Electronic Supplementary Information (ESI)

Heterometallic uranium/molybdenum nitride synthesis via partial \mathbf{N}-atom transfer

Luciano Barluzzi, ${ }^{\sharp[a]}$ Nadir Jori, ${ }^{*[a]}$ Tianyi He ${ }^{[c]}$, Thayalan Rajeshkumar, ${ }^{[b]}$ Rosario Scopelliti, ${ }^{[a]}$ Laurent Maron, ${ }^{*[b]}$ Paul Oyala ${ }^{[c]}$, Theodor Agapie, ${ }^{*[c]}$ and Marinella Mazzanti $*[a]$
[a] Dr Luciano Barluzzi, Nadir Jori, Dr Rosario Scopelliti, Prof. Marinella Mazzanti
Group of Coordination Chemistry,Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
E-mail: marinella.mazzanti@epfl.ch
[b] Thayalan Rajeshkumar, Prof. Laurent Maron
Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Toulouse, Cedex 4, France;
[c] Prof. Theodor Agapie, Tianyi He
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States

TABLE OF CONTENTS

Experimental Procedures 3
NMR spectra 6
XRD data 19
EPR data 21
Computational details 26
References 42

Experimental Procedures

General Considerations. Unless otherwise noted, all manipulations were carried out at ambient temperature under an inert dinitrogen atmosphere using Schlenk techniques and an MBraun glovebox equipped with a purifier unit. The water and oxygen levels were always kept at less than 0.1 ppm . Glassware was dried overnight at $140^{\circ} \mathrm{C}$ before use.

NMR experiments were carried out using NMR tubes adapted with J-Young valves. NMR spectra were recorded on a Bruker 400 MHz or 600 MHz spectrometers. NMR chemical shifts are reported in ppm with solvent as internal reference.

Elemental analyses were performed under nitrogen using a Thermo Scientific Flash 2000 Organic Elemental Analyzer at the Institute of Chemistry and Chemical Engineering at EPFL.

Starting materials Unless otherwise noted, reagents were purchased from commercial suppliers and used without further purification. Tris(tert-butoxy)silanol was purified by sublimation. Anhydrous solvents were purchased from Aldrich and further distilled from K/benzophenone (thf, hexane). Deuterated solvents for NMR spectroscopy (d_{8}-thf, d_{8}-toluene) were purchased from Cortecnet, freeze-degassed and distilled over $\mathrm{K} /$ benzophenone. d_{6}-DMSO was freeze-degassed and dried over $3 \AA$ molecular sieves for several days. ${ }^{13} \mathrm{CO}\left(93.13 \%{ }^{13} \mathrm{C}\right)$ was purchased from Cortecnet and transferred to a flask equipped with a J -Young valve containing activated $3 \AA$ molecular sieves prior to use.
Precise amounts of labelled gases are added to reaction flasks or NMR tubes equipped with a J-Young valve using a short connector of known volume adapted on a Schlenk line equipped with a pressure sensor. Depleted uranium was purchased from Ibilabs, Florida, USA, $\left[\mathrm{U}^{\text {III }}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right)_{3}\right]_{2}{ }^{1}$ (used as source of the monomeric complex $\left.\left[\mathrm{U}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right)_{3}(\mathrm{thf})_{2}\right]\right)$, $\left[\mathrm{Cl}(\mathrm{N}) \mathrm{Mo}^{\mathrm{IV}} \mathrm{P} 2\right]^{2}$ and $\left[\mathrm{P}_{2} \mathrm{Mo}^{\mathrm{II}}(\mathrm{N}) \mathrm{Na}\right]^{3}$ were prepared according to the published procedure.

Caution: Depleted uranium (primary isotope ${ }^{238} \mathrm{U}$) is a weak α-emitter $(4.197 \mathrm{MeV})$ with a half-life of 4.47×10^{9} years. Manipulations and reactions should be carried out in monitored fume hoods or in an inert atmosphere glovebox in a radiation laboratory equipped with α - and β-counting equipment.

Synthesis of $\left[\mathbf{N a}\left\{\left(\mathbf{U}\left(\mathbf{O S i}\left(\mathbf{O}^{t} \mathbf{B u}\right)_{3}(\mu-\mathbf{N})(\mathbf{M o P 2})\right\}\right]\right.\right.$, 1. A cold $\left(-40^{\circ} \mathrm{C}\right)$ brown-red solution of $\left[\mathrm{U}^{\text {III }}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right)_{3}\right]_{2}\left(53.9 \mathrm{mg}, 0.0262 \mathrm{mmol}, 1\right.$ equiv) in thf $(3.0 \mathrm{~mL})$ was added to a cold $\left(-40^{\circ} \mathrm{C}\right)$ orangered solution of $\left[\mathrm{P} 2 \mathrm{Mo}{ }^{\mathrm{II}}(\mathrm{N}) \mathrm{Na}\right]\left(30.9 \mathrm{mg}, 0.0524 \mathrm{mmol}, 2\right.$ equiv) in thf $(3.0 \mathrm{~mL})$ and stirred at $-40^{\circ} \mathrm{C}$. The colour of the reaction mixture changed rapidly from dark red to dark brown. The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture measured immediately after the addition showed the presence of $\left[\mathrm{U}^{\mathrm{IV}}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right)_{4}\right]$ and complex 1. (Figure S1) The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of the reaction mixture showed only traces of [P2MoNNa] (Figure S2). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies revealed that the reaction is complete after 3 hs stirring.

The reaction mixture was filtered and all volatiles were removed under vacuum. The resultant solid was dissolved in hexane $(0.4 \mathrm{~mL})$ and stored at $-40^{\circ} \mathrm{C}$ affording after 15 hs large dark brown crystals of complex 1 in 72% yield ($58.0 \mathrm{mg}, 0.0381 \mathrm{mmol})$. Anal. Calcd. for $\left[\mathrm{Na}\left\{\mathrm{U}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t} B u}\right)_{3}(\mu-\mathrm{N})(\mathrm{MoP} 2)\right\}\right]\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)_{0.1}\right.$: C : 49.12%, H: $7.33 \%, \mathrm{~N}: 0.86 \%$. Found: C: 49.45%, H: $7.43 \%, \mathrm{~N}: 0.96 \%$.

Complex 1 shows moderate stability at room temperature both in solid state and in a thf solution, fully decomposing to an intractable mixture of unidentified species over the course of 12 hours. Decomposition is significantly slower at $-40^{\circ} \mathrm{C}$ in thf solution and the solid can be stored at $-40^{\circ} \mathrm{C}$ in the solid state at least up to a month.

```
\({ }^{1} \mathrm{H}\) NMR ( \(d_{8}\)-thf, \(400 \mathrm{MHz}, 233 \mathrm{~K}\) ): \(\delta=10.5 \mathrm{ppm}\) (br), -10.5 ppm (br). (Figure S3)
\({ }^{1} \mathrm{H}\) NMR ( \(d_{8}\)-thf, \(400 \mathrm{MHz}, 298 \mathrm{~K}\) ): \(\delta=12.7 \mathrm{ppm}(\mathrm{br}), 8.7 \mathrm{ppm}(\mathrm{br}), 0.42 \mathrm{ppm}(\mathrm{s}),-0.61 \mathrm{ppm}(\mathrm{s}),-2.4 \mathrm{ppm}\)
(br). (Figure S4)
\({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\) NMR ( \(d_{8}\)-thf, \(162 \mathrm{MHz}, 233 \mathrm{~K}\) ): Silent
```

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d_{8}-thf, $162 \mathrm{MHz}, 298 \mathrm{~K}$): Silent
${ }^{1} \mathrm{H}$ NMR studies in d_{8}-thf showed full decomposition of $\mathbf{1}$ over the course of 12 hs at room temperature to yield $\left[\mathrm{U}^{\mathrm{IV}}\left\{\mathrm{OSi}\left(\mathrm{O}^{+} \mathrm{Bu}\right)_{3}\right\}_{4}\right]$ and multiple unidentified species. (Figure S 5)
${ }^{1} \mathrm{H}$ NMR studies in d_{8}-thf showed only a traces decomposition of $\mathbf{1}$ over the course of 5 days at $-40^{\circ} \mathrm{C}$ (Figure S6).
${ }^{31} \mathrm{P}$ NMR studies in d_{8}-thf showed the appearance of a new resonance at $\delta=-19.3 \mathrm{ppm}$ after 5 days at $-40^{\circ} \mathrm{C}$ (Figure S7).

Reaction of 1 equiv. of $\left[\mathbf{P 2 M o}{ }^{\mathrm{II}}(\mathrm{N}) \mathrm{Na}\right]$ with 1 equiv of $\left[\mathrm{U}^{\mathrm{HI}}\left(\mathbf{O S i}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right)_{3}\right]_{2}$ at $-40^{\circ} \mathrm{C}$. A cold $\left(-40^{\circ} \mathrm{C}\right)$ red-brown solution of $\left[\mathrm{U}^{\text {III }}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{H}} \mathrm{Bu}_{3}\right)_{3}\right]_{2}\left(11.3 \mathrm{mg}, 0.0053 \mathrm{mmol}, 1\right.\right.$ equiv) in d_{8}-thf $(0.3 \mathrm{~mL})$ was added to a cold $\left(-40^{\circ} \mathrm{C}\right)$ orange-red solution of $\left[\mathrm{P} 2 \mathrm{Mo}^{\mathrm{II}}(\mathrm{N}) \mathrm{Na}\right]\left(3.2 \mathrm{mg}, 0.0052 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{d}_{8}-\mathrm{thf}(0.2 \mathrm{~mL})$. The reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 3 days. ${ }^{1} \mathrm{H}$ NMR studies show that the reaction only leads to the formation of complex 1 and unreacted $\left[\mathrm{U}^{\mathrm{II}}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right)_{3}(\text { thf })_{2}\right]$ (Figure S8). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture shows the appearance of two new resonances at $\delta=75.3 \mathrm{ppm}$, and -7.1 ppm over the course of 3 days that were assigned to decomposition products (Figure S9).
The reaction mixture was filtered and all volatiles were removed under vacuum. The resultant solid was dissolved in hexane (0.2 mL) and stored at $-40^{\circ} \mathrm{C}$ affording after 15 hs large dark brown crystals of complex 1.

Reaction of 1 equiv. of $\left[\mathbf{P 2 M o}{ }^{I I}(\mathbf{N}) \mathrm{Na}\right]$ with 1 equiv of $\left[\mathrm{U}^{\mathrm{II}}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right)_{3}\right]_{2}$ at room temperature. A red-brown solution of $\left[\mathrm{U}^{\mathrm{II}}\left(\mathrm{OSi}\left(\mathrm{O}^{\dagger} \mathrm{Bu}\right)_{3}\right)_{3}\right]_{2}\left(20.7 \mathrm{mg}, 0.010 \mathrm{mmol}\right.$, 1 equiv) in $\mathrm{d}_{8}-t h f(0.3 \mathrm{~mL})$ was added to an orange-red solution of $\left[P 2 \mathrm{Mo}^{11}(\mathrm{~N}) \mathrm{Na}\right]$ ($5.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 1$ equiv) in $\mathrm{d}_{8}-\mathrm{thf}(0.2 \mathrm{~mL})$ and the reaction mixture was stirred at $25^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR studies revealed the disappearance of the starting materials after 1 h and the formation of $\left[\mathrm{U}^{\mathrm{IV}}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right)_{4}\right]$ as a major product (Figure S 10). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture showed the appearance of three resonances at $\delta=75.0 \mathrm{ppm}, 47.9 \mathrm{ppm}$ and -7.3 ppm over the course of 30 min and their disappearance after 1 h , affording three new resonances at $\delta=77.9 \mathrm{ppm}$, 76.3 ppm and -4.3 ppm (Figure S11)

Reaction of $\left[\mathrm{Na}\left\{\left(\mathbf{U}\left(\mathbf{O S i}\left(\mathbf{O}^{t} \mathrm{Bu}\right)_{3}(\mu-\mathbf{N})(\mathbf{M o P 2})\right\}\right]\right.\right.$, $\mathbf{1}$ with 1 equiv. of ${ }^{13} \mathbf{C O}$. $\left[\mathrm{Na}\left\{\mathrm{U}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t} B u}\right)_{3}(\mu-\right.\right.\right.$ $\mathrm{N})(\mathrm{MoP} 2)\}$], complex 1 ($9.1 \mathrm{mg}, 0.0060 \mathrm{mmol}, 1$ equiv) was dissolved in 0.5 mL of d_{8}-thf and the solution was transferred in an NMR tube. The tube was connected to a Schlenk line and the solution was degassed by three cycles of freeze-pump-thawing. 1 equiv of ${ }^{13} \mathrm{CO}$ was added to the frozen solution. The reaction mixture immediately changed colour from dark brown to dark orange. Multinuclear NMR spectroscopy of the reaction mixture revealed the immediate consumption of the starting material and the formation of a mixture of species (Figures S12-S14) including the previously reported $\left[\mathrm{P} 2 \mathrm{Mo}\left({ }^{13} \mathrm{CO}\right)\right]$ complex ${ }^{3}$ and $\mathrm{NaN}^{13} \mathrm{CO}$. Volatiles were removed and 0.5 mL of $\mathrm{D}_{2} \mathrm{O}(\mathrm{pD}=13)$ were added to the solid together with few drops of d_{6}-DMSO affording an orange solution. The ${ }^{13} \mathrm{C}$ NMR spectrum of the reaction mixture revealed the formation of $\mathrm{N}^{13} \mathrm{CO}^{-}$in 10% yield. No peak attributable to $\left[\mathrm{P} 2 \mathrm{Mo}\left({ }^{13} \mathrm{CO}\right)\right]$ was observed, consistently with its insolubility in water. ${ }^{313} \mathrm{C}$-labelled sodium acetate was used as internal standard for quantification (Figure S15)

Reaction of $\left[\mathbf{N a}\left\{\left(\mathbf{U}\left(\mathbf{O S i}\left(\mathbf{O}^{t} \mathbf{B u}\right)_{3}(\mu-\mathbf{N})(\mathbf{M o P 2})\right\}\right]\right.\right.$, $\mathbf{1}$ with excess ${ }^{13} \mathbf{C O} .\left[\mathrm{Na}\left\{\mathrm{U}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}(\mu-\mathrm{N})(\mathrm{MoP} 2)\right\}\right]\right.$ ($5 \mathrm{mg}, 0.033 \mathrm{mmol}, 1$ equiv) was dissolved in 0.5 mL of d_{8}-thf and the solution was transferred in an NMR tube. The tube was connected to a Schlenk line and the solution was degassed by three cycles of freeze-pump-thawing. 1 atm of ${ }^{13} \mathrm{CO}$ was added to the tube. The reaction mixture immediately changed colour from red-brown to light green. Multinuclear NMR spectroscopy of the reaction mixture revealed the formation of a mixture of species (Figures S16-S18). Volatiles were removed and 0.5 mL of $\mathrm{D}_{2} \mathrm{O}(\mathrm{pD}=13)$ were added to the light green solid together with few drops of d_{6} - DMSO affording a light green solution. The ${ }^{13} \mathrm{C}$ NMR spectrum of the reaction mixture revealed the formation of $\mathrm{N}^{13} \mathrm{CO}^{-}$. (Figure S 19)

Reaction of $\left[\mathrm{Na}\left\{\left(\mathbf{U}\left(\mathbf{O S i}\left(\mathbf{O}^{\mathrm{t}} \mathbf{B u}\right)_{3}(\mu-\mathrm{N})(\mathbf{M o P 2})\right\}\right]\right.\right.$, 1 with 10 equiv. of ${ }^{13} \mathbf{C O}$. $\left[\mathrm{Na}\left\{\mathrm{U}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t} B u}\right)_{3}(\mu-\right.\right.\right.$ $\mathrm{N})(\mathrm{MoP} 2)\}$], complex $1\left(5.0 \mathrm{mg}, 0.0033 \mathrm{mmol}, 1\right.$ equiv) was dissolved in 0.5 mL of d_{8}-thf and the solution was transferred in an NMR tube. The tube was connected to a Schlenk line and the solution was degassed by three cycles of freeze-pump-thawing. 1 equiv of ${ }^{13} \mathrm{CO}$ was added to the frozen solution. The reaction mixture immediately changed colour from dark brown to dark green. Multinuclear NMR spectroscopy of the reaction mixture revealed the immediate consumption of the starting material and the formation of a mixture of species (Figures S20-S22). The reaction mixture was left to evolve at $-40^{\circ} \mathrm{C}$ for 24 hs and warmed up to $25^{\circ} \mathrm{C}$ for other 24 hs . Multinuclear NMR spectroscopy of the reaction mixture revealed the formation of the previously reported $\left[\mathrm{P} 2 \mathrm{Mo}\left({ }^{13} \mathrm{CO}\right)_{3}\right]$ complex ${ }^{3}$ (Figures S23-S25). Volatiles were removed and 0.5 mL of $\mathrm{D}_{2} \mathrm{O}(\mathrm{pD}=13)$ were added to the solid together with few drops of d_{6} - DMSO affording an green solution. The ${ }^{13} \mathrm{C}$ NMR spectrum of the reaction mixture revealed the formation of $\mathrm{N}^{13} \mathrm{CO}^{-}$in 50% yield. No peak attributable to $\left[\mathrm{P} 2 \mathrm{Mo}\left({ }^{13} \mathrm{CO}\right)_{3}\right]$ was observed, consistently with its insolubility in water. ${ }^{3}$ ${ }^{13} \mathrm{C}$-labelled sodium acetate was used as internal standard for quantification (Figure S26)

Reaction of 2 equiv. of $\left[\mathrm{Cl}(\mathrm{N}) \mathrm{Mo}^{\mathrm{IV}} \mathrm{P} 2\right]$ with 1 equiv of $\left[\mathrm{U}^{\mathrm{III}}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right)_{3}\right]_{2}$ at $-40^{\circ} \mathrm{C}$ and warmed up at room temperature. A cold ($-40^{\circ} \mathrm{C}$) pink solution of $\left[\mathrm{Cl}(\mathrm{N}) \mathrm{Mo}^{\mathrm{IV}} \mathrm{P} 2\right](10.4 \mathrm{mg}, 0.017 \mathrm{mmol}, 2$ equiv) in 0.3 mL of d_{8}-thf was added to a cold $\left(-40^{\circ} \mathrm{C}\right)$ red-brown solution of $\left[\mathrm{U}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right]_{2}(17.7 \mathrm{mg}, 0.0086\right.$ mmol, 1 equiv) in 0.3 mL of d_{8}-thf. The reaction mixture was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and no reaction was observed after 24 h at $-40^{\circ} \mathrm{C}$ (Figure S27). The reaction mixture was warmed to $25^{\circ} \mathrm{C}$ but no reaction was observed after 24 h . The reaction with 1 equiv of $[\mathrm{Cl}(\mathrm{N}) \mathrm{Mo} \mathrm{P} 2]$ also resulted in no reaction.

NMR spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 233 K) of the evolution of the reaction mixture of 2 equiv. of $[\mathrm{P} 2 \mathrm{MoNNa}]$, a) before addition and b) after addition of 1 equiv. of $\left[\mathrm{U}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t} B u}\right)_{3}\right)_{3}\right]_{2}$ at $-40^{\circ} \mathrm{C}$.

Figure S2. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra ($162 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 233 K) of the evolution of the reaction mixture of 2 equiv. of [P2MoNNa] a) before addition, b) immediately after addition, and c) 3 hs after addition of 1 equiv. of $\left[\mathrm{U}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{tBu}}\right)_{3}\right)_{3}\right]_{2}$ at $-40^{\circ} \mathrm{C}$.

Notr2. . fid
$\Delta \quad[P 2 \mathrm{MoNNa}]$
c)

NJ772.4.fid
233K, Immediately after UL3
b)

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , d_{8}-thf, 233 K) of complex 1 .

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 298K) of complex 1.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 298K) of complex 1 at room temperature immediately after dissolving (bottom) and after 12 hs at room temperature (top) showing complete decomposition of $\mathbf{1}$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 233 K) of the evolution of a solution of complex $\mathbf{1}$ in THF at $-40^{\circ} \mathrm{C}$ a) immediately b) 24 hs after, c) 48 hs after and d) 5 days after dissolving

Figure S7. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(162 \mathrm{MHz}, \mathrm{d}_{8}\right.$-thf, 233 K) of the evolution of a solution of complex 1 in THF at $-40^{\circ} \mathrm{C}$ a) immediately b) 24 hs after, c) 48 hs after and d) 5 days after dissolving
NJ779. 10 fid

NJT79.8.iid
$233 \mathrm{~K}, 48$ hs after dissolving
c)

NJ779.6.fid
NJ779.6.fid
233 K,31P 24 hs at -40
233 K,31P 24 hs at -40
b)

NJ779. 2.fid
$233 \mathrm{~K}, 31 \mathrm{P}$ Dissolved immediately
a)

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 233 K) of the evolution of the reaction mixture of 1 equiv. of $[\mathrm{P} 2 \mathrm{MoNNa}]$ with 1 equiv. of $\left[\mathrm{U}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right)_{3}\right]_{2}$ at $-40^{\circ} \mathrm{C}$, a) immediately after addition, b) 3 days after addition.

Figure S9. ${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra ($162 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 233 K) of the evolution of the reaction mixture of 1 equiv. of $[\mathrm{P} 2 \mathrm{MoNNa}]$ with 1 equiv. of $\left[\mathrm{U}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right)_{3}\right]_{2}$ at $-40^{\circ} \mathrm{C}$, b) immediately after addition, c) 3 days after addition versus a) pure [P 2 MoNNa].

LB1231.4.fid
$\Delta \quad[P 2 M o N N a]$
\triangle Side product

b)

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 298K) of the evolution of the reaction mixture of 1 equiv. of $[\mathrm{P} 2 \mathrm{MoNNa}]$ with 1 equiv. of $\left[\mathrm{U}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{B}} \mathrm{Bu}\right)_{3}\right)_{3}\right]_{2}$ at room temperature, a) immediately after addition, b) 30 min after addition, c) 1 h after addition.

LB1255.9.fid

- d_{8}-thf
- $\left[U\left\{O\left(S i\left(O{ }^{+} B u\right)_{3}\right\}_{3}\right]_{2}\right.$
- $\left[\mathrm{U}\left\{\mathrm{O}\left(\mathrm{Si}(\mathrm{O} \mathrm{Bu})_{3}\right\}_{4}\right]\right.$

c)
b)

LB1255.5.fid

Figure S11. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra ($162 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 298K) of the evolution of the reaction mixture of 1 equiv. of $[\mathrm{P} 2 \mathrm{MoNNa}]$ with 1 equiv. of $\left[\mathrm{U}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right)_{3}\right]_{2}$ at room temperature, a) immediately after addition, b) 30 min after addition, c) 1 h after addition.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 233 K) of the reaction mixture of complex 1 with 1 equiv of ${ }^{13} \mathrm{CO}$ a) before and b) immediately after addition.

Figure S13. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 233 K) of the reaction mixture of complex 1 with 1 equiv of ${ }^{13} \mathrm{CO}$ a) before and b) immediately after addition.

$$
\begin{aligned}
& \text { NJ788.4.fid } \\
& 233 \mathrm{~K}, 31 \mathrm{P} \text { Atter } 13 \mathrm{CO}
\end{aligned}
$$

$\Delta\left[\mathrm{P} 2 \mathrm{Mo}\left({ }^{13} \mathrm{CO}\right)\right]$

NJ788. 2. fid
233 K, 31P Before 13 CO
a)

Figure S14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 233 K) of the reaction mixture of complex $\mathbf{1}$ with 1 equiv. of ${ }^{13} \mathrm{CO}$ immediately after addition.

```
NJ788.5.fid
233 K,13C After 13CO
- ds-thf
* N}\mp@subsup{}{}{13}\textrm{CO
\Delta [P2Mo( }\mp@subsup{}{}{13}\textrm{CO})
```


Figure S15. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of the hydrolysis with $\mathrm{pD}=13 \mathrm{D}_{2} \mathrm{O}$ of the reaction mixture between complex $\mathbf{1}$ and 1 equiv of ${ }^{13} \mathrm{CO}$.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 298 K) of the reaction mixture of complex $\mathbf{1}$ with 1 atm of ${ }^{13} \mathrm{CO}$ immediately after addition.

Figure S17. ${ }^{31} \mathrm{P}\left\{{ }^{\{1} \mathrm{H}\right\}$ NMR spectrum ($162 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 298 K) of the reaction mixture of complex $\mathbf{1}$ with 1 atm of ${ }^{13} \mathrm{CO}$ immediately after addition.

```
B1272.2.fid
```


Figure S18. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{d}_{8}-$ thf, 298 K) of the reaction mixture of complex $\mathbf{1}$ with 1 atm of ${ }^{13} \mathrm{CO}$ immediately after addition.

Figure S19. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of the hydrolysis with $\mathrm{pD}=13 \mathrm{D}_{2} \mathrm{O}$ of the reaction mixture between complex $\mathbf{1}$ and 1 atm of ${ }^{13} \mathrm{CO}$.

```
LB1272.4.fid
- d
\Delta Siloxides
* N N}\mp@subsup{}{}{13}\textrm{CO
```


Figure S20. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 233 K) of the reaction mixture of complex $\mathbf{1}$ with 10 equiv of ${ }^{13} \mathrm{CO}$ before and b) immediately after addition.

Figure S21. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 233 K) of the reaction mixture of complex $\mathbf{1}$ with 10 equiv of ${ }^{13} \mathrm{CO}$ a) before and b) immediately after addition.

NJ794.2.fid
233K, 31P Before 13 CO
a)

450	400	350	300	250	200	150	100	50	0	50	-100	-150	200	-250	-300	-350	-400	-450
								Chem	Sh	ppm)								

Figure S22. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 233 K) of the reaction mixture of complex $\mathbf{1}$ with 10 equiv. of ${ }^{13} \mathrm{CO}$ immediately after addition.

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 298 K) of the reaction mixture of complex $\mathbf{1}$ with 10 equiv of ${ }^{13} \mathrm{CO}$ a) 24 hs after at $-40^{\circ} \mathrm{C}$ and b) 24 hs after warmed up to $25^{\circ} \mathrm{C}$.

NJ794.8.fid

Figure S24. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 298K) of the reaction mixture of complex $\mathbf{1}$ with 10 equiv of ${ }^{13} \mathrm{CO}$ a) 24 hs after at $-40^{\circ} \mathrm{C}$ and b) 24 hs after warmed up to $25^{\circ} \mathrm{C}$.
NJ794. 12. fid
298K, 31 P 24 hs at 25 C
b)
a)

Figure S25. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 298K) of the reaction mixture of complex 1 with 10 equiv of ${ }^{13} \mathrm{CO}$ a) 24 hs after at $-40^{\circ} \mathrm{C}$ and b) 24 hs after warmed up to $25^{\circ} \mathrm{C}$.

Figure S26. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of the hydrolysis with $\mathrm{pD}=13 \mathrm{D}_{2} \mathrm{O}$ of the reaction mixture between complex $\mathbf{1}$ and 10 equiv of ${ }^{13} \mathrm{CO}$.

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{d}_{8}$-thf, 298K) of the evolution of the reaction mixture of 2 equiv. of $\left[\mathrm{Cl}(\mathrm{N}) \mathrm{Mo}^{\mathrm{IV}} \mathrm{P} 2\right]$ with 1 equiv. of $\left[\mathrm{U}\left(\mathrm{OSi}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\right)_{3}\right]_{2}$ at room temperature, a) immediately after addition, b) 6 hs after addition, c) 24 hs after addition at $-40^{\circ} \mathrm{C}$.

XRD data

A translucent dark black irregular-shaped crystal with dimensions $0.40 \times 0.23 \times 0.19 \mathrm{~mm}^{3}$ was mounted and its diffraction data were collected using a SuperNova diffractometer operating at $\mathrm{T}=140.00(10) \mathrm{K}$. Data were measured using ω scans using $\mathrm{Cu} \mathrm{K} \alpha$ radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro. ${ }^{4}$ The maximum resolution that was achieved was $\Theta=76.009^{\circ}(0.79 \AA)$.
The unit cell was refined using CrysAlisPro ${ }^{4}$ on 38652 reflections, 78% of the observed reflections. Data reduction, scaling and absorption corrections were performed using CrysAlisPro. ${ }^{4}$ The final completeness is 99.80% out to 76.009° in Θ. A gaussian absorption correction was performed using CrysAlisPro. ${ }^{4}$ The numerical absorption correction was based on gaussian integration over a multifaceted crystal model. The empirical absorption correction was obtained using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this crystal is $7.873 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=1.54184 \AA)$ and the minimum and maximum transmissions are 0.194 and 0.880 . The structure was solved and the space group P-1 (\#2) determined by the ShelXT ${ }^{5}$ structure solution program using dual methods and refined by full matrix least squares minimisation on F^{2} using version 2018/3 of ShelXL. ${ }^{6}$ All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. CCDC deposition number: 2126561.

Table S1: Crystallographic parameters for complex 1

Compound	1
Formula	$\mathrm{C}_{72} \mathrm{H}_{135} \mathrm{MoNNaO}_{12} \mathrm{P}_{2} \mathrm{Si}_{3} \mathrm{U}$
Crystal size $[\mathrm{mm}]$	$0.40 \times 0.23 \times 0.19$
Crystal system	triclinic
Space group	$\mathrm{P}-1$
$\mathrm{~V}\left[\AA^{3}\right]$	$4186.49(16)$
$a[\AA]$	$13.6525(2)$
$b[\AA]$	$16.4788(4)$
$c[\AA]$	$19.2469(4)$
$\alpha\left[{ }^{\circ}\right]$	$81.3024(19)$
$\beta\left[{ }^{\circ}\right]$	$79.5672(16)$
$\gamma\left[{ }^{\circ}\right]$	$82.5868(18)$
Z	2
Absorption	7.873
coefficient $\left[\mathrm{mm}{ }^{-1}\right]$	1774.0
$\mathrm{~F}(000)$	$140.00(10)$
$T(\mathrm{~K})$	49516
Total no. reflections	17241
Unique reflexions	0.0268
$\left[R_{\text {inf }}\right]$	1.724 and -2.013
Final $R_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	1.070
Largest diff. peak	
and hole $\left[\mathrm{e} \mathrm{A}^{-3}\right]$	
GOOF	

EPR data

CW EPR spectroscopy. The solution state spectra were recorded from an 8.6 mM solution of complex $\mathbf{1}$ in THF inside J-Young EPR tubes. The solid state measurements were performed with solid samples of complex 1 inside J-Young EPR tubes or in sealed quartz tubes. X-band CW EPR spectra were acquired on a Bruker Elexsys E500 spectrometer working at 9.4 GHz frequency and on a Bruker (Billerica, MA) EMX spectrometer using a Bruker ER 4116DM Dual Mode resonator coupled to the TE-102 perpendicular mode (MW B_{1} perpendicular to the applied magnetic field B_{0}). Acquisition parameters: MW frequency $=9.638$ GHz ; temperature $=5 \mathrm{~K}$; MW power $=5.5 \mathrm{~mW}$; modulation amplitude $=0.8 \mathrm{mT}$; conversion time $=10.10$ ms . Temperature control was achieved using liquid helium and an Oxford Instruments (Oxford, UK) ESR900 cryogen flow cryostat and an ITC-503 temperature controller

Pulse EPR spectroscopy. All pulse EPR experiments were aquired using a Bruker (Billerica, MA) ELEXSYS E580 pulse EPR spectrometer. All data was acquired using a Bruker MD-4 resonator. Temperature control was achieved using an ER 4118HV-CF5-L Flexline Cryogen-Free VT cryostat manufactured by ColdEdge (Allentown, PA) equipped with an Oxford Instruments Mercury ITC.

X-band HYSCORE spectra ${ }^{8}$ were acquired using the 4-pulse sequence ($\pi / 2-\tau-\pi / 2-t_{1}-\pi_{-} t_{2-} \pi / 2_{-}$ echo), where τ is a fixed delay, while ${ }^{t_{1}}$ and ${ }^{t_{2}}$ are independently incremented by $\Delta^{t_{1}}$ and $\Delta^{t_{2}}$, respectively. The time domain data was baseline-corrected (third-order polynomial) to eliminate the exponential decay in the echo intensity, apodized with a Hamming window function, zero-filled to eight-fold points, and fast Fourier-transformed to yield the 2-dimensional frequency domain.

In general, the ENDOR spectrum for a given nucleus with spin $I=1 / 2\left({ }^{1} \mathrm{H},{ }^{31} \mathrm{P}\right)$ coupled to the $S=1 / 2$ electron spin exhibits a doublet at frequencies
$v_{ \pm}=\left|\frac{A}{2} \pm v_{N}\right|$
Where ${ }^{v_{N}}$ is the nuclear Larmor frequency and A is the hyperfine coupling. For nuclei with $I \geq 1$ (14 N , 2 H), an additonal splitting of the ${ }^{v} \pm$ manifolds is produced by the nuclear quadrupole interaction (P)

$$
v_{ \pm, m_{I}}=\left|v_{N} \pm \frac{3 P\left(2 m_{I}-1\right)}{2}\right|
$$

In HYSCORE spectra, these signals manifest as cross-peaks or ridges in the 2-D frequency spectrum which are generally symmetric about the diagonal of a given quadrant. This technique allows hyperfine levels corresponding to the same electron-nuclear submanifold to be differentiated, as well as separating features from hyperfine couplings in the weak-coupling regime $\left(|A|<2\left|v_{l}\right|\right)$ in the $(+,+)$ quadrant from those in the strong coupling regime $\left(|A|>2\left|v_{I}\right|\right)$ in the $(-,+)$ quadrant. The $(-,-)$ and $(+,-)$ quadrants of these frequency spectra are symmetric to the $(+,+)$ and $(-,+)$ quadrants, thus only two of the quadrants are typically displayed in literature.
For systems with appreciable hyperfine anisotropy in frozen solutions or solids, HYSCORE spectra typically do not exhibit sharp cross peaks, but show ridges that represent the sum of cross peaks from selected orientations within the excitation bandwidth of the MW pulses at the magnetic field position at which the spectrum is collected. The length and curvature of these correlation ridges can allow for the separation and estimation of the magnitude of the isotropic and dipolar components of the hyperfine tensor (Figure S28).

Figure S28. a) HYSCORE powder patterns for an $S=1 / 2, I=1 / 2$ spin system with an isotropic hyperfine tensor A. b) HYSCORE powder patterns for an $S=1 / 2, I=1 / 2$ spin system with an axial hyperfine tensor that contains isotropic (${ }_{\text {iso }}$) and dipolar $\left({ }^{T}\right)$ contributions. Blue correlation ridges represent the strong coupling case; red correlation ridges represent the weak coupling case.

For $\mathrm{I}=1$ nuclei such as ${ }^{14} \mathrm{~N}$, the nuclear quadrupole interaction will further split the hyperfine correlation ridges parallel to the diagonal of the quadradrant by 3 P .

Figure S29. X-band EPR spectrum of frozen 8.4 mM solution complex $\mathbf{1}$ in THF at 10 K . g factor

Figure S30. (Top) X-band CW-EPR spectrum of pure powder of 1. Acquisition parameters: MW frequency $=9.638 \mathrm{GHz}$; temperature $=5 \mathrm{~K}$; MW power $=5.5 \mathrm{~mW}$; modulation amplitude $=0.8 \mathrm{mT}$; conversion time $=10.10 \mathrm{~ms}$. (A signal centred at $g=1.99$ is sometimes observed which is due to degradation products.
(Bottom) X-band electron spin-echo (ESE) detected EPR spectrum of pure powder of $\mathbf{1}$ (top trace), with same spectrum treated with pseudomodulation (bottom trace) to generate the "CW-like" ${ }^{\text {st }}$ derivative using an amplitude of 20 mT . Acquisition parameters: MW frequency $=9.387 \mathrm{GHz}$; temperature $=6 \mathrm{~K} ; \pi$ pulse length $=16 \mathrm{~ns} ; \tau=200 \mathrm{~ns}$; shot rep time $(\mathrm{srt})=500 \mu \mathrm{~s}$.

Figure S31. X-band HYSCORE spectra of pure powder of 1 acquired at $1000 \mathrm{mT}(g=0.671), 1060 \mathrm{mT}(g=0.633), 1200 \mathrm{mT}(g=0.559), 1440$ $\mathrm{mT}(g=0.466)$. Acquisition parameters: MW frequency $=9.387 \mathrm{GHz}$; temperature $=6 \mathrm{~K} ; \tau=100 \mathrm{~ns}, \mathrm{t}_{1}=\mathrm{t}_{2}=100 \mathrm{~ns} ; \Delta \mathrm{t}_{1}=\Delta \mathrm{t}_{2}=16 \mathrm{~ns} ;$ shot repetition time $(\mathrm{srt})=500 \mu \mathrm{~s}$.

Figure S32. X-band HYSCORE spectrum of pure powder of 1 acquired at $339 \mathrm{mT}(g=1.98)$, a magnetic field corresponding to the narrow signal associated with degradation product(s) of $\mathbf{1}$. Acquisition parameters: MW frequency $=9.387 \mathrm{GHz}$; temperature $=6 \mathrm{~K} ; \tau=100 \mathrm{~ns}, \mathrm{t}_{1}=\mathrm{t}_{2}=100 \mathrm{~ns} ; \Delta \mathrm{t}_{1}=\Delta \mathrm{t}_{2}=16 \mathrm{~ns}$; shot repetition time (srt) $=500 \mu \mathrm{~s}$.

Computational details

The optimization of three different spin states ($S=2,4$ and 6) for complex 1 were carried out by employing unrestricted-DFT hybrid functional (B3PW91) ${ }^{7}$ along with small core relativistic effective core potential Stuggart basis set for uranium, molybdenum, phosphorus, and silicon atoms with additional polarization functions for phosphorus and silicon atoms. ${ }^{9}$ Pople basis sets $\left(6-31^{++} \mathrm{G}^{* *}\right.$ basis set for sodium and $6-31 \mathrm{G}^{* *}$ for carbon, nitrogen, oxygen, hydrogen atoms) were employed for the rest of the atoms. ${ }^{10}$ Frequency calculations were performed to locate minima for the optimized structures. All the calculations were performed using Gaussian 09 suite of programs. ${ }^{11} \mathrm{NBO}$ analysis was done in two main steps. The first one defines the Natural Localized Molecular Orbital (NLMO) which are the bonds and the lone pairs. These NLMO are thus used in a second step as possible donor (when occupied) and potential acceptor (when empty) to look for the presence of donor-acceptor bonds in the complex. The donor-acceptor interactions are accounted for at the second order perturbation level by computing an interaction energy $\left(\propto \frac{S^{2}}{\Delta \epsilon}\right)$.

Bonding orbitals between uranium and nitrogen from NBO analysis for ground state spin $(2 s+1=2)$

```
(0.98344) BD (1) U 1-N 21
(33.62%) 0.5798* U 1 s( 0.01%)p23.29( 0.32%)d99.99(28.73%) f99.99(70.90%)g 3.10( 0.04%)
(66.38%) 0.8147* N 21 s(13.91%)p 6.17( 85.78%)d 0.02( 0.31%)
(0.96717) BD (2) U 1-N 21
(28.06%) 0.5297* U 1 s( 0.00%)p 1.00( 0.87%)d34.46( 30.14%) f78.84(68.95%)g 0.04( 0.03%)
(71.94%) 0.8482* N 21 s( 0.00%)p 1.00( 99.77%)d 0.00( 0.23%)
(0.83262) BD (3) U 1-N 21
(20.20%) 0.4495* U 1 s( 0.17%)p 8.84( 1.54%)d99.99(43.36%) f99.99(54.88%)g 0.24( 0.04%)
(79.80%) 0.8933*N 21 s( 7.47%)p12.37( 92.36%)d 0.02( 0.17%)
```

Table ST1: Computed Wiberg bond index for UNMo core ($\mathbf{2 s}+\mathbf{1 = 2}$)

Atom Label	Wiberg bond index	Atom Label	Wiberg bond index
U 1	0.0000	U 1	0.5243
Mo 2	0.5243	Mo 2	0.0000
N 21	2.2633	N 21	0.7308

Table ST2: Computed spin densities for UNMo core

Atom Label	Spin density		
	$2 \mathrm{~s}+1=2$	$2 \mathrm{~s}+1=4$	$2 \mathrm{~s}+1=6$
U 1	1.24	2.35	3.28
Mo2	-0.05	0.72	0.70
N 21	-0.13	0.02	0.49

Table ST3: Energetics of different spin states computed for UNMo complex

Spin states	$\Delta \mathrm{H}(\mathrm{kcal} / \mathrm{mol})$
$2 \mathrm{~s}+1=2$	0.0
$2 \mathrm{~s}+1=4$	6.32
$2 \mathrm{~s}+1=6$	23.07

Table ST4: DFT computed NBO second order perturbation analysis for $\mathbf{2 s}+\mathbf{1}=\mathbf{2}$ spin state. For sake of clarity only the alpha part is reported since the beta part is similar. The value between bracket before the donor or acceptor unit indicates the electron occupancy.

Donor NBO	Acceptor NBO	$\overline{E(2)}$ $\mathrm{kcal} / \mathrm{mol}$
	$\frac{(0.12375) \mathrm{LP} *(1) \mathrm{U} 1}{\mathrm{~s}(0.33 \%) \mathrm{p} 0.60(0.20 \%) \mathrm{d} 99.99(57.42 \%) \mathrm{f} 99.99(}$	12.65
$\begin{aligned} & \underline{(0.84547) \mathrm{LP}(1) \mathrm{N} 21} \\ & \mathrm{~s}(78.62 \%) \mathrm{p} 0.27(21.34 \%) \mathrm{d} 0.00(0.04 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \underline{(0.08514) \mathrm{LP} *(5) \mathrm{U} 1} \\ & \mathrm{~s}(0.18 \%) \mathrm{p} 12.19(2.21 \%) \mathrm{d} 99.99(63.71 \%) \mathrm{f} 99.99(\\ & 33.90 \%) \mathrm{g} 0.04(0.01 \%) \end{aligned}$	7.38
	(0.22822) LP* (2)Mo 2 $\text { s(37.59\%)p 0.69(} 25.92 \%) d \text { 0.97(36.49\%) }$	6.54

$(0.83262) \mathrm{BD}(3) \mathrm{U} \quad 1-\mathrm{N} 21$ $\begin{gathered} \text { (20.20\%) } 0.4495 * \mathrm{U} 1 \mathrm{~s}(0.17 \%) \mathrm{p} 8.84(1.54 \%) \mathrm{d} 99.99(\\ 43.36 \%) \mathrm{f} 99.99(54.88 \%) \mathrm{g} 0.24(0.04 \%) \\ (79.80 \%) 0.8933 * \mathrm{~N} 21 \mathrm{~s}(7.47 \%) \mathrm{p} 12.37(92.36 \%) \mathrm{d} 0.02(\\ 0.17 \%) \end{gathered}$	$\begin{gathered} (0.22822) \mathrm{LP} *(2) \mathrm{Mo} \mathrm{2} \\ \mathrm{~s}(37.59 \%) \mathrm{p} 0.69(25.92 \%) \mathrm{d} 0.97(36.49 \%) \end{gathered}$	40.58
(0.83262) BD (3) U $1-\mathrm{N} 21$ $\begin{gathered} (20.20 \%) \quad 0.4495 * \mathrm{U} \quad 1 \mathrm{~s}(0.17 \%) \mathrm{p} 8.84(1.54 \%) \mathrm{d} 99.99(\\ 43.36 \%) \mathrm{f} 99.99(54.88 \%) \mathrm{g} 0.24(0.04 \%) \\ (79.80 \%) \quad 0.8933 * \mathrm{~N} 21 \mathrm{~s}(7.47 \%) \mathrm{p} 12.37(92.36 \%) \mathrm{d} 0.02(\\ 0.17 \%) \end{gathered}$	(0.16714) LP* (3)Mo 2 s(11.48\%)p 6.04(69.36\%)d 1.67(19.16\%)	19.71
$\begin{gathered} \hline \frac{(0.84547) \mathrm{LP}(1) \mathrm{N} 21}{} \\ \mathrm{~s}(78.62 \%) \mathrm{p} 0.27(21.34 \%) \mathrm{d} 0.00(0.04 \%) \end{gathered}$		34.94
$\frac{(0.84547) \mathrm{LP}(1) \mathrm{N} 21}{}$ $s(78.62 \%) \mathrm{p} 0.27(21.34 \%) \mathrm{d} 0.00(0.04 \%)$	$(0.16714) \mathrm{LP}^{*}(3) \mathrm{Mo} \mathrm{2}$ $\mathrm{s}(11.48 \%) \mathrm{p} 6.04(69.36 \%) \mathrm{d} 1.67(19.16 \%)$	21.63

$\text { (0.16714) LP*(3)Mo } 2$ $\text { s(} 11.48 \%) p \text { 6.04(69.36\%)d } 1.67(19.16 \%)$	$\begin{array}{r} (0.05464) \mathrm{LP} *(6) \mathrm{U} 1 \\ \mathrm{~s}(2.17 \%) \mathrm{p} 37.80(81.86 \%) \mathrm{d} 3.67(7.94 \%) \mathrm{f} 3.71(\\ 8.03 \%) \mathrm{g} 0.00(0.01 \%) \end{array}$	38.92
$\text { (0.16714) LP* }(3) \mathrm{Mo} 2$ s(11.48\%)p 6.04(69.36\%)d 1.67(19.16\%)	$\begin{array}{r} (0.03593) \mathrm{LP} *(8) \mathrm{U} 1 \\ \mathrm{~s}(6.22 \%) \mathrm{p} 3.53(21.95 \%) \mathrm{d} 3.35(20.81 \%) \mathrm{f} 8.20(\\ 50.99 \%) \mathrm{g} 0.01(0.04 \%) \end{array}$	28.11
$\begin{gathered} \frac{(0.16714) \mathrm{LP}^{*}(3) \mathrm{Mo} 2}{} \\ \mathrm{~s}(11.48 \%) \mathrm{p} 6.04(69.36 \%) \mathrm{d} 1.67(19.16 \%) \end{gathered}$	$\begin{gathered} \underline{(0.03280) \mathrm{LP} *(9) \mathrm{U} 1} \\ \mathrm{~s}(79.76 \%) \mathrm{p} 0.05(3.68 \%) \mathrm{d} 0.05(4.26 \%) \mathrm{f} 0.15(\\ 12.29 \%) \mathrm{g} 0.00(0.00 \%) \end{gathered}$	10.00

Figure S33: DFT computed MO's (a) HOMO-13 (b) HOMO-12 (c) HOMO-10 (d) HOMO-5 (e) HOMO4 (f) HOMO-3 (g) HOMO-2 (h) HOMO-1 (i) HOMO for ground spin state of 1

DFT optimized geometry of different spin states for 1
Doublet

U	13.373014000	7.508402000	14.309249000
Mo	14.054513000	10.438451000	15.203738000
P	12.592982000	11.984486000	13.784119000
P	16.535300000	10.911015000	14.833859000
Si	14.303842000	4.508047000	16.563289000
Si	9.766138000	6.142340000	14.379542000
Si	13.946501000	5.195736000	11.273678000
Na	12.416378000	4.304268000	13.901776000
O	14.066600000	5.744646000	15.517618000
O	15.896142000	4.116063000	16.845905000
O	13.599295000	4.678158000	18.058553000
O	13.466498000	3.210826000	15.844509000
O	11.302513000	6.667215000	14.581467000
O	8.967692000	6.754345000	13.051812000
O	9.944509000	4.482477000	14.043751000
O	8.741265000	6.423176000	15.664034000
O	13.469778000	6.064380000	12.570414000
O	15.588432000	4.968788000	11.109708000
O	13.447491000	5.742550000	9.779228000
O	13.307797000	3.656540000	11.634079000
N	14.034595000	9.038130000	13.553368000
C	17.050721000	4.105051000	15.989713000
C	16.714584000	3.502333000	14.626778000
H	17.611707000	3.446856000	14.002180000
H	15.978534000	4.111516000	14.095068000
H	16.315750000	2.490069000	14.740189000
C	18.087316000	3.243378000	16.713350000
H	17.718333000	2.221419000	16.842380000
H	18.301919000	3.657246000	17.703196000
H	19.021940000	3.204453000	16.144677000
C	17.560763000	5.536078000	15.837322000
H	18.468780000	5.562408000	15.225888000
H	17.789831000	5.970614000	16.814646000
H	16.801564000	6.155307000	15.354793000
C	13.947434000	5.220079000	19.343564000
C	12.928516000	6.317529000	19.654959000
H	13.093422000	6.725839000	20.657696000
H	11.912959000	5.914501000	19.608838000
H	13.006713000	7.136817000	18.935291000
C	15.366469000	5.781992000	19.374497000
H	15.492546000	6.574963000	18.632574000
H	16.101564000	5.003000000	19.165366000
H	15.572231000	6.207756000	20.362515000
C	13.816455000	4.081552000	20.359115000
H	14.001812000	4.448372000	21.374069000
H	14.539128000	3.287965000	20.147526000
H	12.810334000	3.652593000	20.329245000
C	13.212692000	1.911152000	16.440533000
C	13.007934000	0.944624000	15.276340000
H	12.809732000	-0.066447000	15.646415000
H	13.897999000	0.910437000	14.641560000
H	12.151785000	1.248025000	14.667380000

C $\quad 11.942831000 \quad 2.000619000 \quad 17.285896000$
$\begin{array}{lllll}\mathrm{H} & 11.101544000 & 2.332301000 & 16.671636000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 12.079374000 & 2.719225000 & 18.095567000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 11.694204000 & 1.022920000 & 17.712728000\end{array}$
$\begin{array}{lllll}\text { C } & 14.388920000 & 1.432273000 & 17.291960000\end{array}$
$\begin{array}{llll}\mathrm{H} & 14.158829000 & 0.445560000 & 17.707483000\end{array}$
$\begin{array}{llll}\mathrm{H} & 14.583896000 & 2.115286000 & 18.120487000\end{array}$
$\begin{array}{llll}\mathrm{H} & 15.300282000 & 1.350676000 & 16.695072000\end{array}$
$\begin{array}{lllll}\text { C } & 8.186413000 & 7.952095000 & 12.883307000\end{array}$
$\begin{array}{llll}\mathrm{C} & 6.751943000 & 7.678353000 & 13.340286000\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.315972000 & 6.857692000 & 12.761206000\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.126324000 & 8.565698000 & 13.195769000\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.737735000 & 7.408600000 & 14.398902000\end{array}$
$\begin{array}{llll}\mathrm{C} & 8.215796000 & 8.256704000 & 11.385515000\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.241552000 & 8.439245000 & 11.053511000\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.614133000 & 9.143207000 & 11.160183000\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.813630000 & 7.413223000 & 10.815698000\end{array}$
$\begin{array}{llll}\mathrm{C} & 8.793203000 & 9.106528000 & 13.672627000\end{array}$
$\begin{array}{llll}\mathrm{H} & 8.779242000 & 8.895851000 & 14.744665000\end{array}$
$\begin{array}{llll}\mathrm{H} & 8.231556000 & 10.030032000 & 13.505349000\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.828107000 & 9.280309000 & 13.366445000\end{array}$
$\begin{array}{llll}\text { C } & 8.922751000 & 3.579325000 & 13.540762000\end{array}$
$\begin{array}{llll}\mathrm{C} & 8.842704000 & 3.718501000 & 12.021514000\end{array}$
$\begin{array}{llll}\mathrm{H} & 8.544196000 & 4.732566000 & 11.750437000\end{array}$
$\begin{array}{llll}\mathrm{H} & 8.116628000 & 3.008835000 & 11.610113000\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.817097000 & 3.513810000 & 11.570382000\end{array}$
$\begin{array}{llll}\text { C } & 9.379862000 & 2.171658000 & 13.917233000\end{array}$
$\begin{array}{llll}\mathrm{H} & 10.343093000 & 1.939810000 & 13.453910000\end{array}$
$\begin{array}{llll}\mathrm{H} & 8.656641000 & 1.428163000 & 13.566963000\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.476736000 & 2.070783000 & 15.002011000\end{array}$
$\begin{array}{llll}\text { C } & 7.558590000 & 3.855710000 & 14.171726000\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.592536000 & 3.724100000 & 15.255872000\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.821071000 & 3.154564000 & 13.767244000\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.219801000 & 4.870443000 & 13.956284000\end{array}$
$\begin{array}{llll}\text { C } & 8.783995000 & 6.175042000 & 17.077559000\end{array}$
$\begin{array}{llll}\text { C } & 7.330902000 & 5.955426000 & 17.507064000\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.724095000 & 6.829357000 & 17.251550000\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.267510000 & 5.795387000 & 18.588246000\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.903164000 & 5.084130000 & 17.003655000\end{array}$
$\begin{array}{llll}\text { C } & 9.631039000 & 4.947441000 & 17.403008000\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.242519000 & 4.060783000 & 16.895350000\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.618874000 & 4.753991000 & 18.480734000\end{array}$
$\begin{array}{llll}\mathrm{H} & 10.671947000 & 5.093874000 & 17.101302000\end{array}$
$\begin{array}{lllll}\text { C } & 9.345836000 & 7.413209000 & 17.773779000\end{array}$
$\begin{array}{llll}\mathrm{H} & 10.391724000 & 7.569916000 & 17.501878000\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.290719000 & 7.304604000 & 18.862175000\end{array}$
$\begin{array}{llll}\mathrm{H} & 8.774640000 & 8.299776000 & 17.484779000\end{array}$
$\begin{array}{lllll}\text { C } & 16.586769000 & 5.644872000 & 10.322756000\end{array}$
$\begin{array}{lllll}\text { C } & 17.913519000 & 5.373047000 & 11.033208000\end{array}$
$\begin{array}{llll}\mathrm{H} & 17.891644000 & 5.777195000 & 12.048673000\end{array}$
$\begin{array}{llll}\mathrm{H} & 18.746021000 & 5.833443000 & 10.490994000\end{array}$
$\begin{array}{llll}\mathrm{H} & 18.097397000 & 4.295922000 & 11.096670000\end{array}$
$\begin{array}{lllll}\text { C } & 16.312803000 & 7.146055000 & 10.249412000\end{array}$
$\begin{array}{llll}\mathrm{H} & 15.390186000 & 7.339621000 & 9.698472000\end{array}$
$\begin{array}{llll}\mathrm{H} & 17.134411000 & 7.657193000 & 9.736234000\end{array}$
$\begin{array}{llll}\mathrm{H} & 16.213683000 & 7.573071000 & 11.249534000\end{array}$

C	16.607945000	5.040655000	8.917059000
H	16.810602000	3.965709000	8.962639000
H	17.391006000	5.508028000	8.310160000
H	15.646059000	5.199508000	8.422941000
C	12.243033000	6.372284000	9.317804000
C	11.014342000	5.715229000	9.938688000
H	11.004008000	4.643192000	9.722683000
H	10.097615000	6.154208000	9.532651000
H	10.997815000	5.856843000	11.022408000
C	12.238222000	6.184073000	7.799285000
H	13.139304000	6.621576000	7.358914000
H	11.364348000	6.668456000	7.351661000
H	12.213620000	5.120537000	7.543436000
C	12.299608000	7.857874000	9.668823000
H	12.382846000	7.994270000	10.750262000
H	11.400527000	8.374211000	9.315288000
H	13.169692000	8.326110000	9.199011000
C	13.589398000	2.404504000	10.962405000
C	14.913483000	1.847084000	11.486938000
H	15.130059000	0.874678000	11.031348000
H	14.866045000	1.715672000	12.571884000
H	15.728677000	2.537335000	11.262873000
C	13.643582000	2.579465000	9.444565000
H	14.444863000	3.259005000	9.150803000
H	12.699580000	2.977448000	9.063231000
H	13.824809000	1.609986000	8.968434000
C	12.440817000	1.462619000	11.319744000
H	12.588036000	0.483510000	10.852482000
H	11.485761000	1.867714000	10.972568000
H	12.386871000	1.310932000	12.401293000
C	12.259110000	10.705712000	16.483254000
C	12.623629000	9.322439000	16.530382000
H	11.859287000	8.563187000	16.352798000
C	13.983315000	8.945492000	16.889897000
H	14.263427000	7.896159000	16.984083000
C	14.937408000	9.970012000	17.195370000
C	14.516234000	11.336578000	17.261358000
H	15.231572000	12.096483000	17.549495000
C	13.202603000	11.701160000	16.904011000
H	12.907425000	12.743930000	16.912768000
C	10.970893000	11.243918000	15.968668000
C	9.804343000	11.173394000	16.738556000
H	9.825186000	10.620994000	17.673997000
C	8.646119000	11.836124000	16.338968000
H	7.746752000	11.774826000	16.946038000
C	8.658953000	12.607345000	15.178157000
H	7.770447000	13.155075000	14.874748000
C	9.817930000	12.683122000	14.406100000
H	9.813335000	13.309297000	13.519594000
C	10.976593000	11.981288000	14.765652000
C	12.071262000	11.307171000	12.073970000
H	11.736302000	10.299206000	12.349207000
C	10.941407000	12.013319000	11.327252000
H	9.996440000	11.990703000	11.873606000
H	10.772228000	11.509896000	10.367065000
H	11.185007000	13.056900000	11.096253000

C	13.299163000	11.133385000	11.179073000
H	13.685044000	12.090222000	10.815702000
H	13.027993000	10.541572000	10.298001000
H	14.086218000	10.602569000	11.717556000
C	12.748022000	13.872460000	13.491883000
H	11.864386000	14.154526000	12.905289000
C	12.174158000	14.656770000	14.804029000
H	11.811807000	14.454907000	15.387011000
H	12.743150000	15.732896000	14.593367000
H	13.583546000	14.423683000	15.426281000
C	14.001192000	14.234170000	12.695244000
H	14.897086000	13.836198000	13.181639000
H	14.107693000	15.324445000	12.635830000
H	13.977603000	13.850373000	11.673783000
C	16.395391000	9.736769000	17.387584000
C	16.886839000	9.138302000	18.552052000
H	16.183914000	8.813908000	19.313954000
C	18.257320000	8.970093000	18.743587000
H	18.625166000	8.496435000	19.649872000
C	19.150344000	9.415462000	17.771606000
H	20.220286000	9.282022000	17.908413000
C	18.669920000	10.031328000	16.616015000
H	19.380349000	10.352952000	15.860836000
C	17.295732000	10.204193000	16.406361000
C	17.617946000	10.066089000	13.521924000
H	18.653987000	10.357072000	13.732835000
C	17.517866000	8.549156000	13.634565000
H	17.831406000	8.197187000	14.619888000
H	18.163593000	8.073890000	12.886726000
H	16.487866000	8.224945000	13.458095000
C	17.242734000	10.554189000	12.123820000
H	16.202534000	10.303925000	11.900088000
H	17.877568000	10.069655000	11.372154000
H	17.367137000	11.635798000	12.008626000
C	17.229887000	12.698664000	14.721724000
H	16.834901000	13.012465000	13.746203000
C	16.625650000	13.611319000	15.785160000
H	15.536038000	13.538350000	15.803103000
H	16.897593000	14.655200000	15.587216000
H	17.004763000	13.358481000	16.782121000
C	18.749645000	12.869553000	14.697282000
H	19.198527000	12.588236000	15.654975000
H	18.994276000	13.925358000	14.526043000
H	19.238163000	12.296509000	13.904548000

Quartet

U	13.412578000	7.443300000	14.342736000
Mo	13.904430000	10.587536000	15.145470000
P	12.488985000	12.205732000	13.679962000
P	16.433644000	10.863413000	14.787832000
Si	14.293618000	4.440034000	16.669791000
Si	9.787616000	6.086277000	14.388640000
Si	14.107935000	5.158229000	11.271232000
Na	12.460031000	4.291079000	13.893578000
O	14.113243000	5.716812000	15.677375000
O	15.876762000	4.040803000	17.028480000

O	13.529715000	4.547386000	18.151121000
O	13.488616000	3.167166000	15.865979000
O	11.334336000	6.564500000	14.565510000
O	8.953670000	6.758223000	13.110359000
O	9.915471000	4.435945000	13.995187000
O	8.803132000	6.343314000	15.713402000
O	13.725636000	6.039243000	12.584814000
O	15.729460000	4.838888000	11.044763000
O	13.595833000	5.757835000	9.799317000
O	13.391000000	3.651479000	11.623755000
N	13.611483000	9.286794000	13.652090000
C	17.066156000	4.103946000	16.223424000
C	16.776234000	3.703195000	14.777447000
H	17.697060000	3.712729000	14.185794000
H	16.069443000	4.394733000	14.310967000
H	16.355553000	2.694371000	14.732946000
C	18.052208000	3.123738000	16.861745000
H	17.658804000	2.103460000	16.830031000
H	18.229402000	3.390037000	17.908258000
H	19.011091000	3.141014000	16.333517000
C	17.615187000	5.528109000	16.291195000
H	18.529315000	5.626154000	15.696167000
H	17.847245000	5.803261000	17.324424000
H	16.870934000	6.229508000	15.907634000
C	13.972304000	4.936799000	19.460989000
C	12.696449000	5.177520000	20.269907000
H	6.835000		
H	12.938090000	5.471849000	21.296518000
H	6.320662000	7.092310000	12.889783000
H	6.280648000	8.789548000	13.402494000
H	6.824006000	7.532107000	14.536925000
H	8.299734000	8.388127000	11.524049000
H	12.089343000	4.267770000	20.306266000
H	14.801789000	14.222164000	6.217752000

H	9.330028000	8.505772000	0
H	7.763167000	9.325955000	11.346927000
H	7.823148000	7.600917000	10.931338000
C	8.995471000	9.090407000	13.830067000
H	8.972531000	8.836663000	14.893009000
H	8.513898000	10.065462000	13.709818000
H	10.039131000	9.181636000	13.516156000
C	8.860555000	3.579212000	13.486549000
C	8.780080000	3.748571000	11.969603000
H	8.516419000	4.778153000	11.720526000
H	8.028327000	3.073484000	11.546101000
H	9.745616000	3.519410000	11.510653000
C	9.268213000	2.150498000	13.841366000
H	10.218279000	1.890181000	13.366042000
H	8.514560000	1.437547000	13.491507000
H	9.373632000	2.035778000	14.924292000
C	7.507881000	3.898145000	14.124828000
H	7.540384000	3.765426000	15.208913000
H	6.745969000	3.223147000	13.720785000
H	7.204041000	4.924541000	13.911392000
C	8.933225000	6.094702000	17.119751000
C	7.503198000	6.079063000	17.665097000
H	7.007822000	7.032811000	17.459141000
H	7.501235000	5.914290000	18.747424000
H	6.920746000	5.283075000	17.191964000
C	9.622953000	4.758715000	17.386513000
H	9.078183000	3.937279000	16.913301000
H	9.668773000	4.563381000	18.462688000
H	10.648606000	4.765364000	17.008462000
C	9.728847000	7.232667000	17.757974000
H	10.760983000	7.219784000	17.400414000
H	9.743902000	7.132533000	18.848469000
H	9.280874000	8.198808000	17.507206000
C	16.743292000	5.451097000	10.230703000
C	18.069376000	5.129609000	10.922768000
H	18.087006000	5.557080000	11.929256000
H	18.913728000	5.534779000	10.355322000
H	18.199961000	4.046561000	11.010479000
C	16.544805000	6.962903000	10.132221000
H	15.619461000	7.193774000	9.600962000
H	17.379882000	7.421315000	9.591336000
H	16.492857000	7.408630000	11.127480000
C	16.710773000	4.825207000	8.834614000
H	16.855102000	3.741712000	8.894232000
H	17.508029000	5.240014000	8.208229000
H	15.751257000	5.029180000	8.352218000
C	12.405657000	6.458347000	9.405879000
C	11.172303000	5.852042000	10.069434000
H	11.096784000	4.786565000	9.835080000
H	10.262437000	6.345236000	9.713838000
H	11.209712000	5.971088000	11.155423000
C	12.322805000	6.299985000	7.886001000
H	13.225356000	6.698370000	7.412507000
H	11.456634000	6.837620000	7.486766000
H	12.230799000	5.244266000	7.613423000
C	12.552648000	7.933369000	9.777968000

$\begin{array}{llll}\mathrm{H} & 12.681754000 & 8.055249000 & 10.857004000\end{array}$
$\begin{array}{llll}\mathrm{H} & 11.667168000 & 8.497837000 & 9.465430000\end{array}$
$\begin{array}{llll}\mathrm{H} & 13.425578000 & 8.365571000 & 9.278648000\end{array}$
$\begin{array}{lllll}\text { C } & 13.591791000 & 2.397167000 & 10.928861000\end{array}$
$\begin{array}{llll}\text { C } & 14.894315000 & 1.762321000 & 11.419505000\end{array}$
$\begin{array}{llll}\mathrm{H} & 15.048868000 & 0.784914000 & 10.949610000\end{array}$
$\begin{array}{llll}\mathrm{H} & 14.862320000 & 1.621433000 & 12.503949000\end{array}$
H $\quad 15.740741000 \quad 2.410673000 \quad 11.186400000$
$\begin{array}{llll}\text { C } & 13.625564000 & 2.591408000 & 9.412706000\end{array}$
$\begin{array}{llll}\mathrm{H} & 14.456885000 & 3.229920000 & 9.111668000\end{array}$
$\begin{array}{llll}\mathrm{H} & 12.697614000 & 3.046767000 & 9.057112000\end{array}$
$\begin{array}{llll}\mathrm{H} & 13.743093000 & 1.620576000 & 8.919527000\end{array}$
$\begin{array}{llll}\text { C } & 12.400408000 & 1.512913000 & 11.292843000\end{array}$
$\begin{array}{llll}\mathrm{H} & 12.487331000 & 0.533934000 & 10.810368000\end{array}$
$\begin{array}{llll}\mathrm{H} & 11.464021000 & 1.973970000 & 10.965394000\end{array}$
$\begin{array}{llll}\mathrm{H} & 12.353604000 & 1.349748000 & 12.372623000\end{array}$
$\begin{array}{llll}\text { C } & 12.131268000 & 11.001372000 & 16.427351000\end{array}$
$\begin{array}{llll}\text { C } & 12.443153000 & 9.622226000 & 16.566223000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 11.685368000 & 8.888959000 & 16.298435000\end{array}$
$\begin{array}{llll}\text { C } & 13.792190000 & 9.186284000 & 16.894009000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 14.021889000 & 8.140196000 & 17.087760000\end{array}$
$\begin{array}{lllll}\text { C } & 14.780981000 & 10.200359000 & 17.179534000\end{array}$
$\begin{array}{lllll}\mathrm{C} & 14.404908000 & 11.575053000 & 17.222458000\end{array}$
$\begin{array}{llll}\mathrm{H} & 15.154718000 & 12.315031000 & 17.472382000\end{array}$
$\begin{array}{llll}\text { C } & 13.125058000 & 11.986459000 & 16.790200000\end{array}$
$\begin{array}{llll}\mathrm{H} & 12.864112000 & 13.036910000 & 16.766774000\end{array}$
$\begin{array}{lllll}\text { C } & 10.859836000 & 11.549424000 & 15.888366000\end{array}$
$\begin{array}{lllll}\text { C } & 9.679163000 & 11.494550000 & 16.638012000\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.680161000 & 10.954900000 & 17.581326000\end{array}$
$\begin{array}{lllll}\text { C } & 8.530210000 & 12.151378000 & 16.204139000\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.619340000 & 12.100350000 & 16.794512000\end{array}$
$\begin{array}{lllll}\text { C } & 8.564228000 & 12.899925000 & 15.028825000\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.681343000 & 13.440439000 & 14.697964000\end{array}$
$\begin{array}{lllll}\text { C } & 9.735350000 & 12.955571000 & 14.273509000\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.746271000 & 13.551461000 & 13.366295000\end{array}$
$\begin{array}{lllll}\text { C } & 10.884906000 & 12.258065000 & 14.667831000\end{array}$
$\begin{array}{lllll}\text { C } & 11.970350000 & 11.453608000 & 12.010957000\end{array}$
$\begin{array}{llll}\mathrm{H} & 11.834180000 & 10.409920000 & 12.319322000\end{array}$
$\begin{array}{lllll}\text { C } & 10.701806000 & 11.970433000 & 11.339538000\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.808915000 & 11.801540000 & 11.944358000\end{array}$
$\begin{array}{llll}\mathrm{H} & 10.556347000 & 11.442430000 & 10.388597000\end{array}$
H $\quad 10.761052000 \quad 13.039408000 \quad 11.098956000$
$\begin{array}{llll}\text { C } & 13.146688000 & 11.465186000 & 11.032620000\end{array}$
$\begin{array}{llll}\mathrm{H} & 13.278610000 & 12.446065000 & 10.563393000\end{array}$
$\begin{array}{llll}\mathrm{H} & 12.957257000 & 10.747332000 & 10.227650000\end{array}$
H $\quad 14.074891000 \quad 11.169963000 \quad 11.526582000$
$\begin{array}{lllll}\text { C } & 12.730119000 & 14.068991000 & 13.312000000\end{array}$
$\begin{array}{llll}\mathrm{H} & 11.935003000 & 14.336931000 & 12.603169000\end{array}$
$\begin{array}{lllll}\text { C } & 12.580141000 & 14.937752000 & 14.562460000\end{array}$
$\begin{array}{llll}\mathrm{H} & 11.614850000 & 14.805072000 & 15.056643000\end{array}$
$\begin{array}{llll}\mathrm{H} & 12.677555000 & 15.996311000 & 14.292003000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 13.369558000 & 14.716073000 & 15.288473000\end{array}$
$\begin{array}{lllll}\text { C } & 14.087043000 & 14.346875000 & 12.661720000\end{array}$
$\begin{array}{llll}\mathrm{H} & 14.898330000 & 14.080243000 & 13.345488000\end{array}$
$\begin{array}{llll}\mathrm{H} & 14.180543000 & 15.416475000 & 12.436190000\end{array}$
$\begin{array}{llll}\mathrm{H} & 14.240468000 & 13.796572000 & 11.732847000\end{array}$

C	16.217296000	9.889366000	17.401457000
C	16.662843000	9.329155000	18.602263000
H	15.937899000	9.095343000	19.376604000
C	18.018460000	9.078923000	18.808860000
H	18.352884000	8.640243000	19.745019000
C	18.940728000	9.393427000	17.812583000
H	19.998247000	9.193619000	17.963485000
C	18.50680700	9.960292000	16.614962000
H	19.237515000	10.177870000	15.842180000
C	17.147413000	10.217910000	16.393309000
C	17.433585000	9.881770000	13.510419000
H	18.491414000	10.082448000	13.718123000
C	17.185241000	8.388614000	13.680302000
H	17.379144000	8.056486000	14.702489000
H	17.838215000	7.815651000	13.012534000
H	16.146371000	8.152428000	13.422699000
C	17.103350000	10.346946000	12.092949000
H	16.045576000	10.172377000	11.874961000
H	17.695290000	9.782661000	11.362985000
H	17.318274000	11.408820000	11.936621000
C	17.207867000	12.603006000	14.561875000
H	16.802494000	12.890322000	13.582467000
C	16.680784000	13.594898000	15.595614000
H	15.588410000	13.594990000	15.631607000
H	17.016915000	14.609498000	15.350209000
H	17.058842000	13.358024000	16.596837000
C	18.733789000	12.679474000	14.493797000
H	19.189694000	12.410746000	15.451832000
H	19.038345000	13.709543000	14.270845000
H	19.164071000	12.043467000	13.715448000

Sextet

U	13.271022000	7.124100000	14.246696000
Mo	13.935046000	10.856655000	15.628639000
P	12.727015000	12.115498000	13.715185000
P	16.494950000	11.150479000	15.493870000
Si	14.512448000	4.145821000	16.265674000
Si	9.660593000	5.875858000	14.465981000
Si	13.731964000	5.196924000	10.979681000
Na	12.285300000	4.065122000	13.746105000
O	14.314970000	5.393050000	15.244269000
O	16.092355000	3.642606000	16.478736000
O	13.928081000	4.365632000	17.813792000
O	13.537656000	2.906217000	15.615603000
O	11.211332000	6.320328000	14.668695000
O	8.841764000	6.572646000	13.190278000
O	9.775489000	4.229810000	14.043274000
O	8.683395000	6.127684000	15.798360000
O	13.254508000	6.148328000	12.204416000
O	15.377614000	4.977263000	10.805859000
O	13.199574000	5.673478000	9.466832000
O	13.139970000	3.654818000	11.401140000
N	13.867563000	9.232744000	14.694186000
C	17.184885000	3.524493000	15.554219000
C	16.715319000	2.931193000	14.227508000
H	17.563519000	2.787247000	13.550415000

$\begin{array}{llll}\mathrm{H} & 16.001700000 & 3.596138000 & 13.733205000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 16.237228000 & 1.960685000 & 14.388159000\end{array}$
$\begin{array}{lllll}\text { C } & 18.195054000 & 2.594658000 & 16.229118000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 17.757232000 & 1.606161000 & 16.397585000\end{array}$
$\begin{array}{llll}\mathrm{H} & 18.498427000 & 3.003207000 & 17.197801000\end{array}$
$\begin{array}{llll}\mathrm{H} & 19.088750000 & 2.476175000 & 15.607807000\end{array}$
$\begin{array}{lllll}\text { C } & 17.796980000 & 4.906762000 & 15.332578000\end{array}$
$\begin{array}{llll}\mathrm{H} & 18.651936000 & 4.848944000 & 14.650212000\end{array}$
$\begin{array}{llll}\mathrm{H} & 18.144079000 & 5.328961000 & 16.280826000\end{array}$
$\begin{array}{llll}\mathrm{H} & 17.050623000 & 5.580340000 & 14.905465000\end{array}$
$\begin{array}{lllll}\text { C } & 14.516868000 & 5.053283000 & 18.931483000\end{array}$
$\begin{array}{lllll}\text { C } & 13.342764000 & 5.576592000 & 19.759718000\end{array}$
$\begin{array}{llll}\mathrm{H} & 13.698224000 & 6.079982000 & 20.664812000\end{array}$
H $\quad 12.690008000 \quad 4.750196000 \quad 20.057547000$
$\begin{array}{lllll}\mathrm{H} & 12.749624000 & 6.286699000 & 19.175974000\end{array}$
$\begin{array}{lllll}\text { C } & 15.400189000 & 6.212366000 & 18.469377000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 14.840283000 & 6.889942000 & 17.818503000\end{array}$
$\begin{array}{llll}\mathrm{H} & 16.263812000 & 5.841437000 & 17.911688000\end{array}$
$\begin{array}{llll}\mathrm{H} & 15.766772000 & 6.783473000 & 19.328435000\end{array}$
$\begin{array}{lllll}\text { C } & 15.336749000 & 4.045937000 & 19.740851000\end{array}$
$\begin{array}{llll}\mathrm{H} & 15.778793000 & 4.521984000 & 20.622895000\end{array}$
$\begin{array}{llll}\mathrm{H} & 16.140092000 & 3.635824000 & 19.123585000\end{array}$
$\begin{array}{llll}\mathrm{H} & 14.699951000 & 3.222543000 & 20.080361000\end{array}$
$\begin{array}{lllll}\text { C } & 13.213815000 & 1.636518000 & 16.238182000\end{array}$
$\begin{array}{llll}\text { C } & 12.880357000 & 0.679407000 & 15.094882000\end{array}$
H $\quad 12.611596000 \quad-0.307748000 \quad 15.484635000$
$\begin{array}{llll}\mathrm{H} & 13.737078000 & 0.563329000 & 14.424575000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 12.028207000 & 1.048571000 & 14.515894000\end{array}$
C $\quad 11.996868000 \quad 1.831161000 \quad 17.142131000$
$\begin{array}{lllll}\mathrm{H} & 11.150115000 & 2.213837000 & 16.565459000\end{array}$
$\begin{array}{llll}\mathrm{H} & 12.228234000 & 2.548546000 & 17.932077000\end{array}$
$\begin{array}{llll}\mathrm{H} & 11.699797000 & 0.880546000 & 17.598702000\end{array}$
$\begin{array}{llll}\text { C } & 14.386690000 & 1.077418000 & 17.044423000\end{array}$
$\begin{array}{llll}\mathrm{H} & 14.106374000 & 0.108046000 & 17.470045000\end{array}$
$\begin{array}{llll}\mathrm{H} & 14.657200000 & 1.746042000 & 17.863938000\end{array}$
$\begin{array}{llll}\mathrm{H} & 15.267448000 & 0.934603000 & 16.413778000\end{array}$
$\begin{array}{llll}\text { C } & 8.178687000 & 7.847399000 & 13.100936000\end{array}$
$\begin{array}{llll}\mathrm{C} & 6.747549000 & 7.695384000 & 13.620803000\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.209435000 & 6.940658000 & 13.037985000\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.203675000 & 8.642488000 & 13.536866000\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.758148000 & 7.386153000 & 14.668649000\end{array}$
$\begin{array}{llll}\text { C } & 8.169147000 & 8.202490000 & 11.613792000\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.191606000 & 8.295447000 & 11.237180000\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.648004000 & 9.150503000 & 11.444830000\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.661032000 & 7.421786000 & 11.039253000\end{array}$
$\begin{array}{lllll}\text { C } & 8.931140000 & 8.912934000 & 13.895420000\end{array}$
$\begin{array}{llll}\mathrm{H} & 8.939582000 & 8.667690000 & 14.960628000\end{array}$
$\begin{array}{llll}\mathrm{H} & 8.458523000 & 9.892809000 & 13.777810000\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.966634000 & 8.990895000 & 13.551251000\end{array}$
$\begin{array}{llll}\text { C } & 8.708150000 & 3.375979000 & 13.559082000\end{array}$
$\begin{array}{llll}\text { C } & 8.585880000 & 3.557240000 & 12.046246000\end{array}$
$\begin{array}{llll}\mathrm{H} & 8.323093000 & 4.590667000 & 11.812322000\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.818228000 & 2.890592000 & 11.638211000\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.536877000 & 3.325035000 & 11.558501000\end{array}$
$\begin{array}{llll}\text { C } & 9.127450000 & 1.944946000 & 13.891580000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 10.065896000 & 1.688508000 & 13.390072000\end{array}$

H	8.366742000	1.232919000	13.555516000
H	9.261600000	1.822118000	14.970285000
C	7.377563000	3.691591000	14.242985000
H	7.453640000	3.572153000	15.326669000
H	6.604760000	3.008837000	13.874138000
H	7.059680000	4.714586000	14.031662000
C	8.955873000	6.019073000	17.204526000
C	7.585750000	5.987877000	17.884291000
H	7.017497000	6.889631000	17.636636000
H	7.693212000	5.934431000	18.972514000
H	7.010861000	5.119161000	17.549491000
C	9.733056000	4.740607000	17.510357000
H	9.184433000	3.862650000	17.156871000
H	9.887906000	4.634914000	18.589040000
H	10.715564000	4.758001000	17.031006000
C	9.747844000	7.246079000	17.657366000
H	10.706380000	7.283265000	17.132394000
H	9.939022000	7.211092000	18.735099000
H	9.191223000	8.162634000	17.437693000
C	16.367980000	5.804963000	10.172695000
C	17.690416000	5.465052000	10.861147000
H	17.636882000	5.706343000	11.926602000
H	18.516801000	6.028949000	10.415916000
H	17.908101000	4.397300000	10.761605000
C	16.045710000	7.288395000	10.352626000
H	15.098845000	7.539147000	9.866699000
H	16.831593000	7.906520000	9.905572000
H	13.531210000	2.561378000	9.221897000
H	15.971469000	7.542119000	11.413922000
H	14.355651000	3.225014000	8.953522000
H	16.430708000	5.444507000	8.686553000
H	13.610033000	2.973462000	8.803157000
H	12.712966000	1.584444000	8.761442000
H	12.250357000	1.474413000	11.068542000
H	17.204799000	6.9361000	0.490398000

H	000	000	000
H	12.164804000	1.326940000	12.149624000
C	12.057235000	11.595191000	16.586800000
C	12.295496000	10.287269000	17.112961000
H	11.575970000	9.496607000	16.930830000
C	13.553339000	9.977418000	17.707866000
H	13.784761000	8.954502000	17.983120000
C	14.570285000	10.983396000	17.787116000
C	14.205203000	12.354090000	17.533106000
H	14.921456000	13.139672000	17.740484000
C	12.974501000	12.658042000	16.940062000
H	12.728730000	13.682035000	16.681707000
C	10.854595000	11.982742000	15.804926000
C	9.596069000	12.070973000	16.409342000
H	9.488191000	11.771095000	17.448463000
C	8.501162000	12.563337000	15.701986000
H	7.527513000	12.623791000	16.180738000
C	8.667649000	13.006334000	14.391183000
H	7.826061000	13.419844000	13.841771000
C	9.918770000	12.918678000	13.780508000
H	10.031313000	13.283193000	12.764746000
C	11.016179000	12.374124000	14.459338000
C	12.402640000	11.038833000	12.172716000
H	11.881391000	10.187207000	12.629508000
C	11.532541000	11.620332000	11.060312000
H	10.518225000	11.850768000	11.392233000
H	11.446327000	10.886403000	10.249898000
H	11.969543000	12.524844000	10.621856000
C	13.729707000	10.513933000	11.620937000
H	14.316769000	11.299598000	11.135512000
H	13.534864000	9.743062000	10.867625000
H	14.317030000	10.066313000	12.426526000
C	13.024910000	13.861828000	13.001028000
H	12.208605000	14.020663000	12.284564000
C	12.928004000	14.947518000	14.072500000
H	11.970569000	14.924084000	14.599914000
H	13.028628000	15.935742000	13.607468000
H	13.729788000	14.852207000	14.811010000
C	14.355497000	13.957872000	12.255113000
H	15.188718000	13.665737000	12.902520000
H	14.530921000	14.990626000	11.929754000
H	14.384260000	13.324632000	11.365640000
C	15.967516000	10.709497000	18.215523000
C	16.264714000	10.367363000	19.538183000
H	15.453209000	10.285459000	20.256621000
C	17.581466000	10.137133000	19.934210000
H	17.799624000	9.865498000	20.963535000
C	18.613744000	10.257054000	19.006472000
H	19.642095000	10.071939000	19.305191000
C	18.327303000	10.602968000	17.686082000
H	19.142282000	10.663882000	16.971738000
C	17.009155000	10.831095000	17.270762000
C	17.634308000	9.959655000	14.551694000
H	18.658042000	10.169956000	14.884825000
C	17.293064000	8.514783000	14.897844000
H	17.401790000	8.312752000	15.967052000

H	17.960191000	7.834455000	14.355949000
H	16.257517000	8.295070000	14.616172000
C	17.545623000	10.209350000	13.046365000
H	16.516507000	10.095239000	12.694686000
H	18.165159000	9.480649000	12.510324000
H	17.895486000	11.206672000	12.761972000
C	17.298601000	12.827739000	15.038674000
H	17.049355000	12.900939000	13.971439000
C	16.623275000	13.992700000	15.754714000
H	15.537076000	13.945277000	15.646204000
H	16.973451000	14.946122000	15.341380000
H	16.863336000	13.990492000	16.823998000
C	18.817155000	12.922972000	15.190318000
H	19.115836000	12.862687000	16.241879000
H	19.163658000	13.892492000	14.811478000
H	19.355314000	12.149814000	14.634773000

References

1. V. Mougel, C. Camp, J. Pécaut, C. Copéret, L. Maron, C. E. Kefalidis, M. Mazzanti, Angew. Chem. Int. Ed. 2012, 51, 12280
2. Buss, Joshua Alan, Molybdenum Para-Terphenyl Diphosphine Complexes, Doctoral dissertation, Caltech, 2018
3. J. A. Buss, C. Cheng, T. Agapie, Angew. Chem. Int. Ed. 2018, 57, 9670-9674
4. CrysAlis ${ }^{\text {Pro }}$ Software System, Rigaku Oxford diffraction 2021, V1.171.41.99a
5. Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst. 2015, C71, 3-8.
6. Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, Acta Cryst. 2015, A71, 3-8.
8.(a) N. Cox, A. Nalepa, M.-E. Pandelia, W. Lubitz, A. Savitsky, Meth. Enzymol. 2015, 563, 211 - 249;
(b) D. Goldfarb, S. Stoll, EPR spectroscopy: fundamentals and methods, eMagRes Books and Wiley, New York, N. Y., 2018.
7. (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; (b) K. Burke, J. P. Perdew, W. Yang, In Electronic Density Functional Theory: Recent Progress and New Directions, Eds: J. F. Dobson, G. Vignale, M. P. Das, Plenum, New York, 1998
8. (a) A. Moritz, X. Cao and M. Dolg, Theor. Chem. Acc. 2007, 118, 845; (b) A. Hollwarth, M. Bohme, S. Dapprich, A.W. Ehlers, A. Gobbi, V. Jonas, K.F. Kohler, R. Stegmann, A. Veldkamp, G. Frenking J. Chem. Phys. 1993, 208, 237.
9. (a) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 1973, 28, 213; (b) W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
10. Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
