Supporting Information

H/F Substitution Induced Switchable Coordination Bonds in a Cyano-

Bridged Hybrid Double Perovskite Ferroelastic

Xiao-Gang Chen,^a Zhi-Xu Zhang,^b Yu-Ling Zeng,^a Shu-Yu Tang,^a Ren-Gen Xiong*ab

^aOrdered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China Email: xiongrg@seu.edu.cn

^bJiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.

Methods

Single-crystal X-ray diffraction. Single-crystal X-ray diffraction data were measured using a Rigaku Saturn 924 diffractometer with Mo-K α radiation ($\lambda = 0.71073$ Å). Data collection, cell refinement, and data reduction was performed using Rigaku CrystalClear 1.3.5. The structures were solved by direct methods and refined by the full-matrix method based on F^2 using the SHELXTL software package. All non-hydrogen atoms were refined anisotropically and the positions of all hydrogen atoms were generated geometrically. The data collection and structure refinement of these crystals are summarized in Table S1. The X-ray crystallographic structures have been deposited at the Cambridge Crystallographic Data Centre (deposition numbers CCDC 2131140-2131141) and can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/getstructures.

Powder X-ray diffraction. Powder X-ray diffraction (PXRD) data were measured using a Rigaku D/MAX 2000 PC X-ray diffraction system with Cu K α radiation in the 2 θ range of 5°–40° with a step size of 0.02°.

DSC and dielectric measurements. Differential scanning calorimetry (DSC) measurements were recorded on a NETZSCH DSC 200F3 instrument by heating and cooling crystalline samples with a rate of 10 K min⁻¹ in aluminum crucibles at nitrogen atmosphere. Complex dielectric permittivities were measured with a TH2828A impedance analyzer. The samples were made with a pressed-powder pellet for dielectric measurements. Silver conductive paste deposited on the plate surfaces of samples was used as top and bottom electrodes.

Materials.

Synthesis of TMFM-Cl. Trimethylfluoromethyl ammonium chloride (TMFM-Cl) was synthesized by the reaction of equimolar amounts of trimethylamine (200 mmol, 30 wt % in water) and chlorofluoromethane (200 mmol) in ethanol (200 ml) at room temperature for 72h with stirring. Colorless solid samples of TMFM-Cl (70% yield) were obtained after the removal of the solvents under reduced pressure. Dried sample of TMFM-Cl was stored in a vacuum desiccator.

Fig. S1 PXRD patterns of TMFM-1 in (a) HTP and (b) LTP match well with those simulated from the single-crystal structures.

Fig. S2 TGA curve of TMFM-1.

Fig. S3 PXRD patterns of TMFM-1 recorded after 10/60 days upon exposure to air at room temperature.

Fig. S4 Variable temperature PXRD patterns of TMFM-1.

Fig. S5 (a, b) The observation of ferroelastic domains variation at 243 K before (a) and after (b) applying external strain. (c, d) Crystal surface morphology variation before (c) and after (d) applying external strain. The circle " \times " indicates the position where the force is applied, the scale bar is 200 µm. There is a clear ferroelastic domains change at the red circle A and B, after applying external strain.

Fig. S6 The single crystal with a crystallographic orientation perpendicular to the (111) plane (a) and the simulated morphology of $[(CH_3)_3NCH_2F]_2[KFe(CN)_6]$ at 300 K.

Temperature	243 K	300 K
Formula	[(CH ₃) ₃ NCH ₂ F] ₂ [KFe(CN) ₆]	$[(CH_3)_3NCH_2F]_2[KFe(CN)_6]$
Weight	435.35	435.35
System	Monoclinic	Cubic
Space group	C2/c	Fm-3m
<i>a</i> (Å)	15.210(3)	12.4857(3)
b (Å)	8.7181(11)	12.4857(3)
c (Å)	15.206(3)	12.4857(3)
α (°)	90.00	90.00
eta (°)	109.26(2)	90.00
γ (°)	90.00	90.00
V (Å ³)	1903.5(6)	1946.43(14)
Ζ	4	4
R_I	0.1657	0.0424
wR_2	0.3018	0.1369
GOF	1.057	1.046

Table S1. Crystal data and structural refinements for TMFM-1 at 243 K and 300 K.

Compound	Symmetry change	Ferroelastic domain	Reference
[CH ₃ NH ₃] ₂ [KFe(CN) ₆]	<i>m</i> -3 <i>m</i> F2/ <i>m</i>	not observed	1
[(CH ₃) ₂ NH ₂] ₂ [KFe(CN) ₆]	<i>m-3m</i> F4/ <i>mmm</i>	not observed	1
[(CH ₃) ₃ NH] ₂ [KFe(CN) ₆]	<i>m</i> -3 <i>m</i> F2/ <i>m</i>	not observed	1
[(CH ₃) ₄ N] ₂ [KFe(CN) ₆]	<i>m</i> -3 <i>m</i> to 4/ <i>m</i>	non-ferroelastic	1
[formamidinium] ₂ [KFe(CN) ₆]	<i>m</i> -3 <i>m</i> F-1	not observed	2
[formamidinium] ₂ [KCo(CN) ₆]	<i>m</i> -3 <i>m</i> F-1	not observed	2
[(CH ₃) ₃ NOH] ₂ [KFe(CN) ₆]	<i>m</i> -3 <i>m</i> to <i>m</i>	not observed	3, 4
$[C(NH_2)_3]_2[KFe(CN)_6]$	<i>m</i> -3 <i>m</i> F-3 <i>m</i>	not observed	5
[CH ₃ C(NH ₂) ₂] ₂ [KFe(CN) ₆]	<i>m</i> -3 <i>m</i> F-3 <i>m</i> , <i>m</i> -3 <i>m</i> F2/ <i>m</i>	observed	5, 6
[CH ₃ C(NH ₂) ₂] ₂ [KCo(CN) ₆]	<i>m</i> -3 <i>m</i> F-3 <i>m</i> , <i>m</i> -3 <i>m</i> F2/ <i>m</i>	observed	6
[CH ₃ C(NH ₂) ₂] ₂ [KCr(CN) ₆]	<i>m</i> -3 <i>m</i> F-3 <i>m</i> , <i>m</i> -3 <i>m</i> F2/ <i>m</i>	observed	6
(imidazolium) ₂ [KFe(CN) ₆]	-3 <i>m</i> F2/ <i>m</i>	not observed	7
(imidazolium)2[KCo(CN)6]	-3 <i>m</i> F2/ <i>m</i>	not observed	8
(imidazolium) ₂ [KFe _{0.42} Co _{0.58} (CN) ₆]	-3 <i>m</i> F2/ <i>m</i>	observed	9
[(CH ₃) ₃ NH] ₂ [KCo(CN) ₆]	<i>m</i> -3 <i>m</i> F2/ <i>m</i>	not observed	10
[(CH ₃) ₂ NH ₂] ₂ [KCo(CN) ₆]	4/mmm to 4/mmm	non-ferroelastic	11
[(CH ₃) ₂ ND ₂] ₂ [KCo(CN) ₆]	4/mmm to 4/mmm	non-ferroelastic	11
[CH ₃ NH ₃] ₂ [KCo(CN) ₆]	<i>m</i> -3 <i>m</i> F2/ <i>m</i>	not observed	12
[CH ₃ NH ₃] ₂ [NaCo(CN) ₆]	<i>m</i> -3 <i>m</i> F2/ <i>m</i>	not observed	13
[C ₃ H ₆ NH ₂] ₂ [KCo(CN) ₆]	<i>m</i> -3 <i>m</i> to <i>m</i> -3 <i>m</i>	non-ferroelastic	14
[CH ₃ NH ₃] ₂ [KCr(CN) ₆]	<i>m</i> -3 <i>m</i> F2/ <i>m</i>	observed	15
[(CH ₃) ₂ NH ₂] ₂ [KCr(CN) ₆]	m-3mF4/mmm	observed	16
(imidazolium)2[RbCo(CN)6]	3 <i>m</i> to 3 to 2/ <i>m</i>	non-ferroelastic	17
[(CH ₃) ₄ N] ₂ [KHg(CN) ₆]	-43 <i>m</i> to -4	non-ferroelastic	18
[Pyrrolidinium]2[KFe(CN)6]	-3 <i>m</i> F2/ <i>m</i>	not observed	19
[Pyrrolidinium]2[KCo(CN)6]	-3 <i>m</i> F2/ <i>m</i>	not observed	19
[Pyrrolidinium]2[KCr(CN)6]	<i>m</i> -3 <i>m</i> F?	not observed	20
[(CH ₃) ₃ NOH] ₂ [KCo(CN) ₆]	<i>m</i> -3 <i>m</i> to <i>m</i>	observed	4, 21
[(CH ₃) ₃ NCH ₂ F] ₂ [KFe(CN) ₆]	<i>m-3m</i> F2/ <i>m</i>	observed	this work

Table S2 in revision. Summary of cyano-bridged dimetallic complexes with ferroelasticity.

References

1. W.-J. Xu, S.-L. Chen, Z.-T. Hu, R.-B. Lin, Y.-J. Su, W.-X. Zhang and X.-M. Chen, *Dalton Trans.*, 2016, **45**, 4224 - 4229.

- 2. M. Trzebiatowska, A. Gagor, L. Macalik, P. Peksa and A. Sieradzki, Dalton Trans., 2019, 48, 15830-15840.
- 3. W. J. Xu, P. F. Li, Y. Y. Tang, W. X. Zhang, R. G. Xiong and X. M. Chen, J. Am. Chem. Soc., 2017, 139, 6369-6375.
- 4. M. Rok, A. Cizman, B. Zarychta, J. K. Zareba, M. Trzebiatowska, M. Maczka, A. Stroppa, S. Yuan, A. E. Phillips and G. Bator, *J. Mater. Chem. C*, 2020, **8**, 17491-17501.
- 5. W.-J. Xu, K.-P. Xie, Z.-F. Xiao, W.-X. Zhang and X.-M. Chen, Cryst. Growth Des., 2016, 16, 7212-7217.
- 6. M. Rok, G. Bator, B. Zarychta, B. Dziuk, D. K. Skałecki, W. Medycki and M. Zamponi, *Cryst. Growth Des.*, 2019, **19**, 4526-4537.
- 7. W. Zhang, Y. Cai, R.-G. Xiong, H. Yoshikawa and K. Awaga, Angew. Chem., Int. Ed., 2010, 49, 6608-6610.
- 8. X. Zhang, X. D. Shao, S. C. Li, Y. Cai, Y. F. Yao, R. G. Xiong and W. Zhang, Chem. Commun., 2015, 51, 4568-4571.
- 9. M. Rok, M. Moskwa, A. Pawlukojć, R. Janicki, I. Zuba, P. Zieliński, P. Sobieszczyk and G. Bator, *Dalton Trans.*, 2020, **49**, 5503-5512.
- 10. M. Rok; B. Zarychta,; M. Moskwa, B. Dziuk, W. Medycki and G. Bator, Dalton Trans., 2020, 49, 1830-1838.
- 11. W. Zhang, H.-Y. Ye, R. Graf, H. W. Spiess, Y.-F. Yao, R.-Q. Zhu and R.-G. Xiong, J. Am. Chem. Soc., 2013, 135, 5230-5233.
- 12. C. Shi, C. H. Yu and W. Zhang, Angew. Chem., Int. Ed., 2016, 55, 5798-5802.
- 13. J. Wang, X. Zhang, R. Graf, Y. Li, G. Yang, X. B. Fu, J. Q. Ma and Y. F. Yao, Inorg. Chem., 2019, 58, 7426-7432.
- 14. K. Qian, F. Shao, Z. H. Yan, J. Pang, X. D. Chen and C. X. Yang, CrystEngComm, 2016, 18, 7671-7674.
- 15. M. Rok, M. Moskwa, M. Działowa, A. Bieńko, C. Rajnák, R. Boča and G. Bator, *Dalton Trans.*, 2019, **48**, 16650-16660.

16. M. Rok, G. Bator, B. Zarychta, B. Dziuk, J. Repec, W. Medycki, M. Zamponi, G. Usevicius, M. Simenas and J. Banys, *Dalton Trans.*, 2019, **48**, 4190-4202.

- 17. C. Shi, Z.-X. Gong, Q.-W. Wang, X.-B. Han and W. Zhang, CrystEngComm, 2020, 22, 1848-1852.
- 18. G. Thiele, J. Grossmann and A. W. Purzer, B: J. Chem. Sci., 1986, 41, 1346-1352.
- 19. M. Trzebiatowska, M. Maczka, A. Gagor and A. Sieradzki, Inorg. Chem., 2020, 59, 8855-8863.

20. M. Maczka, A. Nowok, J. K. Zareba, D. Stefanska, A. Gagor, M. Trzebiatowska and A. Sieradzki, *ACS Appl. Mater. Interfaces*, 2022, **14**, 1460–1471.

21. W.-J. Xu, K. Romanyuk, Y. Zeng, A. Ushakov, V. Shur, A.Tselev, W.-X. Zhang, X.-M. Chen, A. Kholkin and J. Rocha, *J. Mater. Chem. C*, 2021, **9**, 10741-10748.