Supporting Information

Metal-Free Synthesis of *gem*-Difluorinated Heterocycles from Enaminones and Difluorocarbene Precursors

Fei Wang, Rui Fu, Jie Chen, Jiaxin Rong, Enfu Wang, Jian Zhang, Zhengyu Zhang, and Yaojia Jiang

Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.

Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.

Table of Contents

General methods	2
General procedure for synthesis of enaminones and their spectral data	3
Optimization of reaction conditions	16
General procedure for synthesis of 2H-furans and their spectral data	17
General procedures for synthetic applications and their spectral data	34
NMR Spectra of enaminones	38
NMR Spectra of gem-difluorinated 2H-furans	77
NMR Spectra for applications of gem-difluorinated 2H-furans	136

General methods:

Flash column chromatography was performed with silica gel 60 (230 – 400 mesh). Chromatograms were visualized by fluorescence quenching with UV light at 254 nm or by staining with base solution of potassium permanganate and molybdate. NMR spectra were recorded at RT on 400 MHz Bruker or JEOL spectrometers. The residual solvent signals were taken as the reference (0.00 ppm for ¹H NMR spectra and 77.0 ppm for ¹³C NMR spectra in CDCl₃). Chemical shift (δ) is reported in ppm, coupling constants (*J*) are given in Hz. The following abbreviations classify the multiplicity: s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublet, q = quartet and br = broad signal. HRMS (ESI) spectra were recorded on a Waters Q-Tof premier TM mass spectrometer.

General procedure for synthesis of enaminones and their spectral data:

General procedure A for the synthesis of enaminones¹:

To a stirred solution of ketone (5.0 mmol, 1.0 equiv.) in 5.0 mL of toluene, 1, 1-dimethoxy-N, N-dimethylmethanamine (7.0 mmol, 1.4 equiv.) was added and stirred at 110 °C. After completion of the reaction (monitored by TLC), it was quenched with water, extracted with ethyl acetate and dried with anhydrous Na₂SO₄. Then the reaction mixture is concentrated under reduced pressure and purified by column chromatography (hexane : ethyl acetate = 1 : 1) to give the desired product **1**.

General procedure B for the synthesis of enaminones²:

To a stirred solution of ynones (3.0 mmol, 1.0 equiv.) in 10 mL of THF, amine (7.2 mmol, 2.4 equiv.) was added dropwise and stirred at room temperature. After completion of the reaction (monitored by TLC), the reaction mixture is concentrated under reduced pressure and purified by column chromatography (hexane : ethyl acetate = 2 : 1) to give the desired product **1**.

(*E*)-3-(Dimethylamino)-1-phenylprop-2-en-1-one (1a):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 90 - 91 °C. Yield 98% (857.0 mg); ¹H NMR (400 MHz, CDCl₃)

^{1.} Jiang, Y.; Zhong, V. Y. K.; Emmanuvel, L.; Park, C.-M. Synthesis of 2-aminofurans and 2-unsubstituted furansviacarbenoid-mediated [3 + 2] cycloaddition. *Chem. Commun.* **2012**, 48, 3133-3135.

^{2.} Šenica, L.; Grošelj, U.; Kasunič, M.; Kočar, D.; Stanovnik, B.; Svete, J. Synthesis of Enaminone-Based Vinylogous Peptides. *Eur. J. Org. Chem.* **2014**, *15*, 3067-3071.

 δ 7.91 – 7.89 (m, 2H), 7.79 (d, J = 12.4 Hz, 1H), 7.46 – 7.39 (m, 3H), 5.71 (d, J = 12.4 Hz, 1H), 3.11 (s, 3H), 2.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.5, 154.1, 140.4, 130.7, 128.0, 127.3, 92.0, 44.9, 37.1; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₄NO: 176.1075. Found: 176.1075.

(E)-3-(Dimethylamino)-1-(p-tolyl)prop-2-en-1-one (1b):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 87 – 89 °C. Yield 76% (718.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.82 - 7.77 (m, 3H), 7.22 - 7.20 (m, 2H), 5.72 (d, *J* = 12.4 Hz, 1H), 3.11 (s, 3H), 2.94 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.1, 139.8, 128.4, 128.2, 126.2, 81.2, 78.9, 46.7, 29.4; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₁O: 190.1232. Found: 190.1228.

(*E*)-3-(Dimethylamino)-1-(4-methoxyphenyl)prop-2-en-1-one (1c):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 90 - 91 °C. Yield 82% (840.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.87 (m, 2H), 7.77 (d, J = 12.4 Hz, 1H), 6.90 – 6.87 (m, 2H), 5.69 (d, J = 12.4 Hz, 1H), 3.82 (s, 3H), 3.06 – 2.92 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 187.3, 161.9, 153.7, 133.0, 129.4, 113.2, 91.6, 55.3; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₆NO₂: 206.1181. Found: 206.1182.

(E)-1-(Benzo[d][1,3]dioxol-5-yl)-3-(dimethylamino)prop-2-en-1-one (1d):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 127 – 129 °C. Yield 65% (962.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 12.3 Hz, 1H), 7.45 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.39 (d, *J* = 1.6 Hz, 1H), 6.77 (d, *J* = 8.1 Hz, 1H), 5.96 (s, 2H), 5.60 (d, *J* = 12.3 Hz, 1H), 3.08 (s, 3H) , 2.90 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) *δ* 187.1, 154.2, 150.1, 147.8, 135.2. 122.7, 108.0, 107.7, 101.5, 91.7, 45.2, 37.7; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₀H₁₇O: 153.1279. Found: 153.1277.

(*E*)-3-(Dimethylamino)-1-(4-nitrophenyl) prop-2-en-1-one (1e):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 148 - 149 °C. Yield 67% (737.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.25 – 8.23 (m, 2H), 8.01 (d, *J* = 8.8 Hz, 2H), 7.86 (d, *J* = 12.4 Hz, 1H), 5.68 (d, *J* = 12.0 Hz, 1H), 3.21 (s, 3H), 2.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.0, 155.2, 149.0, 146.0, 128.3, 123.3, 91.9, 45.3, 37.4; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₃N₂O₃: 221.0926. Found: 221.0932.

(E)-3-(Dimethylamino)-1-(3-nitrophenyl) prop-2-en-1-one (1f):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 116 - 117 °C. Yield: 80% (880.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 8.32 - 8.29 (m, 1H), 8.26 (d, *J* = 7.7 Hz, 1H), 7.90 (d, *J* = 12.2 Hz, 1H), 7.60 (t, *J* = 7.9 Hz, 1H), 5.72 (d, *J* = 12.2 Hz, 1H), 3.21 (s, 3H), 3.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.3, 155.2, 148.1, 142.0, 138.5, 129.2, 125.3, 122.2, 91.1, 45.3, 37.5; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₃N₂O₃: 221.0926. Found: 221.0922.

(*E*)-4-(3-(Dimethylamino)acryloyl)benzonitrile (1g):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 117 - 118 °C. Yield: 82% (820.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.4 Hz, 2H), 7.85 (d, J = 12.2 Hz, 1H), 7.71 – 7.69 (m, 2H), 5.66 (d, J = 12.2, 1H), 3.19 (s, 3H), 2.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.3, 156.0, 145.2,

132.9, 128.9, 119.6, 114.9, 92.6, 46.2, 38.4; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₃N₂O: 201.1028. Found: 201.1026.

(E)-3-(Dimethylamino)-1-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (1h):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 107 - 109 °C. Yield: 76% (923.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8 Hz, 2H), 7.84 (d, *J* = 12.4 Hz, 1H), 7.66 (d, *J* = 8 Hz, 2H), 5.68 (d, *J* = 12.4 Hz, 1H), 3.18 (s, 3H), 2.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.1, 154.8, 143.6, 132.4, 132.0, 127.7, 125.08 (q, *J* = 4.0 Hz), 122.6, 91.9, 45.2, 37.3; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₂F₃NO: 244.0949. Found: 244.0952.

(*E*)-3-(Dimethylamino)-1-(4-fluorophenyl) prop-2-en-1-one (1i):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 83 - 84 °C. Yield: 88% (849.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.93 - 7.90 (m, 2H), 7.81 (d, J = 12.4 Hz, 1H), 7.10 - 7.05 (m, 2H), 5.67 (d, J = 12.4 Hz, 1H), 3.15 (s, 3H), 2.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.0, 164.4 (d, J = 249 Hz), 154.3, 136.6 (d, J = 3.0 Hz), 129.7 (d, J = 9.0 Hz), 114.9 (d, J = 21.0 Hz), 91.6, 45.0, 37.2; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₃FNO: 194.0981. Found: 194.0984.

(E)-1-(4-Chlorophenyl)-3-(dimethylamino)prop-2-en-1-one (1j):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 88 - 89 °C. Yield 83% (867.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.86 - 7.83 (m, 2H), 7.80 (d, J = 12.4 Hz, 1H), 7.39 - 7.35 (m, 2H), 5.66 (d, J = 12.4 Hz, 1H), 3.15 (s, 3H), 2.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.1, 154.5, 138.8, 136.9,

128.9, 128.2, 91.6, 45.0; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₃ClNO: 210.0686. Found: 210.0690.

(*E*)-1-(4-Bromophenyl)-3-(dimethylamino)prop-2-en-1-one (1k):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 82 - 83 °C. Yield: 84% (1062.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 12.4 Hz, 1H), 7.78 – 7.76 (m, 2H), 7.54 – 7.52 (m, 2H), 5.65 (d, J = 12.0 Hz, 1H), 3.14 (s, 3H), 2.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.1, 154.5, 139.2, 131.2, 129.1, 125.4, 91.6, 45.0, 37.3; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₃BrNO: 254.0181. Found: 254.0184.

(E)-3-(Dimethylamino)-1-(4-iodophenyl)prop-2-en-1-one (11):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 121 - 122 °C. Yield: 65% (978.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 12.4 Hz, 1H), 7.75 – 7.73 (m, 2H), 7.63 – 7.61 (m, 2H), 5.64 (d, J = 12.4 Hz, 1H), 3.12 (s, 3H), 2.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.1, 154.4, 139.7, 129.0, 97.7, 91.4, 45.0, 37.2; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₃INO: 302.0042. Found: 302.0039.

(*E*)-3-(Dimethylamino)-1-(naphthalen-2-yl)prop-2-en-1-one (1m):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 113 - 114 °C. Yield: 77% (866.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.03 – 8.00 (m, 1H), 7.95 – 7.93 (m, 1H), 7.88 – 7.84 (m, 3H), 7.55 – 7.48 (m, 2H), 7.87 (d, J = 12.4 Hz, 1H), 3.14 (s, 3H), 2.97 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 188.4, 154.2, 137.8, 134.6, 132.7, 129.1, 127.7, 127.6, 127.1, 126.1, 124.6, 92.3, 45.0, 37.3; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₅H₁₆NO: 226.1232. Found: 226.1233.

(*E*)-3-(Dimethylamino)-1-(phenanthren-2-yl)prop-2-en-1-one (1n):

The title compound was prepared according to the general procedure B. The product was obtained as yellow solid, Mp. 158 - 160 °C. Yield: 85% (1168.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.69 – 8.65 (m, 2H), 8.43 (d, *J* = 1.7 Hz, 1H), 8.19 – 8.16 (m, 1H), 7.88 – 7.86 (m, 2H), 7.80 (d, *J* = 8.8 Hz, 1H), 7.73 (d, *J* = 8.8 Hz, 1H), 7.66 – 7.57 (m, 2H), 5.87 (d, *J* = 12.3 Hz, 1H) 3.07 (s, 3H), 2.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.8, 154.1, 138.2, 132.4, 131.8, 131.4, 129.7, 128.4, 127.9, 127.3, 127.1, 126.9, 126.5, 125.3, 122.9, 122.4, 92.0, 44.8, 37.1; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₉H₁₈NO: 276.1388. Found: 276.1385.

(*E*)-1-(Anthracen-2-yl)-3-(dimethylamino)prop-2-en-1-one (10):

The title compound was prepared according to the general procedure B. The product was obtained as yellow solid, Mp. 182 - 183 °C. Yield: 87% (1224.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 18.8 Hz, 2H), 8.38 (s, 1H), 8.00 (s, 4H), 7.86 (d, *J* = 12.2 Hz, 1H), 7.51 – 7.40 (m, 2H), 5.88 (d, *J* = 12.2 Hz, 1H), 3.08 (s, 3H), 2.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.2, 154.2, 137.1, 132.4, 132.3, 131.8, 130.8, 128.4, 128.2, 128.1, 128.0, 128.0, 125.9, 125.4, 124.0, 92.2, 44.9, 37.2; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₉H₁₈NO: 276.1388. Found: 276.1385.

(*E*)-3-(Dimethylamino)-1-ferrocenyl -2-en-1-one (1p):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 65 - 66 °C. Yield: 34% (481.4 mg); ¹H NMR (400 MHz,

CDCl3) δ 7.71 (d, J = 12.5 Hz, 1H), 5.36 (d, J = 12.5 Hz, 1H), 4.78 (s, 2H), 4.38 (s, 2H), 4.16 (s, 5H), 3.00 (br, 6H); ¹³C NMR (101 MHz, CDCl3) δ 191.7, 151.6, 93.1, 82.5, 70.9, 69.8, 69.0; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₅H₁₈FeNO₂: 284.0738. Found: 284.0739.

(*E*)-3-(Dimethylamino)-1-(furan-2-yl)prop-2-en-1-one (1q):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 80 - 81 °C. Yield: 81% (668.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 12.4 Hz, 1H), 7.49 (s, 1H), 7.06 (d, J = 2.8 Hz, 1H), 6.48 (s, 1H), 5.68 (d, J = 12.8 Hz, 1H), 3.14 (s, 3H), 2.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.4, 154.7, 153.5, 144.1, 113.3, 111.7, 91.4, 44.9, 37.2; HRMS (ESI) m/z [M+H]⁺: Calcd for C₉H₁₂NO₂: 166.0868. Found: 166.0869.

(E)-3-(Dimethylamino)-1-(thiophen-2-yl)prop-2-en-1-one (1r):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 117 - 118 °C. Yield: 79% (715.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 12.4 Hz, 1H), 7.62 – 7.61 (m, 1H), 7.47 – 7.45 (m, 1H), 7.08 – 7.06 (m, 1H), 5.62 (d, *J* = 12.0 Hz, 1H), 3.10 (s, 3H), 2.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 180.6, 153.4, 147.3, 130.0, 128.2, 127.4, 91.5, 44.8, 37.1; HRMS (ESI) m/z [M+H]⁺: Calcd for C₉H₁₂NOS: 182.0640. Found: 182.0640.

(E)-3-(Dimethylamino)-1-(pyridin-2-yl)prop-2-en-1-one (1s):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 124 - 125 °C. Yield: 71% (625.0 mg); ¹H NMR (300 MHz, CDCl₃) δ 8.64 - 8.62 (m, 1H), 8.15 (d, J = 10.4 Hz, 1H), 7.92 (d, J = 12.7 Hz, 1H), 7.83 - 7.77 (m, 1H), 7.38 - 7.34 (m, 1H), 6.45 (d, J = 12.7 Hz, 1H), 3.18 (s, 3H), 3.00 (s, 3H); ¹³C

NMR (100 MHz, CDCl₃) δ 186.0, 155.5, 154.1, 147.6, 136.1, 124.8, 121.2, 90.4, 44.5, 36.8; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₀H₁₃N₂O: 177.1028. Found: 177.1030.

(*E*)-1-(Dimethylamino)-5-phenylpent-1-en-4-yn-3-one (1t):

The title compound was prepared according to the general procedure A. The product was obtained as brown solid, Mp. 86 - 87 °C. Yield: 87% (865.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 12.8 Hz, 1H), 7.56 – 7.54 (m, 2H), 7.39 – 7.33 (m, 3H), 5.31 (d, J = 12.7 Hz, 1H), 3.16 (s, 3H), 2.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.1, 132.3, 129.5, 128.4, 121.3, 45.3, 37.3; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₃H₁₄NO: 200.1075. Found: 200.1075.

(1E, 4E)-1-(Dimethylamino)-5-(thiophen-2-yl) penta-1, 4-dien-3-one (1u):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 109 - 111 °C. Yield: 52% (538.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.75 - 7.67 (m, 2H), 7.28 (d, *J* = 4.8 Hz, 1H), 7.20 (d, *J* = 3.4 Hz, 1H), 7.03 - 7.01 (m, 1H), 6.60 (d, *J* = 15.5 Hz, 1H), 5.22 (d, *J* = 12.4 Hz, 1H), 3.11 (s, 3H), 2.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.6, 162.5, 153.3, 141.2, 131.1, 129.8, 127.5, 126.9, 44.9, 37.2; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₄NOS: 208.0796. Found: 208.0799.

(3*S*, 8*R*, 9*S*, 10*R*, 13*S*, 14*S*)-17-((*E*)-3-(Dimethylamino)acryloyl)-10, 13-dimethyl-2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (1v):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 175 - 176 °C. Yield: 62% (1274.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 12.8 Hz, 1H), 6.48 – 6.36 (m, 1H), 5.44 – 5.34 (m, 2H), 4.66 – 4.55 (m,

1H), 2.95 (s, 6H), 2.43 – 2.30 (m, 3H), 2.28 – 2.21 (m, 1H), 2.08 – 1.95 (m, 5H), 1.90 – 1.82 (m, 2H), 1.76 – 1.52 (m, 5H), 1.48 – 1.36 (m, 2H), 1.20 – 1.09 (m, 1H), 1.04 (d, J = 18.4 Hz, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 187.8 , 170.4 , 156.6 , 152.2 , 140.1 , 136.6 , 122.1 , 93.8 , 73.9 , 56.4 , 50.4 , 46.6 , 38.1 , 36.8 , 36.7 , 34.7 , 31.9 , 31.6 , 30.2 , 27.7 , 21.4 , 20.7 , 19.2 , 16.1; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₆H₃₈NO₃: 412.2852. Found: 412.2856.

(1E, 6E)-1-(Dimethylamino)-6, 11-dimethyldodeca-1, 6, 10-trien-3-one (1w):

The title compound was prepared according to the general procedure A. The product was obtained as yellow oil. Yield: 72% (899.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 12.8 Hz, 1H), 5.17 – 5.03 (m, 2H), 5.03 (d, J = 12.4 Hz, 1H), 3.00 – 2.84 (m, 6H), 2.36 – 2.29 (m, 4H), 2.06 – 2.03 (m, 3H), 1.99 – 1.97 (m, 1H), 1.62 – 1.59 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 197.6 (d, J = 9.0 Hz), 152.1, 135.4 (d, J = 13.0 Hz), 131.2 (d, J = 22.0 Hz), 124.3 (d, J = 18.0 Hz), 123.6, 95.7, 41.5, 39.6, 31.8, 26.5 (d, J = 12.0 Hz), 25.6 (d, J = 3.0 Hz), 24.2, 24.1, 23.3, 17.5 (d, J = 1.0 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₆H₂₈NO: 250.2171. Found: 250.2177.

(*E*)-1-(Dimethylamino)-5-methylhex-1-en-3-one (1x):

The title compound was prepared according to the general procedure. The product was obtained as yellow oil. Yield: 80% (620.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 12.4 Hz, 1H), 5.04 (d, J = 12.8 Hz, 1H), 3.00 – 2.88 (m, 6H), 2.21 (d, J = 6.8 Hz, 2H), 2.17 – 2.07 (m, 1H), 0.93 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 152.2, 96.5, 51.0, 26.2, 22.8; HRMS (ESI) m/z [M+H]⁺: Calcd for C₉H₁₈NO: 156.1388. Found: 156.1388.

(*E*)-1-Cyclohexyl-3-(dimethylamino) prop-2-en-1-one (1y):

The title compound was prepared according to the general procedure A. The product was obtained as yellow solid, Mp. 41 - 42 °C. Yield: 14% (127.0 mg); ¹H NMR (400 MHz, CDCl₃)

δ 7.55 (d, J = 12.4 Hz, 1H), 5.05 (d, J = 12.4 Hz, 1H), 3.05 (s, 3H), 2.83 (s, 3H), 2.30 – 2.24 (m, 1H), 1.80 – 1.76 (m, 4H), 1.68 – 1.65 (m, 1H), 1.44 – 1.15 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 200.8, 151.9, 93.6, 49.6, 44.2, 36.5, 29.3, 25.6; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₂₀NO: 182.1545. Found: 182.1548.

(E)-1-((1r, 3R, 5S)-Adamantan-1-yl)-3-(dimethylamino) prop-2-en-1-one (1z):

The title compound was prepared according to the general procedure B. The product was obtained as white solid, Mp. 117 - 118 °C. yield: 34% (397.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 12.4 Hz, 1H), 5.16 (d, *J* = 12.4 Hz, 1H), 2.87 (s, 6H),1.95 (s, 3H) 1.76 (d, 6H), 1.66 - 1.63 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 203.1, 153.3, 90.1, 40.0, 39.4, 36.1, 28.4; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₅H₂₃NO: 234.1858. Found: 234.1858.

(*E*)-3-(Methyl(phenyl)amino)-1-phenylprop-2-en-1-one (1aa):

The title compound was prepared according to the general procedure B. The product was obtained as yellow solid, Mp. 110 - 112 °C. Yield: 70% (830.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 12.7 Hz, 1H), 7.96 – 7.93 (m, 2H), 7.51 – 7.42 (m, 3H), 7.40 – 7.36 (m, 2H), 7.22 – 7.15 (m, 3H), 6.10 (d, J = 12.7 Hz, 1H), 3.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.4, 149.9, 146.4, 140.0, 131.3, 129.5, 128.2, 127.6, 124.9, 120.4, 96.8, 37.2; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₆H₁₆NO: 238.1232. Found: 238.1234.

(*E*)-3-(Methoxy(methyl)amino)-1-phenylprop-2-en-1-one (1ab):

The title compound was prepared according to the general procedure B. The product was obtained as brown oil. Yield: 80% (765.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.91 (m, 2H), 7.64 (d, *J* = 12.4 Hz, 1H), 7.48 – 7.40 (m, 3H), 6.13 (d, *J* = 12.4 Hz, 1H), 3.71 (s, 3H),

3.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 148.9, 139.5, 131.3, 128.1, 127.6, 93.5, 59.7, 39.7; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₄NO₂: 192.1025. Found: 192.1025.

(E)-N, 4-Dimethyl-N-(3-oxo-3-phenylprop-1-en-1-yl)benzenesulfonamide (1ac):

The title compound was prepared according to the general procedure B. The product was obtained as yellow solid, Mp. 159 - 160 °C. Yield: 75% (1180.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 13.2 Hz, 1H), 7.90 – 7.87 (m, 2H), 7.73 – 7.71 (m, 2H), 7.56 – 7.52 (m, 1H), 7.47 – 7.43 (m, 2H), 7.35 – 7.33 (m, 2H), 6.14 (d, *J* = 13.6 Hz, 1H), 3.10 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.4, 145.0, 143.7, 138.4, 134.3, 132.4, 130.2, 128.5, 128.0, 127.2, 103.1, 32.4, 21.6; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₇H₁₈NO₃S: 316.1007. Found: 316.1004.

(*E*)-3-(Cyclopropyl(methyl)amino)-1-phenylprop-2-en-1-one (1ad):

The title compound was prepared according to the general procedure B. The product was obtained as yellow oil. Yield: 80% (805.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 7.68 (m, 3H), 7.51 – 7.36 (m, 3H), 5.77 (s, 1H), 2.97 (s, 3H), 2.81 (s, 1H), 0.77 (d, *J* = 12.7 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 188.7, 153.5, 140.3, 130.8, 128.0, 127.4, 93.1, 37.7, 36.7, 7.0; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₃H₁₆NO: 202.1232. Found: 202.1233.

(E)-3-(Dibenzylamino)-1-phenylprop-2-en-1-one (1ae):

The title compound was prepared according to the general procedure B. The product was obtained as yellow solid, Mp. 111 - 113 °C. Yield: 80% (1308.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 12.6 Hz, 1H), 7.86 – 7.84 (m, 2H), 7.46 – 7.32 (m, 9H), 7.22 – 7.20 (m, 4H), 6.01 (d, *J* = 12.6 Hz, 1H), 4.47 (s, 2H), 4.38 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ

189.2, 154.1, 140.2, 135.6, 135.0, 131.0, 128.9, 128.1, 127.8, 127.5, 127.2, 93.1, 59.3, 50.8; HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₃H₂₁NO: 328.1701. Found: 328.1702.

(E)-3-(Diisopropylamino)-1-phenylprop-2-en-1-one (1af):

The title compound was prepared according to the general procedure B. The product was obtained as yellow solid, Mp. 107 - 109 °C. Yield: 85% (981.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 12.4 Hz, 1H), 7.88 – 7.86 (m, 2H), 7.42 – 7.35 (m, 3H), 5.87 (d, J = 12.4 Hz, 1H), 3.98 (s, 1H), 3.59 (s, 1H), 1.24 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 188.2, 148.8, 140.8, 130.5, 127.9, 127.3, 91.5, 49.2, 48.0, 23.5, 19.5; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₅H₂₂NO: 232.1701. Found: 232.1705.

(*E*)-1-Phenyl-3-(pyrrolidin-1-yl)prop-2-en-1-one (1ag):

The title compound was prepared according to the general procedure B. The product was obtained as yellow solid, Mp. 121 - 123 °C. Yield: 87% (875.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 12.4 Hz, 1H), 7.91 – 7.89 (m, 2H), 7.47 – 7.38 (m, 3H), 5.68 (d, J = 12.4 Hz, 1H), 3.55 (d, J = 5.5 Hz, 2H), 3.27 (s, 2H), 2.04 – 1.92 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 188.3, 149.8, 140.5, 130.6, 128.0, 127.4, 92.9, 52.2, 46.9, 25.1; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₃H₁₆NO: 202.1232. Found: 202.1230.

(*E*)-1-Phenyl-3-(piperidin-1-yl)prop-2-en-1-one (1ah):

The title compound was prepared according to the general procedure B. The product was obtained as yellow solid, Mp. 93 - 95 °C. Yield: 85% (914.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.90 - 7.87 (m, 2H), 7.78 (d, J = 12.5 Hz, 1H), 7.46 - 7.38 (m, 3H), 5.82 (d, J = 12.5 Hz, 1H), 3.36 (s, 4H), 1.66 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 188.9, 153.0, 140.7, 130.7,

128.0, 127.3, 91.1, 54.8, 23.9; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₄H₁₈NO: 216.1388. Found: 216.1390.

(*E*)-3-Morpholino-1-phenylprop-2-en-1-one (1ai):

The title compound was prepared according to the general procedure B. The product was obtained as yellow solid, Mp. 105 - 107 °C. Yield: 83% (901.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.87 (m, 2H), 7.74 (d, J = 12.6 Hz, 1H), 7.49 – 7.40 (m, 3H), 5.88 (d, J = 12.6 Hz, 1H), 3.76 (t, J = 4.8 Hz, 4H), 3.40 (t, J = 4.8 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 189.1, 152.7, 140.1, 131.1, 128.1, 127.5, 92.4, 66.2; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₃H₁₆NO₂: 218.1181. Found: 218.1174.

(E)-3-(Indolin-1-yl)-1-phenylprop-2-en-1-one (1aj):

The title compound was prepared according to the general procedure B. The product was obtained as yellow solid, Mp. 120 - 122 °C. Yield: 88% (658.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.40 - 8.35 (m, 1H), 7.96 - 7.92 (m, 2H), 7.48 - 7.41 (m, 3H), 7.22 - 7.15 (m, 2H), 7.10 - 7.05 (m, 1H), 6.98 - 6.94 (m, 1H), 6.04 - 5.98 (m, 1H), 4.00 - 3.79 (m, 2H), 3.33 - 3.10 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 189.2, 143.8, 141.5, 140.0, 131.6, 131.3, 128.4 (d, *J* = 2.4 Hz), 128.2, 127.8 (d, *J* = 1.3 Hz), 125.7, 123.3, 109.2, 48.3, 27.7; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₇H₁₆NO: 250.1232. Found: 250.1231.

(*E*)-3-(3, 4-Dihydroquinolin-1(2*H*)-yl)-1-phenylprop-2-en-1-one (1ak):

The title compound was prepared according to the general procedure B. The product was obtained as brown oil, Yield: 85% (671.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 12.7 Hz, 1H), 7.96 (d, J = 9.5 Hz, 2H), 7.58 – 7.36 (m, 3H), 7.32 – 7.14 (m, 2H), 7.08 (d, J =

7.3 Hz, 1H), 7.01 – 6.97 (m, 1H), 6.19 (d, J = 12.7 Hz, 1H), 3.62 (t, J = 6.4 H, 2H), 2.78 – 2.67 (m, 2H), 2.06 – 2.00 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 189.6, 147.1, 140.1 (d, J = 4.2 Hz), 131.6, 129.0, 128.9, 128.4, 127.9 (d, J = 1.4 Hz), 123.3, 116.7, 97.0, 46.6, 27.5, 22.5; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₈H₁₈NO: 264.1388. Found: 264.1385.

Methyl (*E*)-(3-oxo-3-phenylprop-1-en-1-yl)-D-prolinate (1al):

The title compound was prepared according to the general procedure B with NMM (1.0 eq) in DCM. The product was obtained as yellow brown oil. Yield: 70% (907.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.88 (m, 3H), 7.47 – 7.38 (m, 3H), 5.79 – 5.65 (m, 1H), 4.32 – 4.29 (m, 1H), 3.74 – 3.32 (m, 5H), 2.17 – 2.03 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 188.7, 172.0, 149.3, 140.0, 130.9, 128.0, 127.4, 94.8, 64.0, 52.4, 47.4, 29.6, 23.5; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₅H₁₈NO₃: 260.1287. Found: 260.1289.

(Z)-Methyl 2-((3-oxo-3-phenylprop-1-en-1-yl)amino)-3-phenylpropanoate (1am):

The title compound was prepared according to the general procedure B with NMM (1.0 eq) in DCM. The product was obtained as yellow solid, Mp. 63 - 64 °C. Yield: 55% (850.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 10.51 (dd, $J_1 = 9.5$ Hz, $J_2 = 12.0$ Hz, 1H), 7.86 - 7.84 (m, 2H), 7.42 - 7.34 (m, 3H), 7.27 - 7.15 (m, 5H), 6.56 (dd, $J_1 = 7.7$ Hz, $J_2 = 12.4$ Hz, 1H), 5.64 (d, J = 7.6 Hz, 1H), 4.08 - 4.02 (m, 1H), 3.68 (s, 3H), 3.20 (dd, $J_1 = 5.0$ Hz, $J_2 = 13.7$ Hz, 1H), 2.99 (dd, $J_1 = 8.7$ Hz, $J_2 = 13.7$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 190.0, 170.7, 152.0, 139.1, 135.5, 130.8, 129.1, 128.4, 128.0, 126.9, 91.1, 62.9, 52.2, 39.8; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₉H₂₀NO₃: 310.1443. Found: 310.1440.

Optimization of reaction conditions:

Table S-1. Optimization Reaction Conditions by Using BrCF₂CO₂Na (1a)^{*a*}:

		base	
Ph ^r	+ DICF2CO2NA	ACN, Ar, 60 ^o C	
1a	2		3a

Entry	Base (eq.)	Solvent	Temperature (℃)	Yield $(\%)^b$
1	NEt ₃ (0.5)	ACN	60	22
2	NEt ₃ (1.0)	ACN	60	26
3	NEt ₃ (1.5)	ACN	60	32
4	NEt ₃ (1.8)	ACN	60	50
5	K ₂ CO ₃ (1.8)	ACN	60	31
6	Cs_2CO_3 (1.8)	ACN	60	59
7	Cs ₂ CO ₃ (1.8)	ACN	60	31
8	Cs_2CO_3 (1.0)	ACN	60	20
9	Cs ₂ CO ₃ (3.0)	ACN	60	64
10	CsF (3.0)	ACN	60	26
11	CsCl (3.0)	ACN	60	23
12	CsBr (3.0)	ACN	60	25
13	CsTFA (3.0)	ACN	60	18
14	Cs ₂ CO ₃ (4.0)	ACN	60	81
15	Cs ₂ CO ₃ (5.0)	ACN	60	71
16	Cs_2CO_3 (3.0)	DMF	60	3
17	Cs ₂ CO ₃ (3.0)	Dioxane	60	12
18	Cs_2CO_3 (3.0)	2-Me-THF	60	72
19	Cs ₂ CO ₃ (3.0)	PhCF ₃	60	8
20	Cs_2CO_3 (3.0)	THF	60	56
21	Cs ₂ CO ₃ (3.0)	2-Me-THF	70	67
22	Cs ₂ CO ₃ (3.0)	2-Me-THF	80	82
23	Cs ₂ CO ₃ (3.0)	2-Me-THF	100	83
24	Cs ₂ CO ₃ (3.0)	2-Me-THF	120	74
25	Cs ₂ CO ₃ (3.0)	2-Me-THF	90	85
26	Cs ₂ CO ₃ (3.0)	ACN/2-Me-THF (v/v=1/1)	90	93
27	Cs ₂ CO ₃ (3.0)	ACN/2-Me-THF (v/v=1/1)	80	97

^{*a*}Experiments were performed with **1a** (0.20 mmol, 1.0 equiv.), **2** and base in 4.0 mL solvent, and resulting mixture was stirred under Ar protection for 48 hours. ^{*b*}Isolated yields.

General procedure for synthesis of 2H-furans and their spectral data:

A mixture of enaminone **1** (0.20 mmol, 1.0 equiv.), **2** (0.40 mmol, 2.0 equiv.), ${}^{n}Pr_{3}N$ (0.06 mmol, 3.0 equiv.), anhydrous THF (2.0 mL) was sealed in a Schlenk tube under nitrogen protection at 100 °C and the mixture was stirred for 48 h or until the **1** was consumed completely. The crude product was filtered through a short pad of Celite, and the filtrate was

concentrated under vacuum and purified by flash chromatography (eluent: 20% v/v ethyl acetate in petroleum ether) to afford products **3**.

3, 3-Difluoro-N, N-dimethyl-5-phenyl-2, 3-dihydrofuran-2-amine (3a):

The title compound was prepared according to the general procedure. The product was obtained as yellow oil. Yield: 96% (43.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.59 (m, 2H), 7.43 – 7.38 (m, 3H), 5.55 (t, J = 2.4 Hz, 1H), 4.19 – 4.12 (m, 1H), 2.49 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3 (d, J = 4.0 Hz), 131.2 (dd, $J_1 = 270.0$ Hz, $J_2 = 273.0$ Hz), 129.9, 128.6, 128.2, 125.3, 97.4 (d, J = 3.0 Hz), 71.0 (dd, $J_1 = 19.0$ Hz, $J_2 = 35.0$ Hz), 41.1 (d, J = 3.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.18 (dd, $J_1 = 15.0$ Hz, $J_2 = 150.4$ Hz), -83.74 (dd, $J_1 = 7.5$ Hz, $J_2 = 150.4$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₄F₂NO: 226.1043. Found: 226.1045.

3, 3-Difluoro-*N*, *N*-dimethyl-5-(*p*-tolyl)-2, 3-dihydrofuran-2-amine (3b):

The title compound was prepared according to the general procedure. The product was obtained as brown oil, Yield: 96% (45.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.2 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 5.52 (t, *J* = 2.2 Hz, 1H), 4.21 – 4.14 (m, 1H), 2.51 (s, 6H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 140.5, 133.8, 131.2, 129.4, 128.4, 125.4, 96.1, 71.1 (dd, *J*₁ = 18.9 Hz, *J*₂ = 35.1 Hz), 41.2, 21.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.16 (dd, *J*₁ = 20.6 Hz, *J*₂ = 214.5 Hz), -81.81 (dd, *J*₁ = 9.2 Hz, *J*₂ = 214.2 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₃H₁₆F₂NO: 240.1200. Found: 240.1194.

3, 3-Difluoro-5-(4-methoxyphenyl)-N, N-dimethyl-2, 3-dihydrofuran-2-amine (3c):

The title compound was prepared according to the general procedure. The product was obtained as colorless solid, Mp. 45 - 46 °C. Yield: 96% (49.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.52 (m, 2H), 6.92 – 6.89 (m, 2H), 5.39 (t, J = 2.4 Hz, 1H), 4.16 – 4.10 (m, 1H), 3.83 (s, 3H), 2.48 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 154.2 (d, J = 4.0 Hz), 131.2 (dd, $J_1 = 270.0$ Hz, $J_2 = 272.0$ Hz), 126.9, 120.9, 114.0, 95.1 (d, J = 2.0 Hz), 71.0 (dd, $J_1 = 21.0$ Hz, $J_2 = 34.0$ Hz), 41.0 (d, J = 1.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.17 (dd, $J_1 = 15.0$ Hz, $J_2 = 150.4$ Hz), -83.87 (dd, $J_1 = 7.5$ Hz, $J_2 = 150.4$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₃H₁₆F₂NO₂: 256.1149. Found: 256.1150.

5-(Benzo[d][1, 3]dioxol-5-yl)-3,3-difluoro-N, N-dimethyl-2, 3-dihydrofuran-2-amine (3d):

The title compound was prepared according to the general procedure. The product was obtained as brown oil. Yield: 95% (51.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.26 (s, 1H), 7.14 (d, *J* = 8.1 Hz, 1H), 6.82 (d, *J* = 8.1 Hz, 1H), 6.00 (s, 2H), 5.38 (s, 1H) , 4.15 – 4.09 (m, 1H), 2.47 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 149.2, 148.0, 134.0, 131.3, 128.6, 122.4, 120.0, 108.5, 105.8, 101.6, 95.9, 71.1 (dd, *J*₁ = 19.0 Hz, *J*₂ = 34.4 Hz), 41.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.11 (dd, *J*₁ = 17.2 Hz, *J*₂ = 150.7 Hz), -83.84 (d, *J* = 151.6 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₃H₁₄F₂NO₃: 270.0942. Found: 270.0947.

3, 3-Difluoro-N, N-dimethyl-5-(4-nitrophenyl)-2, 3-dihydrofuran-2-amine (3e):

The title compound was prepared according to the general procedure. The product was obtained as colorless solid, Mp. 67 - 68 °C. Yield: 80% (43.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.8 Hz, 2H), 7.75 (d, *J* = 8.8 Hz, 2H), 5.80 (t, *J* = 2.4 Hz, 1H), 4.22 - 4.16 (m, 1H), 2.48 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.1 (d, *J* = 4.0 Hz), 148.3, 133.8, 130.9 (dd, *J*₁ = 271.0 Hz, *J*₂ = 274.0 Hz), 126.1, 123.9, 120.0 (d, *J* = 3.2 Hz), 71.1 (dd, *J*₁ = 19.0 Hz, *J*₂ = 35.0 Hz), 41.2 (d, *J* = 2.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.44 (d, *J* =

150.4 Hz), -83.27 (d, J = 150.4 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₃F₂N₂O₃: 271.0894. Found: 271.0890.

3, 3-Difluoro-N, N-dimethyl-5-(3-nitrophenyl)-2, 3-dihydrofuran-2-amine (3f):

The title compound was prepared according to the general procedure. The product was obtained as yellow oil. Yield: 96% (51.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 8.25 (d, *J* = 8.0 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.62 (t, *J* = 8.0 Hz, 1H), 5.77 (t, *J* = 2.0 Hz, 1H), 4.25 – 4.18 (m, 1H), 2.50 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.8 (d, *J* = 4.0 Hz), 148.4, 130.9 (dd, *J*₁ = 271.0 Hz, *J*₂ = 274.0 Hz), 130.9, 129.8, 129.8, 124.3, 120.3, 100.3 (d, *J* = 2.7 Hz), 71.0 (dd, *J*₁ = 18.9 Hz, *J*₂ = 34.1 Hz), 41.2 (d, *J* = 2.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.38 (dd, *J*₁ = 15.0 Hz, *J*₂ = 150.4 Hz), -83.29 (dd, *J*₁ = 15.0 Hz, *J*₂ = 150.4 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₃F₂N₂O₃: 271.0894. Found: 271.0895.

4-(5-(Dimethylamino)-4, 4-difluoro-4, 5-dihydrofuran-2-yl) benzonitrile (3g):

The title compound was prepared according to the general procedure. The product was obtained as brown oil. Yield: 81% (40.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (s, 4H), 5.74 (t, J = 2.4 Hz, 1H), 4.22 – 4.16 (m, 1H), 2.49 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.4 (d, J = 3.8 Hz), 132.4, 132.1 (d, J = 0.6 Hz), 130.9 (dd, $J_1 = 270.4$ Hz, $J_2 = 273.7$ Hz), 125.8, 118.2, 113.2, 101.2 (d, J = 3.6 Hz), 71.0 (dd, $J_1 = 18.9$ Hz, $J_2 = 34.1$ Hz), 41.2 (d, J = 2.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.29 (dd, $J_1 = 15.0$ Hz, $J_2 = 150.4$ Hz), -83.22 (dd, $J_1 = 7.5$ Hz, $J_2 = 150.4$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₃H₁₃F₂N₂O: 251.0996. Found: 251.1000.

3, **3**-Difluoro-*N*, *N*-dimethyl-5-(4-(trifluoromethyl) phenyl)-2, **3**-dihydrofuran-2-amine (**3**h):

The title compound was prepared according to the general procedure. The product was obtained as white solid, Mp. 55 - 56 °C. Yield: 98% (57.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H), 5.69 (t, J = 2.4 Hz, 1H), 4.22 – 4.15 (m, 1H), 2.49 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.9 (d, J = 3.8 Hz), 131.6 (q, J = 32.6 Hz), 131.4, 131.0 (dd, $J_1 = 270.6$ Hz, $J_2 = 273.6$ Hz), 125.6, 125.6 (q, J = 3.8 Hz), 123.7 (q, J = 270.9 Hz), 99.9 (d, J = 3.2 Hz), 71.0 (dd, $J_1 = 18.8$ Hz, $J_2 = 34.2$ Hz), 41.2 (d, J = 2.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.27 (dd, $J_1 = 14.7$ Hz, $J_2 = 150.4$ Hz), -62.80, -83.46 (dd, $J_1 = 7.5$ Hz, $J_2 = 150.4$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₃H₁₃F₅NO: 294.0917. Found: 294.0920.

3, 3-Difluoro-5-(4-fluorophenyl)-N, N-dimethyl-2, 3-dihydrofuran-2-amine (3i):

The title compound was prepared according to the general procedure. The product was obtained as colorless oil. Yield: 98% (47.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.57 (m, 2H), 7.12 – 7.06 (m, 2H), 5.48 (t, J = 2.4 Hz, 1H), 4.18 – 4.11 (m, 1H), 2.48 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.6 (d, J = 249.2 Hz), 153.4 (d, J = 3.5 Hz), 131.1 (dd, $J_I = 270.4$ Hz, $J_2 = 272.9$ Hz), 127.4 (d, J = 8.3 Hz), 124.5 (d, J = 2.7 Hz), 115.7 (d, J = 21.9 Hz), 97.0, 71.1 (dd, $J_I = 19.0$ Hz, $J_2 = 34.4$ Hz), 41.1 (d, J = 1.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.26 (dd, $J_I = 14.7$ Hz, $J_2 = 150.0$ Hz), -83.70 (dd, $J_I = 6.4$ Hz, $J_2 = 150.0$ Hz), -(109.85 – 109.92) (m); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₃F₃NO: 244.0949. Found: 244.0950.

5-(4-Chlorophenyl)-3, 3-difluoro-N, N-dimethyl-2, 3-dihydrofuran-2-amine (3j):

The title compound was prepared according to the general procedure. The product was obtained as colorless oil. Yield: 98% (50.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.52 (m, 2H), 7.39 – 7.35 (m, 2H), 5.54 (t, J = 2.4 Hz, 1H), 4.18 – 4.12 (m, 1H), 2.48 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3 (d, J = 3.3 Hz), 135.8, 131.1 (dd, $J_1 = 270.4$ Hz, $J_2 = 273.2$ Hz), 128.9, 126.7, 126.6, 98.0 (d, J = 2.5 Hz), 71.0 (dd, $J_1 = 18.9$ Hz, $J_2 = 34.2$ Hz), 41.1 (d, J = 1.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.27 (dd, $J_1 = 15.0$ Hz, $J_2 = 151.9$ Hz), -83.59 (dd, $J_1 = 7.5$ Hz, $J_2 = 150.8$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₃ClF₂NO: 260.0654. Found: 260.0650.

5-(4-Bromophenyl)-3, 3-difluoro-N, N-dimethyl-2, 3-dihydrofuran-2-amine (3k):

The title compound was prepared according to the general procedure. The product was obtained as yellow oil. Yield: 99% (60.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.51 (m, 2H), 7.48 – 7.45 (m, 2H), 5.56 (t, J = 2.4 Hz, 1H), 4.17 – 4.11 (m, 1H), 2.48 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3 (d, J = 3.6 Hz), 131.8, 131.1 (dd, $J_1 = 270.2$ Hz, $J_2 = 273.1$ Hz), 127.1, 126.8, 124.1, 98.1 (d, J = 2.4 Hz), 71.0 (dd, $J_1 = 18.7$ Hz, $J_2 = 34.1$ Hz), 41.1 (d, J = 1.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.24 (dd, $J_1 = 15.0$ Hz, $J_2 = 150.4$ Hz), -83.56 (dd, $J_1 = 7.5$ Hz, $J_2 = 150.4$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₃BrF₂NO: 304.0149. Found: 304.0150.

3, 3-Difluoro-5-(4-iodophenyl)-N, N-dimethyl-2, 3-dihydrofuran-2-amine (31):

The title compound was prepared according to the general procedure. The product was obtained as yellow oil. Yield: 97% (53.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.72 (m, 2H), 7.34 – 7.41 (m, 2H), 5.58 (t, *J* = 2.4 Hz, 1H), 4.16 – 4.10 (m, 1H), 2.48 (d, *J* = 0.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4 (d, *J* = 3.7 Hz), 137.7, 131.0 (dd, *J*₁ = 270.5 Hz, *J*₂ = 273.1 Hz), 127.6, 126.8, 98.2 (d, *J* = 2.5 Hz), 96.0, 71.0 (dd, *J*₁ = 18.7 Hz, *J*₂ = 34.1 Hz), 41.1 (d, *J* = 1.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.17 (dd, *J*₁ = 15.0 Hz, *J*₂ = 149.3 Hz), -83.51 (dd, *J*₁ = 7.5 Hz, *J*₂ = 151.2 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₃F₂INO: 352.0010.

3, 3-Difluoro-*N*, *N*-dimethyl-5-(naphthalen-2-yl)-2, 3-dihydrofuran-2-amine (3m):

The title compound was prepared according to the general procedure. The product was obtained as yellow solid, Mp. 46 - 47 °C. Yield: 95% (52.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.85 – 7.79 (m, 3H), 7.62 – 7.59 (m, 1H), 7.51 – 7.46 (m, 2H), 5.64 (t, *J* = 2.4 Hz, 1H), 4.22 – 4.16 (m, 1H), 2.50 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3 (d, *J* = 3.7 Hz), 133.8, 132.9, 131.2 (dd, *J*₁ = 269.6 Hz, *J*₂ = 272.4 Hz), 128.6, 128.3, 127.7, 127.1, 126.7, 125.3, 125.1, 122.3, 98.0 (d, *J* = 2.8 Hz), 96.0, 71.1 (dd, *J*₁ = 18.9 Hz, *J*₂ = 34.2 Hz), 41.1 (d, *J* = 2.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.13 (dd, *J*₁ = 6.8 Hz, *J*₂ = 150.4 Hz), - 83.58 (dd, *J*₁ = 8.3 Hz, *J*₂ = 150.4 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₆H₁₆F₂NO: 276.1200. Found: 276.1202.

3, 3-Difluoro-*N*, *N*-dimethyl-5-(phenanthren-2-yl)-2, 3-dihydrofuran-2-amine (3n):

The title compound was prepared according to the general procedure. The product was obtained as yellow solid, Mp. 101 - 102 °C. Yield: 80% (52.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, *J* = 8.4 Hz, 2H), 8.10 (s, 1H), 7.87 (d, *J* = 7.2 Hz, 1H), 7.79 – 7.70 (m, 3H),

7.66 – 7.58 (m, 2H), 5.68 (s, 1H), 4.24 – 4.18 (m, 1H), 2.52 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 154.2 (d, J = 3.5 Hz), 132.4, 131.7, 131.3 (dd, J_I = 269.7 Hz, J_2 = 272.1 Hz), 131.1, 129.8, 128.6, 127.8, 127.1, 126.9, 126.8, 126.0, 125.5, 123.1, 122.8, 98.0 (d, J = 2.2 Hz), 71.1 (dd, J_I = 18.8 Hz, J_2 = 34.2 Hz), 41.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -60.92 (dd, J_I = 14.7 Hz, J_2 = 150.0 Hz), -83.35 (d, J = 150.4 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₀H₁₈F₂NO: 326.1356. Found: 326.1355.

5-(Anthracen-2-yl)-3, 3-difluoro-N, N-dimethyl-2, 3-dihydrofuran-2-amine (30):

The title compound was prepared according to the general procedure. The product was obtained as yellow solid, Mp. 140 - 141 °C. Yield: 74% (48.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.37 (s, 1H), 8.24 (s, 1H), 8.01 – 7.95 (m, 3H), 7.56 (d, J = 8.8 Hz, 1H), 7.51 – 7.47 (m, 2H), 5.69 (t, J = 2.0 Hz, 1H), 4.26 – 4.20 (m, 1H), 2.53 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3 (d, J = 3.4 Hz), 132.4, 132.2, 131.4, 131.3 (dd, $J_1 = 269.5$ Hz, $J_2 = 271.9$ Hz), 130.8, 128.7, 128.3, 128.1, 127.6, 126.2, 126.1, 125.8, 125.6, 124.5, 121.7, 98.5 (d, J = 2.0 Hz), 71.1 (dd, $J_1 = 19.0$ Hz, $J_2 = 34.1$ Hz), 41.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.02 (dd, $J_1 = 15.0$ Hz, $J_2 = 150.4$ Hz), -83.39 (dd, $J_1 = 7.1$ Hz, $J_2 = 150.4$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₀H₁₈F₂NO: 326.1356. Found: 326.1356.

5-(Ferrocenyl)-3, 3-difluoro-*N*, *N*-dimethyl-2, 3-dihydrofuran-2-amine (3p):

The title compound was prepared according to the general procedure. The product was obtained as brown oil. Yield: 95% (63.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 5.10 (t, J = 2.4 Hz, 1H), 4.55 (s, 1H), 4.52 (s, 1H), 4.31 (s, 2H), 4.19 (s, 5H), 4.01 – 3.95 (m, 1H), 2.47 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 155.7 (d, J = 4.2 Hz), 131.2 (t, J = 270.9 Hz), 94.6, 72.4, 70.9 (dd, $J_I = 18.5$ Hz, $J_2 = 34.5$ Hz), 69.7, 66.6, 66.5, 41.0; ¹⁹F NMR (376 MHz, CDCl₃) δ - 61.19 (dd, $J_I = 14.7$ Hz, $J_2 = 149.3$ Hz), -84.77 (dd, $J_I = 4.5$ Hz, $J_2 = 151.5$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₆H₁₈F₂FeNO: 334.0706. Found: 334.0705.

4, 4-Difluoro-*N*, *N*-dimethyl-4, 5-dihydro- [2, 2'-bifuran]-5-amine (3q):

The title compound was prepared according to the general procedure. The product was obtained as colorless oil. Yield: 94% (40.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 1.2 Hz, 1H), 6.63 (d, J = 3.6 Hz, 1H), 6.47 (dd, $J_1 = 1.6$ Hz, $J_2 = 3.2$ Hz, 1H), 5.45 (t, J = 2.4 Hz, 1H), 4.18 – 4.12 (m, 1H), 2.48 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 146.2 (d, J = 4.9 Hz), 144.1, 143.8 (d, J = 1.7 Hz), 131.1 (dd, $J_1 = 270.7$ Hz, $J_2 = 273.0$ Hz), 111.4, 110.1, 96.3 (d, J = 3.0 Hz), 70.7 (dd, $J_1 = 18.6$ Hz, $J_2 = 34.1$ Hz), 41.1 (d, J = 1.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.77 (d, J = 150.0 Hz), -83.91 (d, J = 149.6 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₀H₁₂F₂NO₂: 216.0836. Found: 216.0836.

3, 3-Difluoro-N, N-dimethyl-5-(thiophen-2-yl)-2, 3-dihydrofuran-2-amine (3r):

The title compound was prepared according to the general procedure. The product was obtained as colorless oil. Yield: 87% (40.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, J_1 = 0.8 Hz, J_2 = 4.8 Hz, 1H), 7.32 (d, J = 3.6 Hz, 1H), 7.04 (dd, J_1 = 4.0 Hz, J_2 = 4.8 Hz, 1H), 5.37 (t, J = 2.4 Hz, 1H), 4.16 – 4.10 (m, 1H), 2.46 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.5 (d, J = 4.2 Hz), 131.0 (dd, J_1 = 270.9 Hz, J_2 = 273.1 Hz), 130.9, 127.6, 127.2, 126.6, 96.5 (d, J = 2.6 Hz), 71.1 (dd, J_1 = 18.8 Hz, J_2 = 34.3 Hz), 41.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.40 (dd, J_1 = 14.7 Hz, J_2 = 148.9 Hz), -83.72 (dd, J_1 = 6.0 Hz, J_2 = 149.3 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₀H₁₂F₂NOS: 232.0608. Found: 232.0606.

3, 3-Difluoro-N, N-dimethyl-5-(pyridin-2-yl)-2, 3-dihydrofuran-2-amine (3s):

The title compound was prepared according to the general procedure. The product was obtained as yellow oil. Yield: 97% (45.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, *J* = 4.8 Hz, 1H), 7.78 – 7.74 (m, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.31 – 7.28 (m, 1H), 6.08 (t, *J* = 2.4 Hz, 1H), 4.22 – 4.16 (m, 1H), 2.50 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3 (d, *J* = 3.4 Hz), 149.8, 146.9, 136.8, 131.3 (dd, *J*₁ = 270.1 Hz, *J*₂ = 273.8 Hz), 124.2, 120.3, 101.3 (d, *J* = 2.8 Hz), 71.0 (dd, *J*₁ = 18.9 Hz, *J*₂ = 34.3 Hz), 41.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.33 (dd, *J*₁ = 15.8 Hz, *J*₂ = 151.5 Hz), -82.88 (dd, *J*₁ = 7.5 Hz, *J*₂ = 150.0 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₃F₂N₂O: 227.0996. Found: 227.1000.

3, 3-Difluoro-N, N-dimethyl-5-(phenylethynyl)-2, 3-dihydrofuran-2-amine (3t):

The title compound was prepared according to the general procedure. The product was obtained as yellow oil. Yield: 84% (42.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.50 (m, 2H), 7.42 – 7.33 (m, 3H), 5.56 (t, J = 2.4 Hz, 1H), 4.13 – 4.06 (m, 1H), 2.47 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.0 (d, J = 5.1 Hz), 131.9, 130.4 (dd, $J_1 = 271.0$ Hz, $J_2 = 273.8$ Hz), 129.7, 128.5, 120.8, 109.2 (d, J = 2.6 Hz), 94.1, 77.6, 70.6 (dd, $J_1 = 18.5$ Hz, $J_2 = 33.9$ Hz), 41.2 (d, J = 1.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.58 (dd, $J_1 = 14.7$ Hz, $J_2 = 149.3$ Hz), -83.71 (dd, $J_1 = 6.8$ Hz, $J_2 = 149.6$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₄H₁₄F₂NO: 250.1043. Found: 250.1041.

(*E*)-3, 3-Difluoro-*N*, *N*-dimethyl-5-(2-(thiophen-2-yl) vinyl)-2, 3-dihydrofuran-2-amine (3u):

The title compound was prepared according to the general procedure. The product was obtained as yellow oil. Yield: 95% (49.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (t, *J* = 2.4 Hz, 1H), 7.13 – 7.09 (m, 2H), 7.00 (dd, *J*₁ = 4.0 Hz, *J*₂ = 5.2 Hz, 1H), 6.35 (d, *J* = 15.6 Hz, 1H), 5.17 (t, *J* = 2.4 Hz, 1H), 4.10 – 4.04 (m, 1H), 2.45 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.0 (d, *J* = 3.7 Hz), 141.0, 131.1 (dd, *J*₁ = 270.2 Hz, *J*₂ = 272.7 Hz), 128.3, 127.9, 126.5,

126.2, 114.0, 101.6 (d, J = 2.5 Hz), 70.9 (dd, $J_1 = 19.0$ Hz, $J_2 = 34.2$ Hz), 41.1 (d, J = 1.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.33 (dd, $J_1 = 14.7$ Hz, $J_2 = 151.2$ Hz), -83.44 (dd, $J_1 = 6.0$ Hz, $J_2 = 149.6$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₄F₂NOS: 258.0764. Found: 258.0765.

(3*S*, 8*R*, 9*S*, 10*R*, 13*S*, 14*S*)-17-(5-(Dimethylamino)-4, 4-difluoro-4, 5-dihydrofuran-2-yl)-10, 13-dimethyl-2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15-dodecahydro-1*H*cyclopenta[a]phenanthren-3-yl acetate (3v):

The title compound was prepared according to the general procedure. The product was obtained as colorless oil. Yield: 89% (82.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 6.22 – 6.13 (m, 1H), 5.40 (d, J = 5.2 Hz, 1H), 5.10 (d, J = 9.6 Hz, 1H), 4.65 – 4.57 (m, 1H), 4.03 (dd, $J_I = 6.8$ Hz, $J_2 = 14.8$ Hz, 1H), 2.44 (s, 6H), 2.37 – 2.32 (m, 2H), 2.30 – 2.22 (m, 1H), 2.07 – 1.95 (m, 7H), 1.90 – 1.83 (m, 2H), 1.74 – 1.46 (m, 8H), 1.10 – 1.03 (m, 4H), 0.96 (d, J = 8.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 151.1 (dd, $J_I = 3.5$ Hz, $J_2 = 16.0$ Hz), 142.5, 142.4, 139.9, 132.9 (d, J = 8.5 Hz), 133.3 – 127.6 (m), 122.1, 98.8 – 96.6 (m), 73.7, 71.1 – 70.6 (m), 56.8, 56.7, 50.2, 50.1, 46.0, 45.8, 41.0, 38.0, 36.8, 36.7, 35.1, 35.0, 31.5, 31.3, 30.1, 30.0, 27.6, 26.8, 21.4, 20.7, 19.2, 16.2, 16.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -(61.28 – 61.79) (m), -(84.30 – 85.12) (m); HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₇H₃₈F₂NO₃: 462.2820.

(*E*)-5-(4, 8-Dimethylnona-3, 7-dien-1-yl)-3, 3-difluoro-*N*, *N*-dimethyl-2, 3-dihydrofuran-2-amine (3w):

The title compound was prepared according to the general procedure. The product was obtained as colorless oil. Yield: 65% (38.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 5.11 – 5.06 (m, 2H), 4.84 (s, 1H), 3.94 – 3.88 (m, 1H), 2.41 (s, 6H), 2.24 (dd, J_1 = 3.4 Hz, J_2 = 5.7 Hz, 4H), 2.09 – 2.02 (m, 3H), 1.99 – 1.96 (m, 1H), 1.69 – 1.60 (m, 9H); ¹³C NMR (100 MHz,

CDCl₃) δ 157.8 (d, J = 3.0 Hz), 136.7, 136.6, 131.7, 131.3, 131.2 (dd, J_1 = 270.6 Hz, J_2 = 273.9 Hz), 124.1, 124.0, 123.0, 122.2, 98.1 (t, J = 3.0 Hz), 70.9 – 70.4 (m), 40.9 (d, J = 2.0 Hz), 39.6, 31.9, 28.4, 28.2, 26.6, 26.4, 25.6, 25.6, 24.1, 24.0, 23.3, 17.6, 17.5, 16.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.50 (dd, J_1 = 1.9 Hz, J_2 = 151.3 Hz), -84.41 (dd, J_1 = 25.0 Hz, J_2 = 151.4 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₇H₂₈F₂NO: 300.2139. Found: 300.2140.

3, 3-Difluoro-5-isobutyl-*N*, *N*-dimethyl-2, 3-dihydrofuran-2-amine (3x):

The title compound was prepared according to the general procedure. The product was obtained as yellow oil. Yield: 75% (31.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 4.86 (s, 1H), 3.96 – 3.90 (m, 1H), 2.42 (s, 6H), 2.10 (d, J = 6.8 Hz, 2H), 1.99 – 1.88 (m, 1H), 0.95 (dd, $J_I = 4.4$ Hz, $J_2 = 6.8$ Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.3 (d, J = 2.6 Hz), 131.2 (dd, $J_I = 269.2$ Hz, $J_2 = 272.0$ Hz), 98.9 (d, J = 2.4 Hz), 70.6 (dd, $J_I = 18.5$ Hz, $J_2 = 34.5$ Hz), 41.1, 37.1, 29.7, 25.6, 22.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.32 (dd, $J_I = 15.0$ Hz, $J_2 = 151.9$ Hz), -84.34 (dd, $J_I = 6.0$ Hz, $J_2 = 151.5$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₀H₁₈F₂NO: 206.1356. Found: 206.1356.

5-Cyclohexyl-3, 3-difluoro-*N*, *N*-dimethyl-2, 3-dihydrofuran-2-amine (3y):

The title compound was prepared according to the general procedure. The product was obtained as yellow oil. Yield: 70% (32.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 4.79 – 4.78 (m, 1H), 3.92 – 3.86 (m, 1H), 2.41 (s, 6H), 2.24 – 2.13 (m, 1H), 1.98 – 1.63 (m, 6H), 1.35 – 1.15 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, J = 2.6 Hz), 131.1 (dd, J_I = 268.4 Hz, J_2 = 271.1 Hz), 95.7 (d, J = 1.5 Hz), 70.4 (dd, J_I = 18.6 Hz, J_2 = 34.5 Hz), 41.0, 36.8, 29.6, 25.9, 25.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.67 (dd, J_I = 15.4 Hz, J_2 = 151.2 Hz), -84.90 (dd, J_I = 6.8 Hz, J_2 = 151.2 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₂₀F₂NO: 232.1513. Found: 232.1514.

5-((1*r*, 3*R*, 5*S*)-Adamantan-1-yl)-3, 3-difluoro-*N*, *N*-dimethyl-2, 3-dihydrofuran-2-amine (3z):

The title compound was prepared according to the general procedure. The product was obtained as yellow oil. Yield: 60% (33.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 4.73 (t, J = 2.4 Hz, 1H), 3.90 – 3.84 (m, 1H), 2.40 (s, 6H), 2.06 – 1.98 (m, 4H), 1.83 – 1.67 (m, 11H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0 (d, J = 2.4 Hz), 131.2 (dd, $J_I = 270.8$ Hz, $J_2 = 272.6$ Hz), 94.4 (d, J = 1.5 Hz), 70.2 (dd, $J_I = 19.0$ Hz, $J_2 = 34.9$ Hz), 40.9, 39.1, 38.2, 36.6, 34.1, 27.9, 27.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.69 (dd, $J_I = 15.1$ Hz, $J_2 = 150.9$ Hz), -85.33 (dd, $J_I = 6.3$ Hz, $J_2 = 150.9$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₆H₂₄F₂NO: 284.1826. Found: 284.1829.

3, 3-Difluoro-*N*-methyl-*N*, 5-diphenyl-2, 3-dihydrofuran-2-amine (3aa):

The title compound was prepared according to the general procedure. The product was obtained as white solid, Mp. 78 - 79 °C. Yield: 93% (53.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.62 (m, 2H), 7.43 – 7.40 (m, 3H), 7.31 – 7.27 (m, 2H), 6.94 – 6.89 (m, 2H), 6.85 – 6.81 (m, 1H), 5.59 (t, *J* = 2.4 Hz, 1H), 5.33 – 5.27 (m, 1H), 2.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.8 (d, *J* = 3.2 Hz), 149.2, 130.2 (dd, *J*₁ = 268.6 Hz, *J*₂ = 269.3 Hz), 130.2, 129.3, 128.7, 128.0, 125.4, 118.4, 113.6, 97.3 (d, *J* = 2.9 Hz), 65.9 (dd, *J*₁ = 21.6 Hz, *J*₂ = 37.1 Hz), 33.4 (d, *J* = 2.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -66.02 (dd, *J*₁ = 13.4 Hz, *J*₂ = 149.6 Hz), -81.28 (dd, *J*₁ = 6.7 Hz, *J*₂ = 150.0 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₇H₁₆F₂NO: 288.1200. Found: 288.1200.

N-(3, 3-Difluoro-5-phenyl-2, 3-dihydrofuran-2-yl)-*N*, *O*-dimethylhydroxylamine (3ab):

The title compound was prepared according to the general procedure. The product was obtained as colorless oil. Yield: 55% (26.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.59 (m, 2H), 7.41 – 7.38 (m, 3H), 5.56 (t, J = 2.4 Hz, 1H), 4.25 – 4.19 (m, 1H), 3.56 (s, 3H), 2.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.5 (d, J = 3.3 Hz), 130.1, 129.8 (dd, $J_I = 262.1$ Hz, $J_2 = 269.6$ Hz), 128.5, 128.0, 125.4, 94.7, 73.0 (dd, $J_I = 18.3$ Hz, $J_2 = 36.0$ Hz), 59.8 (d, J = 1.9 Hz), 41.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.48 (d, J = 151.4 Hz), -83.73 (dd, $J_I = 5.3$ Hz, $J_2 = 152.2$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₄F₂NO: 242.0993. Found: 242.0992.

N-(3, 3-Difluoro-5-phenyl-2, 3-dihydrofuran-2-yl)-*N*, 4-dimethylbenzenesulfonamide (3ac):

The title compound was prepared according to the general procedure. The product was obtained as colorless oil. Yield: 37% (27.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.4 Hz, 2H), 7.58 – 7.55 (m, 2H), 7.43 – 7.38 (m, 3H), 7.35 (d, J = 8.4 Hz, 2H), 5.61 – 5.55 (m, 1H), 5.34 (t, J = 2.8 Hz, 1H), 2.75 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.1 (d, J = 3.3 Hz), 143.8, 135.6, 130.6, 129.8, 128.9 (t, J = 268.7 Hz), 128.7, 127.3, 127.3, 125.5, 94.7 (d, J = 2.6 Hz), 63.8 (dd, $J_I = 20.2$ Hz, $J_2 = 41.7$ Hz), 30.2 (d, J = 4.4 Hz), 21.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -65.28 (dd, $J_I = 14.3$ Hz, $J_2 = 151.9$ Hz), -81.73 (dd, $J_I = 5.3$ Hz, $J_2 = 151.9$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₈H₁₈F₂NO₃S: 366.0975. Found: 366.0980.

N-Cyclopropyl-3, 3-difluoro-*N*-methyl-5-phenyl-2, 3-dihydrofuran-2-amine (3ad):

The title compound was prepared according to the general procedure. The product was obtained as colorless oil. Yield: 67% (33.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.58 (m, 2H), 7.43 – 7.36 (m, 3H), 5.52 – 5.51 (m, 1H), 4.41 – 4.35 (m, 1H), 2.47 (s, 3H), 2.30 – 2.25 (m, 1H), 0.60 – 0.43 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 153.8 (d, J = 3.6 Hz), 131.4 (t, J = 270.5 Hz), 129.8, 128.5, 128.3, 125.2, 98.0 (d, J = 2.1 Hz), 69.8 (dd, J_1 = 19.3

Hz, $J_2 = 34.6$ Hz), 37.0 (d, J = 4.0 Hz), 35.6 (d, J = 2.5 Hz), 8.3, 7.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.37 (dd, $J_1 = 15.1$ Hz, $J_2 = 150.9$ Hz), -82.58 (dd, $J_1 = 6.6$ Hz, $J_2 = 150.8$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₄H₁₆F₂NO: 252.1200. Found: 252.1200.

N, *N*-Dibenzyl-3, 3-difluoro-5-phenyl-2, 3-dihydrofuran-2-amine (3ae):

The title compound was prepared according to the general procedure. The product was obtained as colorless oil. Yield: 99% (74.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.61 (m, 2H), 7.48 (d, J = 7.6 Hz, 4H), 7.45 – 7.40 (m, 7H), 7.35 – 7.32 (m, 2H), 5.58 (t, J = 2.4 Hz, 1H), 4.51 – 4.44 (m, 1H), 4.00 (d, J = 14.0 Hz, 2H), 3.92 (d, J = 14.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3 (d, J = 3.1 Hz), 139.3, 131.6 (t, J = 271.1 Hz), 129.8, 128.7, 128.5, 128.3, 128.2, 127.2, 125.2, 98.3 (d, J = 3.0 Hz), 66.0 (dd, $J_I = 19.2$ Hz, $J_2 = 34.4$ Hz), 54.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.78 (dd, $J_I = 14.9$ Hz, $J_2 = 150.2$ Hz), -80.18 (dd, $J_I = 7.7$ Hz, $J_2 = 150.3$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₄H₂₂F₂NO: 378.1669. Found: 378.1670.

3, 3-Difluoro-N, N-diisopropyl-5-phenyl-2, 3-dihydrofuran-2-amine (3af):

The title compound was prepared according to the general procedure. The product was obtained as colorless oil. Yield: 94% (49.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.59 (m, 2H), 7.44 – 7.36 (m, 3H), 5.51 (t, *J* = 2.4 Hz, 1H), 4.49 – 4.42 (m, 1H), 3.17 – 3.08 (m, 2H), 1.11 (d, *J* = 6.4 Hz, 6H), 1.06 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8 (d, *J* = 3.8 Hz), 130.5 (t, *J* = 267.2 Hz), 129.5, 128.7 (d, *J* = 1.0 Hz), 128.5, 125.1, 100.6 (d, *J* = 4.2 Hz), 62.6 (dd, *J*₁ = 20.9 Hz, *J*₂ = 37.0 Hz), 45.7, 22.9, 22.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -68.59 (dd, *J*₁ = 16.9 Hz, *J*₂ = 150.4 Hz), -80.50 (dd, *J*₁ = 7.5 Hz, *J*₂ = 150.4 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₆H₂₂F₂NO: 282.1669. Found: 282.1670.

1-(3, 3-Difluoro-5-phenyl-2, 3-dihydrofuran-2-yl) pyrrolidine (3ag):

The title compound was prepared according to the general procedure. The product was obtained as colorless oil. Yield: 99% (49.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.57 (m, 2H), 7.40 – 7.37 (m, 3H), 5.61 (t, J = 2.4 Hz, 1H), 4.27 – 4.21 (m, 1H), 2.89 – 2.84 (m, 2H), 2.80 – 2.75 (m, 2H), 1.87 – 1.78 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 154.1 (dd, $J_I = 1.4$ Hz, $J_2 = 3.3$ Hz), 130.7 (dd, $J_I = 266.2$ Hz, $J_2 = 270.3$ Hz), 129.8, 128.5, 128.2, 125.3, 97.5 (t, J = 2.2 Hz), 68.5 (dd, $J_I = 19.3$ Hz, $J_2 = 34.7$ Hz), 50.2 (d, J = 2.3 Hz), 24.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.39 (dd, $J_I = 15.8$ Hz, $J_2 = 150.0$ Hz), -82.66 (dd, $J_I = 6.8$ Hz, $J_2 = 149.6$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₄H₁₆F₂NO: 252.1200. Found: 252.1199.

1-(3, 3-Difluoro-5-phenyl-2, 3-dihydrofuran-2-yl) piperidine (3ah):

The title compound was prepared according to the general procedure. The product was obtained as colorless oil. Yield: 98% (51.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.55 (m, 2H), 7.41 – 7.35 (m, 3H), 5.57 (t, J = 2.4 Hz, 1H), 4.17 – 4.11 (m, 1H), 2.82 – 2.77 (m, 2H), 2.70 – 2.65 (m, 2H), 1.64 – 1.52 (m, 4H), 1.49 – 1.42 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0 (d, J = 3.5 Hz), 131.1 (dd, $J_I = 268.9$ Hz, $J_2 = 272.5$ Hz), 129.8, 128.5, 128.3, 125.2, 97.3 (d, J = 1.9 Hz), 71.6 (dd, $J_I = 18.8$ Hz, $J_2 = 34.7$ Hz), 50.2, 26.4, 24.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -60.95 (dd, $J_I = 15.5$ Hz, $J_2 = 150.1$ Hz), -82.96 (dd, $J_I = 4.1$ Hz, $J_2 = 149.6$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₅H₁₈F₂NO: 266.1356. Found: 266.1359.

4-(3, 3-Difluoro-5-phenyl-2, 3-dihydrofuran-2-yl) morpholine (3ai):

The title compound was prepared according to the general procedure. The product was obtained as colorless oil. Yield: 96% (29.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.58 (m, 2H), 7.41 – 7.38 (m, 3H), 5.57 (t, J = 2.4 Hz, 1H), 4.16 – 4.10 (m, 1H), 3.71 (t, J = 4.8 Hz, 4H), 2.87 – 2.82 (m, 2H), 2.76 – 2.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7 (d, J

= 3.6 Hz), 130.7 (dd, J_1 = 268.8 Hz, J_2 = 272.0 Hz), 130.0, 128.5, 128.0 (d, J = 0.8 Hz), 125.3, 96.1 (dd, J_1 = 0.7 Hz, J_2 = 2.9 Hz), 71.0 (dd, J_1 = 18.6 Hz, J_2 = 35.1 Hz), 67.2, 49.5 (d, J = 2.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.57 (dd, J_1 = 15.4 Hz, J_2 = 150.4 Hz), -83.28 (dd, J_1 = 6.0 Hz, J_2 = 150.4 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₄H₁₆F₂NO₂: 268.1149. Found: 268.1149.

1-(3, 3-Difluoro-5-phenyl-2, 3-dihydrofuran-2-yl) indoline (3aj):

The title compound was prepared according to the general procedure. The product was obtained as brown solid, Mp. 98 - 101 °C. Yield: 82% (49.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 2H), 7.43 – 7.42 (m, 3H), 7.13 – 7.08 (m, 2H), 6.75 – 6.71 (m, 1H), 6.65 – 6.62 (m, 1H), 5.64 (s, 1H) , 5.14 – 5.08 (m, 1H), 3.58 – 3.45 (m, 2H), 3.00 (t, *J* = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 149.1, 129.2, 129.1 (dd, *J*₁ = 270.9 Hz, *J*₂ = 272.6 Hz), 128.7, 127.7, 127.0 (d, *J* = 0.7 Hz), 126.4, 124.4, 123.8, 117.5, 105.6, 95.3, 62.1 (dd, *J*₁ = 20.4 Hz, *J*₂ = 37.5 Hz), 48.0, 27.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.01 (dd, *J*₁ = 13.5 Hz, *J*₂ = 149.2 Hz), -81.93 (dd, *J*₁ = 9.0 Hz, *J*₂ = 149.2 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₈H₁₆F₂NO: 300.1200. Found: 300.1198

1-(3, 3-Difluoro-5-phenyl-2, 3-dihydrofuran-2-yl)-1, 2, 3, 4-tetrahydroquinoline (3ak):

The title compound was prepared according to the general procedure. The product was obtained as brown oil. Yield: 78% (48.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.65 (m, 2H), 7.46 – 7.42 (m, 3H), 7.16 – 7.12 (m, 1H), 7.05 – 7.03 (m, 1H), 6.83 – 6.81 (m, 1H), 6.75 – 6.71 (m, 1H), 5.61 (t, *J* = 2.2 Hz, 1H), 5.38 – 5.33 (m, 1H), 3.44 – 3.38 (m, 1H), 3.23 – 3.18 (m, 1H), 2.88 – 2.73 (m, 2H), 1.97 – 1.88 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 143.7, 129.2 (dd, *J*₁ = 270.9 Hz, *J*₂ = 272.6 Hz), 129.1, 128.4, 127.7, 127.0 (d, *J* = 1.0 Hz), 126.2, 124.4, 122.8, 116.5, 95.9, 63.7 (dd, *J*₁ = 21.8 Hz, *J*₂ = 37.1 Hz), 43.1, 27.1, 21.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -65.69 (dd, *J*₁ = 12.7 Hz, *J*₂ = 149.6 Hz), -81.13 (dd, *J*₁ = 5.2 Hz,

 $J_2 = 149.5$ Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₉H₁₈F₂NO: 314.1356 Found: 314.1351.

Methyl (3, 3-difluoro-5-phenyl-2, 3-dihydrofuran-2-yl)-D-prolinate (3al):

The title compound was prepared according to the general procedure. The product was obtained as brown oil. Yield: 90% (55.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.57 (m, 2H), 7.40 – 7.26 (m, 3H), 5.69 (t, J = 2.4 Hz, 1H), 4.59 – 4.53 (m, 1H), 3.84 (dd, $J_I = 8.6, J_2 = 5.0$ Hz, 1H), 3.74 (s, 3H), 3.19 – 3.14 (m, 1H), 2.87 – 2.83 (m, 1H), 2.21 – 2.13 (m, 1H), 2.05 – 2.00 (m, 1H), 1.88 – 1.82 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 154.0, 133.7, 131.0, 130.0, 128.7, 128.3, 125.4, 98.8, 66.30 (dd, $J_I = 19.0$ Hz, $J_2 = 34.8$ Hz), 62.3, 52.2, 48.2, 30.3, 24.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.19 (dd, $J_I = 14.2$ Hz, $J_2 = 150.5$ Hz), -82.51 (d, J = 159.1 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₆H₁₈F₂NO₃: 310.1255. Found: 310.1252.

Methyl (3, 3-difluoro-5-phenyl-2, 3-dihydrofuran-2-yl) phenylalaninate (3am):

The title compound was prepared according to the general procedure. The product was obtained as brown oil. Yield: 28% (20.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.49 (m, 2H), 7.38 – 7.37 (m, 3H), 7.32 – 7.29 (m, 2H), 7.26 (s, 1H), 7.24 – 7.19 (m, 2H), 5.43 – 5.32 (m, 1H), 4.25 – 4.10 (m, 1H), 3.82 – 3.71 (m, 1H), 3.71 – 3.60 (m, 3H), 3.07 – 3.01 (m, 1H), 2.96 – 2.88 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.7, 154.6, 137.0, 130.1, 129.5, 128.7, 128.6, 128.1, 127.0, 125.4, 98.7, 64.2 (dd, J_1 = 21.8 Hz, J_2 = 35.6 Hz), 60.7, 60.1, 52.1, 40.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.65 (dd, J_1 = 13.9 Hz, J_2 = 149.3 Hz), -83.95 (dd, J_1 = 8.3 Hz, J_2 = 149.3 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₂₀H₂₀F₂NO₃: 360.1411. Found: 360.1407.

General procedures for synthetic applications and their spectral data:

Gram scale synthesis for the preparation of 3, 3-difluoro-*N*, *N*-dimethyl-5-phenyl-2, 3dihydrofuran-2-amine (3a):

A mixture of enaminone **1a** (10.0 mmol, 1.0 equiv.), **2** (20.0 mmol, 2.0 equiv.), ${}^{n}Pr_{3}N$ (30.0 mmol, 3.0 equiv.), anhydrous THF (100.0 mL) was sealed in a Schlenk tube under nitrogen protection at 100 °C and the mixture was stirred for 48 h or until the **1a** was consumed completely. The crude product was filtered through a short pad of Celite, and the filtrate was concentrated under vacuum and purified by flash chromatography (eluent: 20% v/v ethyl acetate in petroleum ether) to afford product **3a** as yellow oil in 85% yield (1.91 g).

(E)-N, N-Dimethyl-4-oxo-4-phenylbut-2-enamide (6):

A Schlenk tube was charged with MeOH (0.3 mmol), KO'Bu (1 M in THF) (0.28 mmol) and DMF (3 mL) under argon atmosphere. The reaction mixture was stirred at 25 °C for 10 minutes and then 2*H*-furan **3a** (0.2 mmol, 45.1 mg) was added. The mixture was stirred at 25 °C for 3 h. The product was obtained as pale-yellow solid, Mp. 68 - 70 °C. Yield: 77% (31.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.06 - 8.02 (m, 2H), 7.95 (d, *J* = 15.0 Hz, 1H), 7.64 - 7.58 (m, 1H), 7.53 - 7.47 (m, 3H), 3.18 (s, 3H), 3.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.8, 165.3, 137.2, 134.1, 133.8, 132.6, 129.0, 37.7, 36.1; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₂H₁₄NO₂: 204.1024. Found: 204.1026.

3, 3-Difluoro-*N*, *N*, *N*-trimethyl-5-phenyl-2, 3-dihydrofuran-2-aminium trifluoromethanesulfonate (7):

To a stirred solution of 2*H*-furan **3a** (1.0 mmol) in Et₂O (3.0 ml), the Methyl trifluoromethanesulfonate (1.1 mmol) was added. The reaction mixture was stirred at room

temperature until complete conversion monitored by TLC (30 min) (MeOH/DCM = 1/9, R_f = 0.25), and then the crude product was filtered. The crude product wash with ether to give corresponding pure Quaternary ammonium salt. The product was obtained as brown solid, Mp. 57 - 59 °C. Yield: 90% (350.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.68 (m, 2H), 7.51 – 7.46 (m, 1H), 7.46 – 7.40 (m, 2H), 6.14 (t, *J* = 2.5 Hz, 1H), 5.29 – 5.24 (m, 1H), 3.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9 (d, *J* = 2.9 Hz), 132.0, 128.9, 126.3, 125.6, 120.2 (q, *J* = 316.9 Hz), 89.9, 77.6 (dd, *J*₁ = 17.2 Hz, *J*₂ = 44.8 Hz), 52.0, 50.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -59.55 (dd, *J*₁ = 12.7 Hz, *J*₂ = 161.8 Hz), -78.58 , -82.56 (d, *J* = 161.6 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₄H₁₇F₅NO₄S: 390.0798. Found: 390.0802.

5-((Benzoyloxy)methyl)-3, 3-difluoro-*N*, *N*, *N*-trimethyl-2, 3-dihydrofuran-2-aminium trifluoromethanesulfonate (3ak):

To a stirred solution of quaternary ammonium salt **7** (0.1 mmol, 38.9 mg) in PhMe (2.0 ml), the tetrahydroquinoline (0.1 mmol, 13.4 mg) and potassium *tert*-butoxide (0.2 mmol, 22.5 mg) was added slowly. The mixture was stirred at room temperature for about 0.5 h. Then Pd(OAc)₂ (0.005 mmol, 1.2 mg) and *t*-BuXPhos (0.01 mmol, 4.3 mg) were added to the test tube. The reaction mixture was stirred at 100 °C for 24 h (EA/PE = 1/4, R_f = 0.8). The product was obtained as brown oil. Yield: 75% (23.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.62 (m, 2H), 7.47 – 7.39 (m, 3H), 7.20 – 7.11 (m, 1H), 7.04 – 7.02 (m, 1H), 6.86 – 6.78 (m, 1H), 6.75 – 6.70 (m, 1H), 5.64 – 5.56 (m, 1H), 5.40 – 5.30 (m, 1H), 3.43 – 3.37 (m, 1H), 3.22 – 3.17 (m, 1H), 2.88 – 2.72 (m, 2H), 1.97 – 1.83 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.5 (d, *J* = 3.4 Hz), 144.7, 132.9, 130.1, 129.3, 128.6, 128.0 (d, *J* = 1.0 Hz), 127.2, 125.4, 123.8, 117.5, 111.1 (d, *J* = 1.8 Hz), 96.9 (d, *J* = 3.3 Hz), 64.7 (dd, *J_I* = 21.8 Hz, *J₂* = 37.1 Hz), 44.0 (d, *J* = 2.4 Hz), 28.0, 22.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -65.69 (dd, *J_I* = 12.7 Hz, *J₂* = 149.6 Hz), -81.13 (dd, *J_I* = 5.2 Hz, *J₂* = 149.5 Hz); HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₉H₁₈F₂NO: 314.1356 Found: 314.1351.

N-(3-Fluoro-5-phenylfuran-2-yl)-*N*-methylnitrousa mide + *N*-(3-Fluoro-5-phenylfuran-2-yl)-*N*-methylnitramide (8):

A tube was charged with 2*H*-furan **3a** (0.4 mmol), *t*-butyl nitrite (TBN) (0.6 mmol), 2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO) (0.04 mmol), CH₃CN (5 mL) was added subsequently and the reaction mixture was stirred at 70 °C until the starting material was fully consumed (24 h), The organic phase was spin-dried and dissolved in methanol, and thiourea dioxide (TDO) (1.2 mmol) and NaOH (1 N, 2.4 mmol) were added separately, the reaction mixture was stirred at 50 °C for 3 h. (EA/PE = 1/4, R_f = 0.8). The product was obtained as brown oil, Yield: 71% (62.5mg); ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.58 (m, 2H), 7.56 – 7.52 (m, 0.18H), 7.44 – 7.39 (m, 2H), 7.39 – 7.36 (m, 0.18H), 7.35 – 7.30 (m, 1H), 7.30 – 7.27 (m, 0.09H), 6.98 (d, *J* = 2.4 Hz, 1H), 6.71 (d, *J* = 2.4 Hz, 0.09H), 4.09 (d, *J* = 0.8 Hz, 0.27 H), 3.39 (d, *J* = 0.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.0, 144.3, 143.8, 129.0, 128.9, 128.4, 126.8, 123.5, 105.2 (d, *J* = 5.2 Hz), 102.6, 101.2 (d, *J* = 1.5 Hz) 32.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -107.86, -118.64; HRMS (ESI) m/z [M+H]⁺: Calcd for C₁₁H₁₀FN₂O₂: 221.0726. Found: 221.0729. Calcd for C₁₁H₁₀FN₂O₃: 237.0675. Found: 237.0677.

NMR Spectra of enamines:

NMR Spectra for applications of *gem*-difluorinated 2*H*-furans:

