Supplemental Information

Phosphine-catalyzed Hydroboration of Propiolonitriles: Access to (E)-1,2-vinylcyanotrifluoroborate derivatives

Johnathan Bowen, Carla Slebodnick, and Webster L. Santos*

Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 (USA) *E-mail: <u>santosw@vt.edu</u>

Table of Contents

1. Materials and Methods	S2
2. Instrumentation	S2
3. General Procedures for Preparing Propiolonitriles	S2
4. Characterization of Propiolonitriles:	S3
5. General Procedures for Hydroboration of Propiolonitriles:	S4
6. Characterization of (<i>E</i>)-1,2-vinylcyanoborane (2a):	S5
7. General Procedure for Preparing Potassium Trifluoroborate Salts	S5
8. Characterization of Potassium Trifluoroborate Salts	S6
9. Procedure for Suzuki-Miyaura Cross-Coupling	S10
10. Characterization for 3,3-diphenylacrylonitrile (4)	S10
11. Procedure for Oxidation of (<i>E</i>)-1,2-vinylcyanoborane	S10
12. Characterization for 3-oxo-3-phenylpropanenitrile (5)	S11
13. General Procedure For ³¹ P NMR Studies	S11
14. X-Ray Crystallography Experimental	S11
15. References	S11
16. NMR Spectra of Propiolonitriles	S12
17. NMR Spectra of Crude 1,2-vinylcyanoboranes	S15
18. NMR Spectra of 1,2-vinylcyanoboronate esters	S24
19. NMR Spectra of 1,2-vinylcyanoborane Potassium Trifluoroborate Salts	S25
20. NMR Spectra for ³¹ P NMR studies	S63

1. Materials and Methods

Reactions were performed using Schlenk technique under Argon or Nitrogen atmosphere. All glassware used was flame-dried or oven-dried overnight. Chemicals were obtained from commercial sources unless otherwise noted. THF, PhCH₃, CH₂Cl₂ and CH₃CN were dried using the Innovative Technology Pure SolvMD solvent purification system. Column chromatography was performed using SiliaFlash P60 40-63 μ m, 60 Å. TLC analyses were performed using Silicycle aluminum backed silica gel F-254 plates.

2. Instrumentation

NMR spectroscopic experiments were performed using an Agilent 400-MR 400 MHz, an Agilent U4-DD2 400 Hz, or a Bruker Avance II 500 MHz spectrometer. Chemical shifts are reported in δ ppm and ¹H and ¹³C NMR are referenced to an internal standard (CDCl₃, CD₃OD, DMSO, TMS, or acetone-*d*₆). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, tt = triplet of triplets, ddt = doublet of doublet of triplets, m = multiplet), coupling constants (Hz), and integration. When present, the Z-isomer of 1,2-vinylcyanoboranes is reported as minor (Z/cis-isomer). ESI mass spectra were acquired using an Agilent 6220 TOF LC-MS.

3. General Procedures for Preparing Propiolonitriles

Propiolonitriles **1a** and **1d-r** were prepared in accordance with **Procedure 3.1** and propiolonitriles **1b-c** were prepared via **Procedure 3.2**. References for the spectra of previously known propiolonitriles are provided in Table S1. Propiolonitriles **1n** and **1p** were prepared according to the following general procedures unless noted otherwise.

Procedure 3.1.¹ To an oven-dried flask equipped with a stir bar was added $Pd(PPh_3)_2Cl_2$ (0.01 equiv, 0.05 mmol) and copper(I) iodide (0.02 equiv, 0.10 mmol). After purging with N₂, aryl iodide (1 equiv, 5.0 mmol), propargyl alcohol (1.1 equiv, 5.5 mmol), and triethylamine (4 equiv, 20 mmol) were added. The suspension was stirred at room temperature for 4 hours and filtered. Concentration of the filtrate *in vacuo* yielded the crude product which was subjected to silica column chromatography (eluted with 1:4 ethyl acetate:hexanes) to afford the crude propargyl alcohol as a yellow oil, which was concentrated *in vacuo*. The crude alcohol was used without further purification.

Procedure 3.2². An oven-dried round bottom flask was charged with aryl alkyne (1 equiv, 5.0 mmol) and placed under N₂ via Schlenk technique. The reaction was diluted with THF (15 mL) and stirred at -78 °C (dry ice/acetone bath). n-Butyllithium (1.1 equiv, 5.5 mmol) was then added dropwise to the mixture and stirred for 1 hour. Paraformaldehyde (2.0 equiv, 10 mmol) was then added in one portion and the reaction allowed to warm to room temperature before stirring at 45 °C for 1.5 hours. Upon completion, the reaction was quenched with water (15 mL) and diluted with diethyl ether (10 mL). The organic layer was washed with brine (10 mL) and dried over anhydrous sodium sulfate. Concentration in vacuo yielded a yellow oil which upon purification by silica gel column chromatography (1:4 ethyl acetate:hexanes) yielded the propargyl alcohol as a yellow oil. The crude alcohol was used without further purification.

Procedure 3.3.³ To an oven-dried flask equipped with a stir bar was added the crude alcohol, ammonium acetate (4 equiv, 19.2 mmol), TEMPO (0.05 equiv, 241 µmol), and PhI(OAc)₂ (2.2 equiv, 11 mmol). After purging with N₂, the reaction was diluted with a MeCN (18 mL) and water (2 mL) and stirred at room temperature for 2.5 hours. Upon completion, the reaction was quenched with water (15 mL) and diluted with diethyl ether (10 mL). The organic layer was washed with brine (10 mL) and dried over anhydrous sodium sulfate. Concentration in vacuo yielded a yellow oil which upon purification by silica gel column chromatography (0-5% ethyl acetate:hexanes) yielded the propiolonitrile as a yellow solid.

4. Characterization of Propiolonitriles:

~		
Substrate R ¹		Reference
1a H		Synlett 2014 , <i>25</i> , 1275-1278.
1b o-1	Me	Can. J. Chem. 2017, 95, 144-148.
1c <i>p</i> -I	Et	Org. Lett. 2019, 21, 8308-8311.
1d <i>p-t</i>	fBu	<i>Tetrahedron Lett.</i> 2018 , <i>59</i> , 4622-4625.
1e o-0	OMe	Adv. Synth. Catal. 2013, 355, 1207-1210.
1f <i>m</i> -	OMe	Adv. Synth. Catal. 2013, 355, 1207-1210.
1g p-0	OMe	<i>Tetrahedron Lett.</i> 2018, <i>59</i> , 4622-4625.
1h o-I	F	Org. Lett. 2017, 19, 5613-5616.
1i <i>p</i> -I	F	Org. Lett. 2019, 21, 8308-8311.
1j o-(C1	Can. J. Chem. 2017, 95, 144-148.
1k <i>m</i> -	Cl	<i>Tetrahedron Lett.</i> 2018 , <i>59</i> , 4622-4625.
1l p-0	C1	Can. J. Chem. 2017, 95, 144-148.
1m p-0	CN	Org. Lett. 2019, 21, 8308-8311.
10 3-((naphthalen-2-yl)	Can. J. Chem. 2017, 95, 144-148.
1q 3-((benzo[d][1,3]dioxol-5-yl)	Chem. Eur. J. 2018, 24, 12767-12772.
1r 3-(([1,1'-biphenyl]-4-yl)	<i>Can. J. Chem.</i> 2017, <i>95</i> , 144-148.

Table S1. References for Propiolonitrile Substrates

3-(cyanoethynyl)benzonitrile (1n)

Prepared according to **Procedures 3.1 and 3.2.** Yellow solid (563 mg, 85%) Purified using a 0-5% gradient ethyl acetate in hexanes solvent system. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 1.8 Hz, 1H), 7.83 (d, J = 10.5 Hz, 2H), 7.58 (t, J = 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 137.3, 136.7, 135.0, 130.1, 119.5,

117.0, 114.0, 104.9, 79.9, 65.0.

3-(benzofuran-6-yl)propiolonitrile (1p)

Prepared according to **Procedures 3.1 and 3.2.** Yellow solid (432 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.71 (d, J = 2.3 Hz, 1H), 7.51 (s, 2H), 6.80 (d, J = 2.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.3, 147.0, 129.5, 127.7, 112.5, 105.8, 83.9, 62.2. HRMS: (ESI) [M]⁺ calc. for C₁₁H₅NO, 167.0371,

observed, 167.0348.

7-([1,1'-biphenyl]-4-ylmethoxy)hept-2-ynenitrile (1s)

Prepared according to **Procedures 3.1 and 3.3.** Yellow solid (103 mg, 51%) Purified using a 0-5% gradient ethyl acetate in hexanes solvent system. ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.59 (m, 4H), 7.52 – 7.36 (m, 5H), 4.57 (s, 2H), 3.56 (t, *J* = 5.1 Hz, 2H), 2.41 (t, *J* = 6.6 Hz, 2H), 1.81 – 1.70 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 140.6, 137.4, 128.8, 128.1,

127.4, 127.2, 127.1, 105.3, 87.3, 72.8, 69.3, 55.5, 28.8, 24.2, 18.7.

5. General Procedures for Hydroboration of Propiolonitriles:

Procedure 5.1. An oven-dried round bottom flask was charged with propiolonitrile (1 equiv, 0.30 mmol) and placed under N₂ via Schlenk technique. The solid was dissolved in dichloromethane (0.40 mL), and pinacolborane (1.1 equiv, 0.33 mmol) was added. The reaction was cooled to -40 °C (dry ice/acetonitrile bath) for 15 minutes. Tributylphosphine (0.1 equiv, 30 µmol) was added, and the reaction was allowed to slowly warm to room temperature overnight. The crude mixture was concentrated *in vacuo* and filtered through a plug of silica (1:1 ethyl acetate:hexanes). The crude mixture was concentrated *in vacuo*, and dissolved in CDCl₃ (0.750 mL, 0.05% TMS) for yield determination *via* ¹H NMR. The sample was concentrated *in vacuo* and the crude 1,2-vinylcyanoborane was used without further purification.

Note 1: When this reaction was performed with 3-(2,6-dimethylphenyl)propiolonitrile using optimized conditions. Surprisingly, the expected vinylcyanopinacolborane was not observed.

Note 2: ¹H NMR doublets at 6 and 7.4 ppm for the crude mixture of the aforementioned reaction are the result of protodeboronation of the pinacolboronate ester to the cyano alkene. Substrates containing electron withdrawing substituents have increased susceptibility to this type of degradation. The subsequent conversion to the BF₃ salt removes this impurity.

6. General Procedure For ³¹P NMR Studies

Procedure 6.1. An oven-dried 2-dram vial was charged with **1a** (1 equiv, 80 μ mol) and placed under N₂ via Schlenk technique. The solid was dissolved in CDCl₃ (0.75 mL), and BF₃•OEt₂ (1 equiv, 80 μ mol) was added. Triphenylphosphine (1 equiv, 80 μ mol) was added in one portion and ³¹P NMR data was immediately obtained.

6. Characterization of (*E*)-1,2-vinylcyanoborane (2a):

Prepared according to **Procedure 5.1.** Yellow solid (29 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.33 (m, 5H), 6.03 (s, 1H), 1.41 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 138.0, 129.9, 128.9, 127.0, 117.6, 106.5, 85.4, 24.8. HRMS: (ESI) [M+H]⁺ calc. for C₁₅H₁₉BNO₂, 256.1503, observed, 256.1511

Procedure for 4.6 mmol scale:

An oven-dried round bottom flask was charged with propiolonitrile (1 equiv, 4.6 mmol) and placed under N_2 via Schlenk technique. The solid was dissolved in dichloromethane (5.00 mL), and pinacolborane (1.1 equiv, 5.1 mmol) was added. The reaction was cooled to -78 °C (dry ice/acetone bath) for 15 minutes. Tributylphosphine (0.1 equiv, 0.46 mmol) was added, and the reaction was allowed to slowly warm to room temperature overnight. MeI (0.3 equiv, 1.39 mmol) was added and the reaction was stirred at room temperature for one hour. The crude mixture was concentrated *in vacuo* and filtered over a plug of silica (1:1 ethyl acetate:hexanes solvent system). The sample was concentrated *in vacuo* to yield a yellow oil which upon purification by silica gel column chromatography (15% ethyl acetate:hexanes solvent system) yielded the 1,2-vinylcyanoborane as a yellow solid (767 mg, 65%).

7. General Procedure for Preparing Potassium Trifluoroborate Salts

Procedure 6.1. The crude 1,2-vinylcyanoborane (1 equiv, 0.2 mmol) was dissolved in THF (2 mL) and KHF₂ (4.5 equiv, 0.9 mmol) was added. The minimum amount of water necessary to dissolve KHF₂ was added, and the reaction was stirred for 4 hours at room temperature. Solvent was removed *in vacuo*. Water was removed by addition of toluene (5 mL) and concentration *in vacuo* three times. The resulting solid was dissolved in acetonitrile (5 mL) and filtered. The filtrate was concentrated and the corresponding trifluoroborate salt was precipitated as a single isomer from acetonitrile and diethyl ether.

Note: Compound **3s** was isolated as a 90:10 mixture of E/Z isomers.

8. Characterization of Potassium Trifluoroborate Salts

(*E*)-3-phenyl-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (3a)

Prepared according to Procedure 6.1. White Solid (30 mg, 64%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.48 – 7.33 (m, 2H), 7.33 – 7.16 (m, 3H), 5.54 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 144.2, 128.1, 127.7, 127.4, 120.4, 99.4, ¹⁹F NMR (376 MHz, DMSO- d_6) δ -136.05 –136.88 (m). ¹¹B NMR (128 MHz, DMSO- d_6) δ 1.65 (q, J = 50.4 Hz). HRMS: (ESI)

[M]⁻ calc. for C₉H₆BF₃N⁻, 196.0545, observed, 196.0548.

(E)-3-(o-tolyl)-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (3b)

Prepared according to **Procedure 6.1.** White solid (41 mg, 76%). ¹H NMR (500 MHz, CD₃CN) δ 7.18 – 7.02 (m, 3H), 6.90 (d, J = 5.4 Hz, 1H), 5.24 (s, 1H), 2.20 (s, 3H). ¹³C NMR (126 MHz, CD₃CN) δ 145.8, 133.9, 129.4, 126.3, 125.9, 124.7, 119.7, 100.4,

19.3. ¹⁹F NMR (376 MHz, CD₃CN) δ -140.88 (d, J = 47.0 Hz). ¹¹B NMR (128 MHz, CD₃CN) δ 1.34 (q, J= 48.9 Hz). HRMS: (ESI) $[M]^{-}$ calc. for $C_{10}H_8BF_3N^{-}$, 210.0702, observed, 210.0703.

(E)-3-(4-ethylphenyl)-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (3c)

Prepared according to **Procedure 6.1.** White solid (44 mg, 75%). ¹H NMR (500 MHz, CD₃CN) δ 7.36 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 8.4 Hz, 2H), 5.54 (s, 1H), 2.62 (q, J = 7.6 Hz, 2H), 1.20 (t, J = 7.6 Hz, 3H). ¹³C NMR (126 MHz, CD₃CN)

δ 143.8, 141.5, 127.3, 127.1, 120.4, 98.4, 28.2, 15.1. ¹⁹F NMR (376 MHz, CD₃CN) δ -139.00 (q, J = 46.7Hz). ¹¹B NMR (128 MHz, CD₃CN) δ 1.79 (q, J = 49.9 Hz). HRMS: (ESI) [M]⁻ calc. for C₁₁H₁₀BF₃N⁻, 224.0858, observed, 224.0856.

(E)-3-(4-(tert-butyl)phenyl)-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (3d)

Prepared according to **Procedure 6.1.** White solid (46 mg, 74%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.32 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 5.49 (s, 1H), 1.23 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 150.1, 141.2, 127.2, 124.8, 120.6, 98.8 – 98.4 (m), 34.6, 31.5. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -136.28. ¹¹B NMR

(128 MHz, DMSO- d_6) δ 1.36 (t, J = 51.2 Hz). HRMS: (ESI) [M]⁻ calc. for C₁₃H₁₄BF₃N⁻, 252.1177, observed, 252.1172.

(*E*)-3-(2-methoxyphenyl)-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (3e)

Prepared according to **Procedure 6.1.** White solid (67 mg, 45%). ¹H NMR (500 MHz, CD₃CN) δ 7.18 – 7.02 (m, 3H), 6.90 (d, J = 5.4 Hz, 1H), 5.24 (s, 1H), 2.20 (s, 3H). ¹³C NMR (126 MHz, CD₃CN) δ 145.8, 133.9, 129.4, 126.3, 125.9, 124.7, 119.7, 100.4, 19.3. ¹⁹F NMR (376 MHz, CD₃CN) δ -140.88 (d, J = 47.0 Hz). ¹¹B NMR (128 MHz, CD₃CN) δ 1.34 (q, J= 48.9 Hz). HRMS: (ESI) [M] calc. for C₁₃H₁₄BF₃N⁻, 226.0657, observed, 226.0653.

(*E*)-3-(3-methoxyphenyl)-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (3f)

Prepared according to **Procedure 6.1.** White solid (33 mg, 46%). ¹H NMR (500 MHz, CD₃CN) δ 7.23 (t, J = 7.9 Hz, 1H), 7.09 – 6.99 (m, 2H), 6.84 (d, J = 8.2Hz, 1H), 5.59 (s, 1H), 3.80 (s, 3H). ¹³C NMR (126 MHz, CD₃CN) δ 159.3, 145.9,

128.7, 120.0, 119.5, 112.7, 112.4, 99.3 (d, J = 1.7 Hz), 54.7. ¹⁹F NMR (376 MHz, CD₃CN) δ -139.17 (d, J= 46.0 Hz). ¹¹B NMR (128 MHz, CD₃CN) δ 1.67 (q, J = 49.0 Hz). HRMS: (ESI) [M]⁻ calc. for C₁₀H₈BF₃NO⁻ , 226.0657, observed, 226.0651.

(*E*)-3-(4-methoxyphenyl)-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (3g)

Prepared according to **Procedure 6.1.** White solid (44 mg, 66%). ¹H NMR (400 MHz, CD₃CN) δ 7.45 (d, J = 8.7 Hz, 1H), 6.88 (d, J = 8.7 Hz, 1H), 3.78 (s, 2H). ¹³C NMR (101 MHz, CD₃CN) δ 159.6, 136.1, 128.5, 120.7, 113.2, 97.3, 54.8.

¹⁹F NMR (376 MHz, CD₃CN) δ -138.71 (d, J = 44.4 Hz). ¹¹B NMR (128 MHz, CD₃CN) δ 1.86 (q, J = 50.8Hz). HRMS: (ESI) [M]⁻ calc. for C₁₀H₈BF₃NO⁻, 226.0657, observed, 226.0646.

(*E*)-3-(2-fluorophenyl)-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (3h)

Prepared according to **Procedure 6.1.** White solid (42 mg. 63%). ¹H NMR (600 MHz, CD₃CN) δ 7.34 – 7.23 (m, 2H), 7.16 – 7.04 (m, 2H), 5.59 (s, 1H). ¹³C NMR (151 MHz, CD₃CN) δ 158.8 (d, J = 244.7 Hz), 132.1 (d, J = 15.1 Hz), 129.9 (d, J = 4.0 Hz), 128.5 (d, J = 8.2 Hz), 123.6 (d, J = 3.6 Hz), 119.6, 115.2 (d, J = 23.0 Hz), 102.4 (d, J = 4.0 Hz).¹⁹F NMR (376) MHz, CD₃CN) δ -117.30, -140.94 (d, J = 45.5 Hz). ¹¹B NMR (128 MHz, CD₃CN) δ 1.37 (g, J = 48.1 Hz).

(*E*)-3-(4-fluorophenyl)-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (3i)

HRMS: (ESI) [M]⁻ calc. for C₉H₅BF₄N⁻, 214.0457, observed, 214.0452.

Prepared according to Procedure 6.1. White solid (62 mg, 66%). ¹H NMR (500 MHz, CD₃CN) δ 7.50 (t, J = 8.5 Hz, 2H), 7.06 (t, J = 8.8 Hz, 2H), 5.58 (s, 1H). ¹³C NMR (126 MHz, CD₃CN) δ 162.4 (d, *J* = 243.9 Hz), 140.2 (d, *J* = 3.1 Hz), 129.0 (d, J = 8.2 Hz), 120.2, 114.5 (d, J = 21.3 Hz), 99.2. ¹⁹F NMR (376 MHz, CD₃CN) δ -117.08 - -117.22 (m),

-139.26 (q, J = 47.5 Hz). ¹¹B NMR (128 MHz, CD₃CN) δ 1.74 (q, J = 49.6 Hz). HRMS: (ESI) [M]⁻ calc. for C₉H₅BF₄N⁻, 214.0457, observed, 214.0453.

(*E*)-3-(2-chlorophenyl)-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (3j)

₿F₃K CI CN

Prepared according to **Procedure 6.1.** White solid (57 mg, 64%). ¹H NMR (600 MHz, CD₃CN) δ 7.35 (d, J = 7.9 Hz, 1H), 7.22 (d, J = 7.5 Hz, 1H), 7.17 (d, J = 7.6 Hz, 1H), 7.13 (d, J = 7.5 Hz, 1H), 5.39 (d, J = 8.1 Hz, 1H). ¹³C NMR (126 MHz, CD₃CN) δ 146.3, 132.7, 131.8, 131.5, 129.9, 120.5, 119.9, 112.6, 102.1 (d, J = 1.7 Hz). ¹⁹F NMR (376 MHz, CD₃CN) δ -141.16 (q, J = 45.6 Hz). ¹¹B NMR (128 MHz, CD₃CN) δ 1.21 (q, J = 47.8 Hz). HRMS: (ESI) [M]⁻ calc. for C₉H₅BClF₃N⁻, 230.0161, observed, 230.0154.

(*E*)-3-(3-chlorophenyl)-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (3k)

Prepared according to Procedure 6.1. White solid (46 mg, 72%). ¹H NMR (600 MHz, CD₃CN) δ 7.48 (s, 1H), 7.38 (d, J = 7.3 Hz, 1H), 7.34 – 7.25 (m, 2H), 5.61 (s, 1H). ¹³C NMR (151 MHz, CD₃CN) δ 146.3, 133.2, 129.5, 127.1, 126.9, 125.4,

119.8, 100.4. ¹⁹F NMR (376 MHz, CD₃CN) δ -139.45 (q, J = 46.3 Hz). ¹¹B NMR (128 MHz, CD₃CN) δ 1.61 (q, J = 49.3 Hz). HRMS: (ESI) [M]⁻ calc. for C₉H₅BClF₃N⁻, 230.0161, observed, 230.0156.

(E)-3-(4-chlorophenyl)-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (31)

Prepared according to **Procedure 6.1.** White solid (40 mg, 61%). ¹H NMR (600 MHz, CD₃CN) δ 7.45 (d, J = 8.5 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 5.61 – 5.57 (m, 1H). ¹³C NMR (151 MHz, CD₃CN) δ 142.8, 132.8, 128.7, 127.8, 120.0, 99.7. ¹⁹F

NMR (376 MHz, CD₃CN) δ -139.33 (q, J = 46.5 Hz). ¹¹B NMR (128 MHz, CD₃CN) δ 1.66 (q, J = 49.4 Hz). HRMS: (ESI) [M]⁻ calc. for C₉H₅BClF₃N⁻, 230.0161, observed, 230.0152.

(E)-4-(2-cyano-1-(trifluoro- λ^4 -boraneyl)vinyl)benzonitrile, potassium salt (3m)

Prepared according to Procedure 6.1. White solid (43 mg, 85%). ¹H NMR (500 MHz, CD₃CN) δ 7.70 – 7.64 (m, 2H), 7.61 – 7.55 (m, 2H), 5.65 – 5.62 (m, 1H). ¹³C NMR (126 MHz, CD₃CN) δ 149.2, 131.7, 127.7, 119.5, 119.0, 110.4, 101.5 (d, J = 1.7 Hz), 29.9. ¹⁹F NMR (376 MHz, CD₃CN) δ -139.58 (q, J = 46.5 Hz). ¹¹B NMR (128 MHz,

CD₃CN) δ 1.55 (g, J = 48.8 Hz). HRMS: (ESI) [M]⁻ calc. for C₁₀H₅BF₃N₂⁻, 221.0498, observed, 221.0496.

(E)-3-(2-cyano-1-(trifluoro- λ^4 -boraneyl)vinyl)benzonitrile, potassium salt (3n)

Prepared according to **Procedure 6.1.** White solid (67 mg, 73%). ¹H NMR (500 MHz, CD₃CN) δ 7.75 (s, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.60 (d, *J* = 7.7 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 5.61 (s, 1H). ¹³C NMR (126 MHz, CD₃CN) δ 145.3,

131.7, 130.8, 130.5, 128.9, 119.5, 118.9, 111.7, 101.1 (d, J = 1.8 Hz). ¹⁹F NMR (376 MHz, CD₃CN) δ -139.76 (q, J = 47.5 Hz). ¹¹B NMR (128 MHz, CD₃CN) δ 1.58 (q, J = 48.6 Hz). HRMS: (ESI) [M]⁻ calc. for C₁₀H₅BF₃N₂, 221.0498, observed, 221.0496.

(E)-3-(naphthalen-2-yl)-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (30)

Prepared according to **Procedure 6.1.** White solid (63 mg, 89%). ¹H NMR (400 MHz, DMSO- d_6) δ 8.13 – 7.71 (m, 4H), 7.71 – 7.33 (m, 3H), 5.72 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 141.7, 133.2, 132.8, 128.6, 127.7, 127.3, 126.3, 126.2, 126.1, 120.4, 99.9. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -136.05. ¹¹B NMR (128 MHz, DMSO-*d*₆) δ 1.72 (q, *J* = 51.0 Hz). HRMS: (ESI) [M]⁻ calc. for C₁₃H₈BF₃N⁻, 246.0707, observed, 246.0703.

(*E*)-3-(benzofuran-6-yl)-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (3p)

Prepared according to **Procedure 6.1.** White solid (90 mg, 46%). ¹H NMR (600 MHz, CD₃CN) δ 7.73 (s, 1H), 7.71 (d, J = 2.2 Hz, 1H), 7.43 (s, 2H), 6.84 (d, J = 2.2 Hz, 1H), 5.59 (d, J = 6.7 Hz, 1H). ¹³C NMR (151 MHz, CD₃CN) δ 154.6,

145.7, 139.1, 127.2, 123.9, 120.4, 119.9, 110.4, 106.9, 98.8. ¹⁹F NMR (376 MHz, CD₃CN) δ -138.89 (d, J = 45.7 Hz). ¹¹B NMR (128 MHz, CD₃CN) δ 1.86 (q, J = 50.3 Hz). HRMS: (ESI) [M]⁻ calc. for C₁₁H₆BF₃NO⁻, 236.0500, observed, 236.0490.

(*E*)-3-(benzo[d][1,3]dioxol-5-yl)-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (3q)

Prepared according to **Procedure 6.1.** White solid (35 mg, 62%). ¹H NMR (400 MHz, CD₃CN) δ 7.08 – 7.00 (m, 2H), 6.81 (d, J = 8.5 Hz, 1H), 5.97 (s, 2H), 5.56 (s, 1H). ¹³C NMR (101 MHz, CD₃CN) δ 147.3, 147.3, 138.1, 121.0, 120.4, 107.5,

107.4, 101.2, 98.0. ¹⁹F NMR (376 MHz, CD₃CN) δ -138.83 (q, *J* = 46.4 Hz). ¹¹B NMR (128 MHz, CD₃CN) δ 1.72 (q, *J* = 49.5 Hz). HRMS: (ESI) [M]⁻ calc. for C₁₀H₆BF₃NO₂⁻, 240.0449, observed, 240.0442.

(*E*)-3-([1,1'-biphenyl]-4-yl)-3-(trifluoro- λ^4 -boraneyl)acrylonitrile, potassium salt (3r)

Prepared according to **Procedure 6.1.** White solid (42 mg, 88%). ¹H NMR (400 MHz, CD₃CN) δ 7.69 – 7.62 (m, 2H), 7.58 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 8.5 Hz, 2H), 7.46 (t, J = 7.4 Hz, 2H), 7.36 (t, J = 7.9 Hz, 1H), 5.63 (s, 1H). ¹³C NMR (126

MHz, CD₃CN) δ 144.9, 142.2, 141.4, 130.5, 129.2, 128.9, 128.4, 128.0, 121.8, 100.7. ¹⁹F NMR (376 MHz, CD₃CN) δ -139.01 (q, J = 44.9 Hz). ¹¹B NMR (128 MHz, CD₃CN) δ 1.79 (q, J = 50.5 Hz). HRMS: (ESI) [M]⁻ calc. for C₁₅H₁₀BF₃N⁻, 272.0858 observed, 272.0868.

(*E*)-7-([1,1'-biphenyl]-4-ylmethoxy)-3-(trifluoro- λ^4 -boraneyl)hept-2-enenitrile, potassium salt (3s)

Prepared according to **Procedure 6.1.** White solid (46 mg, 81%). ¹H NMR (500 MHz, CD₃CN) δ 7.68 – 7.59 (m, 4H), 7.48 – 7.40 (m, 4H), 7.36 (t, *J* = 7.3 Hz, 1H), 5.37 (s, 1H), 4.52 (s, 2H), 3.54 – 3.45 (m, 2H), 2.37 (t, *J* = 7.4 Hz, 2H), 1.67 – 1.52 (m, 4H). ¹³C NMR (126 MHz, CD₃CN) δ 141.57, 140.80, 139.39, 129.77, 129.06, 128.25, 127.77, 127.73,

97.87 – 96.98 (m), 72.83, 71.08, 35.41, 30.74, 26.19. ¹⁹F NMR (376 MHz, CD₃CN) δ -145.71 (q, J = 52.9 Hz). ¹¹B NMR (128 MHz, CD₃CN) δ 1.84 (q, J = 52.8 Hz). HRMS: (ESI) [M]⁻ calc. for C₂₀H₂₀BF₃NO⁻, 358.1596 observed, 358.1595.

9. Procedure for Suzuki-Miyaura Cross-Coupling

Procedure 8.1. An oven-dried round bottom flask was charged with (E)-**2a** (1 equiv, 0.10 mmol) and XPhos Pd G2 (6 µmol, 0.05 equiv) and placed under N₂ via Schlenk technique. The reaction was diluted with THF (1 mL). Aqueous K₃PO₄ (0.6 M, 0.2 mmol, 1.6 equiv) and bromobenzene (0.18 mmol, 1.5 equiv) were added, and the reaction was stirred at room temperature overnight. Upon completion, the reaction was quenched with water (15 mL) and diluted with diethyl ether (10 mL). The organic layer was washed with brine (10 mL) and dried over anhydrous sodium sulfate. Concentration *in vacuo* yielded a brown oil which upon purification by silica gel column chromatography (1% ethyl acetate:hexanes solvent system) yielded the product as a white solid.

10. Characterization for 3,3-diphenylacrylonitrile (4)

White Solid. 50% (12 mg). The spectra for compound 4 are in accordance with J. Org. Chem. 2020, 85, 2654-2665.

11. Procedure for Oxidation of (E)-1,2-vinylcyanoborane

Procedure 10.1. An oven-dried round bottom flask was charged with (E)-**2a** (1 equiv, 0.40 mmol) and placed under N₂ via Schlenk technique. The reaction was diluted with THF (0.25 mL), and a solution of Sodium perborate monohydrate (0.59 mmol, 1.5 equiv) in water (0.25 mL) was added. The reaction was stirred at room temperature for 2 hours. Upon completion, the reaction was quenched with water (15 mL) and diluted with diethyl ether (10 mL). The organic layer was washed with brine (10 mL) and dried over anhydrous sodium sulfate. Concentration *in vacuo* yielded a brown oil which upon purification by silica gel column chromatography (10% ethyl acetate:hexanes solvent system) yielded the products as a white solid.

12. Characterization for 3-oxo-3-phenylpropanenitrile (5)

White solid. 69% (39 mg). The spectra for compound **5** are in accordance with *Org. Lett.* **2006**, *8*, 1161-1163.

Compounds 1n, 1p, 1s, 2a and 3a-s are new and first time characterized.

13. General Procedure For NMR Studies

Procedure 13.1. An oven-dried 2-dram vial was charged with **1a** (1 equiv, 80 μ mol) and placed under N₂ via Schlenk technique. The solid was dissolved in CDCl₃ (0.75 mL), and BF₃•OEt₂ (1 equiv, 80 μ mol) was added. Triphenylphosphine (1 equiv, 80 μ mol) was added in one portion, and the solution was transferred to an NMR tube. ³¹P NMR data was immediately obtained.

Procedure 13.2. An oven-dried 2-dram vial was charged with **1a** (1 equiv, 80 μ mol) and placed under N₂ via Schlenk technique. The solid was dissolved in CDCl₃ (0.75 mL), and pinacolborane (1 equiv, 80 μ mol) was added. Triphenylphosphine (1 equiv, 80 μ mol) was added in one portion, and the solution was transferred to an NMR tube. ¹³C NMR data was obtained every 30 minutes.

Procedure 13.3. An oven-dried 2-dram vial was charged with **1a** (1 equiv, 80 μ mol) and placed under N₂ via Schlenk technique. The solid was dissolved in CDCl₃ (0.75 mL), and pinacolborane (1 equiv, 80 μ mol) was added. The mixture was cooled to -40 °C and Tributylphosphine (1 equiv, 80 μ mol) was added, and the solution was transferred to an NMR tube. ¹³C NMR data was obtained at -20 °C after 30 minutes.

14. X-Ray Crystallography Experimental

Colorless crystals were grown by slow diffusion using a acetonitrile/diethyl ether solvent system. The diffusion chamber (2 dram vial containing one isomer of 3a dissolved in about 0.5 mL of acetonitrile inserted into a 6 dram vial containing about 10 mL of diethyl ether) was stored at room temperature for 7 days.

A colorless prism (0.07 x 0.19 x 0.21 mm3) was centered on the goniometer of a Rigaku Oxford Diffraction Synergy-S diffractometer equipped with a HyPix6000HE detector and operating with CuK α radiation. The data collection routine, unit cell refinement, and data processing were carried out with the program CrysAlisPro. The Laue symmetry and systematic absences were consistent with the monoclinic space group P21/c. The structure was solved using SHELXT and refined using SHELXL via Olex2. The final refinement model involved anisotropic displacement parameters for non-hydrogen atoms and a riding model for all hydrogen atoms: Olex2 and Mercury were used for molecular graphics generation.

15. References

- 1. J. Panteleev, R. Y. Huang, E. K. J. Lui and M. Lautens, *Org. Lett.*, 2011, **13**, 5314-5317.
- 2. A. S. K. Hashmi, P. Haufe and A. Rivas Nass, *Adv. Synth. Catal.*, 2003, **345**, 1237-1241.
- 3. J.-M. Vatèle, *Synlett*, 2014, **25**, 1275-1278.

16. NMR Spectra of Propiolonitriles

¹H NMR (CDCl₃ 400 MHz) of 1n

¹H NMR (CDCl₃ 400 MHz) of 1p

¹³C NMR (CDCl₃ 100 MHz) of 1p

¹³C NMR (CDCl₃ 100 MHz) of 1s

17. NMR Spectra of Crude 1,2-vinylcyanoboranes

Crude ¹H NMR (CDCl₃ 400 MHz) of 2b

Crude ¹H NMR (CDCl₃ 400 MHz) of 2c

Crude ¹H NMR (CDCl₃ 400 MHz) of 2d

Crude ¹H NMR (CDCl₃ 400 MHz) of 2e

Crude ¹H NMR (CDCl₃ 400 MHz) of 2f

Crude ¹H NMR (CDCl₃ 400 MHz) of 2g

Crude ¹H NMR (CDCl₃ 400 MHz) of 2h

Crude ¹H NMR (CDCl₃ 400 MHz) of 2i

Crude ¹H NMR (CDCl₃ 400 MHz) of 2j

Crude ¹H NMR (CDCl₃ 400 MHz) of 2k

Crude ¹H NMR (CDCl₃ 400 MHz) of 2l

Crude ¹H NMR (CDCl₃ 400 MHz) of 2m

Crude ¹H NMR (CDCl₃ 400 MHz) of 2n

Crude ¹H NMR (CDCl₃ 400 MHz) of 20

Crude ¹H NMR (CDCl₃ 400 MHz) of 2p

Crude ¹H NMR (CDCl₃ 400 MHz) of 2r

Crude ¹H NMR (CDCl₃ 400 MHz) of 2s

18. NMR Spectra of 1,2-vinylcyanoboronate esters ¹H NMR (CDCl₃ 400 MHz) of 2a

¹³C NMR (CDCl₃ 100 MHz) of 2a

19. NMR Spectra of 1,2-vinylcyanoborane Potassium Trifluoroborate Salts ¹H NMR (DMSO-*d*₆ 400 MHz) of 3a

¹³C NMR (DMSO-d₆ 100 MHz) of 3a

¹¹B NMR (DMSO-d₆ 128 MHz) of 3a

¹H NMR (CD₃CN 400 MHz) of 3b

S27

¹³C NMR (CD₃CN 100 MHz) of 3b

¹⁹F NMR (CD₃CN 376 MHz) of 3b

¹¹B NMR (CD₃CN 128 MHz) of 3b

¹H NMR (CD₃CN 400 MHz) of 3c

¹³C NMR (CD₃CN 100 MHz) of 3c

¹⁹F NMR (CD₃CN 376 MHz) of 3c

¹¹B NMR (CD₃CN 128 MHz) of 3c

¹³C NMR (DMSO-d₆ 400 MHz) of 3d

¹⁹F NMR (DMSO-d₆ 400 MHz) of 3d

¹¹B NMR (DMSO-d₆ 400 MHz) of 3d

¹H NMR (DMSO-d₆ 400 MHz) of 3e

¹³C NMR (DMSO-d₆ 100 MHz) of 3e

¹⁹F NMR (DMSO-*d*₆ 376 MHz) of 3e

¹¹B NMR (DMSO-*d*₆ 128 MHz) of 3e

¹H NMR (CD₃CN 400 MHz) of 3f

¹³C NMR (CD₃CN 100 MHz) of 3f

¹⁹F NMR (CD₃CN 376 MHz) of 3f

¹¹B NMR (CD₃CN 128 MHz) of 3f

¹H NMR (CD₃CN 400 MHz) of 3g

¹⁹F NMR (CD₃CN 376 MHz) of 3g

¹¹B NMR (CD₃CN 128 MHz) of 3g

¹H NMR (CD₃CN 400 MHz) of 3h

¹⁹F NMR (CD₃CN 376 MHz) of 3h

¹¹B NMR (CD₃CN 128 MHz) of 3h

¹H NMR (CD₃CN 400 MHz) of 3i

¹⁹F NMR (CD₃CN 376 MHz) of 3i

¹¹B NMR (CD₃CN 128 MHz) of 3i

¹H NMR (CD₃CN 400 MHz) of 3k

¹⁹F NMR (CD₃CN 376 MHz) of 3j

¹¹B NMR (CD₃CN 128 MHz) of 3j

¹H NMR (CD₃CN 400 MHz) of 3k

¹³C NMR (CD₃CN 100 MHz) of 3k

¹⁹F NMR (CD₃CN 376 MHz) of 3k

¹¹B NMR (CD₃CN 128 MHz) of 3k

¹H NMR (CD₃CN 400 MHz) of 3l

¹¹B NMR (CD₃CN 128 MHz) of 31

¹H NMR (CD₃CN 400 MHz) of 3m

¹³C NMR (CD₃CN 100 MHz) of 3m

¹⁹F NMR (CD₃CN 376 MHz) of 3m

¹¹B NMR (CD₃CN 128 MHz) of 3m

¹H NMR (CD₃CN 400 MHz) of 3n

¹³C NMR (CD₃CN 100 MHz) of 3n

¹⁹F NMR (CD₃CN 376 MHz) of 3n

¹¹B NMR (CD₃CN 128 MHz) of 3n

¹H NMR (DMSO-d₆ 400 MHz) of 30

¹³C NMR (DMSO-*d*₆ 100 MHz) of 30

¹¹B NMR (DMSO-d6 128 MHz) of 30

¹H NMR (CD₃CN 400 MHz) of 3p

¹⁹F NMR (CD₃CN 376 MHz) of 3p

¹¹B NMR (CD₃CN 128 MHz) of 3p

¹H NMR (CD₃CN 400 MHz) of 3q

¹⁹F NMR (CD₃CN 376 MHz) of 3q

¹¹B NMR (CD₃CN 128 MHz) of 3q

¹H NMR (CD₃CN 400 MHz) of 3r

¹³C NMR (CD₃CN 100 MHz) of 3r

¹⁹F NMR (CD₃CN 376 MHz) of 3r

¹¹B NMR (CD₃CN 128 MHz) of 3r

¹H NMR (CD₃CN 400 MHz) of 3s

¹⁹F NMR (CD₃CN 376 MHz) of 3s

¹¹B NMR (CD₃CN 128 MHz) of 3s

20. Spectra for NMR studies ³¹P NMR (CDCl₃ 128 MHz) of PPh₃

³¹P NMR (CDCl₃ 128 MHz) of PPh₃ and BF₃•OEt₂

³¹P NMR (CDCl₃ 128 MHz) of PPh₃, and BF₃•OEt₂, and 1a

Combined ³¹P NMR spectra (CDCl₃ 128 MHz)

³¹P NMR studies in chloroform: a) PPh₃ (80 μ mol), b) PPh₃ (80 μ mol) and BF₃·OEt₂ (80 μ mol) and c) PPh₃ (80 μ mol), BF₃·OEt₂ (80 μ mol), and **1a** (80 μ mol).

Combined Time Course ¹³C NMR studies in chloroform at rt. PPh₃ (0.39 mmol), pinacolborane (0.43 mmol), and 1a (0.39 mmol).

7

25.9 25.8 25.7 25.6 25.5 25.4 25.3 25.2 25.1 25.0 24.9 24.8 24.7 24.6 24.5 24.4 24.3 24.2 24.1 24.0 23.9 23.8 23.7 23.6 f1 (ppm)

(E)-2a only

^{15.9 85.8 85.7 85.6 85.5 85.4 85.3 85.2 85.1 85.0 84.9 84.8 84.7 84.6 84.5 84.4 84.3 84.2 84.1 84.0 83.9 83.8 83.7 83.6 83.5 83.4 83.3 83.2 83.1 83.0 82.9 82.8 82.7 82.6 82.5 11(}ppm)

Annotated ¹³C NMR spectra for reaction with PBu₃ at -20 °C after 30 minutes (CDCl₃ 128 MHz) ¹³C NMR studies in chloroform at -20 °C. PBu₃ (0.039 mmol), pinacolborane (0.43 mmol), and 1a (0.39 mmol).

This spectra has been expanded in the following figures.

Additional rate determination studies were attempted using low temperature ¹H NMR. Due to the fast rate of reaction and temperature fluctuation during sample transfer, the rate of reaction could not be obtained from these experiments.

Attempts to observe the imine phosphonium intermediate by ¹H NMR at room temperature with triphenylphosphine as the catalyst were unsuccessful, with spectra only showing the starting material and product peaks.

Identification code	JMB-05-071
Empirical formula	C10H8BF3KNO
Formula weight	265.08
Temperature/K	99.98(11)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	18.55436(11)
b/Å	7.90140(4)
c/Å	8.22574(5)
$\alpha/^{\circ}$	90
β/°	102.6760(6)
$\gamma/^{\circ}$	90
Volume/Å ³	1176.545(12)
Z	4
$ ho_{calc}g/cm^3$	1.497
µ/mm ⁻¹	4.187
F(000)	536.0
Crystal size/mm ³	$0.21\times0.19\times0.07$
Radiation	Cu Ka ($\lambda = 1.54184$)
2 Θ range for data collection/°	4.882 to 156.154
Index ranges	$-23 \le h \le 23, -10 \le k \le 10, -9 \le l \le 10$
Reflections collected	32096
Independent reflections	2515 [$R_{int} = 0.0425, R_{sigma} = 0.0157$]
Data/restraints/parameters	2515/0/155

Goodness-of-fit on F ²	1.058
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0240, wR_2 = 0.0631$
Final R indexes [all data]	$R_1 = 0.0241, wR_2 = 0.0632$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.32

Table 2 Bond Lengths for cs2643.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
F1	B1	1.4141(13)	N1	K1 ²	3.0032(10)
F1	$K1^1$	2.6426(7)	N1	K1 ⁵	2.8559(10)
F1	K1 ²	2.7853(7)	C1	C2	1.4334(16)
F2	B1	1.4180(13)	C1	K1 ²	3.4518(11)
F2	K1 ³	2.6823(7)	C2	C3	1.3513(16)
F2	K1 ²	2.8028(7)	C3	C4	1.4811(15)
F3	B1	1.4020(14)	C3	B1	1.6302(16)
F3	K1	2.6327(7)	C4	C5	1.4063(16)
F3	K1 ³	3.1597(8)	C4	C9	1.3954(16)
01	C7	1.3720(14)	C5	C6	1.3840(16)
01	C10	1.4284(17)	C6	C7	1.3946(18)
N1	C1	1.1510(16)	C7	C8	1.3909(17)
N1	K1 ⁴	2.9935(10)	C8	С9	1.3930(16)

¹1-X,1/2+Y,1/2-Z; ²1-X,1-Y,1-Z; ³+X,1/2-Y,1/2+Z; ⁴+X,1+Y,+Z; ⁵+X,3/2-Y,1/2+Z

Table 3 Bond Angles for cs2643.

Atom Atom Atom		m Atom	Angle/°	Atom Atom Atom			Angle/°
B1	F1	$K1^1$	156.35(6)	F3	B1	C3	112.71(9)
B1	F1	K1 ²	103.03(6)	F1 ⁶	K1	F1 ²	108.62(2)
Table 3 Bond Angles for cs2643.

Atom Atom Atom		n Atom	Angle/°	Atom Atom		tom Atom Atom Angl	
K 1 ¹	F1	K1 ²	99.56(2)	F1 ⁶	K1	F2 ⁷	81.57(2)
B1	F2	K1 ³	113.22(6)	F1 ²	K1	$F2^2$	47.782(18)
B1	F2	K1 ²	102.10(6)	F1 ⁶	K1	$F2^2$	69.06(2)
K1 ³	F2	K1 ²	99.11(2)	F1 ⁶	K1	F3 ⁷	66.495(19)
B1	F3	K1	132.31(6)	F1 ²	K1	F3 ⁷	172.34(2)
B1	F3	K1 ³	91.65(6)	F1 ²	K1	N1 ⁸	78.42(2)
K1	F3	K1 ³	90.94(2)	F1 ⁶	K1	N1 ⁸	136.34(3)
C7	01	C10	117.08(10)	F1 ²	K1	N1 ⁹	112.55(2)
C1	N1	K1 ⁴	147.51(9)	F1 ²	K1	N1 ²	68.02(2)
C1	N1	K1 ⁵	112.01(8)	F1 ⁶	K1	$N1^2$	72.11(2)
C1	N1	K1 ²	103.13(8)	F1 ⁶	K1	N1 ⁹	83.27(3)
K1 ⁴	N1	K1 ²	90.85(3)	F2 ⁷	K1	F1 ²	141.94(2)
K1 ⁵	N1	K1 ²	108.72(3)	F2 ⁷	K1	$F2^2$	148.885(17)
K1 ⁴	N1	K1 ⁵	90.23(3)	F2 ⁷	K1	F3 ⁷	44.801(19)
N1	C1	C2	178.01(12)	$F2^2$	K1	F3 ⁷	124.759(19)
N1	C1	K1 ²	57.92(7)	$F2^2$	K1	$N1^2$	79.91(2)
C2	C1	K1 ²	123.43(7)	F2 ⁷	K1	N1 ⁹	104.92(3)
C3	C2	C1	122.30(10)	F2 ⁷	K1	$N1^2$	81.54(2)
C2	C3	C4	117.72(10)	$F2^2$	K1	N1 ⁸	125.52(2)
C2	C3	B1	121.26(10)	$F2^2$	K1	N1 ⁹	82.21(2)
C4	C3	B1	121.02(10)	F2 ⁷	K1	N1 ⁸	70.31(2)
C5	C4	C3	121.58(10)	F3	K1	F1 ⁶	157.14(2)
C9	C4	C3	120.78(10)	F3	K1	F1 ²	72.62(2)
C9	C4	C5	117.64(11)	F3	K1	F2 ⁷	111.99(2)

Table 3 Bond Angles for cs2643.

Atom Atom Atom		n Atom	Angle/°	Atom Atom Atom		Atom	Angle/°
C6	C5	C4	121.26(11)	F3	K1	F2 ²	99.13(2)
C5	C6	C7	119.91(11)	F3	K1	F3 ⁷	109.43(2)
01	C7	C6	115.52(11)	F3	K1	N1 ²	126.55(3)
01	C7	C8	124.40(11)	F3	K1	N1 ⁸	66.50(3)
C8	C7	C6	120.08(11)	F3	K1	N1 ⁹	75.59(3)
C7	C8	С9	119.34(11)	N1 ²	K1	F3 ⁷	114.43(2)
C8	C9	C4	121.75(11)	N1 ⁸	K1	F3 ⁷	109.22(2)
F1	B1	F2	106.10(9)	N1 ⁹	K1	F3 ⁷	61.79(2)
F1	B1	C3	111.17(9)	N1 ⁹	K1	N1 ²	153.462(11)
F2	B1	C3	111.23(9)	N1 ⁹	K1	N1 ⁸	135.24(4)
F3	B1	F1	108.13(9)	N1 ⁸	K1	N1 ²	71.28(3)
F3	B1	F2	107.18(9)				

¹1-X,1/2+Y,1/2-Z; ²1-X,1-Y,1-Z; ³+X,1/2-Y,1/2+Z; ⁴+X,3/2-Y,1/2+Z; ⁵+X,1+Y,+Z; ⁶1-X,-1/2+Y,1/2-Z; ⁷+X,1/2-Y,-1/2+Z; ⁸+X,-1+Y,+Z; ⁹+X,3/2-Y,-1/2+Z

Table 4 Torsion Angles for cs2643.

A	BCD	Angle/°	A B C D	Angle/°
01	C7 C8 C9	-179.29(11)	B1 C3 C4 C9	-37.54(15)
C1	C2 C3 C4	-178.92(10)	K1 ¹ F1 B1F2	-153.02(11)
C1	C2 C3 B1	0.54(16)	K1 ² F1 B1F2	9.46(9)
C2	C3 C4 C5	-37.77(16)	K1 ¹ F1 B1F3	-38.3(2)
C2	C3 C4 C9	141.92(11)	K1 ² F1 B1F3	124.17(7)
C2	C3 B1 F1	45.82(14)	K1 ² F1 B1C3	-111.60(8)
C2	C3 B1 F2	-72.18(13)	K1 ¹ F1 B1C3	85.92(17)
C2	C3 B1 F3	167.41(10)	K1 ³ F2 B1F1	96.19(8)

Table 4 Torsion Angles for cs2643.

A	BCD	Angle/°	A B C D	Angle/°
C3	C4 C5 C6	179.69(10)	K1 ² F2 B1F1	-9.37(9)
C3	C4 C9 C8	-178.74(11)	K1 ³ F2 B1F3	-19.17(10)
C4	C3 B1 F1	-134.74(10)	K1 ² F2 B1F3	-124.72(7)
C4	C3 B1 F2	107.26(11)	K1 ³ F2 B1C3	-142.79(7)
C4	C3 B1 F3	-13.15(14)	K1 ² F2 B1C3	111.66(8)
C4	C5 C6 C7	-0.59(18)	K1 ³ F3 B1F1	-99.14(8)
C5	C4 C9 C8	0.95(17)	K1 F3 B1F1	-6.37(13)
C5	C6 C7 O1	-179.79(11)	K1 ³ F3 B1F2	14.85(8)
C5	C6 C7 C8	0.26(18)	K1 F3 B1F2	107.62(9)
C6	C7 C8 C9	0.66(19)	K1 F3 B1C3	-129.67(8)
C7	C8 C9 C4	-1.29(19)	K1 ³ F3 B1C3	137.55(8)
C9	C4 C5 C6	0.00(17)	$\mathrm{K1^4N1C1K1^2}$	-116.73(7)
C10	O1C7C6	-175.19(11)	K1 ⁵ N1C1K1 ²	113.25(16)
C10	001 C7 C8	4.76(18)	K1 ² C1 C2 C3	12.25(15)
B1	C3 C4 C5	142.77(11)		