Electronic Supplementary Information

Visible Light-driven CO_{2} Reduction with a Ru Polypyridyl Complex Bearing an N-Heterocyclic Carbene Moiety

Taito Watanabe, ${ }^{\text {a }}$ Yutaka Saga, ${ }^{* a b}$ Kento Kosugi, ${ }^{\text {a }}$ Hikaru Iwami, ${ }^{\text {a }}$ Mio Kondo ${ }^{\text {abc }}$ and Shigeyuki Masaoka *ab
a.Department of Applied Chemistry, Graduate School of Engineering Osaka University,

2-1 Yamadaoka, Suita Osaka 565-0871, Japan.E-mail: mio@chem.eng.osaka-u.ac.jp, masaoka@chem.eng.osaka-u.ac.jp
b.Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
c.PRESTO, Japan Science and Technology Agency (JST), 4-1-4 Honcho, Kawaguchi, Saitama 332-0012, Japan

Contents

1. Synthesis S4
General procedure S4
Synthesis of 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) 55
Synthesis of $\mathbf{R u P}\left(\mathrm{PF}_{6}\right)_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ S5
Scheme S1 S6
Synthesis of $\mathbf{S} 1$ (1-methyl-3-(2-picolinyl)-1 H imidazolium chloride) S6
Synthesis of $\mathbf{S 2}\left(\left[\mathrm{Ru}^{\mathrm{III}}(\operatorname{trpy}) \mathrm{Cl}_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right)$ S6
Synthesis of $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ S7
Fig. S1 S8
Fig. S2 S8
Fig. S3 S9
Scheme S2 S10
Synthesis of $\mathbf{R u C}\left(\mathrm{ClO}_{4}\right)_{2}$. S10
Fig. S4 S10
Fig. 55 S11
2. X-ray crystallography S12
Fig. S6 S13
Fig. S7. S14
Table S1 S14
Table S2 S15
Table S3 S15
Fig. S8 S16
Table S4 S16
3. Electrochemical measurements S17
Fig. S9 S18
Fig. S10 S19
4. Spectroscopic measurements S20
5. Photocatalytic CO_{2} reduction S21
Representative procedure for photocatalytic CO_{2} reduction S21
Fig. S11 S21
Stability of $\mathbf{R u C}$ for photocatalytic CO_{2} reduction S22
Fig. S12. S22
${ }^{13} \mathrm{CO}_{2}$ labeling experiment 23
Table 55 S24
6. Quantum chemical calculation S25
Fig. S13 S26
Fig. S14 S26
Fig. S15 S27
Fig. S16 S27
Fig. S17 S28
Fig. S18 S29
Table S6 S29
7. Proposed catalytic mechanism S30
Fig. S19 S30
8. Comparison of catalytic activity S31
Table 57 S31
9. References S32

1. Synthesis

General procedure

$\mathrm{NaNO}_{3}, \mathrm{KOH}, \mathrm{NH}_{4} \mathrm{PF}_{6}$, aqueous solutions of HNO_{3}, triethylamine, ethylene glycol, diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, acetonitrile- $d_{3}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ and dimethylsulfoxide- $d_{6}\left(\mathrm{DMSO}-d_{6}\right)$ were purchased from FUJIFILM Wako Pure Chemical Corporation. 1-methylimidazole, 2-picolylchloride hydrochloride, methyl iodide, NaBH_{4}, tetrabutylammonium perchlorate (TBAP) and tetraethylammonium perchlorate (TEAP) were purchased from Tokyo Chemical Industry Co., Ltd. 2,2‘:6,2"-terpyridine was purchased from Aldrich. $\mathrm{NaHCO}_{3}, \mathrm{NaBPh}_{4}$, ethanol (EtOH), methanol (MeOH), ethyl acetate, chloroform $\left(\mathrm{CH}_{3} \mathrm{Cl}\right)$ and acetonitrile (MeCN) were purchased from Kanto Chemical Co., Inc. $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ was purchased from Tanaka Ki Kinzoku. 2-phenylbenzimidazole was purchased from Combi-Blocks. All the reagents were of highest quality available and were used as received except for TBAP and acetonitrile. TBAP was recrystallized from ethanol $/ \mathrm{H}_{2} \mathrm{O}$. TEAP was recrystallized from $\mathrm{MeCN} / \mathrm{EtOH}$ and hexane. MeCN was purified by column chromatography. $\mathrm{H}_{2} \mathrm{O}$ was purified using a Millipore MilliQ purifier. ${ }^{1} \mathrm{H}$ NMR spectra were collected at room temperature on a JEOL JNMECZS400YH spectrometer. ESI TOF-MS spectra were collected on a JEOL JMS-T100LC mass spectrometer.

Synthesis of 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH)

1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) was prepared in a similar procedure described in the literature. ${ }^{\mathrm{S} 1}$ To a solution of 2-phenylbenzimidazole ($5.00 \mathrm{~g}, 25.7 \mathrm{mmol}$) and potassium hydroxide ($1.54 \mathrm{~g}, 38.6 \mathrm{mmol}$) in acetone $(220 \mathrm{~mL})$ was added methyl iodide ($1.9 \mathrm{~mL}, 30.8$ mmol), and the mixture was heated at $50^{\circ} \mathrm{C}$ for overnight. Acetone was removed by evaporation and the resulting oil-like mixture was dissolved in ethyl acetate $(70 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$. Products were extracted three times, dried over sodium sulfate and filtered. The organic layer was directly used for the second methylation step without any purification. To the solution, methyl iodide ($2.4 \mathrm{~mL}, 38.9$ mmol) was added, and the mixture was heated at $80^{\circ} \mathrm{C}$ for overnight. The resulting precipitate was collected by filtration, washed with ethyl acetate to afford fine yellow solid (1,3-dimethyl-2phenylbenzimidazolium iodide). The solid was dissolved in methanol (180 mL) and cooled in an ice bath for 5 minutes, then $\mathrm{NaBH}_{4}(4.90 \mathrm{~g}, 129 \mathrm{mmol})$ was added portion-wise. After 30 min of stirring at room temperature, the white solid was formed, which was collected by filtration and washed with water. The crude mixture was purified by recrystallization from ethanol/water (5/1) to give $1,3-$ dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as white solid in 55% yield for 3 steps ($3.18 \mathrm{~g}, 14.2 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=7.56(2 \mathrm{H}, \mathrm{dd}, J=6.4,1.9 \mathrm{~Hz}$), $7.46(3 \mathrm{H}$, dd, $J=5.4,1.9 \mathrm{~Hz}), 6.63(2 \mathrm{H}, \mathrm{dd}, J=5.4,3.3 \mathrm{~Hz}), 6.47(2 \mathrm{H}, \mathrm{dd}, J=5.4,3.2 \mathrm{~Hz}), 4.88(1 \mathrm{H}, \mathrm{s}), 2.49(6 \mathrm{H}$, s).

Synthesis of RuP($\left.\mathrm{PF}_{6}\right)_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$

Scheme S1. Synthesis of $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}$.

Synthesis of S1 (1-methyl-3-(2-picolinyl)-1H imidazolium chloride)

S1 was prepared in a similar procedure described in the literature. ${ }^{\mathrm{S} 3} \mathrm{~A}$ solution of 1-methylimidazole $(1.70 \mathrm{~g}, 20.7 \mathrm{mmol})$, 2-picolylchloride hydrochloride ($3.74 \mathrm{~g}, 22.8 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(2.61 \mathrm{~g}, 31.1$ mmol) in EtOH (15 mL) was refluxed for 48 h . After 48 h of stirring, the mixture was concentrated under reduced pressure and the gummy product was resuspended in CHCl_{3}. Undissolved inorganic salts were removed by filtration and the resulting red solution was concentrated under reduced pressure. The crude mixture was purified by chromatography (active $\mathrm{Al}_{2} \mathrm{O}_{3}$-column, eluent: $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ $=20 / 1)$ to afford $\mathbf{S 1}$ as brown oil in 86% yield ($3.73 \mathrm{~g}, 17.8 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=9.31(1 \mathrm{H}, \mathrm{s}), 8.52-8.54(1 \mathrm{H}, \mathrm{m}), 7.87(1 \mathrm{H}, \mathrm{td}, J=7.8,2.0 \mathrm{~Hz}), 7.71-7.80(2 \mathrm{H}, \mathrm{m}), 7.49(1 \mathrm{H}, \mathrm{d}, J=$ $7.6 \mathrm{~Hz}), 7.37-7.41(1 \mathrm{H}, \mathrm{m}), 5.57(2 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s})$.

Synthesis of S2 ([Ru $\left.\left.{ }^{\text {III }}(\operatorname{trpy}) \mathrm{Cl}_{3}\right] \cdot \mathrm{H}_{2} \mathbf{O}\right)$

A solution of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(500 \mathrm{mg}, 1.91 \mathrm{mmol})$ and 2,2':6,2"-terpyridine ($446 \mathrm{mg}, 1.91 \mathrm{mmol}$) in EtOH (240 mL) was refluxed for 3 h . After 3 h of stirring, the resulting brown powder was collected by filtration, washed with $\mathrm{EtOH}(50 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The obtained crude product $\mathbf{S} 2(722 \mathrm{mg}$, 1.64 mmol) was used for the next reaction without any purification.

Synthesis of RuC($\left.\mathrm{BPh}_{4}\right)_{2} \cdot 0_{2} \cdot \mathrm{HH}_{2} \mathrm{O}$

A solution of $\mathbf{S} \mathbf{1}(709 \mathrm{mg}, 3.38 \mathrm{mmol})$ and $\mathbf{S} \mathbf{2}(1355 \mathrm{mg}, 3.07 \mathrm{mmol})$ in ethylene glycol $(54 \mathrm{~mL})$ was degassed by freezed-thawed-pumed cycle for three times. To the solution, triethylamine ($2.7 \mathrm{~mL}, 19.3$ mmol) was added and heated at $150{ }^{\circ} \mathrm{C}$ for 3 hours. After the addition of aqueous ammonium hexafluorophosphate, the brown solid was formed and the solid was collected by filtration, washed with water and ether. To a solution of the solid in acetone, aqueous sodium nitrate was added and stirred for 1 minute. Mixtures were concentrated under reduced pressure and then $0.1 \mathrm{M} \mathrm{HNO}_{3}$ was added. Undissolved materials were removed by filtration and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography (Sephadex LH-20, eluent: $0.1 \mathrm{M} \mathrm{HNO}_{3}$) to give the red solid. The anion exchange of the product was performed by the addition of saturated aqueous sodium tetraphenylborate. The product was purified by recrystallization from $\mathrm{MeCN} /$ diethyl ether to afford $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ as red crystal in 11% yield ($406 \mathrm{mg}, 0.339$ mmol). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=9.08-9.12(1 \mathrm{H}, \mathrm{m}), 8.23-8.28(4 \mathrm{H}, \mathrm{m}), 8.01-8.08(4 \mathrm{H}, \mathrm{m})$, $7.95(2 \mathrm{H}, \mathrm{td}, J=8.0,2.0 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.56-7.61(1 \mathrm{H}, \mathrm{m}), 7.35-7.40(2 \mathrm{H}, \mathrm{m}), 7.14-$ $7.21(16 \mathrm{H}, \mathrm{m}), 6.98(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 6.90(16 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 6.74(8 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 6.51(1 \mathrm{H}$, d, $J=2.0 \mathrm{~Hz}$), $5.32(2 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=176.10,165.41,164.92$, $164.43,163.93,160.05,159.60,158.09$, $157.31,154.74,139.24,138.89,136.58,136.27,128.49$, $127.18,126.51,126.49,126.46,126.43,125.08,124.71,123.73,123.22,122.64,54.70,36.18 . \operatorname{MS}$ (ESI) m/z 274.57 (M) ${ }^{2+}$; Anal. Found: C, $75.41 ; \mathrm{H}, 5.41 ; \mathrm{N}, 8.34$. Calcd for $\mathrm{C}_{75} \mathrm{H}_{66} \mathrm{~B}_{2} \mathrm{~N}_{7} \mathrm{O}_{0.5} \mathrm{Ru}_{1}$: C, 75.31; H, 5.56; N, 8.20.

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S2 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. $\mathbf{S 3}$ An ESI-TOF mass spectrum of $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}$.

Scheme S2. Synthesis of $\mathbf{R u C}\left(\mathrm{ClO}_{4}\right)_{2}$.

Synthesis of $\mathbf{R u C}\left(\mathrm{ClO}_{4}\right)_{2}$

To a solution of $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}(20 \mathrm{mg}, 0.017 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$, TBAP ($57 \mathrm{mg}, 0.17 \mathrm{mmol}$) was added, and the mixture was heated at $80^{\circ} \mathrm{C}$ for 16 hours. MeCN was removed by evaporation and the resulting solid mixture was washed by $\mathrm{Et}_{2} \mathrm{O}$ to remove soluble inorganic salts. The solid was collected by filtration and the product was purified by recrystallization from $\mathrm{MeCN} / \mathrm{Et}_{2} \mathrm{O}$ to afford $\mathbf{R u C}\left(\mathrm{ClO}_{4}\right)_{2}$ as red crystal in 80% yield ($10 \mathrm{mg}, 0.013 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta=9.19-9.22(1 \mathrm{H}$, m), 8.35-8.40 (4H, m), 8.11-8.17 (4H, m), $8.05(2 \mathrm{H}, \mathrm{td}, J=7.8,2.0 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, 7.66-7.70 (1H, m), 7.45-7.49 (2H, m), 7.08 (1H, d, $J=2.4 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 5.42(2 \mathrm{H}, \mathrm{s})$, $2.37(3 \mathrm{H}, \mathrm{s}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 274.57(\mathrm{M})^{2+}$. HRMS (ESI): m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{Ru}[\mathrm{M}]^{2+} 549.1215$. Found 549.1209

Fig. $\mathbf{S 4}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{R u C}\left(\mathrm{ClO}_{4}\right)_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S5 An ESI-TOF mass spectrum of $\mathbf{R u C}\left(\mathrm{ClO}_{4}\right)_{2}$.

2. X-ray crystallography

Single crystal X-ray diffraction data were collected on a Synergy Custom system CCD Plate equipped with confocal monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=0.71069 \AA$) coated with Paratone-N (Hampton Research Corp., Aliso Viejo, CA, USA). Data was processed using CrysAlisPro system software. ${ }^{\text {S4 }}$ The structures ware solved by dual-space algorithm using SHELXT program ${ }^{\text {S5 }}$ through the Olex2 interface. ${ }^{\text {S6 }}$ All nonhydrogen atoms were refined anisotropically using a least-squares method, and hydrogen atoms were fixed at calculated positions and refined using a riding model. SHELXL-2014/7 was used for structure refinement. ${ }^{57}$ Full-matrix least-squares refinements on F^{2} based on unique reflections with unweighted and weighted agreement factors of $R=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right|(I>2.00 \sigma(I))$ and $w R=\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2}$ were performed. Mercury 4.0 .0 was used for visualization and analysis of the structure. Crystallographic data have been deposited with Cambridge Crystallographic Data Centre: Deposition number CCDC 2143540 for $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}$ and 2152702 for $\mathbf{R u C}\left(\mathrm{ClO}_{4}\right)_{2}$. Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Fig. S6 An ORTEP drawing (50\% probability level) of RuC($\left.\mathrm{BPh}_{4}\right)_{2}$.

Fig. S7 ORTEP drawings (50\% probability level) of cationic moiety of $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}$.

Table S1. Summary of crystallographic data for $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}$.

formula	$\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{Ru}\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~B}\right)_{2}$
crystal system	orthorhombic
space group	Fdd2
a / \AA	$40.5571(6)$
b / \AA	$24.8192(4)$
c / \AA	$24.1742(6)$
$V / \AA \AA^{3}$	$24333.6(7)$
R_{1}	0.0546
$w R_{2}$	0.1318
GooF	1.052
Temp. / K	123

Table S2. Selected bond lengths for $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}$ and $\mathbf{R u P}\left(\mathrm{PF}_{6}\right)_{2}$.

bond	Distance / \AA	Distance / \AA
RuC($\left.\mathrm{BPh}_{4}\right)_{2}$	$\mathbf{R u P}\left(\mathrm{PF}_{6}\right)_{2} \mathrm{~S}^{2}$	
Ru1-N1	$2.073(4)$	$2.081(5)$
Ru1-N2	$1.969(4)$	$1.967(5)$
Ru1-N3	$2.077(4)$	$2.077(5)$
Ru1-N4	$2.106(4)$	$2.119(5)$
Ru1-N7	$2.074(4)$	$2.127(5)$
Ru1-C1	$2.024(4)$	-
Ru1-P1	-	$2.265(2)$
N7-C2	$1.131(7)$	$1.116(9)$
C1-N5	$1.366(6)$	-
C1-N6	$1.331(6)$	-

Table S3. Selected bond angles for $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}$ and $\mathbf{R u P}\left(\mathrm{PF}_{6}\right)_{2}$.

bond	Angle / degree	Angle / degree
	$\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}$	$\mathbf{R u P}\left(\mathrm{PF}_{6}\right)_{2}{ }^{\mathrm{S} 2}$
C1-Ru1-N4	$87.7(2)$	-
P1-Ru1-N4	-	$83.0(1)$
N4-Ru1-N7	$88.4(2)$	$92.8(2)$
C1-Ru1-N7	$176.1(2)$	$173.1(1)$

Fig. S8 An ORTEP drawing (50\% probability level) of $\mathbf{R u C}\left(\mathrm{ClO}_{4}\right)_{2}$.

Table S4. Summary of crystallographic data for $\mathbf{R u C}\left(\mathrm{ClO}_{4}\right)_{2}$.

formula	$\left(\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{Ru}\right)_{2}\left(\mathrm{O}_{4} \mathrm{Cl}\right) 4$
crystal system	triclinic
space group	$\mathrm{P} \overline{1}$
a / \AA	$10.6790(2)$
b / \AA	$12.5659(3)$
c / \AA	$23.1366(5)$
$V / \AA \AA^{3}$	$2885.51(11)$
$\alpha /{ }^{\circ}$	$86.015(2)$
$\beta /{ }^{\circ}$	$85.355(2)$
$\gamma /{ }^{\circ}$	$68.961(2)$
R_{1}	0.0406
$w R_{2}$	0.1057
GooF	1.050
$\mathrm{Temp} . / \mathrm{K}$	123

3. Electrochemical measurements

Cyclic voltammetry was performed with a Bio-Logic-Science Instruments potentiostat interfaced to a computer with SP-50 software, at room temperature under Ar or CO_{2} using one-compartment cell with a standard three-electrode configuration, which consisted of a glassy carbon disk (diameter 3 mm , BAS Inc.), a $\mathrm{Ag} / \mathrm{Ag}^{+}$couple, and a platinum wire as the working, reference and auxiliary electrodes, respectively. The working electrode was treated between scans by means of polishing with $0.05 \mu \mathrm{~m}$ alumina paste (BAS Inc.) and washing with purified $\mathrm{H}_{2} \mathrm{O}$. Ferrocene was used as an internal standard, and all potentials reported within this work are referenced to the ferrocenium/ferrocene couple at 0 V . $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}$ was used for the measurement except for Fig. 2a and Fig. S9a. RuC($\left.\mathrm{ClO}_{4}\right)_{2}$ was used for the measurements in Fig. 2a and Fig. S9a.

(a)

Fig. S9 CVs of RuC (0.5 mM) in 0.1 M TBAP/MeCN under Ar (a) in positive potential region and (b) negative potential region. Working electrode, glassy carbon; counter electrode, Pt wire; reference electrode, $\mathrm{Ag} / \mathrm{Ag}^{+}$; scan rate, $0.1 \mathrm{~s}^{-1}$ (black line), $0.2 \mathrm{~V} \mathrm{~s}^{-1}$ (pale blue line), $0.5 \mathrm{~V} \mathrm{~s}^{-1}$ (blue line) and 1.0 $\mathrm{V} \mathrm{s}^{-1}$ (purple line). Potential sweeps were started from the open circuit potential for all measurements.

Fig. S10 CVs of $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}\left(0.5 \mathrm{mM}\right.$, red line) and $\mathrm{NaBPh}_{4}(0.5 \mathrm{mM}$, green line) in 0.1 M TBAP/MeCN under Ar. Working electrode, glassy carbon; counter electrode, Pt wire; reference electrode, $\mathrm{Ag} / \mathrm{Ag}^{+}$; scan rate, $0.1 \mathrm{~s}^{-1}$. Potential sweeps were started from the open circuit potential for all measurements.

4. Spectroscopic measurements

UV-visible absorption spectra were measured on a Shimadzu UV-2450SIM spectrophotometer in MeCN at room temperature. $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}$ was used for the measurement.

5. Photocatalytic CO_{2} reduction

Representative procedure for photocatalytic CO_{2} reduction

A mixed solution of $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(39: 1, \mathrm{v}: \mathrm{v})(2.0 \mathrm{~mL})$ containing $20 \mu \mathrm{M} \mathrm{RuC}\left(\mathrm{BPh}_{4}\right)_{2}$ and 0.10 M BIH was purged with CO_{2} for 15 minutes unless otherwise stated. The solution was then irradiated with a 150 W Xe lamp equipped with 420 nm long pass filter (Edmund Industrial Optics) to produce the light in the range of $420 \leq \lambda \leq 750 \mathrm{~nm}$ at $20^{\circ} \mathrm{C}$ in a custom made aluminium box (Fig. S11) with cooling system. The amount of CO and H_{2} produced at the headspace of the cell was quantified by a Shimadzu GC-8A with a TCD detector equipped with a packed column with Molecular Sieve 13X-S 60/80. Calibration curves were obtained by sampling known amounts of H_{2} and CO .

Fig. S11 Setting of a custom made photoreacter used for photocatalytic CO_{2} reduction.

Stability of $\mathbf{R u C}$ for photocatalytic CO_{2} reduction

In the investigation on photocatalytic activity of $\mathbf{R u C}$, the catalysis was terminated before all BIH contained in the reaction mixture was consumed. Therefore, the decomposition of the complex is the main cause of the termination of the catalysis. Actually, when fresh BIH was added to the reaction mixture after 5 h of photolysis, the amount of evolved CO did not increase drastically (Fig. S12), indicating that RuC decomposes after the 5 h of photolysis.

Fig. S 12 (a) Turnover number of the products [CO (red) and H_{2} (green)] obtained during the photocatalytic CO_{2} reduction (a) with $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}(20 \mu \mathrm{M})$ and $\mathrm{BIH}(0.10 \mathrm{M})$ in CO_{2}-saturated$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ mixture (39:1, v:v) under photoirradiation ($420 \leq \lambda \leq 750 \mathrm{~nm}$) at $20^{\circ} \mathrm{C}$, (b) performed using the solution after 5 h reaction in (a) with the addition of BIH (0.10 M).

${ }^{13} \mathrm{CO}_{2}$ labeling experiment

A mixed solution of $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(39: 1, \mathrm{v}: \mathrm{v})(2.0 \mathrm{~mL})$ containing $20 \mu \mathrm{M} \mathrm{RuC}$ and 0.10 M BIH was purged with Ar for 15 min , followed by ${ }^{13} \mathrm{CO}_{2}$ bubbling for 15 min . The ${ }^{13} \mathrm{CO}_{2}$ gas was produced by adding 2.0 M HCl to solid $\mathrm{Ba}^{13} \mathrm{CO}_{3}$ (98 atom $\%{ }^{13} \mathrm{C}$, Sigma Aldrich). The evolved CO was detected by a GCMS-QP2020 (Rt®-Msieve $5 \mathrm{~A}\left(30 \mathrm{~m}, 0.53 \mathrm{~mm}\right.$ ID, $50 \mu \mathrm{~m}$ df) He carrier gas, $40^{\circ} \mathrm{C}$).

Table S5. Control experiments for the photocatalytic CO_{2} reduction by $\mathbf{R u C}\left(\mathrm{BPh}_{4}\right)_{2}$ irradiated at 420 $\leq \lambda \leq 750 \mathrm{~nm}$ for 3 h .

Entry	$\begin{aligned} & \mathbf{R u C} \\ & (\mu \mathrm{M}) \end{aligned}$	Solvent	Electron donor	TON ${ }^{\text {f }}$	
				CO	H_{2}
1	40	$\begin{aligned} & \mathrm{DMA}^{a} / \mathrm{H}_{2} \mathrm{O} \\ & (39: 1, \mathrm{v}: \mathrm{v}) \end{aligned}$	BIH (0.1 M)	10.5	0.2
2	40	$\begin{aligned} & \mathrm{DMF}^{b} / \mathrm{H}_{2} \mathrm{O} \\ & (39: 1, \mathrm{v}: \mathrm{v}) \end{aligned}$	BIH (0.1 M)	6.7	0.1
3	40	$\mathrm{MeCN} / \mathrm{TFE}^{c}$ (39:1, v:v)	BIH (0.1 M)	43.4	0.7
4	40	MeCN/TEOA ${ }^{d}$ (4:1, v:v)	BIH (0.1 M)	13.3	0.7
5	40	$\begin{aligned} & \text { MeCN/TFA }{ }^{e} \\ & (39: 1, \mathrm{v}: \mathrm{v}) \end{aligned}$	BIH (0.1 M)	0	trace

$a:$ DMA $=N, N$-dimethylacetamide
$b: \mathrm{DMF}=N, N$-dimethylformamide
$c:$ TFE = 2,2,2-trifluoroethanol
d : TEOA = triethanolamine
$e:$ TFA $=$ trifluoroacetic acid
$f:$ TON = turnover number

6. Quantum chemical calculation

Quantum chemical calculation were performed to evaluate the electronic structure of $\mathbf{R u C}, \mathbf{R u C}^{-}$, $\mathbf{R u C}^{\mathbf{2 -}}$ and $\mathbf{R u C}_{\mathbf{C O}}{ }^{-}{ }^{-}$. B3LYP-D3 functional ${ }^{\mathrm{S8}, \mathrm{~S} 9, \mathrm{~S} 10}$ were used to determine the optimized geometry and electronic structure. Here, LANL2DZ (with core potential) basis set was used on ruthenium, and $6-31 \mathrm{G}(d, p)$ basis set was used on the rest of the atoms (C,H,N and O). Solvation effects were included implicitly by the Continuum Polarized Conductor Model (CPCM), with a dielectric constant mimicking MeCN. ${ }^{\text {S11 }}$ The exited states were calculated by the time-dependent density functional theory (TD-DFT). ${ }^{\text {S12,S13,S14 }}$ All calculations were performed with the Gaussian 16 program package. ${ }^{\text {S } 15}$

Fig. S13 Calculated molecular orbitals of RuC.

HOMO

LUMO

Fig. S14 Calculated molecular orbitals of RuC ${ }^{-}$.

Fig. S15 Calculated molecular orbitals of $\mathbf{R u C}^{\mathbf{2 -}}$.

Fig. S16 Calculated molecular orbitals of $\mathrm{RuC}_{\mathbf{C O} 2}{ }^{-}$.

Fig. S17 Simulated absorption spectrum of RuC in MeCN based on TD-DFT calculations.

Fig. S18 Isodensity surface plots of selected frontier molecular orbitals of RuC based on the optimized ground-state geometry.

Table S6. Calculated TD-DFT excitation energies of RuC in MeCN media. f denotes the oscillator strength calculated for each transition.

λ / nm	f	Transition		
416.99	0.0398	HOMO-2	\rightarrow	LUMO+1
		HOMO-1	\rightarrow	LUMO+1
428.75	0.0391	HOMO-2	\rightarrow	LUMO
		HOMO-2	\rightarrow	LUMO+1
		HOMO-1	\rightarrow	LUMO
		HOMO-1	\rightarrow	LUMO+1
		HOMO	\rightarrow	LUMO+1
460.99		HOMO-2	\rightarrow	LUMO
		HOMO-1	\rightarrow	LUMO
		HOMO-1	\rightarrow	LUMO+1
			LUMO+1	

7. Proposed catalytic mechanism

Fig. S19 Proposed catalytic mechanism for photochemical CO_{2} reduction catalyzed by RuC.

8. Comparison of catalytic activity

Table S7. A comparison of function-integrated molecular photocatalysts for CO_{2} reduction.

Catalyst ($\mu \mathrm{M}$)	Electron donor	Light	Product	TON	${ }^{a}$ TOFav (h^{-1})	${ }^{\text {b }}$ TOFmax $\left(\mathrm{h}^{-1}\right)$	Ref.
$\mathbf{R u C}$ (This work)	BIH	$420 \leq \lambda \leq 750 \mathrm{~nm}$	CO	110 (3 h)	36.7		
RuP	BIH	$420 \leq \lambda \leq 750 \mathrm{~nm}$	CO	160 (11 h)	14.5		S16
RuP	TEOA	$420 \leq \lambda \leq 750 \mathrm{~nm}$	HCOOH	14 (4h)	3.5		S16
$\mathrm{Re}(\mathrm{bpy})(\mathrm{CO})_{3} \mathrm{Cl}$	TEOA	$\lambda \geq 400 \mathrm{~nm}$	CO	27 (4h)	${ }^{c} 6.8$		S17
$\mathrm{Re}(\mathrm{bpy})(\mathrm{CO})_{3} \mathrm{Br}$	TEOA	$\lambda \geq 400 \mathrm{~nm}$	CO	14 (4 h)	3.5		S18
$\left[\operatorname{Re}(\mathrm{bpy})(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OEt})_{3}\right)\right]\left(\mathrm{SbF}_{6}\right)$	TEOA	$\lambda=365 \mathrm{~nm}$	CO	7.5 (16 h)	${ }^{c} 0.45$		S19
$\mathrm{Re}\left(\mathrm{pyNHC}-\mathrm{PhCF}_{3}\right)(\mathrm{CO})_{3} \mathrm{Br}$	BIH, TEA	solar sim.	CO	32 (4h)	${ }^{c} 8$		S20
$\left[\operatorname{Re}(\right.$ bpy $\left.)(\mathrm{NS} \text {-carbene })_{2}(\mathrm{CO})_{2}\right]\left(\mathrm{PF}_{6}\right)$	BIH	$\lambda \geq 480 \mathrm{~nm}$	CO	153 (15 h)	${ }^{c} 10.2$		S21
$\left[\operatorname{Re}(\mathrm{bpy}) 2(\mathrm{CO})_{2}\right](\mathrm{Otf})$	TEOA	$\lambda=405 \mathrm{~nm}$	HCOOH	10 (24 h)	0.43		S22
FeTPP	TEA	cut off low UV and IR	CO	17 (10 h)	${ }^{c} 1.7$		S23
0CAT	TEA	cut off low UV and IR	CO	28 (10 h)	${ }^{c} 2.8$	7.7	S23
CAT	TEA	cut off low UV and IR	CO	30 (10 h)	${ }^{\text {c }} 3.0$	6.3	S23
FCAT	TEA	cut off low UV and IR	CO	23 (10 h)	${ }^{\text {c }} 2.3$	10.2	S23
Fe-p-TMA	BIH	$\lambda \geq 420 \mathrm{~nm}$	CO	101 (102 h)	${ }^{c} 1.0$		S24
$[\mathrm{Ir}(\text { (py })(\mathrm{ppy}) \mathrm{Cl}]^{+}$	TEOA	$410 \leq \lambda \leq 750 \mathrm{~nm}$	CO	$\begin{aligned} & { }^{d} \mathrm{ca.} 80 \\ & (\mathrm{ca} .4 \mathrm{~h}) \end{aligned}$			S25
$[\mathrm{Ir}(\mathrm{tpy})(\mathrm{Meppy}) \mathrm{Cl}]^{+}$	TEOA	$420 \leq \lambda \leq 750 \mathrm{~nm}$	CO	$\begin{aligned} & { }^{d} \mathrm{ca.} 105 \\ & (\mathrm{ca.} 4 \mathrm{~h}) \end{aligned}$			S25
$\left[\mathrm{Ir}(\text { tpy })\left(\mathrm{CF}_{3} \mathrm{ppy}\right) \mathrm{Cl}\right]^{+}$	TEOA	$420 \leq \lambda \leq 750 \mathrm{~nm}$	CO	$\begin{aligned} & { }^{d} \mathrm{ca.} 45 \\ & (\mathrm{ca.} 4 \mathrm{~h}) \end{aligned}$			S25
$\left[\mathrm{Ir}\right.$ (tpy)(Meppy) $\mathrm{Cl}^{\text {l }}$ (PF_{6})	TEOA	$\lambda=450 \mathrm{~nm}$	CO	$\begin{aligned} & 33 \\ & (\mathrm{ca.} .110 \mathrm{~min}) \end{aligned}$		35	S26
[Ir (tpy)(Meppy) $]$] $\left(\mathrm{PF}_{6}\right)$	TEOA	$\lambda=450 \mathrm{~nm}$	CO	54		32	S26
$\left[\left(\mathrm{Ir}(\mathrm{tpy})(\mathrm{ppy}) \mathrm{Cl}_{2}\right)_{2}-\left(\mathrm{CH}_{2}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$	TEOA	$\lambda=450 \mathrm{~nm}$	CO	81		12	S26
$\left[(\mathrm{Ir}(\text { tpy })(\mathrm{ppy}) \mathrm{I})_{2}-\left(\mathrm{CH}_{2}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$	TEOA	$\lambda=450 \mathrm{~nm}$	CO	135		22	S26
$\left[\left(\mathrm{Ir}(\mathrm{tpy})(\mathrm{ppy}) \mathrm{Cl}_{2}\right)_{2}-\left(\mathrm{CH}_{2}\right)_{8}\right]\left(\mathrm{PF}_{6}\right)_{2}$	TEOA	$\lambda=450 \mathrm{~nm}$	CO	92		25	S26
$\left[(\mathrm{Ir}(\text { tpy })(\text { ppy }) \mathrm{Cl})_{2}-\left(\mathrm{CH}_{2}\right)_{14}\right]\left(\mathrm{PF}_{6}\right)_{2}$	TEOA	$\lambda=450 \mathrm{~nm}$	CO	83		29	S26
$\left[(\mathrm{Ir}(\mathrm{tpy})(\mathrm{ppy}) \mathrm{Cl})_{2}-\left(\mathrm{CH}_{2}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$	TEOA	$\lambda=450 \mathrm{~nm}$	CO	$\begin{aligned} & 41 \\ & (\mathrm{ca.} 450 \mathrm{~min}) \end{aligned}$		12	S27
$\left[\left\{(\mathrm{Ir}(\text { tpy })(\mathrm{ppy}) \mathrm{Cl})-\left(\mathrm{CH}_{2}\right)_{2}\right\}_{3}-\mathrm{Ph}\right]\left(\mathrm{PF}_{6}\right)_{3}$	TEOA	$\lambda=450 \mathrm{~nm}$	CO	$\begin{aligned} & 60 \\ & (\mathrm{ca.} 780 \mathrm{~min}) \end{aligned}$		21	S27
N-trans-[Ir(tpy)(bpy)H] PF_{6})	TEOA	$\lambda \geq 410 \mathrm{~nm}$	CO	${ }^{d}$ c.a. 45 (ca. 160 min)			S28
C-trans-[II(tpy)(bpy)H] PF_{6})	TEOA	$\lambda \geq 410 \mathrm{~nm}$	CO	${ }^{d}$ ca. 45 (ca. 480 min)			S28
C-trans[$\operatorname{Ir}($ tpy $)(\mathrm{ppy}) \mathrm{Cl}]^{+}$	TEOA	$\lambda \geq 410 \mathrm{~nm}$	CO	$\begin{aligned} & { }^{d} \mathrm{ca.} 50 \\ & (\mathrm{ca.} 200 \mathrm{~min}) \end{aligned}$			S28
$[\mathrm{Ir}($ tpy $)(\mathrm{ppy}) \mathrm{Cl}]\left(\mathrm{PF}_{6}\right)$	TEOA	$400 \leq \lambda \leq 750 \mathrm{~nm}$	CO	178 ± 18		16 ± 2	S29
$[\mathrm{Ir}($ tpy $)(\mathrm{ppy}) \mathrm{Cl}]\left(\mathrm{PF}_{6}\right)$	TEOA	$\lambda=450 \mathrm{~nm}$	CO	182 ± 18		9 ± 1	S29
$[\mathrm{Ir}(\mathrm{Ph}-\mathrm{tpy})(\mathrm{ppy}) \mathrm{Cl}]\left(\mathrm{PF}_{6}\right)$	TEOA	$400 \leq \lambda \leq 750 \mathrm{~nm}$	CO	262 ± 26		16 ± 2	S29
[Ir (Ph-tpy)(ppy) Cl$]\left(\mathrm{PF}_{6}\right)$	TEOA	$\lambda=450 \mathrm{~nm}$	CO	288 ± 29		13 ± 1	S29
[$\mathrm{Ir}($ (9 -anthryl)-tpy)(ppy) Cl$]\left(\mathrm{PF}_{6}\right)$	TEOA	$400 \leq \lambda \leq 750 \mathrm{~nm}$	CO	310 ± 30		6.4 ± 0.6	S29
$\left[\operatorname{Ir}\left(\left(9-\right.\right.\right.$ anthryl)-tpy)(ppy)Cl] ${ }^{\left(\mathrm{PF}_{6}\right)}$	TEOA	$\begin{aligned} & \lambda=450 \mathrm{~nm} \\ & \left(2.0 \times 10^{-8} \text { einstein } / \mathrm{s}\right) \end{aligned}$	CO	344 ± 30		4.6 ± 0.4	S29
$\left[\operatorname{Ir}\left((9-\right.\right.$ anthryl)-tpy)(ppy) Cl$]\left(\mathrm{PF}_{6}\right)$	TEOA	$\begin{aligned} & \lambda=450 \mathrm{~nm} \\ & \left(7.9 \times 10^{-9} \text { einstein } / \mathrm{s}\right) \end{aligned}$	CO	530 ± 50		3.0 ± 0.4	S29
[$\mathrm{Ir}\left(\left(4{ }^{\prime}-\mathrm{F}-\mathrm{Ph}\right)\right.$-tpy $\left.)(\mathrm{ppy}) \mathrm{Cl}\right]\left(\mathrm{PF}_{6}\right)$	TEOA	$400 \leq \lambda \leq 750 \mathrm{~nm}$	CO	248 ± 25		10 ± 2	S29
$[\operatorname{Ir}(\mathrm{tpy})(\mathrm{bpy}) \mathrm{Cl}]^{2+}$	TEOA	$410 \leq \lambda \leq 750 \mathrm{~nm}$	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{HCOOH} \end{aligned}$	$\begin{aligned} & 2(24 \mathrm{~h}) \\ & 20(24 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & { }^{c} 0.08 \\ & 0.8 \end{aligned}$		S30
Mes-IrPCY2	BIH	$\lambda \geq 400 \mathrm{~nm}$	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{HCOOH} \end{aligned}$	$\begin{aligned} & 62(24 \mathrm{~h}) \\ & 323(24 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & { }^{c} 2.6 \\ & { }^{c} 13.5 \end{aligned}$		S31
Mes-IrPCY2	BIH	$\lambda \geq 400 \mathrm{~nm}$	HCOOH	2080 (146 h)	${ }^{c} 14.3$		S31
$\mathrm{Os}(\mathrm{bpy})(\mathrm{CO})_{2} \mathrm{Cl}_{2}$	TEOA	Osram Xe	CO	11.5 (4.5 h)	${ }^{\text {c } 2.6}$		S32
$\mathrm{Os}(\mathrm{dmbpy})(\mathrm{CO})_{2} \mathrm{Cl}_{2}$	TEOA	Osram Xe	CO	19.5 (4.5 h)	${ }^{c} 4.3$		S32
$\mathrm{Os}(\mathrm{bpy})(\mathrm{CO})_{2} \mathrm{Cl}_{2}$	TEOA	$\lambda \geq 326 \mathrm{~nm}$	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{HCOOH} \end{aligned}$	$\begin{aligned} & 24(14 \mathrm{~h}) \\ & 8.5(14 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & { }^{c} 1.7 \\ & { }^{c} 0.6 \end{aligned}$		S33
$\mathrm{Os}(\mathrm{dmbpy})(\mathrm{CO}){ }_{2} \mathrm{Cl}_{2}$	TEOA	$\lambda \geq 326 \mathrm{~nm}$	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{HCOOH} \end{aligned}$	$\begin{aligned} & 45(14 \mathrm{~h}) \\ & 15(14 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & c_{3.2} \\ & c_{1.1} \end{aligned}$		S33
$\mathrm{Os}(\mathrm{dtbbpy})(\mathrm{CO})_{2} \mathrm{Cl}_{2}$	TEOA	$\lambda \geq 326 \mathrm{~nm}$	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{HCOOH} \end{aligned}$	$\begin{aligned} & 47 \text { (14 h) } \\ & 8(14 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & { }^{c} 3.4 \\ & { }^{c} 0.6 \end{aligned}$		S33
$\mathrm{Os}(\mathrm{d}(\mathrm{COOiPr}) \mathrm{bpy})(\mathrm{CO})_{2} \mathrm{Cl}_{2}$	TEOA	$\lambda \geq 326 \mathrm{~nm}$	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{HCOOH} \end{aligned}$	$\begin{aligned} & 7(14 \mathrm{~h}) \\ & 2(14 \mathrm{~h}) \end{aligned}$	$\begin{gathered} { }^{c} 0.5 \\ { }^{c} 0.1 \end{gathered}$		S33
[Ru(CNC)(bpy)(MeCN)]	BIH	solar sim.	CO	55		8.3	S34
a : The turnover frequency was calculated by dividing the turnover number with duration of photoirradiation.							
b : Only the maximum turnover frequency mentioned in the articles are listed.							
c : The turnover frequency calc d : The approximate turnover n	ed from er from	numbers in the artic figures in the articl	are liste are listed				

9. References

S1. R. N. Sampaio, D. C. Grills, D. E. Polyansky, D. J. Szalda and E. Fujita, J. Am. Chem. Soc., 2020, 142, 2413-2428.

S2. G. Nakamura, M. Okamura, M. Yoshida, T. Suzuki, H. D. Takagi, M. Kondo and S. Masaoka, Inorg. Chem., 2014, 53, 7214-7226.

S3. S. D. Adhikary, D. Bose, P. Mitra, K. D. Saha, V. Bertolasi and J. Dinda, New J. Chem., 2012, 36, 759-767.

S4. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.39.46.
S5. G. M. Sheldrick, Acta Cryst. 2015, A71, 3.
S6. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.
S7. G. M. Sheldrick, Acta Cryst. 2015, A71, 3.
S8. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
S9. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B., 1988, 37, 785.
S10. S. Grimme, J. Chem. Phys., 2006, 124, 034108.
S11. J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999.
S12. M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys. 1998, 108, 4439.
S13. R. E. Statmann, G. E. J. Scuseria, Chem. Phys. 1998, 109, 8218.
S14. R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454.
S15. Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

S16. S. K. Lee, M. Kondo, M. Okamura, T. Enomoto, G. Nakamura and S. Masaoka, J. Am. Chem. Soc., 2018, 140, 16899.

S17. J. Hawecker, J.-M. Lehn and R. Ziessel, Chem. Commun., 1983, 286, 536-538.
S18. J. Hawecker, J.-M. Lehn and R. Ziessel, Helv. Chim. Acta, 1986, 69, 1990-2012.

S19. H. Hori, F. P. A. Johnson, K. Koike, O. Ishitani and T. Ibusuki, J. Photochem. Photobiol., A, 1996,96, 171-174.

S20. A. J. Huckaba, E. A. Sharpe and J. H. Delcamp, Inorg. Chem., 2016, 55, 682-690.
S21. A. Maurin, C.-O. Ng, L. Chen, T.-C. Lau, M. Robert and C.-C. Ko, Dalton Trans., 2016, 45, 14524-14529.

S22. Y. Hameed, P. Berro, B. Gabidullin and D. Richeson, Chem. Commun., 2019, 55, 11041-11044.
S23. J. Bonin, M. Chaussemier, M. Robert and M. Routier, ChemCatChem, 2014, 6, 3200-3207.
S24. H. Rao, J. Bonin and M. Robert, Chem. Commun., 2017, 53, 2830-2833.
S25. S. Sato, T. Morikawa, T. Kajino and O. Ishitani, Angew. Chem. Int. Ed.. 2013, 52, 988-992
S26. R. O. Reithmeier, S. Meister, B. Riegar, A. Siebel, M. Tschurl, U. Heiz and E. Herdtweck, Dalton Trans., 2014, 43, 13259-13269.

S27. R. O. Reithmeier, S. Meister, A. Siebel and B. Rieger, Dalton Trans., 2015, 44, 6466-6472.
S28. K. Garg, Y. Matsubara, M. Z. Ertem, A. Lewandowska-Andralojc, S. Sato, D. J. Szalda, J. T. Muckerman and E. Fujita, Angew. Chem. Int. Ed., 2015, 54, 14128-14132.

S29. A. Genoni, D. N. Chirdon, M. Boniolo, A. Sartorel, S. Bernhard and M. Bonchio, ACS Catal., 2017, 7, 154-160.

S30. S. Sato and T. Morikawa, ChemPhotoChem, 2018, 2, 207-212.
S31. K. Kamada, J. Jung, T. Wakabayashi, K. Sekizawa, S. Sato, T. Morikawa, S. Fukuzumi and S. Saito, J. Am. Chem. Soc., 2020, 142, 10261-10266.

S32. J. Chauvin, F. Lafolet, S. Chardon-Noblat, A. Deronzier, M. Jakonen and M. Haukka, Chem. Eur. J., 2011, 17, 4313-4322.

S33. C. E. Castillo, J. Armstrong, E. Laurila, L. Oresmaa, M. Haukka, J. Chauvin, S. Chardon-Noblat and A. Deronzier, ChemCatChem, 2016, 8, 2667-2677.
S34. S. Das, R. R. Rodrigues, R. W. Lamb, F. Qu, E. Reinheimer, C. M. Boudreaux, C. E. Webster, J. H. Delcamp and E. T. Papish, Inorg. Chem., 2019, 58, 8012-8020.

