl3)



\({ }^{13} \mathrm{C}\) NMR ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for 4 ac

\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) spectra for \(\mathbf{4 a d}\)

\({ }^{13} \mathrm{C}\) NMR ( \(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\) ) spectra for 4 ad
YBK-X21X07-2 (in CDCl3)



\({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for 4ae

\({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for 4ae

\section*{YBK-X21X08-2 (in CDCl3)}



\({ }^{19}\) F NMR ( \(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) spectra for 4ae

YBK-X21X08-2 (in CDCl3)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 \\
\hline
\end{tabular}~~~

