Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Supporting Information

A Combinatorial Coordination Modulated Approach to All-Hydrocarbon Ligated Intermetallic Clusters

Patricia Heiß^{a,b}, Julius Hornung^{a,b}, Christian Gemel^{a,b}, Roland A. Fischer^{*a,b}

^aChair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D-85748 Garching, Germany. Email: <u>roland.fischer@tum.de</u>

^bCatalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Strasse 1, D-85748 Garching, Germany.

Table of Contents

Experimental and Analytical Data	3
General remarks	
Computational details	
Overview of the reactions	
[NiAl](Cp*)(tebd)(cod) (1)	4
[NiAl](Cp*)(tebd)(hex) (2)	9
[NiAl](Cp*)(tpbd)(dpa) (2 _{dpa})	14
[Ni₄Ga₄](Cp*)₄(hex)₂ (3)	20
Crystallographic data	25
Crystallographic data of 1	26
Crystallographic data of 2 _{dpa}	27
Additional Experimental Data	
Influences on Ni/Al cluster formation	29
Influences on Ni/Ga cluster formation	
Additional MS data of the synthesis and analysis of 3	
Theoretical Results – XYZ coordinates of calculated molecules	40
Optimized geometries on the BP86-D3/def2-tzvpp level of theory	40
Coordinates of BP86/TZVPP optimized molecules	41
[NiAl](Cp*)(tebd)(cod)	41
[NiAl](Cp*)(tebd)(hex)	42
[NiAl](Cp*)(tpbd)(dpa)	43
[Ni4Ga4](Cp*)4(hex)2	44
[Ni5Ga3](Cp*)3(hex)4	46
[Ni8Ga6](Cp*)6	
Possible geometries of [Ni4Ga4](Cp*)4(hex)2	51
References	

Experimental and Analytical Data

General remarks

All manipulations were carried out using standard Schlenk techniques under inert atmospheres. Solvents were dried using a MBraun Solvent Purification System. The final H₂O content of all solvents was checked by Karl Fischer titration and was below 5 ppm. Starting materials [Ni(cod)₂]^[1], GaCp^{*[2]}, and AlCp^{*[3]} were synthesized according to literature procedures. Elemental analysis was performed at the microanalytical laboratory at the Technical University Munich. NMR spectra were recorded on a Bruker AV 400 US spectrometer, a Bruker DRX 400 (¹H, 400 MHz; ¹³C, 101 MHz) or a Bruker AV500 (¹H, 500 MHz; ¹³C, 126 MHz) usually in C₆D₆, toluene-d₈ or cyclohexane-d₁₂. Chemical shifts (in δ) are described in ppm relative to tetramethylsilane (TMS) and referenced to the solvent resonances as internal standards. Liquid injection field desorption ionization mass spectrometry (LIFDI-MS) data were measured on an Exactive Plus Orbitrap system by Thermo Fisher Scientific equipped with an ion source (LIFDI) from LINDEN CMS GmbH. The samples were dissolved in either dry toluene or hexane and filtered over a syringe filter under an inert atmosphere. Infrared spectra were measured on an Alpha FT-IR from Bruker equipped with an ATR device using a platinum diamond in a glovebox LABstarPro ECO from M.Braun. The interferometer measured in a range of 400 to 4000 cm⁻¹. The compounds were measured under inert atmosphere in a glovebox. UV-vis spectra were recorded on a double beam Lambda 365 UV–Vis spectrophotometer from PerkinElmer.

Computational details

Geometries of the related molecules were optimized using the ORCA4.0^[4] software package and Becke's exchange functional^[5] with Perdew's correlation functional^[6] (BP86). Grimme's Dispersion correction including Becke-Johnson damping (D3BJ)^[7] was used. After preoptimization and analytical calculation of the Hessian using Ahlrich's def2-SVP basis set these structures were further optimized using the def2-TZVPP basis sets.^[8] The resolution of identity approximation (RI) was applied to speed up the calculations.^[9] Time-dependent density functional theory (TDDFT) calculations were performed to compute the UV-Vis spectra and included the lowest 50 eigenvalues.

Overview of the reactions

[NiAl](Cp*)(tebd)(cod) (1)

Synthesis procedure

Ni(cod)₂ (100 mg, 0.364 mmol, 1.0 eq.) was suspended in 1 mL hexane and 3-hexyne (1.41 mL, 1.41 mmol, 3.9 eq) was added as a 1 M solution in hexane to give a red solution within seconds. Afterwards, AlCp* (60 mg, 0.370 mmol, 1.0 eq.) was added and the reaction mixture was stirred at 60 °C for 3.5 h giving a greenish-brown solution. After slowly cooling to -30 °C overnight, yellow crystals could be obtained which were dried in *vacuo* after filtration (yield: 15 %).

¹**H NMR** (400 MHz, 293 K, toluene-d₈): δ (ppm) = 4.43 – 4.33 (m, 2H, C=CH), 3.40 (dt, ³*J* = 5.0 Hz, 2H, C=CH), 2.45 – 2.32 (m, 2H, CHC*H*₂), 2.25 – 2.12 (m, 4H, CHC*H*₂), 2.12 – 2.08 (m, 2H, CH₂CH₃), 2.08 – 1.99 (m, 4H, CH₂CH₃), 1.97 (s, 15H, C₅(CH₃)₅), 1.96 – 1.89 (m, 2H, CHC*H*₂), 1.77 (dq, ³*J* = 14.4, ³*J* = 7.4 Hz, 2H (m, 2H, CH₂CH₃), 1.25 (t, ³*J* = 7.5 Hz, 6H, CH₂CH₃), 1.17 (t, ³*J* = 7.5 Hz, 6H, CH₂CH₃). Note: The signal intensity of the multiplet at 2.25 - 2.10 ppm is higher than expected due to the overlap with the methyl group of the solvent (toluene).

¹³C NMR (101 MHz, 293 K, toluene-d₈): δ (ppm) = 129.5 (Al-C₄), 114.5 (C₅Me₅), 88.7 (CHCH₂), 79.6 (CHCH₂), 32.2 (CHCH₂), 31.3 (CHCH₂), 26.4 (CH₂CH₃), 20.4 (CH₂CH₃), 18.1 (CH₂CH₃), 16.8 (CH₂CH₃), 11.8 (C₅Me₅).

IR (ATR, neat, cm⁻¹): 2958, 2905, 2865, 2921, 2725, 1738, 1669, 1600, 1511, 1448, 1431, 1376, 1326, 1298, 1260, 1240, 1152, 1097, 1063, 1022, 855, 799, 727, 589.

HRMS (LIFDI, toluene): m/z calcd for C₃₀H₄₇NiAl: 492.2847; found: 492.2822.

UV/Vis (*n*-hexane): λ_{max} = 285, 220 nm.

NMR spectroscopic data of 1

Fig. S 1. ¹H NMR spectrum of [NiAl](Cp*)(tebd)(cod) (1) in toluene-d₈. Note: The signal intensity of the multiplet at 2.25 - 2.10 ppm is higher than expected due to the overlap of the signal for the methyl group of the solvent (toluene).

Fig. S 7. $^{1}H/^{13}C$ HMBC NMR spectrum of **1** in toluene-d₈.

L7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.! Chemical shift (ppm)

Fig. S 8. High temperature ¹H NMR studies of **1** in toluene-d₈.

Mass spectrometric data of 1

Fig. S 10. LIFDI mass spectrum of 1 (m/z exp.492.2822; calc. 492.2847). Other observed signals induced by the analytical instrument were assigned to the following fragments: 1-cod (m/z 384.1897); 1-Cp* (m/z 357.2033); 1-2hex (m/z 328.1658); 1-cod-hex (m/z 301.1448).

IR spectroscopic data of 1

Fig. S 11. ATR IR spectrum of 1.

Calculated frequencies (BP86-D3/def2-svp) for 1

Fig.S 12. Calculated frequencies of ${\bf 1}$ on the BP86-D3/def2-svp level of theory.

UV-vis spectroscopic data of 1

Fig. S 13. UV-vis spectrum of 1 in *n*-hexane with absorption maxima at 220 nm and 285 nm.

[NiAl](Cp*)(tebd)(hex) (2)

Synthesis procedure of 2

Procedure A: 1 (52 mg, 0.105 mmol, 1.0 eq.) was suspended in 1.5 mL toluene and 3-hexyne (0.80 mL, 0.80 mmol, 7.6 eq) was added as a 1 M solution in toluene. The reaction was stirred for 6 h at 90 °C to give a dark red solution.

<u>Procedure B:</u> Ni(cod)₂ (50 mg, 0.182 mmol, 1.0 eq.) and AlCp* (29 mg, 0.179 mmol, 1.0 eq.) were suspended in 3 mL hexane and 3-hexyne (1.54 mL, 1.54 mmol, 8.6 eq) was added as a 1 M solution in toluene to give a red solution within seconds. The reaction was stirred for 6 h at 90 °C to give a dark red solution.

Note: Due the instability in vacuo and the high solubility in unpolar solvents, 2 could not be isolated.

¹**H NMR** (400 MHz, 293 K, C₆D₁₂): δ (ppm) = 2.82 – 2.49 (m, 4H, CH_{2,Acetylene}), 2.23 – 2.10 (m, 4H, CH_{2,butadiene}), 2.04 – 2.01 (m, 4H, CH_{2,Acetylene}), 1.99 (s, 15H, C₅Me₅), 1.15 (t, ³J = 7.4 Hz, 6H, CH_{3,Acetylene}), 0.98 (dt, ³J = 7.5 Hz, 12H, CH_{3,Acetylene}).

¹³**C NMR** (101 MHz, 293 K, C₆D₁₂): δ (ppm) = 132.2 (C=C_{Acetylene}), 122.7 (C=C_{butadiene}), 113.9 (C₅Me₅), 27.0 (CH_{2,butadiene}), 21.8 (CH_{2,Acetylene}), 19.9 (CH_{2,butadiene}), 16.6 (CH_{3,butadiene}), 16.5 (CH_{3,butadiene}), 16.0 (CH_{3,Acetylene}), 10.6 (C₅Me₅).

IR (ATR, neat, cm⁻¹): 2961, 2927, 2869, 1825, 1576, 1453, 1374, 1304, 1260, 1055, 1021, 804, 716, 678, 527, 508.

HRMS (LIFDI, toluene/hexane): m/z calcd for C₅₂H₄₀NiAl: 466.2685; found: 466.2684.

UV/Vis (*n*-hexane): λ_{max} = 375, 315, 215 nm.

NMR spectroscopic data of 2

Fig. S 16. ¹³C NMR spectrum of **2** in cyclohexane-d₁₂.

Fig. S 19. $^{1}H/^{13}C$ HSQC NMR spectrum of **2** in cyclohexane-d₁₂.

Fig. S 20. ¹H/¹³C HMBC NMR spectrum of **2** in cyclohexane-d₁₂.

.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Chemical shift (ppm) Fig. S 21. High temperature ¹H NMR studies of **2** in cyclohexane-d₁₂.

Mass spectrometric data of 2

Fig. S 22. LIFDI mass spectrum of 2 (exp. 466.2684; calc. 466.2683 m/z). Other observed signals: 2-hex (m/z 384.1902), 1 (m/z 492.2840), 2-hex-AlCp* (m/z 222.0186).

IR spectroscopic data of 2

Fig. S 23. ATR-IR spectrum of 2 with the characteristic band at 1825.0 cm⁻¹ with relates to *side-on* coordinated hexyne.

Calculated frequencies (BP86-D3/def2-svp) for 2

Fig. S 24. Calculated frequencies of ${\bf 2}$ on the BP86-D3/def2-svp level of theory.

UV-vis spectroscopic data of 2

Fig. S 25. UV-vis spectrum of **2** in *n*-hexane with absorption maxima at 215 nm, 315 nm and 375 nm.

[NiAl](Cp*)(tpbd)(dpa) (2_{dpa})

Synthesis procedure of 2_{dpa}

Ni(cod)₂ (60 mg, 0.218 mmol, 1.0 eq.) and diphenylacetylene (310 mg, 1.74 mmol, 8.0 eq.) were suspended in 6 mL hexane to give a red solution after a few minutes. Subsequently, AlCp* (36 mg, 0.222 mmol, 1.0 eq.) was added and the reaction mixture was stirred at 90 °C for 6 h giving a red solution. After slowly cooling to room temperature, the obtained red precipitate was cannula filtered, washed with cold pentane ($3 \times 1.5 \text{ mL}$) and shortly exposed to vacuo to obtain a red powder (yield: 64 %). Single crystals suitable for X-ray analysis was either obtained by diffusion crystallization (toluene/hexane) or by storing a concentrated solution in toluene at -30 °C within one week.

Note: 2_{dpa} is only stable with excess dpa. In addition, long exposure of 2_{dpa} to vacuo led to a black precipitate which is insoluble in common solvents.

¹**H NMR** (400 MHz, 293 K, benzene-d₆): δ (ppm) = 7.76 (dt, ³*J* = 8.2 Hz, 4H, *o*-C*H*_{acetylene}), 7.33 (d, ³*J* = 7.0 Hz, 4H, *o*-C*H*_{butadiene}), 7.29 – 7.25 (m, 4H, *o*-C*H*_{butadiene}), 7.25 – 7.20 (m, 4H, *m*-C*H*_{acetylene}), 6.97 – 6.93 (m, 4H, *m*-C*H*_{butadiene}), 6.89 – 6.84 (m, 2H, *p*-C*H*_{butadiene}), 6.80 – 6.74 (m, 4H, *p*-C*H*_{acetylene}), 6.63 (tt, ³*J* = 7.3 Hz, 2H, *p*-C*H*_{butadiene}), 1.65 (s, 15H, C₅*Me*₅).

¹³C NMR (101 MHz, 293 K, benzene-d₆): δ (ppm) = 146.4 (C=C_{butadiene}), 141.0 (C=C_{butadiene}), 138.6 C_{Ph,butadiene}), 135.3 (C_{Ph,Aceytylene}), 134.2 (C=C_{Acetylene}), 131.5 (*o*-C_{Ph,butadiene}), 131.1 (*o*-C_{Ph,butadiene}), 130.0 (*o*-C_{Ph,Acetylene}), 128.6 (*m*-C_{Ph,Acetylene}), 127.3 (*m*-C_{Ph,butadiene}), 127.0 (*p*-C_{Ph,Acetylene}, *m*-C_{Ph,butadiene}), 126.3 (*p*-C_{Ph,butadiene}), 123.9 (*p*-C_{Ph,butadiene}), 115.2 (C₅Me₅), 10.3 (C₅Me₅).

IR (ATR, neat, cm⁻¹): 3058, 2917, 1812, 1592, 1485, 1440, 1400, 1269, 1175, 1070, 1026, 911, 758, 690, 646, 562, 509.

HRMS (LIFDI, toluene): m/z calcd for C₅₂H₄₅NiAl: 754.2690; found: 754.2692.

UV/Vis (*n*-hexane): λ_{max} = 215, 280, 330 nm.

NMR spectroscopic data of 2_{dpa}

Fig. S 26. ¹H NMR spectrum of [NiAl](Cp*)(tpbd)(dpa) (2_{dpa}) in benzene-d₆. Impuritie (ppm): dpa (7.52 (m) and 6.98 ppm (m)), dpa₃ (trimerized dpa) (7.12 (m) and 6.72 ppm (m)) and Cp* (1.80 (s), 1.74 (s), 0.99 ppm (d)).

Fig. S 28. ¹H NMR spectrum of $\mathbf{2}_{dpa}$ in benzene-d₆ with signal assignment.

Chemical shift (ppm) Fig.S 29. Enlarged ¹³C NMR spectrum of 2_{dpa} in benzene-d₆ with signal assignment. Orange dots refer to trimerized dpa (hexaphenylbenzene) and green dots are assigned to free dpa.

85 80 75 Chemical shift (ppm) 150 145 140 135 130 125 120 115 110 105 100 95 90 Fig. S 30. Stacked spectrum: ¹³C NMR spectrum (black) and DEPT 135 NMR spectrum (grey) of **2**_{dpa} in benzene-d₆.

Fig. S 31. 1 H/ 13 C HSQC NMR spectrum of $\mathbf{2}_{dpa}$ in benzene-d₆.

Fig. S 32. ¹H/¹³C HMBC NMR spectrum of **2**_{dpa} in benzene-d₆.

Fig. S 33. 1 H/ 1 H COSY NMR spectrum of $\mathbf{2}_{dpa}$ in benzene-d₆. DPA₃ relates to trimerized dpa (hexaphenylbenzene).

Mass spectrometric data of 2_{dpa}

Fig. S 34. LIFDI mass spectrum of $\mathbf{2}_{dpa}$ (m/z exp.754.2690; calc. 754.2692). Other observed signals induced by the analytical instrument were assigned to the following fragments: 2_{dpa} -dpa (m/z 576.1886).

IR spectroscopic data of 2_{dpa}

Fig. S 35. ATR IR spectrum of **2**_{dpa} with the characteristic band at 1812.2 cm⁻¹ which is assigned to *side-on* coordinated dpa.

Calculated frequencies (BP86-D3/def2-svp) for 2_{dpa}

Fig. S 36. Calculated frequencies of $\mathbf{2}_{dpa}$ on the BP86-D3/def2-svp level of theory.

UV-vis spectroscopic data of $2_{\mbox{\tiny dpa}}$

Fig. S 37. UV-vis spectrum of **2**_{dpa} in *n*-hexane with absorption maxima at 215, 280 and 330 nm.

[Ni₄Ga₄](Cp*)₄(hex)₂ (3)

Synthesis procedure of 3

 $Ni(cod)_2 + GaCp^* \xrightarrow{r.t., 2h} [Ni_4Ga_4](Cp^*)_4(hex)_2 + [Ni_2](cod)_2(hex) + cod$

Ni(cod)₂ (50 mg, 0.182 mmol, 1.0 eq.) and 3-hexyne (0.09 mL, 1 M solution in toluene, 0.180 mmol, 0.5 eq) were dissolved in toluene giving a dark red solution within seconds. Subsequently, GaCp* (0.18 mL, 0.180 mmol, 1.0 eq.) was added as a 1 M solution in toluene and stirred for two hours at ambient temperature to obtain a brown solution. Spectroscopic yield with cyclohexane as internal standard: 19%.

Note: Long exposure of **3** to vacuo led to an insoluble black precipitate. In solution, however, it is stable for several days when stored at -30 $^{\circ}$ C.

¹H NMR (400 MHz, 298 K, toluene-d₈): δ (ppm) = 2.70 (s, 8H, CH_{2,hex}), 1.98 (s, 60H, C₅Me₅), 1.33 (s, 12H, CH_{3,hex}).

¹³C NMR (101 MHz, 298 K, toluene-d₈): δ (ppm) = 134.8 (C≡C_{Acetylene}), 113.6 (C₅Me₅), 22.9 (CH_{2,Acetylene}) 16.6 (CH_{3,Acetylene}), 10.90 (C₅Me₅).

IR (ATR, neat, cm⁻¹): 2959, 2906, 2864, 2822, 2725, 1739, 1670, 1600, 1510, 1448, 1375, 1260, 1240, 1152, 1063, 1022, 856, 800, 589

HRMS (LIFDI, toluene): m/z calcd for C₅₂H₈₀Ni₄Ga₄: 1218.0627; found: 1218.0633.

NMR spectroscopic data of 3

Table S 1. Overview of the chemical shifts of different compounds in ppm (298K, 400 MHz, toluene-d₈). bs means broad singlet.

Compound	1H NMR shifts	13C NMR shifts
[Ni(cod) ₂]	4.26 (s, CH), 2.05 (s, CH ₂)	90.1, 31.2
3-hexyne	2.01 (q, CH ₂), 1.01 (t, CH ₃)	81.4, 15.0, 13.2
GaCp*	1.93 (s, CH ₃)	113.89, 10.24
[Ni₄Ga₄](Cp*)₄(hex)₂	2.70 (bs, $CH_{2,hex}),$ 1.97 (s, $CH_{3,\ Cp^{*})},$ 1.33 (bs, $CH_{3,\ hex})$	134.8, 113.6, 22.9, 16.6, 10.9
[Ni ₂](cod) ₂ (hex)	5.25 (s, CH _{cod}), 2.60 (q, CH _{2, hex}), 2.06 (s, CH _{2,cod}), 1.17 (t, CH _{3, hex})	129.8, 93.42, 31.04, 20.6, 15.0
cod	5.54 (s, CH), 2.21 (s, CH ₂)	129.1, 28.8

Fig. S 38. ¹H NMR spectrum of [Ni₄Ga₄](Cp*)₄(hex)₂ (3) in toluene-d₈.

Besides the product signals, the ¹H and the ¹³C NMR spectrum exhibits signals of the starting materials Ni(cod)₂, 3-hexyne and GaCp* as well as signals of the side products Ni₂cod₂hex and cod. The assignment is depicted below. Indeed, the isolation failed so far caused by potential equilibrium as it is known for Ni₂cod₂hex.

Fig. S 39. ¹H NMR spectrum of the synthesis of **3** (black) in toluene-d₈ with assignments of the starting materials as well as side products.

Fig. S 40. ¹³C NMR spectrum of **3** (black) in toluene-d₈ with assignments of the starting materials as well as side products.

Mass spectrometric data of 3

Fig. S 45. LIFDI mass distribution of 3 measured on an Exactive Orbitrap System by Thermo Fischer. 1218.0633: [Ni₄Ga₄](Cp*)₄(hex)₂ (calc.: 1218.0627 m/z); 1014.05: 3-GaCp*; 929.93: 3-GaCp*-hex; 845.86: 3-GaCp*-2hex-2H; 807.94: 3-2GaCp*; 721.85: 3-2GaCp*-hex-4H.

IR spectroscopic data of 3

Fig. S 46. ATR IR spectrum of **3** with characteristic band at 1738.5 cm⁻¹ assuming a *side-on* coordinated hexyne.

Calculated frequencies (BP86-D3/def2-svp) for 3

Fig. S 47. Calculated frequencies of ${\bf 3}$ on the BP86-D3/def2-svp level of theory.

Crystallographic data

X-ray Crystallographic Details

Data were collected on a single crystal x-ray diffractometer equipped with a CMOS detector (Bruker APEX III, κ-CMOS), a TXS rotating anode with MoK_{α} radiation (λ = 0.71073 Å) and a Helios optic using the APEX3 software package.¹ Measurements were performed on single crystals coated with perfluorinated ether. The crystals were fixed on top of a kapton micro sampler and frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were corrected for Lorentz and polarisation effects, scan speed, and background using SAINT.² Absorption correction, including odd and even ordered spherical harmonics was performed using SADABS.² Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. The structures were solved using SHELXT with the aid of successive difference Fourier maps and were refined against all data using SHELXL-2014 in conjunction with SHELXLE.^{3,4,5} Hydrogen atoms were calculated in ideal positions as follows: Methyl hydrogen atoms were refined as part of rigid rotating groups, with a C–H distance of 0.98 Å and $U_{iso(H)} = 1.5 U_{eq(C)}$. Other H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic C-H distances of 0.99 Å and 0.95 Å, respectively, other C-H distances of 1.00 Å, all with $U_{iso(H)} = 1.2 \cdot U_{eq(C)}$. Non-hydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements were carried out by minimizing $\Sigma w (F_0^2 - F_c^2)^2$ with the SHELXL weighting scheme.³ Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography.⁶ A split layer refinement was used for disordered groups and additional SIMU, DELU, RIGU, ISOR, SAME and SADI restraints and EADP constraints were employed to ensure convergence within chemically reasonable limits, if necessary. Images of the crystal structures were generated with PLATON and Mercury.^{7,8}

Crystallographic data of 1

CCDC 2133885

Diffractometer operator Patricia Heiss scanspeed 2-10 s per frame dx 37 mm 918 frames measured in 5 data sets phi-scans with delta_phi = 0.5 omega-scans with delta_omega = 0.5 shutterless mode

Crystal data

Chemical formula $M_{\rm r}$ Crystal system, space group Temperature (K) a, b, c (Å) β (°) V (ų) Ζ Radiation type μ (mm⁻¹) Crystal size (mm)

Data collection

Diffractometer Absorption correction No. of measured, independent and observed $[l > 2\sigma(l)]$ reflections $R_{\rm int}$ $(\sin \theta / \lambda)_{max}$ (Å⁻¹)

<u>Refinement</u> $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters H-atom treatment $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å⁻³)

C₃₀H₄₇AlNi 493.36 Monoclinic, $P2_1/c$ 100 17.885 (3), 9.5820 (15), 17.095 (2) 115.958 (5) 2634.1 (7) 4 Μο Κα 0.79 $0.21\times0.19\times0.16$

Bruker D8 Venture Duo IMS Multi-Scan 27684, 5385, 4580 0.052 0.625 0.029, 0.072, 1.05 5385

477 All H-atom parameters refined 0.44, -0.30

Computer programs: SHELXT 2014/5 (Sheldrick, 2014), SHELXL2018/3 (Sheldrick, 2018).

Crystallographic data of 2_{dpa}

CCDC 2133886

Diffractometer operator Patricia Heiss scanspeed 15 s per frame dx 42 mm 3210 frames measured in 14 data sets phi-scans with delta_phi = 0.5 omega-scans with delta_omega = 0.5 shutterless mode

Crystal data

Chemical formula $C_{118}H_{100}AI_2Ni_2 \\$ 1689.35 $M_{\rm r}$ Monoclinic, Pn Crystal system, space group Temperature (K) 100 *a, b, c* (Å) 14.305 (4), 15.217 (4), 21.403 (7) в (°) 105.807 (11) V (ų) 4483 (2) Ζ 2 Radiation type Μο Κα µ (mm⁻¹) 0.49 Crystal size (mm) 0.13 × 0.11 × 0.10 Data collection Bruker D8 Venture TXS Diffractometer Absorption correction Multi-Scan No. of measured, independent and 16085, 16085, 14960 observed $[I > 2\sigma(I)]$ reflections 0.038 Rint (sin θ/λ)max (Å⁻¹) 0.628 $\frac{\text{Refinement}}{R[F^2 > 2\sigma(F^2)], wR(F^2), S}$ 0.038, 0.090, 1.04 No. of reflections 16085 No. of parameters 1112

No. of restraints H-atom treatment $\Delta \rho max$, $\Delta \rho min$ (e Å–3) Absolute structure Absolute structure parameter

2 H-atom parameters constrained 0.68, -0.41 No quotients, so Flack parameter determined by classical intensity fit 0.102 (5)

Computer programs: SHELXT 2014/5 (Sheldrick, 2014), SHELXL2018/3 (Sheldrick, 2018).

References

[1] APEX suite of crystallographic software, APEX 3, Version 2015-5.2, Bruker AXS Inc., Madison, Wisconsin, USA, 2015.

[2] SAINT, Version 8.34A and SADABS, Version 2014/5, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.

[3] G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3-8.

[4] G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3-8.

[5] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281–1284

[6] International Tables for Crystallography, Vol. C (Ed.: A. J. Wilson), Kluwer Academic Publishers, Dordrecht, The Netherlands, **1992**, Tables 6.1.1.4 (pp. 500–502), 4.2.6.8 (pp. 219–222), and 4.2.4.2 (pp. 193–199).

[7] A. L. Spek, Acta Crystallogr. Sect. D 2009, 65, 148–155.

[8] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 2008, 41, 466–470.

[9] H. D. Flack, Acta Crystallogr. Sect. A **1983**, 39, 876–881.

[10] S. Parsons, H. D. Flack, T. Wagner, Acta Crystallogr. Sect. B 2013, 69, 249–259.

Additional Experimental Data

Please note: The formulas included in the mass spectrum only reveal the composition of the compounds, but have no information about bonding. Therefore, it could be possible that compounds which have dimerized acetylene are assigned as hex₂.

Influences on Ni/Al cluster formation

Fig. S 48. LIFDI mass spectra of the reaction [Ni(cod)₂] (1eq.), AlCp* (1eq.) and hexyne (Δeq.) after 6 h at 60 °C in toluene/hexane. The formulas of the assigned signals only refers to

Influence of additive amount at 90 °C

Fig. S 49. LIFDI mass spectra of the reaction [Ni(cod)₂] (1eq.), AlCp* (1eq.) and hexyne (Δeq.) after 6.5 h at 90 °C in toluene/hexane.

Influences on Ni/Ga cluster formation

Influence of temperature on Ni/Ga cluster formation

Fig. S 50. LIFDI mass spectra of the reaction of $[Ni(cod)_2]$ (1eq.), GaCp* (1eq.) and 3-hexyne (0.5eq.) at different temperatures showing a temperature dependent reaction behavior with the broadest product variety at 60 °C. Assignment of the spectra at 60 °C and 90 °C are given below. The room temperature spectra shows **3** (1218 m/z) as the favored product while the spectra at 90 °C reveal $[Ni_7Ga_6](Cp^*)_6$ (1637 m/z) and $[Ni_8Ga_6](Cp^*)_6$ (1695 m/z) as the major product.

Signal Assignment of the reaction at 60 °C

Fig. S 51. LIFDI mass distribution of the reaction of [Ni(cod)₂] (1eq.) with 3-hexyne (0.5eq.) and GaCp* (1eq.) with a ratio 1: 0.5: 1 at 60 °C. Blue highlighted peaks are assigned as product while the others are related to instrument caused fragments.

Experimental	Calculated	Cluster	Fragment
929.9407	929.9432	[Ni ₄ Ga ₃](Cp*) ₃ (hex)	A-Cp*-hex
1053.9047	1053.9065	[Ni ₄ Ga ₄](Cp*) ₄	A-2hex
1135.9836	1135.9842	[Ni ₄ Ga ₄](Cp*) ₄ (hex)	A-hex
1152.0215	1152.0344	[Ni ₅ Ga ₃](Cp*) ₃ (hex) ₃	B-GaCp*
1169.7737	1169.7759	[Ni ₆ Ga ₄](Cp*) ₄	E-3hex/G-2GaCp*
1218.0633	1218.0633	[Ni₄Ga₄](Cp*)₄(hex)₂	Α
1234.0947	1234.1131	[Ni₅Ga₃](Cp*)₃(hex)₄	В
1275.9908	1275.9973	[Ni ₅ Ga ₄](Cp*) ₄ (hex) ₂	C-hex
1292.0254	1292.0485	[Ni₅Ga₃](Cp*)₃(hex)₄	1374-hex
1331.9120	1331.9350	[Ni ₆ Ga ₄](Cp*) ₄ (hex) ₂	E-hex
1358.0694	1358.0772	[Ni₅Ga₄](Cp*)₄(hex)₃	с
1374.1051	1374.1268	[Ni ₆ Ga ₃](Cp*) ₃ (hex) ₅	
1399.9626	1399.9613	[Ni₅Ga₅](Cp*)₅(hex)	D
1415.9936	1415.9933	[Ni ₆ Ga ₄](Cp*) ₄ (hex) ₃ -2H	E
1457.8911	1457.8958	[Ni₅Ga₅](Cp*)₅(hex)	F
1579.8553	1579.8608	[Ni ₆ Ga ₆](Cp*) ₆	G
1637.7793	1637.7943	[Ni ₇ Ga ₆](Cp*) ₆	н
1649.7730	1649.7960	[Ni ₆ Ga ₇](Cp*) ₆ +H	J

Table S 2. Signal assignment of the reaction of [Ni(cod)₂] with 3-hexyne and GaCp* with a ratio 1: 0.5: 1 at 60 °C.

Note: The signal at 1374 m/z is an overlap of three different isotopic pattern, where $[Ni_6Ga_3](Cp^*)_3(hex)_5$ is the highest.

Influence of additive addition on Ni/Ga cluster formation

Fig. S 52. LIFDI mass spectra of the reaction $[Ni(cod)_2]$ (1eq.) and GaCp* (1eq.) at 90 °C after 6h showing the influence of the additive on cluster formation. Black: with additive (3-hexyne, 1eq.), red: without additive. Usage of additive led to the Ni-rich cluster $[Ni_7Ga_6](Cp^*)_6$ (1637 m/z), $[Ni_8Ga_6](Cp^*)_6$ (1695 m/z) and $[Ni_7Ga_6](Cp^*)_6$ (hex) (1719 m/z) as the major product while additive-free reaction favors Ga-enriched clusters as $[Ni_6Ga_7](Cp^*)_6$ (1647 m/z) and $[Ni_7Ga_7](Cp^*)_6$ (1708 m/z).

Influence of additive amount on Ni/Ga cluster formation at 20 °C

Fig. S 53. Studies on the influence of the additive amount on the reaction of [Ni(cod)₂] (1eq.) with GaCp* (1eq.) at room temperature showing **3** (1218 m/z) as the major product regardless of the additive amount. LIFDI mass spectra were recorded after 1d.

Influence of additive amount on Ni/Ga cluster formation at 60 °C

Fig. S 54. Studies on the influence of the additive amount on the reaction of [Ni(cod)₂] (1eq.) with GaCp* (1eq.) at 60 °C showing a diverse reactivity. LIFDI mass spectra were recorded after 4.5 h. The more additive is used, the smaller are the obtained clusters but with increasing Ni-hex ratio.

Additional MS data of the synthesis and analysis of 3

Mass spectrum without fragmentation of 3

As the ions pass the HCD cell of the MS instrument, the MS spectra are affected by fragmentation revealing the loss of GaCp* as well as hexyne. To make sure that this is only caused by instrument setup, we also recorded a mass spectrum of **3** at a JEOL AccuTOF GCx instrument equipped with a LIFDI ion source at the University of Heidelberg. Although the measurement confirms our assumption of fragmentation, the resolution on this device was much lower.

Fig. S 55. Comparison of LIFDI mass distribution of **3** measured on either an Exactive Orbitrap System (Thermo Fischer, top) revealing fragmentation or a JEOL AccuTOF instrument where no fragmentation was observed.

Fragmentation experiments of 3

Moreover, we validated the MS results by gradual increase of the RF voltage of the HCD from 10.0 up to 40.0. Signals that are increasing during all spectra are assigned as fragments while only decreasing signals are named as the product. If one signal is increasing and decreasing related to an intermediate which is built during fragmentation process. This allowed us to define 1218 m/z as product, while the other signals can only be assigned to intermediates or fragments.

Fig. S 56. LIFDI mass distributions of $[Ni_4Ga_4](Cp^*)_4(hex)_2$ (3) at different RF voltages of the HCD cell.

Labelling experiment of 3

Furthermore, we performed labelling experiments with GaCp^{*Et} instead of GaCp^{*} where one methyl group is exchanged by an ethyl group to support our assumption of the sum formula.

Fig. S 57. LIFDI mass distribution of the reaction [Ni(cod)₂] (1eq.), GaCp^{*Et} (1eq.) and hexyne (1eq.) after 2 h at room temperature in toluene showing [Ni₄Ga₄](Cp^{*Et})₄(hex)₂ (found: 1274.1253, calcd: 1274.1264).

In-situ monitoring of the synthesis of 3

Fig. S 58. In-situ LIFDI MS measurements to monitor the synthesis of 3.

In-situ LIFDI MS measurements were used to monitor the synthesis of **3**. After one day in solution the formation of bigger clusters as $[Ni_8Ga_6](Cp^*)_6$ (1695 m/z), $[Ni_6Ga_7](Cp^*)_6$ (1647 m/z), $[Ni_7Ga_6](Cp^*)_6$ (1637 m/z), $[Ni_6Ga_6](Cp^*)_6$ (1577 m/z), $[Ni_6Ga_5](Cp^*)_5(hex)_1$ (1456 m/z), $[Ni_6Ga_4](Cp^*)_4(hex)_3$ (1414 m/z), $[Ni_5Ga_5](Cp^*)_5(hex)_1$ (1398 m/z) and $[Ni_6Ga_4](Cp^*)_4(hex)_2$ (1332 m/z) were obtained.

Reactivity tests of 3

Procedure details: **3** was synthesized as described above. Afterwards the influence and reactivity of GaCp^{*} on **3** was investigated by stepwise addition of several equivalents GaCp^{*} with a reaction time of min. 3 h each at room temperature. The progress and influence were monitored using *in-situ* LIFDI mass spectrometry. As it can be seen in Fig. S 59, **3** (m/z = 1218) is stable for several hours without further reaction with GaCp^{*}, only the formation of [NiGa₂]Cp^{*}₂ at 468 m/z and fragments of **3** could be detected to increase.

Fig. S 59. In-situ LIFDI mass spectra of the stepwise addition of GaCp* (regarding to nickel) to a mixture of [Ni(cod)₂] (1eq.) and hexyne (0.5eq.) to investigate the influence on the product formation at room temperature. The spectra show an increase of the signal at 468 m/z referring to overlapped signals [NiGa₂](Cp*)₂ and [Ni₂](Cp*)₂(hex).

Reaction of Ni/Al and Ni/Ga clusters with hydrogen

In the following, we are investigating the influence of a H₂ as fourth component in the system on the cluster growth processes. Reaction of $[Ni_4Ga_4](Cp^*)_4(hex)_2$ (**3**) under H₂ pressure either lead to hydrogenated clusters **3+H**_m (m = 2 to 6), or initiate cluster growth reactions resulting in the formation of $[Ni_5Ga_5](Cp^*)_5(hex)_n(H)_{2m}$ (m = 1, 2) while releasing hydrogenated organic products. Our working hypothesis is the $[Ni_5Ga_5]$ cluster bearing hexene instead of hexyne which is supported by means of NMR spectroscopy. Also larger clusters such as $[Ni_6Ga_7](Cp^*)_6$ show the potential to bind hydrogen on the cluster shell or core, respectively. Treatment of **1** with H₂ lead to cleavage of full hydrogenation of all unsaturated ligands (cod or hexyne dimer), whereas **2** show stepwise hydrogenation of the *side-on* coordinated hexyne determined by *cis*-hexene and afterwards hexane.

Reaction of 1 with H₂

Procedure A: **1** was synthesized as described above. **1** (10.2 mg, 0.021 mmol, 1.0eq.) was dissolved in 0.34 mL toluene- d_8 and subsequently, 3-hexyne (0.16 mL as 1 M solution in tol- d_8 , 0.16 mmol, 7.7 eq.) was added and pressurized with 1 bar H₂ at room temperature. The NMR spectra were recorded in-situ.

Fig. S 60. Time-dependent ¹H NMR spectra of the reaction of **1** with H₂ and excess 3-hexyne at r.t.. Abbreviations: cod: **1**,5-cyclooctadiene; coe: cyclooctane; tol-d₈: deuterated toluene.

The NMR spectra reveals the conversion of **1**, 3-hexyne and COD resulting in the formation of **2** and the respective alkene (*cis*-hexene/*trans*-hexene, cyclooctene) and alkane (hexane, cyclooctane) species catalyzed by a Ni/Al cluster.

Reaction of 2 with H₂

Procedure A: **2** (0.009 mmol) was synthesized following the procedure above. For the reactivity tests, the reaction was performed in toluene- d_8 and cooling to room temperature, the mixture was pressurized with 1 bar H₂ at room temperature. It has to be noted that the mixture still contains **1** and hexyne in excess. The NMR spectra were recorded in-situ.

Fig. S 61. Time-dependent ¹H NMR spectra of the reaction of **2** with H₂ and excess 3-hexyne at r.t.. Abbreviations: cod: 1,5-cyclooctadiene; coe: cyclooctene; tol-d₈: deuterated toluene.

The NMR spectra reveals the conversion of 3-hexyne and COD resulting in formation of the respective alkene (cishexene/trans-hexene, cycloctene) and alkane (hexane, cyclooctane) species catalyzed by a Ni/Al cluster. In contrast to **1**, **2** only undergoes the semihydrogenation preferring the *cis*-alkene and only small amounts of hexene is fully hydrogenated to hexane.

Reaction of 3 with H₂ under different conditions

Procedure: **3** (0.20 mmol) was synthesized as described above. After stirring for 3.5 h at room temperature, the mixture was shortly exposed to vacuo to remove residual cod or hexyne. The residue was resolved in 2 mL toluene- d_8 and divided into four equal parts (0.05 mmol).

A: Reference

B: Addition of 1 bar H_2

C: Addition of 1 bar H₂ and 3-hexyne (excess)

D: Addition of 1 bar H₂ and C₆H₁₂ as internal standard

The NMR spectra reveals the conversion of hexyne and COD resulting in the respective alkene and alkane species catalyzed by a Ni/Ga cluster.

Fig. S 62. Time-dependent ¹H NMR spectra of the reaction of **3** with hydrogen in toluene-d₈. Abbreviations: COD: 1,5-cyclooctadiene, COE: cyclooctene.

Fig. S 63: LIFDI mass spectrum of 3 with hydrogen in toluene-d₈.

Theoretical Results – XYZ coordinates of calculated molecules

Optimized geometries on the BP86-D3/def2-tzvpp level of theory

Color code: C, grey; H, white; Al, orange; Ga, blue; Ni, green.

[NiAl](Cp*)(tebd)(cod)

[NiAl](Cp*)(tpbd)(dpa)

[Ni5Ga3](Cp*)3(hex)4

[Ni4Ga4](Cp*)4(hex)2

[Ni₈Ga₆](Cp*)₆

Coordinates of BP86/TZVPP optimized molecules

[NiAl](Cp*)(tebd)(cod)

Ni	10 259551000	5 588918000	7 836298000
ΔΙ	9 218503000	3 153823000	7 9092920000
C C	11 888388000	1 79/366000	6 887963000
ч	11.666088000	3 7720/2000	6 5/100/000
C II	12 169210000	4 055042000	0.341004000
L L	12.108310000	4.933049000	8.204107000
п С	12.102452000	4.044100000	8.84462000
	13.015318000	6.084856000	8.844629000
	13.803996000	6.360110000	8.113022000
H C	13.558020000	5.709274000	9.736465000
C	12.183911000	7.332524000	9.237869000
н	11.906000000	7.259056000	10.307512000
н	12.808026000	8.254460000	9.152274000
C	10.905916000	7.475012000	8.430635000
н	10.073171000	7.979291000	8.949757000
С	10.852892000	7.419820000	7.026352000
Н	9.970106000	7.855493000	6.533443000
С	12.079385000	7.229266000	6.144438000
Н	11.964836000	7.822925000	5.214237000
н	12.976672000	7.638838000	6.652912000
С	12.298110000	5.743454000	5.779393000
Н	11.684930000	5.496652000	4.887982000
Н	13.357897000	5.561305000	5.477405000
С	8.688223000	1.166209000	9.022124000
С	8.289433000	1.101019000	7.636188000
С	9.472946000	1.190091000	6.825957000
С	10.596748000	1.380510000	7.710135000
С	10.105537000	1.335695000	9.069229000
С	7.733844000	1.134455000	10.181469000
н	7.107780000	2.051797000	10.229502000
н	8.269734000	1.055689000	11.146837000
н	7.044067000	0.268067000	10.110456000
С	6.880404000	0.923383000	7.144252000
H	6.153851000	1.487504000	7,763183000
н	6 571991000	-0 144644000	7 167188000
н	6 766875000	1 275409000	6 100068000
c	9 547415000	1 032528000	5 336367000
н	8 637/77000	1 /10/0000	4 832552000
н	9 655582000	-0.038645000	5.057960000
н	10 /1/100000	1 5707/1000	4 905283000
C C	12 0/0161000	1 226755000	7 222650000
ц	12.045101000	1.530733000	6 262752000
н ц	12.203441000	0.2087/2000	7 451202000
п u	12.454501000	0.506742000	7.451505000
п С	12.071705000	2.013631000	10 281 522000
	10.980074000	1.430275000	10.281522000
н	11.769592000	0.642420000	10.267252000
н	10.409206000	1.308169000	11.21/508000
H C	11.512691000	2.406401000	10.34/6/8000
C 	7.684605000	4.046973000	4.337499000
н	6.858111000	4.776367000	4.449999000
н	7.323302000	3.08/306000	4.761424000
н	7.859167000	3.898644000	3.251377000
C	8.956526000	4.522570000	5.059825000
Н	9.795684000	3.852592000	4.775056000
н	9.238618000	5.525821000	4.661596000
С	8.834122000	4.543090000	6.566200000
С	8.267936000	5.647172000	7.257718000
С	8.350629000	5.606446000	8.749020000
С	8.982930000	4.482996000	9.332614000
С	9.164848000	4.369266000	10.834382000
н	8.249025000	4.721934000	11.359839000
н	9.251522000	3.299272000	11.110372000
С	10.373396000	5.109367000	11.426077000
Н	11.318516000	4.752319000	10.971854000
Н	10.441075000	4.961051000	12.524470000
н	10.313641000	6.198703000	11.232217000
С	7.601095000	6.809492000	6.545494000
н	8.017801000	6.882320000	5.520125000
Н	7.856827000	7.770906000	7.038785000

С	6.070257000	6.688116000	6.454747000
н	5.643327000	7,495725000	5.825042000
н	5 594240000	6 755780000	7 452041000
	5.554240000	C.733780000	7.432041000 C 014200000
н	5.770999000	5.716005000	6.014398000
C	7.709050000	6.693822000	9.593591000
н	7.613588000	7.635812000	9.017048000
н	8.369697000	6.934367000	10.451479000
С	6.324762000	6.281894000	10.128601000
н	5,629967000	6.028692000	9.303681000
н	5 864656000	7 097587000	10 723658000
	5.804050000	F 28F 880000	10.7230380000
п	0.393909000	5.385889000	10.777258000
ΓNi	iAll(Cp*)(tebd)(hex)	
Ni	9.843280000	5.399914000	8.128248000
Al	8.850919000	3.135884000	7.997255000
С	8.887312000	1.083572000	8.966566000
С	8.408609000	0.961580000	7.614178000
С	9.474213000	1.333203000	6.732078000
c	10 577967000	1 763102000	7 530431000
c	10.317507000	1 5 9 9 1 0 0 0 0 0	9.015604000
C	10.218021000	1.366109000	0.915094000
C	8.097210000	0.715815000	10.185727000
н	7.143918000	1.261048000	10.246480000
Н	8.656782000	0.927734000	11.104371000
Н	7.858896000	-0.358706000	10.186221000
С	7.073751000	0.415890000	7.203573000
н	6.301453000	0.629405000	7,954139000
 Ц	7 111252000	0.677700000	7.075100000
	7.111232000	-0.077799000	7.075109000
П	0.737594000	0.843944000	6.249750000
C	9.440665000	1.212529000	5.241387000
н	8.480421000	1.535562000	4.819711000
н	9.592058000	0.164305000	4.938111000
н	10.230249000	1.806011000	4.765288000
С	11.910241000	2.247236000	7.045826000
н	11 870445000	2 5399/5000	5 989187000
	12 670647000	2.333343000	7 1 4 5 2 5 4 0 0 0
	12.079647000	1.465916000	7.145254000
н	12.245318000	3.126390000	7.613437000
С	11.124530000	1.896259000	10.066842000
Н	11.917178000	1.138178000	10.163401000
н	10.579338000	1.932420000	11.017113000
н	11.616673000	2.869494000	9.932485000
С	7,444676000	4.153194000	4.420433000
н	6 636001000	4 887213000	4 533899000
 	7 062207000	2 102204000	4.3330330000
	7.005567000	5.195294000	4.797703000
н	7.656614000	4.042425000	3.347298000
C	8.693334000	4.589816000	5.202016000
н	9.523801000	3.913448000	4.952731000
Н	9.006218000	5.585607000	4.843642000
С	8.470924000	4.570691000	6.690971000
С	7.926655000	5.662087000	7.384286000
Ċ	7 860679000	5 544942000	8 875178000
ĉ	8 /12001000	/ 397799000	9 455502000
ĉ	8.412001000	4.337755000	10 050771000
с 	8.4/4941000	4.239458000	10.959771000
н	7.540527000	4.598463000	11.422209000
н	8.531454000	3.171512000	11.213322000
С	9.659492000	4.949461000	11.629022000
н	10.606900000	4.539282000	11.261713000
н	9.630165000	4.830794000	12.722465000
н	9,663394000	6.022429000	11,395244000
c	7 517739000	6 951212000	6 703002000
	8.022424000	7.0051212000	C.705002000
r1	0.023434000	7.00513/000	3.12951/000
H	7.888883000	7.812656000	1.218593000
С	6.003579000	7.099404000	6.483390000
Н	5.784514000	7.981992000	5.866240000
Н	5.463678000	7.213988000	7.431224000
н	5.592595000	6.217572000	5.973906000
C.	7.199100000	6.630816000	9.697755000
н	7 212696000	7 590569000	9 165155000
μ	7 764654000	6 780E12000	10 62500000
П	7.704054000	0.789513000	10.022809000
C	5./46/38000	0.260601000	10.050130000
Н	5.156708000	6.060715000	9.146362000
Н	5.255809000	7.070974000	10.606937000
н	5,710296000	5.353026000	10.666746000

С	11.473204000	5.804875000	7.331351000
С	11.629687000	5.747411000	8.613884000
С	11.997492000	5.956958000	5.953906000
С	13.527248000	5.912725000	5.843585000
н	11.617591000	6.905256000	5.538976000
н	11.552999000	5.173549000	5.319512000
н	13.988435000	6.726210000	6.417581000
н	13.846158000	6.008398000	4.795992000
н	13.917957000	4.963373000	6.234194000
С	12.554036000	5.845129000	9.771584000
С	13.971800000	6.306546000	9.411918000
н	12.600461000	4.863519000	10.272509000
н	12.115162000	6.520054000	10.523300000
н	14.449747000	5.603424000	8.717656000
н	14.599486000	6.381077000	10.311274000
Н	13.949673000	7.292441000	8.928342000

[NiAl](Cp*)(tpbd)(dpa)

Ni	6.394373000	3.066933000	6.319277000
Al	7.875532000	1.289400000	5.520790000
С	8.113182000	4.063450000	5.656085000
С	8.519305000	2.953013000	6.421980000
С	9.442385000	3.064116000	7.561132000
С	9.116467000	2.496877000	8.813741000
C	10.007785000	2.557540000	9.894524000
Ċ	11.260655000	3.175444000	9.744111000
c	11.602957000	3.742115000	8.502200000
c	10.705587000	3,693561000	7,426963000
c	7,724025000	-0.739969000	4.565844000
c	9 101056000	-0 423200000	4 870553000
c	10 225813000	-0 342000000	3 876646000
c c	9 235179000	-0.342000000	6 308243000
c c	7 922665000	0.0105050000	6 880764000
c c	7.55802000	-0.491538000	8 222062000
c	6 004049000	0.320083000	E 200064000
c	0.994046000 F F 28446000	1 042240000	5.800904000
c	5.538440000	-1.043240000	0.018/21000
C	10.525807000	-0.066482000	7.031589000
C	7.194314000	-1.019307000	3.190362000
C	6.807350000	2.466206000	4.291827000
C	5.858010000	2.019685000	3.260382000
C	6.117709000	2.212027000	1.880278000
C	5.252650000	1./0303/000	0.900984000
C	4.098981000	0.989347000	1.270362000
C	3.830020000	0.782521000	2.633661000
С	4.702674000	1.281806000	3.609932000
С	7.170727000	3.807198000	4.520887000
С	6.535514000	4.983489000	3.853123000
С	6.842010000	5.355239000	2.529559000
С	6.228768000	6.472910000	1.940932000
С	5.303867000	7.237420000	2.670226000
С	5.002931000	6.883985000	3.996880000
С	5.617914000	5.769310000	4.583076000
С	8.499396000	5.464986000	5.978217000
С	8.273262000	5.993332000	7.265620000
С	8.651013000	7.305812000	7.577703000
С	9.269225000	8.110735000	6.605126000
С	9.503514000	7.592706000	5.320319000
С	9.117655000	6.280653000	5.007747000
С	5.415385000	2.875119000	7.907299000
С	5.560037000	2.738796000	9.339503000
С	4.882390000	1.699398000	10.030288000
С	5.054664000	1.526138000	11.409637000
С	5.894277000	2.392388000	12.133432000
С	6.562030000	3.432920000	11.464326000
С	6.404610000	3.599634000	10.082670000
С	4.626645000	2.831314000	6.860375000
С	3.287604000	2.729748000	6.326071000
С	2.964755000	3.329939000	5.083073000
C	1.669784000	3.230515000	4.559895000
C	0.677061000	2.520492000	5.257227000
C	0.984199000	1.917617000	6.491503000
C	2.274754000	2.023574000	7.025435000

н	11.066263000	0.811382000	6.623889000
Н	11.201660000	-0.943960000	6.945794000
Н	10.360436000	0.140036000	8.104423000
Н	6.756526000	0.198792000	8.578911000
Н	8.422931000	-0.299041000	8.984171000
Н	7.181597000	-1.533695000	8.612999000
Н	9.875694000	0.022881000	2.890871000
Н	10.688566000	-1.339374000	3.711868000
Н	11.028819000	0.337785000	4.223615000
Н	7.528368000	-0.261473000	2.454460000
Н	6.089765000	-1.016250000	3.164517000
Н	7.547727000	-2.009932000	2.831992000
Н	5.004735000	-1.189540000	5.062140000
Н	5.025465000	-0.225507000	6.567797000
Н	5.415301000	-1.968565000	6.621085000
Н	7.785646000	5.355312000	8.015620000
Н	8.460037000	7.704436000	8.585859000
Н	9.565221000	9.142907000	6.847706000
Н	9.985531000	8.217115000	4.552406000
Н	9.297192000	5.879417000	3.999760000
Н	4.822205000	8.112339000	2.207336000
Н	6.478318000	6.749218000	0.904881000
Н	7.586484000	4.777496000	1.963260000
Н	5.395480000	5.487408000	5.624684000
Н	4.285693000	7.480574000	4.581027000
Н	4.235136000	1.015856000	9.460462000
Н	4.529116000	0.708203000	11.926355000
Н	6.027883000	2.255232000	13.217293000
Н	7.222878000	4.114400000	12.021257000
Н	6.938784000	4.400916000	9.554562000
Н	11.965699000	3.220293000	10.588272000
Н	9.714280000	2.121389000	10.862314000
Н	8.137156000	2.020106000	8.933325000
Н	10.978675000	4.143711000	6.460767000
Н	12.580073000	4.233441000	8.372521000
Н	2.517424000	1.558280000	7.992116000
Н	0.208917000	1.362491000	7.042000000
Н	-0.337949000	2.434454000	4.839681000
Н	1.438521000	3.700182000	3.591904000
Н	3.749996000	3.868469000	4.535040000
Н	4.491149000	1.113296000	4.671529000
Н	2.929127000	0.231894000	2.945706000
Н	3.417621000	0.596062000	0.500579000
Н	5.483406000	1.865016000	-0.163615000
н	7.032698000	2.738584000	1.576316000

[Ni₄Ga₄](Cp*)₄(hex)₂

Ni	1.591439000	-0.272510000	1.317426000
Ni	-0.739566000	-0.351635000	1.687923000
Н	1.076730000	4.395829000	4.509109000
С	0.234875000	4.814786000	3.923261000
Н	0.323495000	5.922509000	3.973325000
Н	-0.708479000	4.555604000	4.449611000
С	0.241961000	4.334153000	2.502316000
С	1.201887000	3.549848000	1.878207000
С	2.464128000	2.987247000	2.454224000
Н	2.458390000	2.991861000	3.562281000
Н	3.366235000	3.553367000	2.128235000
Н	2.606882000	1.927791000	2.134110000
С	0.803181000	3.371610000	0.456638000
С	1.898656000	3.495090000	-0.599217000
Н	2.683199000	2.722677000	-0.465215000
Н	2.388000000	4.492316000	-0.541425000
Н	1.503906000	3.372611000	-1.625580000
С	-0.463253000	4.140531000	0.296750000
С	-1.202474000	4.270939000	-1.002636000
Н	-1.549089000	3.286468000	-1.388278000
Н	-2.099519000	4.912432000	-0.900587000
Н	-0.567396000	4.717877000	-1.799504000
Ga	0.148353000	1.409539000	0.404188000
С	-0.795380000	4.685693000	1.531448000
С	-1.990389000	5.522866000	1.882833000

Н	-2.598960000	5.058762000	2.689386000
н	-1.686239000	6.523927000	2.259605000
н	-2.658905000	5.684122000	1.015082000
н	5 352856000	-3 219117000	0 931998000
 C	5.552850000	-3.213117000	1.400228000
C	5.402306000	-2.208347000	1.496338000
Н	6.322528000	-2.299355000	2.118229000
Н	4.539361000	-2.248249000	2.196259000
С	5.397764000	-1.075066000	0.586089000
c	5 408690000	-1 066054000	-0.852116000
ĉ	5.100050000	2.246525000	1 771110000
	5.527501000	-2.240555000	-1.//1119000
н	5.355957000	-3.201486000	-1.240156000
н	6.541583000	-2.296539000	-2.223910000
Н	4.801055000	-2.196386000	-2.608089000
С	5.380879000	0.312374000	-1.286227000
c	5 443572000	0 775436000	-2 712005000
ы Ц	4 902472000	0.001220000	2 200267000
п	4.893472000	0.091339000	-3.306307000
н	6.493044000	0.826364000	-3.076919000
Н	5.003410000	1.784352000	-2.835254000
С	5.368855000	1.149127000	-0.111665000
С	5.446272000	2.647472000	-0.102410000
H	5 030181000	3 086775000	-1 029509000
 ц	4 800007000	3.000775000	0.749627000
	4.890007000	3.083020000	0.748027000
н	6.500616000	2.991048000	-0.021240000
Ga	3.367399000	-0.104371000	-0.202148000
С	5.368560000	0.288929000	1.042427000
С	5.342669000	0.703675000	2.484497000
н	4 490298000	0 238595000	3 024090000
 ц	6 272604000	0.200053000	2 009709000
	0.273004000	1.398003000	3.008738000
н	5.242385000	1.799629000	2.592977000
н	-5.217785000	-2.314141000	2.408095000
С	-5.654400000	-2.091300000	1.413596000
Н	-6.760189000	-2.099122000	1.534144000
н	-5.389629000	-2.931744000	0.742186000
С	-5.166225000	-0.776440000	0.876651000
ĉ	_/ 929980000	0 /1172/000	1 6739/1000
c	F 20225200000	0.411724000	2 146247000
	-5.205552000	0.515211000	5.140547000
H	-4./11015000	-0.294614000	3.723553000
н	-6.293785000	0.445273000	3.351942000
Н	-4.850637000	1.478049000	3.560817000
С	-4.540721000	1.473964000	0.778234000
С	-4.167145000	2.879745000	1.150246000
н	-4.299408000	3.063082000	2.233027000
н	-4 791048000	3 621861000	0 609016000
 ц	2 106518000	2 1022/2000	0.010221000
с С	4 545452000	0.046486000	0.510221000
C	-4.545453000	0.946486000	-0.558505000
C	-4.156447000	1.689844000	-1.804386000
Н	-4.198992000	2.785756000	-1.653392000
Н	-3.117475000	1.436908000	-2.113414000
н	-4.825825000	1.437709000	-2.652429000
Ga	-2.897941000	-0.214342000	0.789649000
c	-4 945957000	-0.432358000	-0 499920000
c	F 096316000	1 224596000	1 600607000
	-3.080210000	-1.334380000	-1.088087000
н	-5.3/38/6000	-2.361812000	-1.394620000
н	-5.864540000	-0.958415000	-2.387069000
н	-4.138185000	-1.400019000	-2.257617000
Н	3.266049000	-3.503082000	0.030503000
С	2.605860000	-3.972321000	-0.724832000
н	2 977241000	-5 006819000	-0.898001000
 ц	2 728808000	2 106000000	1 667228000
 C	2.738838000	-3.400999000	-1.007228000
C	1.175412000	-3.954029000	-0.278542000
C	0.700099000	-4.164998000	1.068754000
С	1.586629000	-4.431696000	2.246743000
Н	2.498643000	-3.800941000	2.219624000
Н	1.926722000	-5.490543000	2.263653000
н	1.072106000	-4.235166000	3.205706000
Ċ	-0 733507000	-4 141815000	1 037740000
č	-1 676002000	-1 22020000	2 20197/000
	1 12407000	4 2222500000	2.2010/4000
н	-1.134976000	-4.322353000	3.103116000
Н	-2.354814000	-5.105088000	2.116053000
Н	-2.317850000	-3.323649000	2.268672000
С	-1.152308000	-3.947058000	-0.322860000
С	-2.579052000	-3.798630000	-0.751558000
н	-3.036572000	-2.894688000	-0.293388000
	21220072000		

н	-2.669260000	-3.680833000	-1.847996000
Н	-3.193513000	-4.673709000	-0.450796000
Ga	0.238094000	-1.976254000	0.240257000
С	0.018823000	-3.838799000	-1.143530000
С	0.084500000	-3.709166000	-2.634966000
Н	0.688676000	-2.832434000	-2.947952000
Н	0.535490000	-4.612675000	-3.098617000
С	1.549701000	-1.384526000	4.123349000
Н	2.227137000	-2.106056000	3.626639000
Н	2.203136000	-0.746530000	4.762582000
С	0.528037000	-2.130763000	4.991846000
Н	-0.164377000	-2.715686000	4.353511000
Н	1.023242000	-2.825142000	5.701589000
Н	-0.093462000	-1.424646000	5.578523000
С	0.902920000	-0.473516000	3.104637000
С	-0.080313000	0.427355000	3.250865000
С	-0.558421000	1.398255000	4.273661000
С	-1.903120000	2.040797000	3.947445000
Н	-2.669731000	1.258897000	3.791088000
Н	-2.246049000	2.718304000	4.755897000
Н	-1.824428000	2.618991000	3.005690000
Н	-0.612062000	0.848373000	5.243715000
Н	0.222313000	2.174910000	4.418050000
Н	-0.922879000	-3.578213000	-3.069645000
С	-0.114602000	0.327207000	-2.470887000
С	0.297918000	1.522305000	-3.311538000
Н	-0.381052000	1.611900000	-4.189125000
С	1.759227000	1.474165000	-3.772374000
Н	2.037340000	2.372590000	-4.362410000
Н	1.946860000	0.575696000	-4.395372000
Н	2.429137000	1.403998000	-2.889675000
Н	0.128957000	2.441991000	-2.713645000
С	-1.146534000	-0.521628000	-2.606849000
С	-1.937916000	-1.049432000	-3.756351000
Н	-2.801900000	-0.355877000	-3.887652000
С	-1.168098000	-1.185617000	-5.078667000
Н	-1.811111000	-1.606679000	-5.878717000
Н	-0.788716000	-0.205394000	-5.428771000
Н	-0.291842000	-1.853064000	-4.955130000
Н	-2.408184000	-2.018614000	-3.482591000
Ni	-1.118861000	-0.213369000	-0.756657000
Ni	1.212073000	-0.207789000	-1.098726000

[Ni₅Ga₃](Cp*)₃(hex)₄

Ni	1.868891000	5.420699000	27.825889000
Ni	2.794290000	2.846849000	27.621079000
Ni	5.526411000	3.029688000	28.367486000
Ni	3.386124000	4.258709000	29.868908000
Ni	4.355630000	4.939522000	26.677399000
Ga	4.225574000	6.242766000	28.802086000
Ga	4.193423000	1.047312000	27.882227000
С	2.633450000	8.316135000	29.825420000
С	4.018084000	8.373693000	30.073554000
С	4.697865000	8.454698000	28.787068000
С	3.672659000	8.514522000	27.765747000
С	2.419300000	8.374011000	28.403995000
С	1.553208000	8.266742000	30.857860000
н	1.158517000	9.274936000	31.069452000
н	1.918351000	7.858159000	31.808561000
н	0.704185000	7.651007000	30.535321000
С	4.685793000	8.412591000	31.413427000
н	4.723622000	9.436141000	31.821530000
н	5.721563000	8.050740000	31.360919000
н	4.155230000	7.789560000	32.147447000
С	6.115489000	8.916212000	28.597993000
н	6.180488000	10.013721000	28.683263000
н	6.505086000	8.642357000	27.609915000
н	6.795673000	8.497992000	29.352392000
С	3.932385000	8.643144000	26.298856000
н	4.753603000	9.344972000	26.094343000
н	3.044263000	9.011323000	25.768903000
Н	4.197197000	7.671497000	25.847886000

С	1.072575000	8.321859000	27.740409000
н	0.354699000	8,998976000	28,227372000
н	0.605717000	7.310526000	27,772532000
н	1 133738000	8 593984000	26 679594000
с С	1.133738000	1 2 5 1 0 1 0 0 0 0	20.079594000
C	3.100283000	-1.261010000	28.127534000
C	4.600614000	-1.146661000	28.080586000
С	4.963402000	-0.788639000	26.718833000
С	3.755068000	-0.653530000	25.973940000
С	2.657619000	-0.951949000	26.837341000
С	2.374654000	-1.678187000	29.328133000
н	2,292765000	-2,775229000	29.394853000
н	1 35/735000	-1 27/1575000	29 302786000
	2.840226000	1 224054000	20.262126000
п С	2.640330000	-1.554054000	30.202120000
C	5.562897000	-1.5533/1000	29.154705000
н	5.915778000	-2.588167000	29.013225000
н	5.104400000	-1.495303000	30.150838000
н	6.447741000	-0.899866000	29.166239000
С	6.362394000	-0.734989000	26.191992000
н	6.798969000	-1.743661000	26.119393000
н	7 019688000	-0 140732000	26 843584000
н	6 399949000	-0 284132000	25 192905000
C C	2 622256000	0.204132000	23.132303000
	5.025250000	-0.240798000	24.556914000
н	4.580106000	0.090838000	24.121366000
Н	2.902199000	0.575693000	24.419085000
н	3.267513000	-1.081548000	23.914158000
С	1.222956000	-0.929544000	26.411886000
Н	1.015578000	-1.715053000	25.667620000
н	0.952003000	0.030182000	25.944707000
н	0 543703000	-1 091148000	27 256998000
c	0.724512000	1.031110000	21 728554000
c	0.734313000	4.914807000	20.275049000
C	0.244304000	4.837493000	30.275948000
C	1.335867000	4.355851000	29.326666000
С	1.252131000	1.852253000	29.934885000
С	1.848000000	3.086695000	29.310348000
С	0.047430000	1.338304000	29.138645000
н	-0.618173000	4.152124000	30.206922000
н	-0.126499000	5.824847000	29.967583000
н	0.993525000	3,920332000	32,114056000
ц	0.021280000	5 251999000	22 2850/0000
 Ц	1 641714000	5 520805000	21 785527000
п	1.041/14000	5.550895000	31.783337000
н	-0.397698000	0.449708000	29.609632000
Н	0.356839000	1.071466000	28.119859000
Н	-0.731095000	2.108052000	29.056858000
н	2.002125000	1.054220000	30.010486000
Н	0.938453000	2.092721000	30.966393000
С	4.385505000	3.041443000	30.891218000
С	4.256787000	1.704883000	31.511029000
H	3 956735000	0 978684000	30 737042000
 ц	2 421668000	1 722500000	22 220240000
с С	5.4210080000	1.7233000000	32.230240000
C	5.547498000	1.232238000	32.180930000
н	6.361268000	1.191544000	31.449517000
н	5.849958000	1.918777000	32.989068000
Н	5.426586000	0.229057000	32.618847000
С	5.104282000	4.114391000	30.757548000
С	6.294163000	4.798034000	31.340229000
Н	5.935024000	5.488761000	32.120711000
н	6.913808000	4.042265000	31,849578000
c	7 1/91/5000	5 565772000	30 3/1973000
с ц	6 556808000	6 256510000	20 8571/5000
	0.330898000	0.330310000	29.837143000
н	8.011349000	6.043523000	30.828090000
Н	7.501474000	4.893361000	29.549031000
Ga	7.421016000	1.853383000	28.883308000
С	9.101484000	0.627541000	30.081294000
С	8.819827000	-0.361357000	31.170023000
н	8.408238000	0.123815000	32.063734000
н	9.741480000	-0.882098000	31.476788000
н	8.104858000	-1.131263000	30,850472000
c	9 302 75000	2 010250000	30 252647000
c	3.3332/3000	2.019233000	
C 	9.440552000	2.748886000	21.228902000
Н	8.677996000	2.382402000	32.260294000
Н	10.419101000	2.620708000	32.050062000
Н	9.282611000	3.826402000	31.427716000
С	9.728156000	2.562866000	28.971700000

С	9.633325000	1.512123000	28.004263000
С	9.935732000	1.634544000	26.541741000
н	9.378196000	0.896142000	25.950265000
н	11.006497000	1.477477000	26.335289000
н	9.672779000	2.629047000	26.156927000
С	10.211278000	3.953744000	28.705185000
Н	9.733739000	4.692532000	29.360257000
Н	11.298802000	4.027524000	28.867228000
Н	10.020703000	4.256397000	27.667615000
С	9.264469000	0.310245000	28.691988000
С	9.253556000	-1.071324000	28.115785000
Н	8.439034000	-1.688652000	28.516149000
Н	10.197189000	-1.589221000	28.352432000
н	9.156249000	-1.057979000	27.024128000
С	1.919715000	4.429103000	26.132037000
С	2.855847000	5.171418000	25.530676000
С	2.909400000	5.742985000	24.141235000
С	1.710515000	6.655963000	23.847446000
Н	0.767240000	6.101786000	23.939464000
н	1.678052000	7,484897000	24.566283000
н	1.769986000	7.077025000	22.833878000
н	2.913919000	4.901273000	23.423450000
н	3 848468000	6 290771000	23 979940000
c	0.897261000	3 417390000	25 680479000
н	1 001406000	3 238718000	24 595844000
н	1 130489000	2 435683000	26 167034000
r c	-0 538731000	3 79/292000	26.107054000
н	-0.336731000	1 725805000	25 5/975/000
 Ц	-0.830590000	4.723803000	25.349734000
ц.	-0.607004000	2 061/95000	27 1222/2000
C II	6 145774000	2 720522000	27.133342000
c	6 166710000	2.739322000	23.308087000
с ц	E 21/217000	3.3833333000	23.380173000
 Ц	5.214217000	A 1221/1000	23.785802000
п	6.307055000	4.155141000	23.905265000
п	0.324900000 F 370338000	2.050150000	25.197901000
	5.379228000	1.952656000	25.403210000
П	7.106347000	2.235750000	25.573951000
C	5.88/381000	3.722079000	26.469155000
C	6.251405000	4.937289000	26.83/910000
C	7.391299000	5.883922000	26.899808000
н	7.319527000	6.519913000	27.791630000
Н	8.333711000	5.319753000	26.989986000
C	7.436944000	6.785394000	25.655048000
н	6.498400000	7.345741000	25.556884000
Н	8.269162000	7.500153000	25.724542000
Н	7.566213000	6.191226000	24.741360000

[Ni₈Ga₆](Cp*)₆

Ga	1.790540000	4.481734000	3.680842000
Ni	2.180096000	2.025592000	3.520440000
Ga	0.051594000	5.836996000	5.102473000
Ga	-0.110270000	2.707048000	3.716638000
Ni	2.455577000	6.081313000	5.340459000
Ni	-0.406298000	4.963199000	2.921851000
Ni	2.658931000	3.552207000	5.580533000
Ga	-0.488353000	3.043380000	7.074190000
Ni	-0.886228000	5.497997000	7.235110000
Ga	1.266932000	1.707148000	5.662219000
Ga	1.407905000	4.825128000	7.052341000
Ni	-1.153544000	1.453349000	5.433456000
Ni	1.720486000	2.580162000	7.838367000
Ni	-1.346077000	4.004909000	5.176590000
Н	5.891156000	5.861955000	4.096929000
Н	5.767107000	5.852585000	6.551003000
С	5.293075000	6.647422000	3.596055000
Н	5.989972000	7.478615000	3.344842000
Н	4.927107000	6.228294000	2.638497000
С	5.429338000	6.894035000	6.728226000
Н	6.289517000	7.559607000	6.494419000
Н	5.223970000	6.997032000	7.810170000
С	4.169145000	7.124031000	4.463552000
С	4.231062000	7.245526000	5.897709000

Н	3.074137000	7.221405000	1.908174000
c	2 916811000	7 677578000	4 016302000
č	2.010011000	7.0775780000	4.010302000
C	2.446306000	7.813749000	2.601920000
С	3.013740000	7.874610000	6.347849000
н	3.280539000	7,724433000	8.492449000
ц	2 465228000	8 869671000	2 252850000
~	2.405320000	0.000071000	2.233033000
C	2.195212000	8.144104000	5.183/85000
С	2.669971000	8.274416000	7.750509000
н	1.410902000	7.432969000	2.496853000
н	2 825736000	9 362210000	7 925716000
	2.023730000	0.002210000	7.525710000
н	1.608175000	8.048665000	7.968904000
С	0.929649000	8.952664000	5.167961000
н	0.348512000	8.767765000	4.243008000
н	0 274235000	8 708981000	6 026455000
	1 1 4 2 2 7 7 0 0 0	10.044220000	F 210200000
	1.143377000	10.044220000	5.210399000
C	2.270740000	1.552662000	1.468634000
С	1.162486000	1.587616000	0.460044000
н	0.661441000	2.573680000	0.466010000
н	1 5378///000	1 /08237000	-0 572373000
	1.557844000	1.400237000	-0.572575000
н	0.392788000	0.819847000	0.672263000
С	2.722478000	0.398735000	2.213165000
С	3.894630000	0.785973000	2.959416000
c	4 180465000	2 16582/000	2 665623000
č	4.100403000 F 24C801000	2.103024000	2.003023000
C	5.346891000	2.963424000	3.163677000
н	5.020165000	3.947136000	3.552572000
н	5.871023000	2.443612000	3.987931000
н	6 093306000	3 145880000	2 359576000
	4.751125000	0.140000000	2.3333700000
C	4.751135000	-0.140088000	3./0889/000
н	5.303352000	0.397845000	4.563947000
н	5.510345000	-0.648723000	3.133235000
н	4.151837000	-0.931488000	4.259728000
c	2 222582000	1 007008000	2 025762000
	2.233382000	-1.007008000	2.033703000
н	1.142997000	-1.054964000	1.855052000
н	2.729523000	-1.488481000	1.162678000
н	2.452557000	-1.637500000	2.919017000
c	3 189060000	2 639204000	1 728010000
ĉ	2 200612000	2.055201000	1 017910000
с 	5.200015000	5.901649000	1.01/819000
н	3.675206000	3.881495000	0.014343000
н	2.176189000	4.364547000	0.872826000
н	3.773705000	4.721376000	1.588041000
c	4 212560000	0 720026000	1 22/810000
	-4.212300000	0.730020000	4.234810000
н	-4.6/82/6000	1.608349000	4.725271000
н	-4.971784000	-0.084032000	4.234709000
н	-4.025850000	1.000221000	3.177750000
c	-2 955342000	0 314633000	4 937571000
ĉ	2.353512000	0.311055000	6.266001000
C	-2.709514000	0.522555000	0.500901000
C	-3.812081000	0.690038000	7.378079000
н	-4.430593000	-0.193666000	7.653967000
н	-4.503821000	1.463437000	6.993434000
н	-3 363903000	1 078648000	8 313605000
	1.475025000	0.245024000	0.515005000
C	-1.4/5825000	-0.245021000	0.055479000
C	-0.862118000	-0.618691000	5.398353000
С	0.416271000	-1.386630000	5.229993000
н	1.024579000	-0.984310000	4.397128000
ц	1 028206000	1 226206000	6 1/15682000
	1.038300000	-1.330300000	0.143082000
н	0.223435000	-2.462189000	5.01932/000
С	-0.882077000	-0.473204000	8.009640000
н	-1.401851000	0.123492000	8.784537000
н	0 176983000	-0 151020000	8 029505000
	0.170505000	0.131020000	0.025505000
н	-0.928908000	-1.54105/000	8.310002000
С	-1.781347000	-0.271340000	4.335970000
С	-1.571292000	-0.586673000	2.884710000
н	-2.296225000	-0.054552000	2.239860000
н	-1 680057000	-1 67/065000	2 680308000
	-1.000557000	0.000000000	2.000330000
н	-0.555769000	-0.288293000	2.556902000
С	-1.767345000	4.976002000	9.111567000
С	-2.838261000	5.254447000	8.186774000
c	-3,931260000	4.303225000	7.805672000
υ	1 633611000	1 106164000	0 CE 4044000
н	-4.622611000	4.100164000	8.054044000
Н	-4.538033000	4.701491000	6.970048000
Н	-3.516905000	3.333011000	7.470012000
С	-2.706921000	6.617750000	7.745664000
ĉ	-1 551122000	7 192221000	8 388683000
L	-1.221120000	1.125527000	0.000000000

С	-1.185180000	8.645750000	8.369990000
н	-1 430315000	9 120823000	7 399725000
н	-1 737879000	9 207479000	9 156627000
 Ц	0.106617000	0 007402000	9 5550027000
п С	-0.100017000	3.607495000	6.555577000
C	-3.699428000	7.355960000	6.899660000
н	-4.091/86000	6.726700000	6.077370000
Н	-4.573216000	7.688285000	7.503618000
Н	-3.256393000	8.260930000	6.442063000
С	-1.601412000	3.727799000	9.927573000
Н	-2.145476000	2.873260000	9.474823000
Н	-0.537182000	3.428069000	10.008007000
н	-1.998827000	3.858456000	10.958780000
С	-0.956044000	6.171801000	9.223049000
c	0 163538000	6 364788000	10 202756000
н	0 873944000	7 145321000	9 869493000
н	0.0737158000	5 /27897000	10 33621/000
н ц	0.737138000	5.427837000	11 20/11/2000
п С	-0.218252000	0.005650000	11.204118000
C	3.391706000	3.329584000	8.983234000
C	3.855211000	2.486118000	7.901401000
С	4.795564000	2.895020000	6.806791000
Н	5.015094000	2.053667000	6.126332000
Н	5.764348000	3.268450000	7.205954000
Н	4.416594000	3.772537000	6.180590000
С	3.318794000	1.157165000	8.115276000
С	3.643878000	-0.048117000	7.285308000
н	2.931475000	-0.874133000	7.476404000
н	4.664945000	-0.434309000	7.498601000
н	3,595391000	0.184879000	6.202394000
c	2 508516000	1 190559000	9 304036000
c c	1 910818000	0.01/700000	10 016/36000
ц	2 54540000	0.0147000000	10.010430000
н ц	1 914020000	0.290349000	0.254404000
	1.814939000	-0.866618000	9.354404000
н	0.902939000	0.241183000	10.416576000
C	3.831036000	4.744095000	9.212125000
н	3.904418000	5.293983000	8.252767000
н	3.121817000	5.296066000	9.859371000
Н	4.830941000	4.787982000	9.698627000
С	2.548750000	2.534594000	9.836834000
С	1.989851000	2.939886000	11.166914000
Н	1.012160000	2.459553000	11.368243000
Н	1.845028000	4.034802000	11.238899000
Н	2.673202000	2.646506000	11.995516000
С	-2.370867000	7.565778000	3.575580000
н	-2.282491000	7.312795000	4.651053000
н	-3.418418000	7.896005000	3.397964000
н	-1,712280000	8,434178000	3,381968000
c	-2 011582000	6 396201000	2 710828000
ĉ	-2 540747000	5 057439000	2 871226000
c c	2.340747000	4 610601000	2.071220000
ц	4 209102000	4.010001000	2 096207000
п 11	-4.596195000	3.244467000	5.960207000
н	-3.058889000	4.709551000	5.004224000
Н	-3.806297000	3.564094000	3.809575000
C	-2.082687000	4.264386000	1.747596000
C	-1.243780000	5.097728000	0.928319000
С	-0.681902000	4.761097000	-0.420811000
Н	0.376684000	5.074340000	-0.522463000
Н	-0.730810000	3.675789000	-0.628788000
Н	-1.250799000	5.273631000	-1.228486000
С	-2.500743000	2.853262000	1.464326000
н	-2.523225000	2.255143000	2.398610000
н	-1.800240000	2.351064000	0.769909000
н	-3.515622000	2.804976000	1.011448000
С	-1.202426000	6.416559000	1.522330000
C	-0.614135000	7.627249000	0.863239000
H	-0.433552000	8.447249000	1.584482000
н	-1.298839000	8.024308000	0.079851000
н	0.350083000	7.400827000	0.367865000
· ·			

Possible geometries of [Ni₄Ga₄](Cp*)₄(hex)₂

Above, four possible geometries of **3** were depicted resulting in a minimum of structures A and D. Structures B and C could not be optimized to a local minimum. Regarding the analytical results, especially the NMR data, only D remains as possible structure for **3** due to two different GaCp* bonding.

References

- [1] D. J. Krysan, P. B. Mackenzie, J. Org. Chem. 1990, 55, 4229-4230.
- [2] P. Jutzi, B. Neumann, G. Reumann, H.-G. Stammler, Organometallics **1998**, *17*, 1305-1314.
- [3] C. Ganesamoorthy, S. Loerke, C. Gemel, P. Jerabek, M. Winter, G. Frenking, R. A. Fischer, Chem. Commun. 2013, 49, 2858-2860.
- [4] F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73-78.
- [5] A. D. Becke, *Phys. Rev. A* **1988**, *38*, 3098-3100.
- [6] J. P. Perdew, *Phys. Rev. B* **1986**, *33*, 8822-8824.
- [7] a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
- [8] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys 2005, 7, 3297-3305.
- [9] F. Neese, F. Wennmohs, A. Hansen, U. Becker, J. Chem. Phys. 2009, 356, 98-109.