Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Migratory Insertion of Copper-Allenylidene from Propargyl Ester

Qinglin Yao, Boxiang Liu, Tongxiang Cao, and Shifa Zhu*

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China

E-mail: <u>zhusf@scut.edu.cn</u>

Table of contents

1.	Expe	erimental procedures and spectroscopic data	2
	1.1.	General information	2
	1.2.	General procedure for 1	2
	1.3.	Optimization of 1-en-3,5-diynes	8
	1.4.	General procedure for 2	9
	1.5.	General procedure for 3	15
	1.6.	General procedure for 4	17
	1.7.	Deuterium-labeled Experiments	19
	1.8.	Optimization for 1,3-diynes	21
	1.9.	General procedure for 6	22
	1.10.	Base-assisted proton transfer from 6 ' to 6	31
	1.11.	References	32
2.	X-R	ay diffraction analysis	33
	2.1.	Crystal data and structure refinement for 4a	33
3.	Data	of NMR spectra	35
		•	

1. Experimental procedures and spectroscopic data

1.1. General information

Unless stated otherwise, reactions were conducted in Schlenk tube under an inert atmosphere of dry N₂. ¹H, ¹³C, ¹⁹F NMR spectra were recorded on a Bruker AVANCE 400 (400 MHz for ¹H; 101 MHz for ¹³C; 376 MHz for ¹⁹F) or Bruker AVANCE 500 (500 MHz for ¹H; 126 MHz for ¹³C; 471 MHz for ¹⁹F). ¹H NMR and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as external standard. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Infrared (IR) spectra are recorded on a Nicolet 210 spectrophotometer and were recorded in potassium bromide (KBr) pellet. Mass spectra (HRMS) were obtained using Agilent UHD Accurate Mass Q-TOF LC/MS (ESI) mass spectrometer, Thermo Fisher Scientific LTQ FTICR-MS and Thermo Scientific Q Exactive HF Orbitrap-FTMS. Melting points were determined using a hot stage apparatus. All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the literature.

1.2. General procedure for 1

Starting aldehyde (10 mmol) was dissolved in dry-THF (5mL) under N_2 and cooled to 0 °C. Ethynylmagnesium bromide (0.5 M in THF, 1.1 equiv, 22mL) was added. After completion of the addition, the reaction mixture was warmed to room temperature. After 3 hours the reaction mixture was quenched with saturated ammonium chloride solution and extracted with AcOEt. The combined organic extracts were dried with anhydrous sodium sulfate, filtered, and concentrated in vacuo to provide the crude product S-2.

To a stirred solution of crude product S-2 (about 10mmol) in $CH_2Cl_2(20 \text{ mL})$ were added pyridine (4.0 equiv, 40mmol, 3.2g, 3.2mL), 4-Dimethylaminopyridine (0.4 equiv, 4 mmol, 488.7mg) and methyl chloroformate (2.0 equiv, 20 mmol, 1.9g, 1.5mL) at 0 °C, and stirring was continued for 1 h at the same temperature. The reaction mixture was diluted with aqueous NH₄Cl and extracted with AcOEt. The combined extracts were washed with brine. The residue upon workup was chromatographed on silica gel with PE/EA as eluent to give propargylic carbonate **1**.

1ad, 1ae and 1af were prepared from S-2a in the same way as 1 using corresponding acylation reagents.

The characterization of compound **1a-b**¹, **1c**², **1e-f**¹, **1i**¹, **1l**³, **1v**⁴, **1ad**⁵, **1ae**⁶, **1af**⁷ were previously reported. Methyl (1-phenylprop-2-yn-1-yl) carbonate (**1a**)

Colorless oil (1.6 g), purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 85 %. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 – 7.55 (m, 2H), 7.47 – 7.39 (m, 3H), 6.32 (d, *J* = 2.3 Hz, 1H), 3.84 (s, 3H), 2.75 (d, *J* = 2.3 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 154.9, 135.9, 129.4, 128.9, 127.8, 79.6, 76.5, 69.4, 55.2.

methyl (1-(p-tolyl)prop-2-yn-1-yl) carbonate (1b)

Colorless oil (1.7 g), purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 83 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.44 (d, *J* = 8.1 Hz, 2H), 7.20 (d, *J* = 7.8 Hz, 2H), 6.25 (d, *J* = 2.3 Hz, 1H), 3.81 (s, 3H), 2.70 (d, *J* = 2.3 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 154.9, 139.4, 133.0, 129.4, 127.7, 79.8, 76.2, 69.3, 55.1, 21.2.

1-(4-fluorophenyl)prop-2-yn-1-yl methyl carbonate (1c)

F CCOOMe

Colorless oil (1.6 g), purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 77 %. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (ddt, *J* = 8.2, 5.0, 2.4 Hz, 2H), 7.13 – 7.02 (m, 2H), 6.26 (d, *J* = 2.2 Hz, 1H), 3.81 (s, 3H), 2.73 (d, *J* = 2.3 Hz, 1H). ¹³C NMR

(101 MHz, Chloroform-*d*) δ 163.4 (d, J = 248.7 Hz), 154.9, 131.92 (d, J = 3.3 Hz), 129.93 (d, J = 8.6 Hz), 115.8 (d, J = 21.9 Hz), 79.5, 76.8, 68.7, 55.3. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -111.86.

methyl (1-(o-tolyl)prop-2-yn-1-yl) carbonate (1e)

Colorless oil (1.8 g), purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 88 %.¹H NMR (500 MHz, Chloroform-*d*) δ 7.60 (d, *J* = 7.3 Hz, 1H), 7.28 – 7.20 (m, 2H), 7.17 (d, *J* = 7.4 Hz, 1H), 6.41 (d, *J* = 2.0 Hz, 1H), 3.79 (s, 3H), 2.69 (d, *J* = 2.1 Hz,

1H), 2.43 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 155.0, 136.4, 134.1, 134.0, 129.5, 128.1, 126.5, 79.6, 76.4, 67.5, 55.3, 19.2.

methyl (1-(m-tolyl)prop-2-yn-1-yl) carbonate(1f)

Colorless oil (1.6 g), purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 80 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.34 (d, *J* = 12.2 Hz, 2H), 7.29 – 7.21 (m, 1H), 7.17 (d, *J* = 7.5 Hz, 1H), 6.24 (s, 1H), 3.79 (s, 3H), 2.70 (d, *J* = 1.7 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 155.0, 138.7, 135.8, 130.3, 128.8, 128.43, 124.9, 79.8, 76.4, 69.5, 55.3, 21.5.

1-mesitylprop-2-yn-1-yl methyl carbonate(1g)

OCOOMe

White solid (1.9 g), m.p. = 59-61 °C, purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 83 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.90 (s, 2H), 6.77 (s, 1H), 3.80 (s, 3H), 2.69 – 2.66 (m, 1H), 2.57 (s, 6H), 2.30 (s, 3H). ¹³C NMR (126 MHz,

Chloroform-*d*) δ 155.0, 138.8, 137.3, 130.0, 129.8, 79.4, 75.6, 65.4, 55.0, 21.0, 20.2. **IR** (KBr, cm⁻¹): 3267, 2958, 2124, 1774, 1607, 1447, 1327, 1268, 1009, 919, 849, 792, 716, 677, 578, 541. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₄H₁₆NaO₃ 255.0992; found 255.0987.

methyl (1-(naphthalen-1-yl)prop-2-yn-1-yl) carbonate(1h)

Colorless oil (1.8 g), purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 80 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.28 (d, *J* = 8.3 Hz, 1H), 7.90 (d, *J* = 8.2 Hz, 2H), 7.86 (d, *J* = 7.0 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* =

7.7 Hz, 1H), 6.98 (s, 1H), 3.84 (s, 3H), 2.82 (d, J = 2.1 Hz, 1H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 155.0, 134.1, 131.2, 130.4, 128.9, 126.9, 126.8, 126.2, 125.2, 123.7, 79.7, 77.1, 68.0, 55.3. **IR** (KBr, cm⁻¹): 3290, 2957, 2126, 1762, 1593, 1512, 1446, 1270, 1095, 1048, 917, 863, 797, 645, 554, 516, 439. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₁₂NaO₃ 263.0679; found 263.0669.

methyl (1-(thiophen-2-yl)prop-2-yn-1-yl) carbonate(1i)

Yellow oil (0.6 g), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 33 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.37 (dd, *J* = 5.1, 1.3 Hz, 1H), 7.30 (d, *J* = 3.6 Hz, 1H), 6.99 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.52 (d, *J* = 2.3 Hz, 1H), 3.82 (s, 3H), 2.74 (d, *J* = 2.3 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 154.8, 138.4, 128.5, 127.8, 126.9, 79.0, 76.1, 64.5, 55.4.

methyl undec-1-yn-3-yl carbonate(1j)

Colorless oil (1.3 g), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 60 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 5.20 (td, *J* = 6.7, 2.1 Hz, 1H), 3.81 (s, 3H), 2.51 (d, *J* = 2.1 Hz, 1H), 1.89 – 1.74 (m, 2H), 1.46 (h, *J* = 6.7 Hz, 2H), 1.29 (td, *J* = 11.3, 4.3 Hz, 7H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 155.1, 80.7, 74.5, 68.0, 55.0, 34.7, 31.9, 29.5, 29.3, 29.1, 24.9, 22.7, 14.2. IR (KBr, cm⁻¹): 3301, 2927, 2860, 2124, 1754, 1451, 1268, 1125, 1032, 961, 791, 671, 456. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₃H₂₂NaO₃ 249.1461; found 249.1459.

methyl tridec-12-en-1-yn-3-yl carbonate(1k)

Colorless oil (1.4 g), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 56 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 5.78 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 5.18 (td, *J* = 6.7, 2.0 Hz, 1H), 5.02 – 4.93 (m, 1H), 4.93 – 4.86 (m, 1H), 3.79 (s, 3H), 2.49 (d, *J* = 2.1 Hz, 1H), 2.02 (q, *J* = 6.9 Hz, 2H), 1.87 – 1.72 (m, *J* = 6.9 Hz, 2H), 1.44 (q, *J* = 8.1, 7.4 Hz, 2H), 1.38 – 1.23 (m, 10H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 155.1, 139.2, 114.2, 80.7, 74.5, 68.0, 55.0, 34.7, 33.9, 29.4, 29.1, 29.1, 29.0, 24.8.

methyl (6-phenylhex-1-yn-3-yl) carbonate(11)

Colorless oil (1.7 g), purified by chromatography (petroleum/ethyl acetate = 60/1), yield = 72 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.20 (q, *J* = 7.2, 6.8 Hz, 2H), 7.10 (d, *J* = 7.8 Hz, 3H), 5.15 (d, *J* = 6.4 Hz, 1H), 3.73 (s, 3H), 2.59 (t, *J* = 7.2 Hz, 2H), 2.44 (s, 1H), 1.77 (ddq, *J* = 19.5, 11.3, 5.3, 4.1 Hz, 4H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 155.3, 142.0, 128.8, 126.3, 80.8, 75.0, 68.1, 55.4, 35.6, 34.5, 26.9. **IR** (KBr, cm⁻¹): 3288, 3027, 2950, 2125, 1757, 1595, 1448, 1271, 954, 791, 747, 687, 497. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₄H₁₆NaO₃ 255.0992; found 255.0994.

4-ethyloct-1-yn-3-yl methyl carbonate(1m)

MeOOCO

Colorless oil (1.3 g), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 62 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 5.26 (q, *J* = 6.2, 3.4 Hz, 1H), 3.80 (s, 3H), 2.48 (s, 1H), 1.64 (td, J = 12.1, 6.3 Hz, 1H), 1.49 (dddd, *J* = 55.8, 26.1, 13.3,

6.0 Hz, 4H), 1.37 - 1.23 (m, 4H), 0.97 - 0.86 (m, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 155.3, 79.7, 79.6, 75.2, 75.2, 70.7, 70.7, 55.1, 43.7, 43.7, 29.4, 29.3, 29.0, 23.0, 23.0, 22.8, 22.5, 14.1, 14.1, 11.6, 11.6. **IR** (KBr, cm⁻¹): 3300, 2960, 1755, 1706, 1449, 1269, 964, 790, 669. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₂H₂₀NaO₃ 235.1305; found 235.1302.

1-cyclohexylprop-2-yn-1-yl methyl carbonate(1n)

Colorless oil (1.3 g), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 66 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 5.03 – 5.00 (m, 1H), 3.78 (s, 2H), 2.49 (d, J = 2.0 Hz, 1H), 1.88 – 1.62 (m, 6H), 1.28 – 1.05 (m, 5H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 155.2, 79.6, 75.2, 72.3, 55.0, 41.7, 28.3, 28.0, 26.2, 25.7, 25.7. IR (KBr, cm⁻¹): 3298, 2931, 2857, 2124, 1751, 1447, 1262, 1106, 968, 791, 673, 466. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₁H₁₆NaO₃ 219.0992; found 219.0984.

1-(cyclohex-3-en-1-yl)prop-2-yn-1-yl methyl carbonate(10)

Colorless oil (1.0 g), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 51 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 5.71 – 5.60 (m, 2H), 5.13 (dd, *J* = 6.3, 2.2 Hz, 1H), 3.81 (s, 3H), 2.51 (t, *J* = 1.6 Hz, 1H), 2.25 – 1.81 (m, 6H), 1.55 – 1.35 (m, 1H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 155.0, 155.0, 126.9, 126.7, 125.2, 125.1, 79.2, 79.2, 75.3, 75.1, 71.4, 71.3, 54.8, 54.81, 37.8, 37.7, 26.9, 26.6, 24.6, 24.5, 24.1, 23.8. **IR** (KBr, cm⁻¹): 3284, 2953, 2867, 2694, 2203, 2123, 1751, 1582, 1447, 1269, 1166, 1098, 959, 878, 791, 680, 552, 453. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₁H₁₄NaO₃ 217.0835; found 217.0833.

1-((3r,5r,7r)-adamantan-1-yl)prop-2-yn-1-yl methyl carbonate (1p)

White solid (1.7 g), m.p. = 60-61 °C, purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 70 %. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.78 (d, *J* = 2.1 Hz, 1H), 3.78 (s, 3H), 2.48 (d, *J* = 2.2 Hz, 1H), 1.99 (s, 3H), 1.66 (d, *J* = 14.6 Hz, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.5, 78.7, 76.2, 75.5, 55.0, 37.6, 36.8, 36.7, 28.1. **IR** (KBr, cm⁻¹): 3288, 3030, 2957, 2126, 1763, 1707, 1581, 1495, 1448, 1284, 961, 790, 748, 698, 539, 447. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₂₁O₃ 249.1485; found 249.1482.

4,4-diethylhex-1-yn-3-yl methyl carbonate(1q)

Colorless oil (1.2 g), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 55 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 5.14 (d, *J* = 2.1 Hz, 1H), 3.80 (s, 3H), 2.51 (d, *J* = 2.1 Hz, 1H), 1.45 (qt, *J* = 14.6, 7.3 Hz, 6H), 0.86 (t, *J* = 7.6 Hz, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 156.0, 79.7, 75.9, 73.9, 55.1, 42.3, 26.0, 8.2. IR (KBr, cm⁻¹): 3300, 2968, 1754, 1449, 1347, 1263, 1083, 971, 925, 794, 669, 459. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₂H₂₀NaO₃ 235.1305; found 235.1302.

1-(3-ethyloxetan-3-yl)prop-2-yn-1-yl methyl carbonate(1r)

Colorless oil (1.2 g), purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 60 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 5.34 (d, *J* = 1.8 Hz, 1H), 4.62 – 4.56 (m, 2H), 4.39 – 4.33 (m, 2H), 3.80 (s, 3H), 2.56 (d, *J* = 2.1 Hz, 1H), 1.88 – 1.78 (m, 2H), 0.98 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ, 76.3, 76.1, 75.8, 70.0, 55.3, 45.8, 25.9, 8.2. 155.1, 77.9. **IR** (KBr, cm⁻¹): 3290, 2953, 2882, 2122, 1756, 1450, 1266, 1107, 976, 831, 790, 688, 470. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₀H₁₅O₄ 199.0965; found 199.0963.

6-methoxyhex-1-yn-3-yl methyl carbonate(1s)

Colorless oil (0.9 g), purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 47 %. ¹H NMR (400 MHz, Chloroform-*d*) δ 5.24 (td, *J* = 6.5, 2.1 Hz, 1H), 3.80 (s, 3H), 3.40 (t, *J* = 6.2 Hz, 2H), 3.32 (s, 3H), 2.51 (d, *J* = 2.1 Hz, 1H), 1.96 – 1.82 (m, 2H), 1.76 (dt, *J* = 9.0, 6.1 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.1, 80.5, 74.7, 71.9, 67.7, 58.7, 55.1, 31.6, 25.1. **IR** (KBr, cm⁻¹): 3293, 2951, 2880, 2123, 1754, 1449, 1268, 1117, 959, 791, 684, 502. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for C₉H₁₄O₄ 187.0965; found 187.0966.

6-(methoxymethoxy)hex-1-yn-3-yl methyl carbonate(1t)

Colorless oil (1.1 g), purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 49 %. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 5.24 (td, *J* = 6.5, 1.8 Hz, 1H), 4.59 (s, 2H), 3.79 (s, 3H), 3.54 (t, *J* = 6.2 Hz, 2H), 3.34 (s, 3H), 2.52 (d, *J* = 2.0 Hz, 1H), 1.99 – 1.88 (m, 2H), 1.76 (dq, *J* = 13.3, 7.2, 6.7 Hz, 2H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 155.0, 96.5, 80.4, 74.8, 67.7, 66.9, 55.3, 55.1, 31.7, 25.2. **IR** (KBr, cm⁻¹): 3287, 2950, 2885, 2123, 1754, 1448, 1269, 1150, 1110, 1042, 955, 791, 679, 454. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₀H₁₆NaO₅ 239.0890; found 239.0887.

7-chlorohept-1-yn-3-yl methyl carbonate(1u)

Colorless oil (1.3 g), purified by chromatography (petroleum/ethyl acetate = 60/1), yield = 66 %. ¹H NMR (400 MHz, Chloroform-*d*) δ 5.22 (td, *J* = 6.5, 2.1 Hz, 1H), 3.81 (s, 3H), 3.54 (t, *J* = 6.6 Hz, 2H), 2.53 (d, *J* = 2.1 Hz, 1H), 1.93 – 1.74 (m, 4H), 1.71 – 1.57 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.0, 80.3, 74.9, 67.6, 55.2, 44.7, 33.9, 32.1, 22.3. **IR** (KBr, cm⁻¹): 3292, 2956, 2126, 1761, 1707, 1449, 1278, 1152, 1051, 959, 791, 652, 554, 449. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₉H₁₃ClNaO₃ 227.0445; found 227.0441.

methyl (1-(tetrahydro-2H-pyran-4-yl)prop-2-yn-1-yl) carbonate(1v)

Colorless oil (1.4 g), purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 71 %. ¹H NMR (400 MHz, Chloroform-*d*) δ 5.05 (dd, *J* = 6.5, 2.1 Hz, 1H), 4.00 (dt, *J* = 9.7, 4.2 Hz, 2H), 3.81 (s, 3H), 3.37 (tdd, *J* = 11.8, 6.1, 2.1 Hz, 2H), 2.54 (d, *J* = 2.2 Hz, 1H), 1.99 (tdd, *J* = 11.8, 6.8, 3.6 Hz, 1H), 1.78 - 1.65 (m, 2H), 1.54 (dqd, *J* = 24.9, 12.2, 4.6 Hz, 2H).
¹³C NMR (101 MHz, Chloroform-*d*) δ 155.1, 78.9, 75.8, 71.4, 67.4, 55.2, 39.3, 28.5, 28.0.

1-(1-benzylpiperidin-4-yl)prop-2-yn-1-yl methyl carbonate(1w)

Yellow oil (1.8 g), purified by chromatography (petroleum/ethyl acetate = 5/1), yield = 63 %. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 (d, *J* = 4.4 Hz, 4H), 7.30 – 7.24 (m, 1H), 5.10 (dd, *J* = 6.1, 2.1 Hz, 1H), 3.83 (s, 3H), 3.52 (s, 2H), 3.00 – 2.92 (m, 2H), 2.55 (d, *J* = 2.2 Hz, 1H), 1.98 (tdd, *J* = 11.8, 7.0, 2.2 Hz, 2H), 1.87 – 1.70 (m, 3H), 1.54 (dqd, *J* = 25.5, 13.1, 12.6, 3.9 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.2, 138.5, 129.2, 128.3, 127.1, 79.3, 75.5, 71.6, 63.3, 55.1, 53.2, 40.2, 27.9, 27.4. **IR** (KBr, cm⁻¹): 3292, 3027, 2948, 2763, 2204, 2122, 1752, 1587, 1449, 1258, 1114, 1075, 964, 789, 739, 695, 463. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₂NO₃ 288.1594; found 288.1591.

4-((methoxycarbonyl)oxy)hex-5-yn-1-yl pivalate(1x)

Colorless oil (1.4 g), purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 55 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 5.23 (dt, *J* = 6.3, 3.0 Hz, 1H), 4.06 (hept, *J* = 6.0, 5.4 Hz, 2H), 3.78 (s, 3H), 2.52 (d, *J* = 2.0 Hz, 1H), 1.92 – 1.85 (m, 2H), 1.85 – 1.78 (m, 2H), 1.17 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 178.5, 154.9, 80.1, 75.0, 67.4, 63.6, 55.1, 38.83, 31.34, 27.25, 24.19. **IR** (KBr, cm⁻¹): 3292, 2968, 2124, 1754, 1449, 1270, 1161, 1036, 961, 787, 678, 462. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₂₁O₅ 257.1384; found 257.1383.

methyl (5-(methylthio)hex-1-yn-3-yl) carbonate(1y)

Colorless oil (0.9 g), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 46 %. ¹H NMR (400 MHz, Chloroform-*d*) δ 5.41 (qd, *J* = 6.5, 5.4, 2.1 Hz, 1H), 3.81 (d, *J* = 2.3 Hz, 3H), 2.83 (dq, *J* = 14.8, 7.9, 7.4 Hz, 1H), 2.54 (dd, *J* = 6.5, 2.1 Hz, 1H), 2.18 – 1.87 (m, 5H), 1.33 (dd, *J* = 6.8, 4.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.9, 154.9, 80.5, 80.3, 75.1, 74.9, 66.6, 65.9, 55.2, 41.3, 41.0, 37.1, 37.0, 21.1, 21.0, 12.7, 12.5. IR (KBr, cm⁻¹): 3293, 2922, 1754, 1446, 1269, 1116, 1029, 969, 790, 681. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₉H₁₅O₃S 203.0737; found 203.0733.

1-(tert-butyldimethylsilyl)prop-2-yn-1-yl methyl carbonate(1z)

The corresponding propargylic alcohol was prepared according the literature⁸. Colorless oil (1.4 g), purified by chromatography (petroleum), yield = 60 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 4.94 (t, J = 2.8 Hz, 1H), 3.68 – 3.63 (m, 3H), 2.55 (t, J = 2.5 Hz, 1H), 0.86 – 0.81 (m, 9H), 0.00 (d, J = 3.4 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 156.0, 80.6, 77.2, 60.7, 54.8, 26.6, 16.8, -7.9, -8.6. IR (KBr, cm⁻¹): 3302, 2945, 2862, 1753, 1452, 1362, 1331, 1261, 1097, 1000, 946, 836, 795, 674, 599, 445. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₁H₂₀NaO₃Si 251.1074; found 251.1072.

dimethyl trideca-1,12-diyne-3,11-diyl bis(carbonate) (1aa)

^{MeOOCO} Colorless oil (1.8 g), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 55 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 5.20 – 5.14 (m, 2H), 3.78 (s, 6H), 2.50 (d, *J* = 1.7 Hz, 2H), 1.86 – 1.71 (m, *J* = 6.9 Hz, 4H), 1.47 – 1.41 (m, 4H), 1.30 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 155.1, 80.6, 74.6, 67.9, 55.1, 34.6, 29.2, 28.9, 24.8. **IR** (KBr, cm⁻¹): 3280, 2860, 2125, 1765, 1706, 1456, 1319, 958, 791, 674, 556, 450. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₂₄NaO₆ 347.1465; found 347.1466.

methyl 6-((methoxycarbonyl)oxy)oct-7-ynoate(1ab)

Colorless oil (1.4 g), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 62 %. ¹H NMR (400 MHz, Chloroform-*d*) δ 5.18 (dt, *J* = 6.5, 3.3 Hz, 1H), 3.78 (s, 3H), 3.64 (s, 3H), 2.50 (d, *J* = 2.0 Hz, 1H), 2.30 (t, *J* = 7.4 Hz, 2H), 1.81 (ddt, *J* = 11.2, 6.8, 3.0 Hz, 2H), 1.65 (p, *J* = 7.6 Hz, 2H), 1.55 – 1.43 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.9, 155.0, 80.4, 74.7, 67.6, 55.1, 51.6, 34.3, 33.9, 24.4, 24.4. IR (KBr, cm⁻¹): 3284, 2953, 2867, 2694, 2203, 2123, 1751, 1582, 1447, 1269, 1166, 1098, 959, 878, 791, 680, 552, 453. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₉O₅ 229.1071; found 229.1074.

4-ethynyltetrahydro-2H-pyran-4-yl methyl carbonate(1ac)

Colorless oil (1.5 g), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 80 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 3.86 (dt, *J* = 11.7, 4.3 Hz, 2H), 3.77 (s, 3H), 3.73 - 3.66 (m, 2H), 2.69 (s, 1H), 2.24 (d, *J* = 13.2 Hz, 2H), 2.04 (ddd, *J* = 13.2, 9.5, 4.0 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 153.4, 81.8, 75.9, 74.5, 64.4, 54.7, 37.3. IR (KBr, cm⁻¹): 3286, 2967, 2863, 2768, 2707, 2118, 1824, 1757, 1578, 1443, 1354, 1247, 1157, 1098, 1034, 950, 910, 844, 791, 678, 562, 509, 454. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₉H₁₃O₄ 185.0808; found 185.0807.

tert-butyl (1-phenylprop-2-yn-1-yl) carbonate (1ad)

OBoc Colorless oil (1.5 g), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 65 %. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (dd, *J* = 7.6, 1.8 Hz, 2H), 7.38 (d, *J* = 6.9 Hz, 3H), 6.25 (d, *J* = 2.2 Hz, 1H), 2.69 (d, *J* = 2.3 Hz, 1H), 1.50 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.57, 136.35, 129.25, 128.79, 127.80, 83.24, 80.14, 76.08, 68.30, 27.86.

1-phenylprop-2-yn-1-yl acetate (1ae)

Colorless oil (1.3 g), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 75 %. ¹H NMR (400 MHz, Chloroform-d) δ 7.54 (dd, J = 7.6, 1.8 Hz, 2H), 7.39 (d, J = 6.9 Hz, 3H), 6.46 (d, J = 2.2 Hz, 1H), 2.66 (d, J = 2.3 Hz, 1H), 2.12 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.82, 136.60, 129.22, 128.84, 127.82, 80.39, 75.50,

65.43, 21.14.

1-phenylprop-2-yn-1-yl 4-methylbenzoate (1af)

Colorless oil (2.1 g), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 84 %. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, *J* = 8.1 Hz, 2H), 7.61 (d, *J* = 6.7 Hz, 2H), 7.38 (dd, *J* = 9.3, 7.2 Hz, 3H), 7.21 (d, *J* = 8.0 Hz, 2H), 6.69 (d, *J* = 2.0 Hz, 1H), 2.68 (d, *J* = 2.2 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (101 MHz, Chloroform-

d) & 165.49, 144.21, 136.79, 130.06, 129.23, 129.11, 128.82, 127.75, 126.96, 80.52, 75.64, 65.72, 21.79.

	LC 	G [Cu Bas] (5 mol%) e (1.5 eg.)				
	R	Solve	ent, rt, 1min R	!─────	~~B		
	1			2a			
Entry	Catalyst (5 mol%)	Liangd (10 mol%)	Base (1.5 equiv)	LG	Solvent (2 mL)	Yield (%) ^b	E/Z
1	CuI	-	NaO ^t Bu	OCO ₂ Me	THF	86 (78°)	1:1.0
2	-	-	NaO ^t Bu	OCO ₂ Me	THF	0	-
3	SIMesCuCl	-	NaO ^t Bu	OCO ₂ Me	THF	55	1:1.1
4	SIPrCuCl	-	NaO ^t Bu	OCO ₂ Me	THF	10	1.1:1
5	IMesCuCl	-	NaO ^t Bu	OCO ₂ Me	THF	51	1:1.1
6	IPrCuCl	-	NaO'Bu	OCO ₂ Me	THF	36	1.1:1
7	CuCl	PCy ₃	NaO ^t Bu	OCO ₂ Me	THF	16	1.4:1
8	CuCl	PPh ₃	NaO ^t Bu	OCO ₂ Me	THF	61	1:1.1
9	CuCl	XPhos	NaO'Bu	OCO ₂ Me	THF	39	1:1.1
10	CuCl	XantPhos	NaO'Bu	OCO ₂ Me	THF		1.3:1
11	CuCl	JohnPhos	NaO'Bu	OCO ₂ Me	THF	56	1:1.3
12	CuCl	dppf	NaO ^t Bu	OCO ₂ Me	THF	20	1.2:1
13	CuCl	dppBz	NaO ^t Bu	OCO ₂ Me	THF	13	1.5:1
14	CuCl	DPEPhos	NaO'Bu	OCO ₂ Me	THF	37	1:1.1
15	Me ₂ S-CuBr	-	NaO ^t Bu	OCO ₂ Me	THF	75	1:1.2
16	Cu(CH ₃ CN) ₄ PF ₆	-	NaO ^t Bu	OCO ₂ Me	THF	81	1:1.2
17	CuBr	-	NaO ^t Bu	OCO ₂ Me	THF	72	1:1.2
18	CuSCN	-	NaO'Bu	OCO ₂ Me	THF	76	1:1.2

1.3. Optimization of 1-en-3,5-diynes^{*a*}

19	CuOAc	-	NaO ^t Bu	OCO ₂ Me	THF	81	1:1.2
20	CuI	-	KO ^t Bu	OCO ₂ Me	THF	56 (53°)	5:1
21	CuI	-	LiO ^t Bu	OCO ₂ Me	THF	trace	-
22	CuI	-	Mg(O'Bu) ₂	OCO ₂ Me	THF	0	-
23	CuI	-	Al(O ^t Bu) ₃	OCO ₂ Me	THF	0	-
24^d	CuI	-	Et ₃ N	OCO ₂ Me	THF	0	-
25^{e}	CuI	-	K ₂ CO ₃	OCO ₂ Me	THF	0	-
26	CuI	-	TMSONa	OCO ₂ Me	THF	trace	-
27	CuI	-	TMSOK	OCO ₂ Me	THF	trace	-
28	CuI	-	EtONa	OCO ₂ Me	THF	11	1:1.0
29 ^f	CuI	-	NaHMDS	OCO ₂ Me	THF	0	-
30 ^g	CuI	-	<i>n</i> -BuLi	OCO ₂ Me	THF	0	-
31	CuI	-	NaO ^t Bu	OCO ₂ Me	DCE	0	-
32	CuI	-	NaO'Bu	OCO ₂ Me	CH ₃ CN	13	5.6:1
33	CuI	-	NaO'Bu	OCO ₂ Me	DME	51	1:1.0
34	CuI	-	NaO ^t Bu	OCO ₂ Me	1,4-Di- oxane	70	1:1.2
35	CuI	-	NaO ^t Bu	OBoc	THF	32	1:1.0
36	CuI	-	NaO'Bu	OAc	THF	13	1:1.1
37	CuI	-	NaO ^t Bu	LG _x ^h	THF	61	1:1.2

^{*a*}Reaction conditions: **1a** (0.2 mmol), Cu (5 mol%), base (0.3 mmol, 1.5 equiv), 2 mL of THF, 25 °C. ^{*b*}NMR yield. ^{*c*}Isolated yield ^{*d*} Reaction for 4 h. ^{*e*}Overnight. ^{*f*}Reation at -20 °C. ^{*g*}Reation at -78 °C. ^{*h*}LG_x =

1.4. General procedure for 2

To a 25 mL Schlenk tube with a magnetic bar under nitrogen atmosphere was added CuI (1.9mg, 5 mol%), dry-THF (0.7 mL), and NaO'Bu (1.0 M in THF, 300 μ L) sequentially at room temperature (about 25 °C). solution of **1** (0.2 mmol) in 1 mL dry-THF was dropped to the mixture within 1 min. After the drop was finished, the mixture was filtered by short silica, the solvent was evaporated by rotary evaporator, and the residue was purified by flash column chromatography on silica gel to afford the pure product **2**.

The melting point of E/Z mixtures were not measured because of the excessively wide melting range. The characterization of compound E-2a⁹ was previously reported.

(E/Z)-hexa-1-en-3,5-diyne-1,6-diyldibenzene (2a)

White solid (17.8 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 78%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.89 (d, *J* = 7.6 Hz, 2H), 7.54 (t, *J* = 8.8 Hz, 4H), 7.46 – 7.41 (m, 4H), 7.36 (m,

10H), 7.14 (d, J = 16.2 Hz, 1H, *E*-isomer), 6.81 (d, J = 12.0 Hz, 1H, *Z*-isomer), 6.29 (d, J = 16.2 Hz, 1H, *E*-isomer), 5.84 (d, J = 12.0 Hz, 1H, *Z*-isomer). ¹³C NMR (126 MHz, Chloroform-*d*) δ 144.7, 142.5, 136.1, 135.9, 132.6, 132.6, 129.4, 129.4, 129.3, 128.9, 128.7, 128.6, 128.6, 128.6, 126.6, 122.0, 121.9, 106.9, 106.0, 83.6, 82.3, 81.5, 80.5, 80.3, 76.2, 74.3, 74.3. **IR** (KBr, cm⁻¹): 3054, 2919, 2203, 1681, 1595,

1486, 1442, 1265, 1069, 1022, 953, 916, 783, 749, 684, 519. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₃ 229.1012; found 229.1003.

(E/Z)-4,4'-(hexa-1-en-3,5-diyne-1,6-diyl)bis(methylbenzene) (2b)

White solid (21.6 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 84 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.79 (d, J = 7.8 Hz, 2H), 7.44 (dd, J = 10.7, 7.9 Hz, 4H), 7.32 (d, J

White solid (7.9 mg), m.p. = 153-155 °C, purified by chromatog-

= 7.8 Hz, 2H), 7.23 (d, J = 7.9 Hz, 2H), 7.16 (t, J = 7.0 Hz, 6H), 7.10 (d, J = 16.2 Hz, 1H, *E*-isomer), 6.76 (d, J = 12.0 Hz, 1H, Z-isomer), 6.23 (d, J = 16.2 Hz, 1H, E-isomer), 5.77 (d, J = 12.0 Hz, 1H, Zisomer), 2.41 – 2.35 (m, 12H). ¹³C NMR (126 MHz, Chloroform-d) δ 144.5, 142.2, 139.7, 139.6, 139.6, 139.4, 133.6, 133.2, 132.5, 132.5, 129.6, 129.4, 129.3, 129.3, 128.7, 126.5, 118.9, 118.9, 105.8, 105.0, 83.8, 82.5, 81.5, 80.5, 80.3, 76.0, 73.8, 73.8, 21.8, 21.7, 21.6, 21.5. **IR** (KBr, cm⁻¹): 2920, 1899, 1599, 1506, 1176, 955, 817, 705, 557, 519, 442. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₆Na 279.1144; found 279.1142.

(*E*)-4,4'-(hexa-1-en-3,5-diyne-1,6-diyl)bis(fluorobenzene) (*E*-2c)

MHz, Chloroform-d) δ 7.55 – 7.44 (m, 2H), 7.43 – 7.35 (m, 2H), 7.11 - 6.99 (m, 5H), 6.17 (d, J = 16.2 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 163.5 (d, J = 250.1Hz), 163.2 (d, J = 251.5 Hz), 143.5, 134.6 (d, J = 8.5 Hz), 132.1 (d, J = 3.5 Hz), 128.3 (d, J = 8.2 Hz), 118.1 (d, J = 3.6 Hz), 116.1 (d, J = 21.9 Hz), 116.0 (d, J = 22.3 Hz), 106.6 (d, J = 2.5 Hz), 81.3, 81.2,76.0, 73.0 (d, J = 1.3 Hz). ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -108.61, -111.19. **IR** (KBr, cm⁻¹): 3149, 3042, 2918, 2851, 1597, 1503, 1317, 1227, 1157, 1093, 834, 747, 614, 528, 468. HRMS (ESI) m/z: [M+H]+ Calcd for C₁₈H₁₁F₂ 265.0823; found 265.0822.

(Z)-4,4'-(hexa-1-en-3,5-diyne-1,6-diyl)bis(fluorobenzene) (Z-2c)

White solid (8.7 mg), m.p. = 71-73 °C, purified by chromatography (petroleum/ethyl acetate = 80/1), yield = 33 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.89 – 7.82 (m, 2H), 7.55 – 7.48 (m, 2H), 7.06 (dt, J = 21.2, 8.7 Hz, 4H), 6.75 (d, J = 12.0 Hz, 1H), 5.79 (d, J = 12.0 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.1 (d, *J* = 251.7 Hz), δ 162.9 (d, *J* = 250.2 Hz), 134.6 (d,

J = 8.6 Hz), δ 132.3 (d, *J* = 3.4 Hz), 130.5 (d, *J* = 8.2 Hz), 117.9 (d, *J* = 3.5 Hz), 115.9 (d, *J* = 22.3 Hz), 115.5 (d, J = 21.7 Hz), 105.4 (d, J = 2.3 Hz), 141.1, 105.43, 105.41, 82.4, 80.2, 79.9, 73.8 (d, J = 1.3 Hz). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -108.39, -110.75. IR (KBr, cm⁻¹): 3132, 2128, 1883, 1630, 1598, 1502, 1402, 1301, 1225, 1153, 1093, 940, 818, 802, 617, 520, 479. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₁F₂ 265.0823; found 265.0822.

(E/Z)-2,2'-(hexa-1-en-3,5-diyne-1,6-diyl)bis(methylbenzene) (2e)

White solid (22.2 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 86 %. ¹H NMR (500 MHz, Chloroform-d) δ 8.17 (d, J = 7.3 Hz, 1H), 7.49 – 7.42 (m, 3H), 7.38 (d, J = 16.2 Hz, 1H, E-isomer), 7.18 (ddq, J = 33.9, 20.9, 7.4 Hz, 12H), 6.99 (d, J = 12.0 Hz, 1H, Z-isomer), 6.18

(d, J = 16.1 Hz, 1H, E-isomer), 5.87 (d, J = 12.0 Hz, 1H, Z-isomer), 2.46 (s, 3H), 2.44 (s, 3H), 2.36 (s, 3H), 2.46 (s, 3H), 2.44 (s, 3H), 2.36 (s, 3H), 2.46 (s, 3H), 2.44 (s, 3H), 2.46 (s, 3H),3H), 2.33 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 142.3, 141.8, 140.4, 136.6, 136.2, 134.9, 134.8, 133.02, 133.00, 130.8, 130.4, 129.69, 129.67, 129.26, 129.25, 129.2, 129.0, 127.9, 126.4, 126.0, 125.78,

125.76, 125.0, 121.81, 121.75, 107.8, 107.0, 82.4, 82.1, 81.4, 80.8, 79.5, 77.8, 76.0, 20.8, 20.8, 19.9, 19.9. **IR** (KBr, cm⁻¹): 3022, 2921, 2203, 2131, 1917, 1697, 1599, 1454, 1379, 1300, 1195, 1195, 1160, 1093, 1039, 949, 871, 750, 710, 544, 444. **HRMS** (ESI) m/z: $[M+Na]^+$ Calcd for C₂₀H₁₆Na 279.1144; found 279.1134.

(E/Z)-3,3'-(hexa-1-en-3,5-diyne-1,6-diyl)bis(methylbenzene) (2f)

White solid (20.8 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 81 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.73 (d, J = 7.7 Hz, 1H), 7.60 (s, 1H), 7.31 (dd, J = 16.1, 8.2 Hz, 5H), 7.20 (dd, J= 12.3, 5.5 Hz, 5H), 7.18 – 7.10 (m, 4H), 7.07 (d, J = 16.2 Hz, 1H , *E*-

isomer), 6.74 (d, J = 12.0 Hz, 1H , Z-isomer), 6.23 (d, J = 16.2 Hz, 1H , E-isomer), 5.78 (d, J = 12.0 Hz, 1H , Z-isomer), 2.37 (s, 3H), 2.34 (s, 3H), 2.32 (s, 3H), 2.32 (s, 3H). ¹³C NMR (126 MHz, Chloroformd) δ 144.8, 142.6, 138.6, 138.3, 138.3, 138.1, 136.1, 135.8, 133.08, 133.06, 130.3, 130.2, 130.1, 129.73, 129.71, 129.6, 128.8, 128.51, 128.46, 128.44, 127.3, 125.7, 123.8, 121.82, 121.76, 106.7, 105.8, 83.8, 82.5, 81.5, 80.6, 80.3, 76.2, 74.0, 73.9, 21.6, 21.5, 21.3. **IR** (KBr, cm⁻¹): 3027, 2921, 2203, 2133, 1783, 1600, 1484, 1304, 1089, 1040, 951, 880, 793, 688, 496, 437. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₆Na 279.1144; found 279.1142.

(*E*/*Z*)-2,2'-(hexa-1-en-3,5-diyne-1,6-diyl)bis(1,3,5-trimethylbenzene) (**2g**)

White solid (30.9 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 99 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.26 (d, *J* = 16.5 Hz, 1H , *E*-isomer), 6.96 – 6.89 (m, 7H), 6.86 (s, 2H), 6.03 (d, *J* = 11.6 Hz, 1H , *Z*-isomer), 5.92 (d, *J* = 16.5 Hz, 1H , *E*-isomer),

2.48 (s, 6H), 2.39 (s, 6H), 2.36 (s, 6H), 2.35 – 2.29 (m, 18H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 142.9, 142.6, 142.0, 141.9, 138.9, 138.8, 137.7, 137.2, 136.3, 136.1, 132.7, 132.5, 129.2, 128.4, 127.9, 127.8, 118.8, 112.2, 111.2, 82.2, 81.1, 81.1, 80.8, 80.5, 80.4, 78.8, 75.7, 21.54, 21.51, 21.20, 21.17, 21.12, 21.07, 21.01, 20.48. **IR** (KBr, cm⁻¹): 2918, 2857, 2205, 1607, 1443, 1379, 1030, 854, 737, 570. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₂₄Na 335.1770; found 335.1771.

(E/Z)-1,1'-(hexa-1-en-3,5-diyne-1,6-diyl)dinaphthalene (2h)

White solid (23.0 g), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 70 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.27 (d, *J* = 8.3 Hz, 1H), 8.22 (d, *J* = 6.9 Hz, 1H), 8.18 (d, *J* = 8.2 Hz, 1H), 8.00 (d, *J* = 8.3 Hz, 1H), 7.92 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 16.0 Hz, 1H, *E*-isomer), 7.78 - 7.69 (m, 7H), 7.67 (d, *J* = 7.1 Hz, 1H), 7.61 (d, *J* = 7.2 Hz, 1H), 7.55 (d, *J*

= 7.2 Hz, 1H), 7.52 – 7.37 (m, 11H), 7.35 – 7.25 (m, 3H), 6.28 (d, J = 16.0 Hz, 1H, *E*-isomer), 5.99 (d, J = 11.8 Hz, 1H , *Z*-isomer). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 141.7, 140.0, 134.0, 133.9, 133.8, 133.7, 133.20, 133.16, 133.14, 132.6, 132.1, 131.4, 130.9, 129.9, 129.8, 129.6, 128.9, 128.8, 128.5, 127.34, 127.30, 126.81, 126.78, 126.59, 126.55, 126.24, 126.20, 126.17, 126.0, 125.63, 125.58, 125.33, 125.29, 123.7, 123.5, 123.4, 119.7, 119.6, 109.4, 108.5, 82.9, 81.4, 81.3, 80.9, 79.4, 79.00, 78.95, 76.4. **IR** (KBr, cm⁻¹): 3046, 1582, 1502, 1332, 1246, 942, 792, 760, 556, 468. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₁₆Na 351.1144; found 351.1142.

(E/Z)-2,2'-(hexa-1-en-3,5-diyne-1,6-diyl)dithiophene (2i)

White solid (13.0 mg), purified by chromatography (petroleum/ethyl acetate = 80/1), yield = 54 %. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.41 – 7.29 (m,

6H), 7.25 (d, J = 5.5 Hz, 1H), 7.21 (d, J = 15.9 Hz, 1H, *E*-isomer), 7.10 – 6.97 (m, 6H), 6.07 (d, J = 15.9 Hz, 1H, *E*-isomer), 5.66 (d, J = 11.4 Hz, 1H, *Z*-isomer). ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 141.0, 140.6, 137.4, 135.8, 134.5, 134.3, 130.4, 129.0, 128.8, 128.3, 128.1, 127.7, 127.4, 127.3, 126.9, 126.6, 122.3, 122.2, 105.7, 103.0, 83.4, 83.2, 82.6, 78.4, 78.3, 77.6, 76.4, 75.6. **IR** (KBr, cm⁻¹): 2921, 2130, 1584, 1425, 1210, 1041, 936, 830, 701. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₉S₂ 241.0140; found 241.0131.

(*E/Z*)-docosa-9-en-11,13-diyne (2j)

Colorless oil (18.7 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 62%. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.26 (dt, *J* = 15.0, 7.1 Hz, 1H , *E*-isomer), 6.02 (dt, *J* = 10.8, 7.5 Hz, 1H , *Z*-isomer), 5.50 – 5.43 (m, 2H), 2.36 – 2.27 (m, 7H), 2.10 (q, *J* = 7.2 Hz, 2H), 1.53 (h, *J* = 7.4 Hz, 5H), 1.39 (q, *J* =

6.5 Hz, 9H), 1.29 - 1.24 (m, 41H), 0.88 (t, J = 6.9 Hz, 14H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 148.4, 147.9, 108.8, 108.2, 85.0, 83.8, 78.3, 74.2, 73.0, 72.2, 65.34, 65.31, 33.4, 32.0, 31.99, 31.97, 30.8, 29.6, 29.5, 29.4, 29.4, 29.3, 29.2, 29.03, 28.99, 28.96, 28.7, 28.5, 22.8, 22.8, 19.8, 19.7, 14.24, 14.22. **IR** (KBr, cm⁻¹): 2926, 2857, 2233, 1667, 1460, 1373, 954, 730. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₃₆Na 323.2709; found 323.2706.

(*E/Z*)-hexacosa-1,11,25-trien-13,15-diyne (2k)

Colorless oil (23.3 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 66%. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.26 (dt, *J* = 14.7, 7.1 Hz, 1H, *E*-isomer), 6.02 (dt, *J* = 10.7, 7.5 Hz, 1H, *Z*-isomer), 5.87 – 5.75 (m, 4H), 5.51 – 5.44 (m, 2H), 4.99 (d, *J* = 17.1 Hz, 4H), 4.93 (d, *J* = 10.1 Hz, 4H), 2.37 – 2.25 (m, 6H), 2.10 (q, *J* = 7.1 Hz, 2H), 2.04 (q, *J* = 6.9 Hz, 8H),

1.53 (h, J = 7.3 Hz, 4H), 1.42 – 1.34 (m, 16H), 1.32 – 1.24 (m, 28H). ¹³**C** NMR (126 MHz, Chloroform*d*) δ 148.3, 147.9, 139.4, 139.3, 114.3, 114.2, 108.8, 108.3, 85.0, 83.8, 78.3, 74.2, 73.0, 72.2, 65.4, 65.3, 34.0, 33.9, 33.3, 30.8, 30.5, 29.8, 29.54, 29.52, 29.47, 29.44, 29.26, 29.25, 29.22, 29.20, 29.17, 29.07, 29.04, 29.0, 28.9, 28.7, 28.4, 19.8, 19.7. **IR** (KBr, cm⁻¹): 3118, 3027, 2934, 2802, 2761, 1742, 1623, 1494, 1448, 1400, 1230, 1116, 979, 911, 786, 737, 697, 617, 471. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₄₁ 353.3203; found 353.3203.

(E/Z)-dodeca-4-en-6,8-diyne-1,12-diyldibenzene (21)

Colorless oil (17.5 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 56%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.31 (q, *J* = 7.0 Hz, 8H), 7.21 (dd, *J* = 11.9, 5.1 Hz, 12H), 6.33 (dt, *J* = 15.3, 7.1 Hz, 1H, *E*-isomer), 6.09 (dt, *J* = 10.6, 7.5 Hz, 1H, *E*-isomer), 5.57 – 5.50 (m, 2H), 2.80 – 2.72 (m, 4H), 2.70 – 2.60 (m, 4H), 2.45 – 2.32 (m,

6H), 2.18 (q, J = 7.2 Hz, 2H), 1.94 – 1.84 (m, 4H), 1.82 – 1.72 (m, 4H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 147.8, 147.3, 142.3, 142.0, 141.4, 128.7, 128.60, 128.56, 128.54, 128.53, 128.5, 128.4, 126.2, 126.1, 121.0, 125.9, 109.3, 108.8, 84.5, 83.3, 78.6, 74.2, 73.2, 72.3, 65.89, 65.85, 35.5, 35.3, 34.9, 34.8, 32.8, 30.8, 30.5, 30.3, 30.0, 29.8, 19.14, 19.05. **IR** (KBr, cm⁻¹):3123, 2927, 2857, 1714, 1604, 1401, 1265, 1154, 739, 534. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₂₄Na 335.1770; found 335.1765.

(E/Z)-5,12-diethylhexadeca-6-en-8,10-diyne (2m)

Colorless oil (19.1 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 70%. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.03 (dd, *J* = 15.9, 9.2 Hz, 1H, *E*-isomer), 5.73 (t, *J* = 10.5 Hz, 1H, *Z*-isomer),

5.52 (d, J = 10.9 Hz, 1H, Z-isomer), 5.44 (d, J = 15.9 Hz, 1H, E-isomer), 2.58 (dq, J = 8.8, 4.7 Hz, 1H), 2.42 – 2.32 (m, 2H), 1.92 (dt, J = 8.6, 4.3 Hz, 1H), 1.57 – 1.39 (m, 14H), 1.38 – 1.29 (m, 6H), 1.29 – 1.18 (m, 12H), 1.04 – 0.96 (m, 6H), 0.94 – 0.79 (m, 18H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 152.7, 152.3, 108.6, 108.4, 87.9, 87.1, 77.6, 74.6, 73.0, 72.9, 66.5, 66.4, 45.6, 42.6, 34.7, 34.49, 34.45, 34.34, 34.32, 34.29, 29.8, 29.6, 29.5, 28.2, 28.1, 28.0, 27.8, 23.01, 22.89, 22.7, 14.19, 14.15, 14.13, 12.0, 11.9, 11.8. **IR** (KBr, cm⁻¹): 3125, 2960, 2929, 2866, 2226, 1709, 1458, 1397, 1263, 1148, 960, 740. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₃₃ 273.2577; found 273.2572.

(*E/Z*)-hexa-1-en-3,5-diyne-1,6-diyldicyclohexane (2n)

Colorless oil (16.4 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 68%. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.22 (dd, *J* = 16.0, 7.0 Hz, 1H , *E*-isomer), 5.84 (t, *J* = 10.2 Hz, 1H , *Z*-isomer), 5.44 (d, *J* = 16.0 Hz, 1H , *E*isomer), 5.37 (d, *J* = 10.9 Hz, 1H , *Z*-isomer), 2.64 – 2.55 (m, 1H), 2.54 – 2.44 (m, 2H), 2.08 – 1.98 (m, 1H), 1.80 (m, 4H), 1.75 – 1.61 (m, 14H), 1.48 (m, 6H), 1.35 – 1.25 (m, 10H), 1.20 – 1.01 (m, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 153.5, 153.0, 106.5, 106.2, 88.6, 87.5, 77.8, 75.0, 73.1, 72.8, 65.3, 41.5, 39.8, 32.4, 32.3, 32.2, 30.0, 29.8, 26.1, 26.0, 25.9, 25.6, 24.9, 24.8. IR (KBr, cm⁻¹): 3128, 2930, 2855, 2228, 1624, 1401, 1152, 617, 530. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₂₄Na 263.1770; found 263.1770.

(E)-4,4'-(hexa-1-en-3,5-diyne-1,6-diyl)dicyclohex-1-ene (E-20)

Colorless oil (7.5 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 32%. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.29 (dd, J = 16.0, 7.3 Hz, 1H), 5.72 – 5.57 (m, 4H), 5.50 (d, J = 16.0 Hz, 1H), 2.70 (td, J = 9.3, 8.7, 4.2 Hz, 1H), 2.31 (dq, J = 22.6, 6.2, 5.0 Hz, 2H), 2.19 – 1.99 (m, 6H), 1.76 (dt, J = 13.1, 4.0 Hz, 1H), 1.73 – 1.62 (m, 1H), 1.40 (ddt, J = 15.8, 7.9, 3.4 Hz, 1H). ¹³C NMR (126 MHz, Chloroformd) δ 152.5, 127.1, 126.9, 125.6, 124.9, 107.2, 87.2, 74.9, 73.3, 65.2, 37.5, 31.1, 30.6, 28.2, 28.0, 26.4, 24.6, 24.0. **IR** (KBr, cm⁻¹): 3025, 2921, 2844, 2230, 1715, 1442, 1259, 1047, 745, 655. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₂₀Na 259.1457; found 259.1462.

(Z)-4,4'-(hexa-1-en-3,5-diyne-1,6-diyl)dicyclohex-1-ene (Z-20)

Colorless oil (9.9 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 42%. ¹H NMR (500 MHz, Chloroform-*d*) δ 5.95 (t, *J* = 10.2 Hz, 1H), 5.68 (q, *J* = 11.9, 10.4 Hz, 3H), 5.64 – 5.59 (m, 1H), 5.44 (d, *J* = 10.8 Hz, 1H), 2.90 (qd, *J* = 11.7, 9.5, 4.9 Hz, 1H), 2.73 (tt, *J* = 8.6, 3.3 Hz, 1H), 2.31 (d, *J* = 17.8

Hz, 1H), 2.17 - 2.02 (m, 6H), 1.96 - 1.90 (m, 1H), 1.81 (ddt, J = 14.0, 5.0, 2.2 Hz, 1H), 1.77 - 1.72 (m, 1H), 1.71 - 1.64 (m, 1H), 1.50 - 1.39 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 152.2, 127.1, 126.9, 125.8, 124.9, 107.0, 88.3, 78.0, 72.8, 65.2, 35.5, 31.1, 30.7, 28.2, 28.1, 26.5, 24.3, 24.0. IR (KBr, cm⁻¹): 3143, 3025, 2923, 2844, 2226, 1625, 1401, 1259, 1083, 958, 871, 806, 752, 651, 474. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₂₀Na 259.1457; found 259.1462.

(E/Z)- (3r,3'r,5r,5'r,7r,7'r)-1,1'-(hexa-1-en-3,5-diyne-1,6-diyl)bis(adamantane) (2p)

Colorless oil (21.8 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 63%. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.14 (d, J = 16.2 Hz, 1H, *E*-isomer), 5.63 (d, J = 12.2 Hz, 1H, *Z*-isomer), 5.39 (d, *J*

= 12.2 Hz, 1H, Z-isomer), 5.33 (d, J = 16.2 Hz, 1H, E-isomer), 1.97 (d, J = 14.6 Hz, 12H), 1.91 – 1.82 (m, 18H), 1.68 (p, J = 12.1, 11.5 Hz, 24H), 1.55 (s, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 158.2, 155.9, 104.8, 104.2, 92.5, 90.9, 79.0, 76.1, 74.2, 73.3, 64.4, 64.3, 42.4, 41.8, 41.5, 37.3, 36.84, 36.79, 36.4, 36.3, 30.6, 30.5, 29.8, 28.6, 28.3, 27.9, 27.9. IR (KBr, cm⁻¹): 3137, 2909, 2851, 2667, 2226, 1625, 1450, 1316, 1264, 1101, 962, 739, 484. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₃₃ 345.2577; found 345.2573.

(E/Z)-3,3,10,10-tetraethyldodeca-4-en-6,8-diyne (2q)

Colorless oil (18.2 mg), purified by chromatography (petroleum/ethyl acetate
= 100/1), yield = 67%. ¹H NMR (500 MHz, Chloroform-*d*)
$$\delta$$
 6.10 (d, *J* = 16.5
Hz, 1H, *E*-isomer), 5.64 – 5.54 (m, 2H, *Z*-isomer), 5.36 (d, *J* = 16.5 Hz, 1H,
E-isomer), 1.57 (q, *J* = 7.4 Hz, 6H), 1.48 (p, *J* = 7.3 Hz, 12H), 1.31 (q, *J* = 7.4 Hz, 6H), 0.95 – 0.88 (m,
18H), 0.79 (t, *J* = 7.4 Hz, 9H), 0.72 (t, *J* = 7.4 Hz, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 156.3,
154.2, 107.4, 107.2, 91.1, 89.6, 79.1, 75.0, 73.4, 73.3, 66.9, 66.8, 44.5, 43.3, 40.7, 40.6, 29.8, 29.7, 28.5,
27.8, 8.8, 8.3, 7.9. IR (KBr, cm⁻¹): 3098, 2968, 2931, 2877, 2226, 1614, 1456, 1398, 1297, 1155, 1079,
964, 912, 741, 623, 469. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₃₃ 273.2577; found 273.2573.

(E/Z)-3,3'-(hexa-1-en-3,5-diyne-1,6-diyl)bis(3-ethyloxetane) (2r)

Colorless oil (12.9 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 53%. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.39 (d, *J* = 16.3 Hz, 1H, *E*-isomer), 6.11 (d, *J* = 11.3 Hz, 1H, *Z*-isomer), 5.60 (d, J = 11.4 Hz, 1H, *Z*-isomer), 5.60 (d, J = 16.1 Hz, 1H, *E*-isomer), 4.84 (d, *J* = 5.9 Hz, 2H),

4.77 (d, J = 5.5 Hz, 2H), 4.56 (d, J = 5.8 Hz, 2H), 4.45 (d, J = 5.9 Hz, 2H), 4.42 (d, J = 5.8 Hz, 2H), 4.39 (d, J = 5.5 Hz, 4H), 2.02 (q, J = 7.4 Hz, 2H), 1.95 (q, J = 7.4 Hz, 4H), 1.85 (q, J = 7.4 Hz, 2H), 1.00 (td, J = 7.4, 2.9 Hz, 6H), 0.92 (t, J = 7.4 Hz, 3H), 0.85 (t, J = 7.4 Hz, 3H). ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 150.1, 149.6, 108.7, 108.4, 85.8, 84.2, 80.86, 80.85, 80.8, 80.2, 79.6, 76.1, 74.3, 73.9, 69.0, 68.8, 46.4, 46.2, 39.2, 39.1, 31.7, 31.3, 31.3, 30.3, 9.4, 8.9, 8.7. **IR** (KBr, cm⁻¹): 3129, 2967, 2877, 1724, 1611, 1401, 1154, 985, 822, 753, 530. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₂₁O₂ 245.1536; found 245.1533.

(E/Z)-1,12-dimethoxydodeca-4-en-6,8-diyne (2s)

Colorless oil (8.4 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 38%. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.27 (dt, J = 15.3, 7.1 Hz, 1H, *E*-isomer), 6.09 – 6.00 (m, 1H, *Z*-isomer), 5.51 (d, J = 16.1 Hz, 1H, *E*-isomer), 5.49 (d, J = 10.4 Hz, 1H, *Z*-isomer), 3.48

- 3.42 (m, 4H), 3.41 - 3.35 (m, 4H), 3.35 - 3.29 (m, 12H), 2.46 - 2.36 (m, 6H), 2.19 (q, J = 7.3 Hz, 2H), 1.80 (h, J = 6.6 Hz, 4H), 1.67 (tt, J = 12.0, 5.7 Hz, 4H). ¹³**C NMR** (126 MHz, Chloroform-d) δ 147.5, 147.1, 109.3, 108.8, 84.3, 84.2, 83.1, 78.5, 74.1, 73.1, 72.2, 72.1, 71.8, 71.09, 71.08, 65.5, 58.8, 58.7, 29.9, 28.9, 28.7, 28.49, 28.47, 27.5, 16.6, 16.5. **IR** (KBr, cm⁻¹): 3133, 1623, 1401, 1266, 1115, 740, 617, 531, 476. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₄H₂₀NaO₂ 243.1356; found 243.1357. (E/Z)-2,4,17,19-tetraoxaicosa-8-en-10,12-diyne (2t)

Colorless oil (15.1 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 54%. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.27 (dt, *J* = 15.2, 7.1 Hz, 1H, *E*-isomer), 6.05 (q, *J* = 7.7 Hz, 1H, *Z*-isomer), 5.55 – 5.45 (m, 2H), 4.62 (s, 4H),

4.60 (s, 4H), 3.64 – 3.58 (m, 4H), 3.55 – 3.48 (m, 4H), 3.36 (s, 6H), 3.34 (s, 6H), 2.44 (dt, J = 13.4, 6.9 Hz, 6H), 2.22 (q, J = 7.2 Hz, 2H), 1.91 – 1.62 (m, 8H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 147.4, 146.9, 109.4, 108.9, 96.63, 96.58, 96.57, 96.53, 84.1, 82.9, 78.5, 74.1, 73.8, 73.2, 72.1, 67.2, 67.1, 66.9, 66.08, 66.06, 65.7, 65.6, 63.6, 55.3, 31.6, 30.0, 29.8, 29.0, 28.8, 28.56, 28.55, 27.6, 25.3, 21.1, 16.6, 16.5. **IR** (KBr, cm⁻¹): 3242, 2940, 2236, 1736, 1624, 1398, 1226, 1150, 1110, 919, 742, 620, 474. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₂₄NaO₄ 303.1567; found 303.1567.

(E/Z)-1,12-dichlorododeca-4-en-6,8-diyne (2u)

Colorless oil (14.6 mg), purified by chromatography (petroleum/ethyl acetate = 80/1), yield = 53%. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.25 (dt, J = 15.7, 7.1 Hz, 1H, *E*-isomer), 6.03 (dt, J = 10.8, 7.5 Hz, 1H, *Z*-isomer), 5.53 - 5.47 (m, 2H), 3.61 - 3.49 (m, 8H), 2.38 (dq, J = 13.2, 6.6 Hz, 6H),

2.16 (qd, J = 7.3, 1.3 Hz, 2H), 1.90 (dq, J = 11.9, 6.5 Hz, 4H), 1.84 – 1.74 (m, 4H), 1.70 (dt, J = 15.1, 7.5 Hz, 4H), 1.61 – 1.52 (m, 4H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 147.4, 146.9, 109.4, 109.0, 84.1, 82.8, 78.4, 74.2, 73.1, 65.9, 65.9, 44.9, 44.8, 44.5, 32.5, 32.00, 31.97, 31.6, 31.5, 29.9, 26.1, 25.9, 25.6, 19.1, 19.0. **IR** (KBr, cm⁻¹): 3138, 2945, 2866, 2238, 1717, 1445, 1401, 1303, 1080, 735, 649, 474. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₉Cl₂ 257.0858; found 257.0853.

1.5. General procedure for 3

$$\begin{array}{c} O \\ R^{1} \\ R^{2} \\ \textbf{S-3} \\ \textbf{S-3} \\ \textbf{S-3} \\ \textbf{(1.1 equiv)} \end{array} + \underbrace{=-\text{TMS}}_{\textbf{M} = 0} \begin{array}{c} 1) n-\text{BuLi} (1.05 \text{ equiv}) \\ \text{THF} (dry), N_{2}, -78^{\circ}\text{C} - rt \\ 2) K_{2}\text{CO}_{3} (4 \text{ equiv}) \\ \text{MeOH} (10 \text{ mL}) \end{array} + \begin{array}{c} R^{1} \\ R^{2} \\ \textbf{S-4} \end{array} + \begin{array}{c} Ac_{2}O (2 \text{ equiv}) \\ 4-\text{DMAP} (0.4 \text{ equiv}) \\ \text{NEt}_{3} (4 \text{ equiv}) \\ \text{DCM} (0.5\text{M}), 0^{\circ}\text{C} - rt \\ \textbf{3} \end{array} + \begin{array}{c} R^{1} \\ R^{2} \\ \textbf{S-4} \end{array} + \begin{array}{c} R^{2} \\ \textbf{S-6} \end{array} + \begin{array}{c} R^{2} \\ +$$

n-BuLi (2.5M in hexane, 1.05 equiv, 4.2 mL, 10.5 mmol) was added dropwise under N₂ to a solution of ethynyltrimethylsilane (1.1 equiv, 1.6 mL, 11 mmol) in dry-THF (16 mL) at -78 °C. After stirring for 30 min at -78 °C, ketone S-3 (1 equiv, 10 mmol) was added. The mixture was stirred at room temperature for 4 h. A solution of potassium hydroxide (4 equiv, 5.5g, 40 mmol) in MeOH (10 mL) was added to the mixture. Desilylation was complete within 30 min as monitored by TLC. The mixture was poured into a satured solution of NH₄Cl and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO4, filtered and the solvent was evaporated under reduced pressure. The combined organic extracts were dried with anhydrous sodium sulfate, filtered and concentrated in vacuo to provide the crude product S-4.

To a stirred solution of crude product S-4 (about 10mmol) in $CH_2Cl_2(20 \text{ mL})$ were added NEt₃ (4.0 equiv, 40mmol, 4.0g, 5.6mL), 4-Dimethylaminopyridine (0.4 equiv, 4 mmol, 488.7mg) and acetic anhydride (2.0 equiv, 20 mmol, 1.9g, 1.5mL) at 0 °C, Warm the reaction mixture to room temperature and stir for 6 h. Quench the reaction with a satured solution of NH₄Cl and extract the aqueous layer with DCM. Wash the combine organic extracts with sat. aq. NaHCO₃ and brine. Concentrate the dried (NaSO₄) extract in vacuo. The residue was purified by flash column chromatography on silica gel to afford the desired product.

The characterization of compound $3a^{10}$ was previously reported.

1,1-diphenylprop-2-yn-1-yl acetate (3a)

White solid (2.2 g), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 90%. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 7.5 Hz, 4H), 7.37 (t, *J* = 7.4 Hz, 4H), 7.31 (t, J = 7.2 Hz, 2H), 3.03 (s, 1H), 2.20 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 168.2, 142.1, 128.4, 128.1, 126.2, 82.4, 79.1, 78.2, 21.9.

1,1-di-p-tolylprop-2-yn-1-yl acetate (**3b**)

White solid (2.6 g), m.p. = 87-89 °C, purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 93%. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.49 (d, *J* = 5.6 Hz, 4H), 7.20 (d, *J* = 6.4 Hz, 4H), 3.03 (dd, J = 3.5, 1.9 Hz, 1H), 2.38 (s, 6H), 2.23 – 2.17 (m, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.3, 139.4, 137.7, 129.0, 126.1, 82.7, 79.0, 77.9, 21.9, 21.1. IR (KBr, cm⁻¹): 3291, 1753, 1510, 1368, 1227, 1053, 984, 814, 738, 568, 497. HRMS (ESI) m/z: [M+Na]⁺ Calcd

for C₁₉H₁₈NaO₂ 301.1199; found 301.1198.

1,1-bis(4-fluorophenyl)prop-2-yn-1-yl acetate (3c)

White solid (2,5 g), m.p. = 73-75 °C, purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 88%. ¹H NMR (500 MHz, Chloroform-d) δ 7.48 (ddt, J = 8.2, 5.1, 2.5 Hz, 4H), 7.07 – 6.98 (m, 4H), 3.01 (s, 1H), 2.16 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 168.2, 162.5 (d, *J* = 247.8 Hz), 137.9 (d, *J* = 3.3 Hz), 128.2 (d, *J* = 8.4 Hz), 115.4 (d, *J* = 21.8 Hz), 82.1, 78.6, 78.1, 21.9. ¹⁹F NMR (471 MHz, Chloroform-d) δ -113.90. IR (KBr, cm⁻¹): 3265,

2120, 1737, 1602, 1503, 1428, 1371, 1301, 1233, 1163, 1113, 1056, 1013, 946, 832, 734, 685, 609, 568, 506. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₁₂F₂NaO₂ 309.0698; found 309.0703.

1,1-bis(4-chlorophenyl)prop-2-yn-1-yl acetate (3d)

White solid (2.6 g), m.p. = 124-125 °C, purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 82%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.44 (d, J = 8.2 Hz, 5H), 7.30 (d, J = 8.3 Hz, 5H), 3.00 (s, 1H), 2.15 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 168.1, 140.3, 134.3, 128.7, 127.7, 81.6, 78.9, 78.0, 21.8. **IR** (KBr, cm⁻¹): 3288, 3130, 2122, 1756, 1601, 1487, 1401, 1282, 1225, 1093, 1054, 1001, 943, 869, 822, 682, 637, 524. HRMS (ESI)

m/z: [M+Na]⁺ Calcd for C₁₇H₁₂Cl₂NaO₂ 341.0107; found 341.0108.

1,1-bis(4-bromophenyl)prop-2-yn-1-yl acetate (3e)

White solid (3.1 g), m.p. = 117-119 °C, purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 77%. ¹H NMR (500 MHz, Chloroform-d) δ 7.48 (d, J = 8.5 Hz, 4H), 7.40 (d, J = 8.5 Hz, 4H), 3.03 (s, 1H), 2.18 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.0, 140.8, 131.6, 127.9, 122.5, 81.4, 78.9, 78.0, 21.8. **IR** (KBr, cm⁻¹): 3291, 3956, 2935, 2122, 1905, 1755, 1630, 1584, 1484, 1434, 1367, 1224, 1114, 1063, 999, 941, 818, 738, 680, 637,

563, 504, 456. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₁₂Br₂NaO₂ 428.9096; found 428.9096.

1-phenyl-1-(o-tolyl)prop-2-yn-1-yl acetate (3f)

White solid (2.2 g), m.p. = 64-66 °C, purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 85%. ¹H NMR (500 MHz, Chloroform-d) δ 7.84 – 7.78 (m, 1H), 7.45 (d, J = 7.3 Hz, 2H), 7.31 (q, J = 8.3, 7.2 Hz, 3H), 7.27 – 7.21 (m, 2H), 7.13 – 7.09 (m, 1H), 2.99 (s,

1H), 2.15 (s, 3H), 2.10 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 168.1, 141.4, 138.8, 136.0, 132.6, 128.6, 128.31, 128.30, 128.1, 126.8, 125.6, 82.1, 79.6, 78.8, 21.8, 21.2. **IR** (KBr, cm⁻¹): 3293, 3027, 2928, 2115, 1753, 1667, 1595, 1452, 1371, 1228, 1033, 758, 563, 462. HRMS (ESI) m/z:

[M+Na]⁺ Calcd for C₁₈H₁₆NaO₂ 287.1043; found 287.1041.

1-(2-fluorophenyl)-1-phenylprop-2-yn-1-yl acetate (**3g**)

White solid (2.1 g), m.p. = 117-119 °C, purified by chromatography (petroleum/ethyl acetate A_{C} = 40/1), yield = 79%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.82 (t, *J* = 7.7 Hz, 1H), 7.54 (d, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 2H), 7.28 – 7.21 (m, 2H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.92 (dd, *J* = 11.0, 8.7 Hz, 1H), 2.96 (s, 1H), 2.12 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.2, 159.4 (d, *J* = 251.5 Hz), 140.8, 130.3 (d, *J* = 8.4 Hz), 128.8 (d, *J* = 9.8 Hz), 128.6 (d, *J* = 2.3 Hz), 128.23, 128.18, 126.0, 123.8 (d, *J* = 3.6 Hz), 116.6 (d, *J* = 21.7 Hz), 81.2, 78.1, 21.5. IR (KBr, cm⁻¹): 3287, 3121, 2120, 1753, 1668, 1586, 1488, 1449, 1402, 1371, 1228, 1115, 1041, 989, 945, 812, 760, 692, 642, 556, 476. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₁₃FNaO₂ 291.0792; found 291.0795.

1.6. General procedure for 4

To a 25 mL schlenk tube with a magnetic bar under nitrogen atmosphere was added CuI (1.9mg, 5 mol%), dry-THF (0.7 mL), and NaO'Bu (1.0 M in THF, 300 μ L) sequentially at room temperature (about 25 °C). Solution of **3** (0.2 mmol) in 1 mL dry-THF was dropped to the mixture within 1 min.

Gram scale reaction: To a 100 mL schlenk tube with a magnetic bar under nitrogen atmosphere was added CuI (47.6mg, 5 mol%), dry-THF (32.5 mL), and NaO'Bu (1.0 M in THF, 7.5 mL) sequentially at room temperature (about 25 °C). Solution of **3a** (1.25 g, 5 mmol) in 10 mL dry-THF was dropped to the mixture within 1 min. After the drop was finished, the mixture was filtered by short silica, the solvent was evaporated by rotary evaporator to afford a red solid. The solid was washed with petroleum ether (50 ml) to obtain the pure product.

Purification of **4a** and **4c** (poor solubility): After the drop was finished, the mixture was filtered by short silica, the solvent was evaporated by rotary evaporator to afford a red solid. The solid was washed with petroleum ether (10 ml) to obtain the pure product.

Purification of **4b** and **4d-e** (terribly poor solubility): After the drop was finished, water (2 mL) and ammonium hydroxide solution (1 mL) were added. After stirring for 5 min, the mixture was filtered to afford the corresponding solid. The solid was washed with ethyl acetate (5 mL) and petroleum ether (10 mL) to obtain the pure product.

Purification of **4f-g** (good solubility): After the drop was finished, the mixture was filtered by short silica, the solvent was evaporated by rotary evaporator, and the residue was purified by flash column chromatography on silica gel to afford the pure product.

Caution: 4c and 4h are relatively unstable, don't heat them during evaporating by rotary evaporator.

Failed substrates were listed below:

The characterization of compound $4a-b^{11}$ were previously reported.

1,1,6,6-tetraphenylhexa-1,2,3,4,5-pentaene (4a)

Red solid (37.8 mg), purified by filtration and wash, yield = 99%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 7.4 Hz, 8H), 7.40 (t, *J* = 7.4 Hz, 8H), 7.36 (d, *J* = 7.2 Hz, 4H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 149.5, 138.2, 129.5, 128.7, 128.7, 127.5, 124.9.

1,1,6,6-tetra-p-tolylhexa-1,2,3,4,5-pentaene (**4b**)

Red solid (39.8 mg), purified by filtration and wash, yield = 91%. ¹H NMR (500 MHz, Chloroform-d-CS₂) δ 7.43 (d, J = 8.1 Hz, 8H), 7.18 (d, J = 8.0 Hz, 8H), 2.41 (s, 12H). ¹³C NMR (126 MHz, Chloroform-d-CS₂) δ 148.0, 138.4, 135.5, 129.3, 129.3, 126.3, 123.7, 21.5.

1,1,6,6-tetrakis(4-fluorophenyl)hexa-1,2,3,4,5-pentaene (4c)

Red solid (44.7 mg), m.p. >250 °C, purified by filtration and wash, yield = 99%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.55 – 7.49 (m, 8H), 7.10 (t, J = 8.6 Hz, 8H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.1 (d, J = 250.6 Hz), 134.1(d, J = 3.3 Hz), 131.1 (d, J = 8.1 Hz), 126.9, 122.5, 116.0, 115.8. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -111.62. **IR** (KBr, cm⁻¹): 3125, 2043, 1725, 1660, 1601, 1506,

1403, 1233, 1160, 1100, 1015, 932, 836, 732, 578. HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{30}H_{17}F_4$ 453.1261; found 453.1260.

Red solid (35.2 mg), m.p. >250 °C, purified by filtration and wash, yield = 68%. ¹**H NMR** (500 MHz, Chloroform-*d*-CS₂) δ 7.47 (d, *J* = 8.4 Hz, 8H), 7.36 (d, *J* = 8.5 Hz, 8H). ¹³**C NMR** (126 MHz, Chloroform-*d*-CS₂) δ 149.0, 135.9, 135.1, 130.4, 128.9, 127.6, 122.9. **IR** (KBr, cm⁻¹): 3234, 3126, 1623, 1485, 1401, 1094, 1012, 832, 619, 480. **HRMS** (DART) m/z: [M+H]⁺ Calcd for C₃₀H₁₇Cl₄ 517.0079;

found 517.0080.

1,1,6,6-tetrakis(4-bromophenyl)hexa-1,2,3,4,5-pentaene (4e)

Purplish red solid (54.1 mg), m.p. >250 °C, purified by filtration and wash, yield = 78%. **H NMR** (500 MHz, Chloroform-*d*–CS₂) δ 7.53 (d, *J* = 8.5 Hz, 8H), 7.40 (d, *J* = 8.5 Hz, 8H). ¹³C **NMR** (126 MHz, Chloroform-*d*–CS₂) δ 149.1, 136.4, 132.0, 130.7, 127.7, 123.6, 123.3. **IR** (KBr, cm⁻¹): 3131, 2005, 1900, 1624, 1576, 1479, 1400, 1285, 1174, 1070, 1004, 962, 906, 825, 716, 612, 492. **HRMS**

(MALDI) m/z: [M] Calcd for $C_{30}H_{16}Br_4$ 691.7986; found 691.7988.

1,6-diphenyl-1,6-di-o-tolylhexa-1,2,3,4,5-pentaene (4f)

Red solid (36.4 mg), thermal decomposition, purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 89%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.44 (d, *J* = 7.8 Hz, 4H), 7.39 – 7.19 (m, 32H), 2.28 (s, 6H), 2.24 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 150.94, 150.89, 138.8, 138.7, 137.4, 137.3,

137.1, 137.1, 130.8, 130.8, 130.42, 130.35, 129.2, 129.1, 128.8, 128.7, 128.58, 128.55, 128.50, 128.12, 128.07, 126.1, 126.0, 124.1, 124.0, 20.5. **IR** (KBr, cm⁻¹): 3062, 2929, 2856, 1906, 1732, 1598, 1487,

1447, 1391, 1245, 1170, 1090, 1044, 926, 849, 758, 697, 627, 530, 464. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₂H₂₄Na 431.1770; found 431.1771.

1,6-bis(2-fluorophenyl)-1,6-diphenylhexa-1,2,3,4,5-pentaene (4g)

Red solid (41.1 mg), thermal decomposition, purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 99%. ¹H NMR (500 MHz, Chloroformd) δ 7.55 – 7.06 (m, 18H). ¹³C NMR (126 MHz, Chloroform-d) δ 160.4 (d, J = 251.5 Hz), 160.3 (d, J = 251.5 Hz), 151.53, 151.51, 138.02, 137.97, 132.08, 132.06, 132.04, 130.58 (d, *J* = 8.1 Hz), 130.55 (d, *J* = 8.1 Hz), 128.89, 128.86, 128.69, 128.66, 128.32, 128.30, 125.6, 125.5, 124.44, 124.40, 124.37, 119.42, 119.36, 116.40 (d, *J* = 21.8 Hz), 116.36 (d, *J* = 21.9 Hz). ¹⁹F NMR (471 MHz, Chloroform-d) δ -110.25, -110.26. IR (KBr, cm⁻¹): 3093, 2004, 1726, 1613, 1487, 1447, 1401, 1221, 1163, 1101, 923, 868, 811, 758, 684, 622, 535, 480. HRMS (ESI) m/z: $[M+Na]^+$ Calcd for C₃₀H₁₈F₂Na 439.1269; found 439.1269.

1.7. **Deuterium-labeled Experiments**

S-5 was prepared according the literature¹²: Dissolve propargyl alcohol (5 mmol, 1 equiv) in dichloromethane. Treat the solution with MnO₂ (4.3 g, 10 equiv). Stir the solution at room temperature over 2 hours. Remove the excess MnO_2 by filtration of the reaction mixture through a pad of celite. Remove the solvent of filtrate under reduced pressure. Purify the residue by column chromatography on silica gel. Elute the residue with petroleum/ethyl acetate to afford S-5.

d-S-2a was prepared according the literature¹³: Add NaBD₄ (251 mg, 2 equiv) to a solution of S-5 (3 mmol) in dry-THF (10 mL). Stir the reaction mixture for 3 hours at room temperature. Add saturated NH₄Cl aqueous solution to the reaction mixture. Dilute the resulting mixture with dichloromethane. Wash the reaction mixture by water. Dry the combined organic layers with Na₂SO₄. Concentrate the combined organic layers. Purify the product by column chromatography on silica gel.

d-1 was prepared from d-S-2 in the same way as 1.

methyl (1-phenylprop-2-yn-1-yl-1-d) carbonate (1a-d)

OCOOMe Colorless oil (343 mg), purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 60 %. ¹H NMR (500 MHz, Chloroform-d) δ 7.61 – 7.52 (m, 1H), 7.44 – 7.35 (m, 1H), 3.81 (s, 2H), 2.74 (s, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 154.9, 135.8, 129.4, 128.8, 127.8, 79.6, 76.5, 69.7 – 68.3 (m), 55.2. **IR** (KBr, cm⁻¹): 3291, 3031, 2960, 2855, 2199, 2124, 1962, 1752, 1493, 1446, 1401, 1282, 1112, 1077, 1006, 952, 913, 792, 757, 692, 520, 440. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₁H₉DNaO₃ 214.0585; found 214.0584.

1-(3-ethyloxetan-3-yl)prop-2-yn-1-yl-1-d methyl carbonate (1r-d)

OCOOMe Colorless oil (424 g), purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 71 %.1H NMR (400 MHz, Chloroform-d) δ 4.63 – 4.55 (m, 2H), 4.36 (dd, J = 6.3, 4.4 Hz, 2H), 3.80 (s, 3H), 2.55 (s, 1H), 1.84 (qd, J = 7.4, 2.2 Hz, 2H), 0.99 (t, J

= 7.5 Hz, 3H). **13C NMR** (101 MHz, Chloroform-d) δ 155.06, 77.88, 76.30, 76.07, 75.82, 70.34 – 69.34 (m), 55.27, 45.71, 25.89, 8.19. **IR** (KBr, cm⁻¹): 3290, 2953, 2882, 2122, 1756, 1450, 1266, 1107, 976, 831, 790, 688, 470. **HRMS** (ESI) m/z: [M+H]+ Calcd for C₁₀H₁₃DO₄ 200.1028; found 200.1029.

 $2-d_2$ was synthesized according to general procedure for 2

Deuterium-labelling experiment for 1a-d

Deuterium-labelling experiment for 1r-d

(E/Z)-(hexa-1-en-3,5-diyne-1,6-diyl-d2)dibenzene (**2a**- d_2)

White solid (17.3 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 75%. ¹H NMR (400 MHz, Chloroform-*d*)
$$\delta$$
 7.91 – 7.85 (m, 2H), 7.58 – 7.49 (m, 4H), 7.44 – 7.39 (m, 4H), 7.39 – 7.30 (m, 10H). ¹³C

NMR (126 MHz, Chloroform-*d*) δ 144.6 – 143.8 (m), 142.2 – 141.4 (m), 136.0, 135.7, 132.52, 132.50, 129.3, 129.2, 128.8, 128.6, 128.52, 128.47, 128.45, 126.5, 121.9, 121.8, 106.7 – 106.1 (m), 105.8 – 105.2 (m), 83.5, 82.2, 81.3, 80.4, 80.2, 76.1, 74.22, 74.17. **IR** (KBr, cm⁻¹): 3054, 2921, 2855, 2207, 1959, 1890, 1750, 1576, 1490, 1446, 1330, 1262, 1183, 1074, 1026, 915, 750, 694, 615, 521. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₁D₂ 231.1137; found 231.1137.

(E/Z)-3,3'-(hexa-1-en-3,5-diyne-1,6-diyl-d2)bis(3-ethyloxetane) (2r-d₂)

White solid (15.5 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 63%. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.85 (d, J = 5.8 Hz, 2H), 4.79 (d, J = 5.5 Hz, 2H), 4.57 (d, J = 5.8 Hz, 2H), 4.47 (d, J = 5.8 Hz, 2H), 4.43 (d, J = 5.9 Hz, 2H), 4.41 (d, J = 5.5 Hz, 4H), 2.07 – 2.00 (m, 2H), 1.97 (q,

J = 7.4 Hz, 4H), 1.86 (q, J = 7.4 Hz, 2H), 1.01 (td, J = 7.3, 1.9 Hz, 6H), 0.93 (t, J = 7.4 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 149.81 – 149.42 (m), 149.42 – 149.03 (m), 108.61 – 108.31 (m), 108.28 – 107.80 (m), 85.76, 84.24, 80.90, 80.85, 80.25, 79.57, 76.04, 74.27, 73.87, 69.04, 68.78, 46.30, 46.08, 39.19, 39.17, 31.75, 31.34, 31.31, 30.33, 29.82, 9.39, 8.91, 8.67. **IR** (KBr, cm⁻¹): 3129, 2967, 2877, 1724, 1611, 1401, 1154, 985, 822, 753, 530. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₈D₂O₂ 247.1662; found 247.1660.

1.8. Optimization for 1,3-diynes^{*a*}

	5a + 0	OCOOMe Ligand (15 mol%) NaO ^r Bu (3.0 eq.) Solvent, rt, 1min	6a	\sim
Entry	Catalyst (10mol%)	Liangd (15 mol%)	Solvent (2 mL)	Yield (%) ^b
1	SIMesCuCl	-	THF	68
2	CuI	SIMes•HCl	THF	75
3	CuI	Xantphos	THF	trace
4	CuI	2,2'-Bipyridine	THF	trace
5	CuI	6,6'-Dimethyl-2,2'-dipyridyl	THF	trace
6	CuI	SIMes•HCl	DCE	0
7	CuI	SIMes•HCl	CH ₃ CN (dry)	46
8	CuI	SIMes•HCl	toluene	47
9	CuI	SIMes•HCl	1,4-Dioxane	81
10	CuI	SIMes•HCl	MTBE (dry)	46
11 ^c	CuI	SIMes•HCl	1,4-Dioxane	65

^{*a*}Reaction conditions: **5b** (0.1 mmol), **1v** (1.5 equiv), catalyst (10 mol%), ligand (15 mol%), NaO'Bu (3.0 equiv), 2 mL of solvent, 25 ° C. ^{*b*}Isolated yield. ^{*c*}**1v** (1.2 equiv)

1.9. General procedure for 6

To a 25 mL Schlenk tube with a magnetic bar under nitrogen atmosphere was added CuI (3.8mg, 10 mol%), SIMes HCl (5.2 mg, 15 mol%), dry-1,4-Dioxane (0.7 mL), NaO'Bu (1.0 M in THF, 300 μ L) and **6** (0.1 mmol, 1 equiv) sequentially at room temperature (about 25 °C) and the mixture was stired for 15 min. Solution of **1** (0.2 mmol) in 1 mL dry-1,4-Dioxane was dropped to the mixture within 1 min. After the drop was finished, the mixture was filtered by short silica, the solvent was evaporated by rotary evaporator, and the residue was purified by flash column chromatography on silica gel to afford the pure product **2**.

Failed substrates were listed below:

4-(5-(p-tolyl)penta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6a)

White solid (19.3 mg), m.p. = 67-69 °C, purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 81%. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 8.1 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 3.98 (dd, *J* = 11.3, 4.2 Hz,

2H), 3.39 (td, J = 11.9, 1.8 Hz, 2H), 2.36 – 2.29 (m, 5H), 1.80 (ddt, J = 13.2, 6.5, 3.2 Hz, 1H), 1.75 – 1.70 (m, 2H), 1.41 (qd, J = 12.8, 12.3, 4.5 Hz, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 139.3, 132.5, 129.3, 118.9, 82.2, 75.4, 73.7, 67.9, 66.7, 34.7, 32.5, 27.0, 21.7. **IR** (KBr, cm⁻¹): 3042, 2926, 2848, 2760, 2233, 2149, 1943, 1720, 1597, 1444, 1377, 1265, 1199, 1125, 1089, 1017, 896, 847, 785, 742, 690, 522, 443. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₉O 239.1431; found 239.1428.

4-(5-phenylpenta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6b)

White solid (18.4 mg), m.p. = 69-71 °C, purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 82%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 - 7.44 (m, 2H), 7.36 - 7.27 (m, 3H), 3.98 (dd, *J* = 11.3, 4.1 Hz, 2H), 3.39 (td, *J* = 11.9, 1.7 Hz, 2H), 2.32 (d, *J* = 6.6 Hz, 2H), 1.79 (ddd, *J* = 14.7, 7.5, 3.9 Hz, 1H), 1.73 (d, *J* = 13.5 Hz, 2H), 1.41 (qd, *J* = 12.3, 4.5 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 132.6, 129.0, 128.5, 122.1, 82.6, 75.2, 74.3, 67.8, 66.6, 34.7, 32.5, 27.0. IR (KBr, cm⁻¹): 3060, 2925, 2846, 2759, 2705, 2238, 1964, 1721, 1605, 1484, 1441, 1376, 1265, 1125, 1085, 1017, 981, 922, 846, 755, 692, 615, 522, 462. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₇O 225.1274; found 225.1270.

4-(5-(4-butylphenyl)penta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6c)

Colorless oil (25.3 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 90%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (d, *J* = 8.1 Hz, 2H), 7.11 (d, *J* = 8.1 Hz, 2H), 3.98 (dd, *J* = 11.2, 4.2 Hz, 2H), 3.39 (td, *J* = 11.9, 1.8 Hz, 2H), 2.63 – 2.55 (m, 2H), 2.32 (d, *J* = 6.5 Hz, 2H), 1.80 (ddt, *J* = 13.2, 6.5, 3.2 Hz, 1H), 1.76 – 1.70 (m, 2H), 1.61 – 1.51 (m, 2H), 1.48 – 1.38 (m, 2H), 1.37 – 1.30 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.3, 132.5, 128.6, 119.1, 82.1, 75.5, 73.7, 67.9, 66.8, 35.8,

1454, 1377, 1266, 1183, 1124, 1088, 1016, 981, 892, 838, 611, 544, 475. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for C₂₀H₂₅O 281.1900; found 281.1897.

4-(5-([1,1'-biphenyl]-4-yl)penta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6d)

White solid (27.0 mg), m.p. = 95-97 °C, purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 90%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.63 – 7.51 (m, 5H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 7.3 Hz,

1H), 4.00 (dd, J = 11.3, 3.9 Hz, 3H), 3.45 – 3.36 (m, 3H), 2.35 (d, J = 6.6 Hz, 2H), 1.81 (ddq, J = 15.3, 8.8, 4.4, 3.8 Hz, 1H), 1.77 – 1.72 (m, 3H), 1.44 (qd, J = 12.3, 4.4 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 141.8, 140.3, 133.1, 129.0, 127.9, 127.2 (d, J = 2.4 Hz), 121.0, 75.1, 75.0, 67.9, 66.7, 34.8, 32.6, 27.1. **IR** (KBr, cm⁻¹): 3048, 2923, 2845, 1915, 1583, 1444, 1375, 1270, 1129, 1087, 1008, 839, 764, 722, 698, 560, 516. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₁O 301.1587; found 301.1584.

4-(5-(4-fluorophenyl)penta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6e)

White solid (18.4 mg), m.p. = 73-75 °C, purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 76%.¹H NMR (500 MHz, Chloroform-*d*) δ 7.45 (dd, J = 8.5, 5.5 Hz, 2H), 6.99 (t, J = 8.6 Hz, 2H), 3.98 (dd, J = 11.4, 4.1 Hz, 2H), 3.42 – 3.34 (m, 2H), 2.32 (d, J = 6.6 Hz, 2H), 1.79 (ddq, J = 15.3, 8.7, 4.0 Hz, 1H), 1.72 (d,

J = 13.5 Hz, 2H), 5.12 5.5 (iii, 2H), 2.52 (iii, J = 0.6 Hz, 2H), 1.75 (iiii, J = 15.5, 0.7, 1.6 Hz, 1H), 1.72 (iii), J = 13.5 Hz, 2H), 1.41 (qd, J = 12.3, 4.5 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.0 (d, J = 251.0 Hz), 134.6 (d, J = 8.5 Hz), 118.2 (d, J = 3.6 Hz), 115.9 (d, J = 22.2 Hz), 82.6, 74.1, 67.9, 66.5, 66.3, 34.7, 32.5, 27.0. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -109.18. IR (KBr, cm⁻¹): 3059, 2927, 2851, 2762, 2709, 2560, 2444, 2239, 2151, 1895, 1721, 1646, 1595, 1440, 1377, 1265, 1226, 1144, 1122, 1083, 1016, 980, 892, 838, 734, 599, 524, 467. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₆FO 243.1180; found 243.1177.

4-(5-(4-chlorophenyl)penta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6f)

White solid (22.3 mg), m.p. = 90-91 °C, purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 86%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 3.98 (dd, *J* = 11.4, 4.0 Hz, 2H), 3.39 (t, *J* = 11.2 Hz, 2H), 2.33 (d, *J* = 6.5 Hz, 2H), 1.86 – 1.75 (m, 1H), 1.73 (d, *J* = 13.6 Hz, 2H), 1.42 (qd, *J* = 12.3, 4.4 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.2, 133.8, 128.9, 120.7, 83.2, 75.4, 74.0, 67.9, 66.5, 34.7, 32.5, 27.1. IR (KBr, cm⁻¹): 2925, 2847, 2241, 1585, 1482, 1395, 1270, 1130, 1086, 1012, 891, 830, 526, 472. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₆ClO 259.0884; found 259.0884.

4-(5-(4-bromophenyl)penta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6g)

White solid (26.9 mg), m.p. = 98-100 °C, purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 89%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.44 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 3.98 (dd, *J* = 11.3, 4.1 Hz, 2H), 3.42 – 3.35 (m, 2H), 2.32 (d, *J* = 6.6 Hz, 2H), 1.80 (tdt, *J* = 11.3, 8.6, 4.1 Hz, 1H), 1.72 (d, *J* = 13.3 Hz, 2H), 1.41 (qd, *J* = 12.3, 4.5 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 134.0, 131.8, 123.5, 121.1, 83.3, 75.5, 74.0, 67.9, 66.5, 34.7, 32.5, 27.1. IR (KBr, cm⁻¹): 3129, 3063, 2925, 2845, 2236, 1629, 1580, 1477, 1390, 1299, 1231, 1124, 1077, 1003, 979, 827, 724, 523. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₆BrO 303.0379; found 303.0376. 4-(5-(4-ethoxyphenyl)penta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6h)

Colorless oil (18.3 mg), purified by chromatography (petroleum/ethyl acetate = 15/1), yield = 68%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, *J* = 8.7 Hz, 2H), 6.80 (d, *J* = 8.8 Hz, 2H), 4.06 – 3.93 (m, 4H), 3.38 (td, *J* = 11.9, 1.6 Hz, 2H), 2.31 (d, *J* = 6.5 Hz, 2H), 1.78 (dq, *J* = 9.9, 3.0, 2.5 Hz, 1H), 1.72 (d, *J* = 13.3 Hz, 2H), 1.39 (t, *J* = 6.9 Hz, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.6, 134.2, 114.7, 113.7, 81.8, 75.4, 73.0, 67.9, 66.8, 63.6, 34.7, 32.5, 27.0, 14.8. **IR** (KBr, cm⁻¹): 3071, 2928, 2846, 2760, 2703, 2238, 2151, 1939, 1723, 1580, 1481, 1436, 1373, 1264, 1197, 1129, 1089, 983, 931, 864, 785, 679, 611, 520, 450. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₂₁O₂ 269.1536; found 269.1533.

N, N-dimethyl-4-(5-(tetrahydro-2H-pyran-4-yl)penta-1,3-diyn-1-yl)aniline (6i)

White solid (16.1 mg), m.p. = 102-104 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), yield = 60%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 8.8 Hz, 2H), 6.59 (d, *J* = 8.8 Hz, 2H), 3.98 (dd, *J* = 11.3, 4.0 Hz,

2H), 3.38 (t, J = 11.1 Hz, 2H), 2.97 (s, 6H), 2.31 (d, J = 6.5 Hz, 2H), 1.79 (ddt, J = 13.3, 6.5, 3.2 Hz, 1H), 1.73 (d, J = 13.4 Hz, 2H), 1.41 (qd, J = 12.3, 4.4 Hz, 2H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 150.6, 133.9, 111.8, 108.3, 81.4, 72.4, 67.9, 67.2, 40.2, 34.9, 32.6, 27.1. IR (KBr, cm⁻¹): 3043, 2923, 2844, 2708, 2233, 2140, 1887, 1684, 1607, 1526, 1451, 1368, 1299, 1227, 1197, 1120, 1015, 981, 944, 817, 735, 644, 585, 531, 476. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₂₂NO 268.1696; found 268.1697.

4-(5-(o-tolyl)penta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6j)

Colorless oil (20.1 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 84%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (d, *J* = 7.6 Hz, 1H), 7.25 - 7.17 (m, 2H), 7.12 (t, *J* = 7.4 Hz, 1H), 3.99 (dd, *J* = 11.5, 4.5 Hz, 2H),

3.39 (td, J = 11.9, 1.9 Hz, 2H), 2.45 (s, 3H), 2.34 (d, J = 6.5 Hz, 2H), 1.82 (ddt, J = 13.2, 6.6, 3.2 Hz, 1H), 1.77 – 1.71 (m, 2H), 1.48 – 1.35 (m, 2H). ¹³C **NMR** (101 MHz, Chloroform-*d*) δ 141.7, 133.1, 129.6, 129.0, 125.7, 121.9, 83.0, 77.9, 74.2, 67.9, 66.7, 34.7, 32.5, 27.1, 20.8. **IR** (KBr, cm⁻¹): 2925, 2846, 2760, 2203, 1720, 1650, 1450, 1396, 1266, 1127, 1085, 1016, 980, 849, 756, 657, 536, 444. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₉O 239.1431; found 239.1427.

4-(5-(2-fluorophenyl)penta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6k)

Colorless oil (21.8 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 90%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.49 – 7.42 (m, 1H), 7.35 – 7.27 (m, 1H), 7.11 – 7.02 (m, 2H), 3.98 (dd, *J* = 11.3, 4.0 Hz, 2H), 3.43 –

3.34 (m, 2H), 2.33 (d, J = 6.6 Hz, 2H), 1.80 (dtt, J = 15.3, 8.6, 4.0 Hz, 1H), 1.73 (d, J = 13.3 Hz, 2H), 1.41 (qd, J = 12.3, 4.5 Hz, 2H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 164.0 (d, J = 253.0 Hz), 134.5, 130.7 (d, J = 8.0 Hz), 124.1 (d, J = 3.8 Hz), 115.7 (d, J = 20.7 Hz), 110.9 (d, J = 15.6 Hz), 83.8, 79.2 (d, J = 3.1 Hz), 68.4, 67.9, 66.5, 34.7, 32.5, 27.1. ¹⁹**F** NMR (471 MHz, Chloroform-*d*) δ -109.06. **IR** (KBr, cm⁻¹): 3049, 2924, 2845, 2758, 2243, 1726, 1571, 1490, 1449, 1374, 1299, 1261, 1219, 1125, 1086, 1016, 980, 911, 847, 796, 751, 656, 575, 450. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₆FO 243.1180; found 243.1176.

4-(5-(m-tolyl)penta-2,4-diyn-1-yl)tetrahydro-2H-pyran (61)

Colorless oil (19.4 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 81%. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.31 – 7.24 (m, 2H), 7.17 (dt, *J* = 14.3, 7.6 Hz, 2H), 3.98 (dd, *J* = 11.2, 4.2 Hz, 2H), 3.38 (td, *J* = 11.2, 4.2 Hz, 4.2

11.9, 1.9 Hz, 2H), 2.33 – 2.27(m, 5H), 1.81 (ddd, J = 15.2, 7.2, 3.9 Hz, 1H), 1.76 – 1.69 (m, 2H), 1.41 (qd, J = 12.8, 12.3, 4.5 Hz, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 138.2, 133.1, 130.0, 129.7, 128.4, 121.8, 82.3, 75.4, 74.0, 67.9, 66.7, 34.7, 32.5, 27.0, 21.3. **IR** (KBr, cm⁻¹): 3042, 2926, 2848, 2760, 2233, 2149, 1943, 1720, 1597, 1444, 1377, 1265, 1199, 1125, 1089, 1017, 896, 847, 785, 742, 690, 522, 443. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₉O 239.1431; found 239.1430.

4-(5-(3-fluorophenyl)penta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6m)

Colorless oil (18.7 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 77%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.28 – 7.23 (m, 2H), 7.15 (d, J = 9.6 Hz, 1H), 7.08 – 7.01 (m, 1H), 3.99 (dd, J = 11.3, 4.1 Hz, 2H), 3.39 (td, J = 11.9, 1.5 Hz, 2H), 2.33 (d, J = 6.6 Hz, 2H), 1.80 (dtt, J = 15.3, 8.6, 4.1 Hz, 1H), 1.75 – 1.70 (m, 2H), 1.42 (qd, J = 12.3, 4.5 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.4 (d, J = 247.1 Hz), 130.1 (d, J = 8.6 Hz), 128.5 (d, J = 3.1 Hz), 124.0 (d, J = 9.5 Hz), 119.3 (d, J = 23.0 Hz), 116.5 (d, J = 21.2 Hz), 83.4, 75.2, 73.7 (d, J = 3.5 Hz), 67.8, 66.4, 34.7, 32.5, 27.0. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -112.52. **IR** (KBr, cm⁻¹): 3069, 2926, 2845, 2759, 2706, 2239, 2150, 1939, 1726, 1604, 1506, 1476, 1435, 1386, 1249, 1185, 1123, 1101, 1045, 981, 927, 839, 787, 733, 680, 615, 527, 461. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₆FO 243.1180; found 243.1177.

3-(5-(tetrahydro-2H-pyran-4-yl)penta-1,3-diyn-1-yl)aniline (6n)

H₂N

White solid (22.5 mg), m.p. = 104-106 °C, purified by chromatography (petroleum/ethyl acetate = 3/1), yield = 94%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.29 (d, *J* = 7.5 Hz, 1H), 7.12 (t, *J* = 7.7 Hz, 1H), 6.65 (t, *J* = 8.8 Hz, 2H), 4.26

(s, 2H), 3.99 (dd, J = 11.3, 3.7 Hz, 3H), 3.39 (t, J = 11.3 Hz, 2H), 2.34 (d, J = 6.5 Hz, 2H), 1.80 (ddt, J = 15.3, 11.3, 5.6 Hz, 1H), 1.73 (d, J = 13.7 Hz, 2H), 1.42 (qd, J = 12.4, 4.4 Hz, 3H). ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 149.7, 133.3, 130.4, 118.0, 114.5, 106.5, 83.6, 79.4, 72.2, 67.9, 66.6, 34.7, 32.5, 27.1. **IR** (KBr, cm⁻¹): 3345, 3034, 2925, 2848, 2761, 2238, 2144, 1927, 1688, 1618, 1491, 1451, 1368, 1311, 1257, 1127, 1086, 1018, 981, 892, 845, 751, 654, 609, 483. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₈NO 240.1383; found 240.1383.

tert-butyldiphenyl(3-(5-(tetrahydro-2H-pyran-4-yl)penta-1,3-diyn-1-yl)phenoxy)silane (60)

TBDPSO

Colorless oil (38.2 mg), purified by chromatography (petroleum/ethyl acetate = 50/1), yield = 80%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.72 – 7.68 (m, 4H), 7.44 (t, *J* = 7.3 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 4H), 7.03 – 6.95

(m, 3H), 6.72 - 6.67 (m, 1H), 3.99 (dd, J = 11.3, 4.0 Hz, 2H), 3.39 (t, J = 11.2 Hz, 2H), 2.31 (d, J = 6.5 Hz, 2H), 1.79 (ddt, J = 14.4, 6.9, 3.8 Hz, 1H), 1.73 (d, J = 13.8 Hz, 2H), 1.41 (qd, J = 12.3, 4.4 Hz, 2H), 1.10 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 155.5, 135.6, 132.6, 130.2, 129.3, 128.0, 125.7, 123.7, 122.9, 121.1, 82.5, 75.0, 74.0, 67.9, 66.6, 34.7, 32.5, 27.0, 26.6, 19.6. **IR** (KBr, cm⁻¹): 3133, 2937, 2853, 2241, 1585, 1477, 1422, 1316, 1271, 1224, 1111, 971, 835, 786, 701, 614, 499. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₃₂H₃₄NaO₂Si 501.2220; found 501.2216.

4-(5-(naphthalen-1-yl)penta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6p)

White solid (25.2 mg), m.p. = 64-66 °C, purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 92%. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.33 (d, *J* = 8.3 Hz, 1H), 7.84 (dd, *J* = 8.0, 2.9 Hz, 2H), 7.73 (d, *J* = 7.1 Hz, 1H),

7.61 – 7.55 (m, 1H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.41 (t, *J* = 7.7 Hz, 1H), 4.01 (dd, *J* = 11.3, 4.0 Hz, 2H), 3.41 (td, *J* = 11.9, 1.6 Hz, 2H), 2.39 (d, *J* = 6.6 Hz, 2H), 1.84 (dddd, *J* = 15.3, 11.3, 7.8, 4.0 Hz, 1H), 1.77

(d, J = 13.4 Hz, 2H), 1.46 (qd, J = 12.2, 4.4 Hz, 2H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 134.1, 133.2, 132.1, 129.5, 128.5, 127.2, 126.7, 126.2, 125.3, 119.8, 83.7, 79.0, 73.5, 67.9, 66.8, 34.8, 32.6, 27.2. **IR** (KBr, cm⁻¹): 3132, 2924, 2843, 2760, 2235, 1935, 1628, 1585, 1504, 1400, 1265, 1203, 1127, 1086, 1014, 978, 848, 802, 769, 740, 560, 425. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₉O 275.1431; found 275.1427.

4-(5-(naphthalen-2-yl)penta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6q)

White solid (25.8 mg), m.p. = 82-84 °C, purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 94%. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.02 (s, 1H), 7.83 – 7.74 (m, 3H), 7.49 (dd, *J* = 6.3, 3.3 Hz, 3H), 4.00 (dd, *J* = 11.3, 3.9 Hz, 3H), 3.44 – 3.36 (m, 3H), 2.36 (s, 1H), 1.81 (tdt, *J* = 11.3, 8.7, 3.6 Hz, 2H), 1.75 (d, *J* = 13.6 Hz, 3H), 1.44 (qd, *J* = 12.3, 4.5 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 133.2, 133.04, 132.95, 128.7, 128.2, 127.91, 127.88, 127.2, 126.8, 119.4, 82.9, 75.6, 74.7, 67.9, 66.8, 34.8, 32.5, 27.1. IR (KBr, cm⁻¹): 3056, 2924, 2844, 2757, 2704, 2237, 2148, 1924, 1724, 1629, 1596, 1500, 1435, 1374, 1298, 1265, 1232, 1202, 1127, 1087, 1015, 980, 894, 854, 817, 744, 597, 508, 472. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₉O 275.1431; found 275.1427.

4-(5-(thiophen-2-yl)penta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6r)

Colorless oil (19.8 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 86%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.27 (dd, J = 9.6, 4.0 Hz, 2H), 6.96 (dd, J = 5.0, 3.8 Hz, 1H), 3.98 (dd, J = 11.3, 4.1 Hz, 2H), 3.39 (td, J = 11.9, 1.7 Hz, 2H), 2.34 (d, J = 6.6 Hz, 2H), 1.80 (tdt, J = 11.3, 8.6, 4.0 Hz, 1H), 1.73 (d, J = 13.2 Hz, 2H), 1.41 (qd, J = 12.3, 4.5 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 134.1, 128.3, 127.2, 122.4, 84.8, 78.4, 68.2, 67.9, 66.5, 34.7, 32.5, 27.1. IR (KBr, cm⁻¹): 3100, 2924, 2844, 2757, 2705, 2231, 2149, 1725, 1628, 1429, 1373, 1298, 1266, 1207, 1126, 1087, 1017, 980, 893, 845, 706, 612, 513, 457. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₅OS 231.0838; found 231.0835.

4-(5-(thiophen-3-yl)penta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6s)

Colorless oil (20.7 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 90%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.52 (d, J = 2.2 Hz, 1H), 7.25 (dt, J = 4.9, 2.9 Hz, 1H), 7.12 (d, J = 4.5 Hz, 1H), 3.98 (dd, J = 11.3,

4.1 Hz, 2H), 3.39 (td, *J* = 11.9, 1.6 Hz, 2H), 2.32 (d, *J* = 6.6 Hz, 2H), 1.79 (dddd, *J* = 15.3, 11.3, 7.7, 4.0 Hz, 1H), 1.73 (d, *J* = 13.4 Hz, 2H), 1.41 (qd, *J* = 12.3, 4.5 Hz, 2H). ¹³C NMR (126 MHz, Chloroform*d*) δ 131.0, 130.3, 125.6, 121.2, 82.4, 74.0, 70.4, 67.9, 66.6, 34.7, 32.5, 27.0. IR (KBr, cm⁻¹): 3104, 2924, 2844, 2758, 2705, 2239, 2150, 1722, 1577, 1431, 1360, 1300, 1264, 1233, 1202, 1125, 1087, 1015, 981, 932, 842, 785, 695, 620, 516. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₅OS 231.0838; found 231.0835.

3-(5-(tetrahydro-2H-pyran-4-yl)penta-1,3-diyn-1-yl)pyridine (6t)

Yellow oil (80 mg), purified by chromatography (petroleum/ethyl acetate = 10/1), yield = 80%. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.71 (s, 1H), 8.56 (s, 1H), 7.75 (d, *J* = 7.9 Hz, 1H), 7.28 – 7.22 (m, 2H), 3.99 (dd, *J* = 11.3, 4.0 Hz, 3H),

3.40 (td, J = 11.9, 1.5 Hz, 3H), 2.35 (d, J = 6.6 Hz, 2H), 1.81 (dddt, J = 18.0, 10.7, 6.6, 4.0 Hz, 2H), 1.74 (d, J = 13.2 Hz, 3H), 1.43 (qd, J = 12.3, 4.5 Hz, 3H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 153.3, 149.0, 139.5, 123.2, 84.0, 77.7, 71.7, 67.8, 66.2, 34.7, 32.5, 27.0. **IR** (KBr, cm⁻¹): 3037, 2924, 2845, 2758, 2705, 2244, 1707, 1565, 1472, 1418, 1374, 1264, 1198, 1125, 1087, 1018, 981, 893, 846, 805, 702, 619, 515, 451. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₆NO 226.1226; found 226.1226.

4-(5-ferrocenyl -2,4-diyn-1-yl)tetrahydro-2H-pyran (6u)

Orange solid (24.0 mg), m.p. = 95-97 °C, purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 72%. ¹H NMR (500 MHz, Chloroform-d) $\delta 4.22$ (d, J = 9.5 Hz, 3H), 3.98 (dd, J = 11.2, 3.8 Hz, 1H), 3.39 (t, J = 11.2 Hz, 1H), 2.28 (d, J = 6.5 Hz, 1H), 1.83 – 1.75 (m, 1H), 1.73 (d, J = 13.2 Hz, 1H), 1.41 (qd, J =

12.4, 4.4 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 79.7, 75.2, 72.3, 70.6, 70.2, 69.2, 67.9, 67.3, 63.6, 34.7, 32.6, 27.1. **IR** (KBr, cm⁻¹): 3096, 2925, 2844, 2758, 2703, 2233, 2151, 1688, 1446, 1370, 1271, 1207, 1125, 1093, 1012, 913, 824, 609, 490. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₁FeO 333.0936; found 333.0938.

triisopropyl(5-(tetrahydro-2H-pyran-4-yl)penta-1,3-diyn-1-yl)silane (6v)

Colorless oil (24.6 mg), purified by chromatography (petroleum/ethyl acetate = 80/1), yield = 80%. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 3.97 (dd, *J* = 11.4, 3.9 Hz, 2H), 3.43 – 3.32 (m, 2H), 2.24 (d, J = 6.5 Hz, 2H), 1.77 (dq, J = 10.6, 3.8 Hz, 1H), 1.71 (d, J = 13.1 Hz, 2H), 1.38 (qd, J = 13.2, 12.5, 4.5 Hz, 2H), 1.07 (s, 21H). ¹³C

NMR (101 MHz, Chloroform-d) δ 90.0, 80.6, 76.6, 67.9, 67.4, 34.6, 32.6, 26.8, 18.7, 11.5. IR (KBr, $cm^{-1}): 2947, 2862, 2757, 2718, 2223, 2104, 1983, 1734, 1630, 1460, 1376, 1299, 1239, 1183, 1128, 1085, 1085, 1086,$ 1002, 923, 884, 849, 810, 756, 670, 597, 481. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₃₃OSi 305.2295; found 305.2292.

4-(5-cyclopropylpenta-2,4-diyn-1-yl)tetrahydro-2H-pyran (6w)

Colorless oil (10.0 mg), purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 53%. ¹H NMR (500 MHz,) δ 3.97 – 3.92 (m, 2H), 3.39 – 3.31 (m, 2H), 2.22 - 2.17 (m, 2H), 1.70 - 1.64 (m, 3H), 1.42 - 1.22 (m, 3H), 0.89 - 0.64 (m, 4H). ¹³C NMR (126 MHz,) δ 81.0, 74.8, 67.9, 67.0, 60.7, 34.7, 32.5, 26.7, 8.8, 0.1. IR (KBr, cm⁻¹): 3012, 2925, 2843, 2758, 2259, 2150, 1437, 1374, 1300, 1234, 1127, 1087, 1020, 982, 935, 844, 816, 723, 512. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₇O 189.1274; found 189.1272.

4-(7-(4-methoxyphenyl)hepta-2,4,6-triyn-1-yl)tetrahydro-2H-pyran (6x)

White solid (13.7 mg), m.p. = 75-77 °C, purified by chromatography (petroleum/ethyl acetate = 20/1), yield = 49%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.45 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 3.98 (dd, *J* =

11.5, 4.1 Hz, 2H), 3.81 (s, 3H), 3.38 (t, J = 11.7 Hz, 2H), 2.30 (d, J = 6.6 Hz, 2H), 1.78 (dtt, J = 17.9, 10.9, 4.9 Hz, 1H), 1.71 (d, J = 13.4 Hz, 2H), 1.39 (qd, J = 12.4, 4.5 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 160.8, 134.8, 114.4, 113.1, 80.2, 76.1, 73.6, 67.9, 67.3, 66.8, 60.4, 55.5, 34.7, 32.5, 27.0. **IR** (KBr, cm⁻¹): 2922, 2845, 2193, 1601, 1509, 1457, 1365, 1294, 1252, 1170, 1091, 1027, 833, 738, 574, 531. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₈NaO₂ 301.1199; found 301.1201.

2-(trideca-1,3-diyn-1-yl)thiophene (6y)

Colorless oil (21.3 mg), purified by chromatography (petroleum/ethyl acetate =100/1), yield = 82%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 - 7.23 (m, 2H), 6.95 (dd, J = 5.1, 3.7 Hz, 1H), 2.36 (t, J = 7.0 Hz, 2H), 1.57 (p, J = 7.0 Hz, 2H), 1.45 -1.37 (m, 2H), 1.29 (d, J = 10.7 Hz, 10H), 0.88 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) 8 133.9, 128.1, 127.1, 122.6, 87.3, 78.7, 67.8, 65.1, 32.0, 29.6, 29.4, 29.2, 29.0, 28.4, 22.8, 19.8, 14.3. IR (KBr, cm⁻¹): 3128, 2927, 2858, 2232, 2151, 1625, 1456, 1401, 1296, 1206, 1153, 1088, 965, 846, 766, 702, 534. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₃S 259.1515; found 259.1514.

2-(pentadeca-14-en-1,3-diyn-1-yl)thiophene (6z)

Colorless oil (24.4 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 86%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.29 – 7.23 (m, 2H), 6.95 (t, *J* = 4.1 Hz, 1H), 5.87 – 5.75 (m, 1H), 4.99 (d, *J* = 17.1 Hz, 1H), 4.93 (d, *J* = 10.2 Hz, 1H), 2.36 (t, *J* = 7.0 Hz, 2H), 2.04 (q, *J* = 6.8 Hz, 2H), 1.56 (q, *J* = 7.5 Hz, 2H), 1.42 – 1.36 (m, 4H), 1.29 (s, 8H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 139.4, 134.0, 128.1, 127.1, 122.6, 114.3, 87.3, 78.6, 67.8, 65.1, 34.0, 29.8, 29.56, 29.55, 29.24, 29.20, 29.1, 29.0, 28.3, 19.8. **IR** (KBr, cm⁻¹): 3137, 2926, 2854, 2233, 2148, 1718, 1637, 1401, 1300, 1209, 1086, 990, 908, 842, 791, 704. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₅S 285.1672; found 285.1667.

2-(8-phenylocta-1,3-diyn-1-yl)thiophene (6aa)

Colorless oil (23.5 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 89%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.27 (dt, *J* = 12.8, 6.3 Hz, 4H), 7.18 (d, *J* = 7.5 Hz, 3H), 6.95 (t, *J* = 4.2 Hz,

1H), 2.64 (t, J = 7.6 Hz, 2H), 2.39 (t, J = 7.0 Hz, 2H), 1.76 (p, J = 8.2, 7.7 Hz, 2H), 1.61 (p, J = 7.2 Hz, 2H). ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 142.2, 134.0, 128.6, 128.5, 128.2, 127.1, 126.0, 122.6, 86.8, 78.6, 68.0, 65.3, 35.5, 30.7, 27.9, 19.7. **IR** (KBr, cm⁻¹): 3151, 3026, 2930, 2858, 2149, 1626, 1453, 1324, 1209, 1084, 1033, 966, 843, 702, 621, 479. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₆NaS 287.0865; found 287.0865.

2-(5-(cyclohex-3-en-1-yl)penta-1,3-diyn-1-yl)thiophene (6ab)

Colorless oil (18.6 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 82%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.26 (dd, *J* = 11.0, 3.9 Hz, 2H), 6.96 (t, *J* = 4.0 Hz, 1H), 5.65 (d, *J* = 14.6 Hz, 2H), 2.43 –

2.31 (m, 2H), 2.19 (d, J = 15.9 Hz, 1H), 2.08 (s, 2H), 1.83 (d, J = 27.5 Hz, 3H), 1.40 (p, J = 9.8, 9.2 Hz, 1H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 134.0, 128.2, 127.1, 127.0, 125.9, 122.6, 85.9, 78.6, 67.9, 66.0, 33.2, 31.2, 28.2, 26.6, 24.9. **IR** (KBr, cm⁻¹): 3138, 3024, 2917, 2840, 2230, 2148, 1635, 1403, 1318, 1267, 1209, 1145, 1088, 1047, 963, 923, 843, 768, 702, 654, 538, 497. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₅S 227.0889; found 227.0890.

2-(5-((1r,3r,5r,7r)-adamantan-2-yl)penta-1,3-diyn-1-yl)thiophene (6ac)

White solid (25.8 mg), m.p. = 97-100 °C, purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 92%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.30 – 7.23 (m, 2H), 6.98 – 6.93 (m, 1H), 2.13 (s, 1H), 2.00 (s, 3H), 1.75 –

1.54 (m, 15H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 133.9, 128.1, 127.1, 122.7, 85.0, 78.8, 67.7, 67.0, 42.2, 36.9, 35.1, 33.6, 28.9. **IR** (KBr, cm⁻¹): 3139, 2906, 2848, 2230, 1624, 1401, 1306, 1205, 1152, 962, 846, 701, 538. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₁S 281.1359; found 281.1358.

3-ethyl-3-(5-(thiophen-2-yl)penta-2,4-diyn-1-yl)oxetane (6ad)

Colorless oil (19.8 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 86%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.28 (dd, J = 11.8, 4.5 Hz, 2H), 6.99 - 6.94 (m, 1H), 4.48 - 4.41 (m, 4H), 2.73 (s, 2H), 1.83 (q, J = 7.4

Hz, 2H), 0.92 (t, J = 7.5 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 134.3, 128.4, 127.2, 122.2, 83.1, 80.1, 78.3, 68.3, 66.8, 42.8, 28.7, 27.0, 8.5. IR (KBr, cm⁻¹): 3132, 2967, 2870, 2231, 2149, 1626, 1401, 1295, 1210, 1153, 1091, 979, 841, 774, 706, 618, 477. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₅OS 231.0838; found 231.0835.

2-(9-chloronona-1,3-diyn-1-yl)thiophene (6ae)

Colorless oil (12.8 mg), purified by chromatography (petroleum/ethyl acetate = 80/1), yield = 54%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.30 – 7.23 (m, 2H), 6.96 (dd, *J* = 5.1, 3.7 Hz, 1H), 3.55 (t, *J* = 6.7 Hz, 2H), 2.40 (t, *J* = 6.6 Hz, 2H), 1.81 (p, *J* = 6.8 Hz, 2H), 1.65 – 1.57 (m, 4H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 134.1, 128.2, 127.2, 122.5, 86.5, 78.5, 68.1, 65.5, 44.9, 32.2, 27.6, 26.3, 19.8. IR (KBr, cm⁻¹): 3132, 2942, 2231, 2149, 1631, 1402, 1209, 1089, 843, 705, 646. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₄ClS 237.0499; found 237.0499.

2-(7-(methylthio)octa-1,3-diyn-1-yl)thiophene (6af)

Colorless oil (20.1 mg), purified by chromatography (petroleum/ethyl acetate = 80/1), yield = 86%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.27 (dd, *J* = 10.1, 4.3 Hz, 2H), 6.99 - 6.93 (m, 1H), 2.81 (h, *J* = 6.8 Hz, 1H), 2.63 - 2.46 (m, 2H),

2.08 (s, 3H), 1.78 (ddp, J = 21.0, 13.9, 7.0 Hz, 2H), 1.31 (d, J = 6.8 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 134.1, 128.2, 127.2, 122.4, 86.2, 78.5, 68.1, 65.6, 40.2, 34.7, 20.8, 17.7, 13.0. **IR** (KBr, cm⁻¹): 3133, 2966, 2922, 2231, 2149, 1607, 1403, 1210, 1095, 955, 843, 705, 553. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₅S₂ 235.0610; found 235.0608.

methyl 10-(thiophen-2-yl)deca-7,9-diynoate (6ag)

Colorless oil (12.8 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 49%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 (dd, *J* = 7.0, 4.6 Hz, 2H), 6.96 (dd, *J* = 5.1, 3.7 Hz, 1H), 3.68 (s, 3H), 2.36 (dt, *J* = 20.9, 7.2 Hz, 4H), 1.70 – 1.63 (m, 2H), 1.59 (q, *J* = 7.0 Hz, 3H), 1.51 – 1.41 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.2, 134.0, 128.2, 127.1, 122.5, 86.7, 78.5, 68.0, 65.4, 51.7, 34.0, 28.4, 28.0, 24.5, 19.7. **IR** (KBr, cm⁻¹): 2939, 1736, 1434, 1364, 1207, 1082, 844, 709, 505. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₇OS₂ 261.0944; found 261.0941.

2-(8-(methoxymethoxy)octa-1,3-diyn-1-yl)thiophene (6ah)

Colorless oil (22.0 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 89%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.27 (dd, *J* = 9.6, 4.4 Hz, 2H), 6.96 (t, *J* = 4.0 Hz, 1H), 4.62 (s, 2H), 3.56 (t, *J* = 6.0 Hz, 2H), 3.37 (s, 3H), 2.42 (t, *J* = 6.6 Hz, 2H), 1.72 (dp, *J* = 22.7, 6.9 Hz, 4H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 134.0, 128.2, 127.1, 96.6, 86.6, 78.5, 68.0, 67.2, 65.4, 29.0, 25.2, 19.6. IR (KBr, cm⁻¹): 2935, 2231, 2149, 1733, 1432, 1375, 1315, 1212, 1148, 1108, 1040, 921, 844, 706. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₇O₂S 249.0944; found 249.0947.

2-(8-methoxyocta-1,3-diyn-1-yl)thiophene (6ai)

Colorless oil (18.2 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 73%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.29 – 7.23 (m, 2H), 6.98 – 6.93 (m, 1H), 3.40 (t, J = 6.1 Hz, 2H), 3.33 (s, 3H), 2.41 (t, J = 6.7 Hz, 2H), 1.68 (dh, J = 28.0, 6.3 Hz, 4H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 134.0, 128.2, 127.1, 122.6, 86.7, 78.6, 72.2, 68.0, 65.4, 58.7, 28.8, 25.1, 19.6. IR (KBr, cm⁻¹): 3130, 2930, 2803, 2230, 2147, 1626, 1401, 1293, 1204, 1147, 970, 845, 744, 701, 616, 533, 479. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₅OS 219.0838; found 219.0838.

8-(thiophen-2-yl)octa-5,7-diyn-1-yl pivalate (6aj)

Colorless oil (25.1 mg), purified by chromatography (petroleum/ethyl acetate = 30/1), yield = 87%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.24 (m, 2H), 6.96 (dd, *J* = 5.1, 3.7 Hz, 1H), 4.09 (t, *J* = 6.3 Hz, 2H), 2.43 (t, *J* = 6.9 Hz, 2H), 1.84 – 1.74 (m, 2H), 1.65 (dt, *J* = 14.1, 6.9 Hz, 2H), 1.21 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.7, 134.1, 128.2, 127.2, 122.4, 86.2, 78.5, 68.1, 65.6, 63.8, 38.9, 27.9, 27.3, 24.9, 19.5. IR (KBr, cm⁻¹): 3105, 2966, 2232, 2151, 1726, 1538, 1469, 1368, 1284, 1158, 1091, 1042, 945, 895, 845, 777, 708, 635, 597, 505. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₁O₂S 289.1257; found 289.1254.

1-benzyl-4-(5-(thiophen-2-yl)penta-2,4-diyn-1-yl)piperidine (6ak)

Yellow oil (23.0 mg), purified by chromatography (petroleum/ethyl acetate = 4/1), yield = 72%. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.31 (d, *J* = 4.3 Hz, 4H), 7.26 (dd, *J* = 11.1, 4.2 Hz, 3H), 6.98 – 6.92 (m, 1H), 3.49

(s, 2H), 2.89 (d, J = 11.5 Hz, 2H), 2.31 (d, J = 6.6 Hz, 2H), 1.96 (t, J = 11.0 Hz, 2H), 1.76 (d, J = 12.6 Hz, 2H), 1.55 (ddt, J = 11.0, 8.0, 3.8 Hz, 1H), 1.38 (qd, J = 12.7, 3.9 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 138.6, 134.0, 129.3, 128.3, 128.2, 127.13, 127.07, 122.5, 85.6, 78.6, 68.0, 66.2, 63.5, 53.6, 35.7, 32.0, 26.8. **IR** (KBr, cm⁻¹): 3114, 2944, 2869, 2231, 2150, 1727, 1625, 1401, 1299, 1208, 1116, 962, 845, 706, 638, 509. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₂NS 320.1468; found 320.1465.

tert-butyldimethyl(5-(thiophen-2-yl)penta-2,4-diyn-1-yl)silane (6al)

Colorless oil (12.5 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 48%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.18 (d, *J* = 5.0 Hz, 1H), 6.96 (s, 1H), 6.95 – 6.92 (m, 1H), 3.85 (s, 2H), 0.95 (s, 9H), 0.13 (s,

6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 137.5, 127.1, 125.8, 124.7, 88.7, 83.8, 75.4, 67.5, 26.2, 20.6, 16.9, -4.7. **IR** (KBr, cm⁻¹): 3120, 2946, 2861, 2227, 2109, 1712, 1622, 1463, 1404, 1299, 1251, 1183, 1076, 1010, 832, 780, 694, 582, 454. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₂₁SSi 261.1128; found 261.1129.

1,17-di(thiophen-2-yl)heptadeca-1,3,14,16-tetrayne (6am)

Colorless oil (19.8 mg), purified by chromatography (petroleum/ethyl acetate = 100/1), yield = 51%. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.26 (dd, *J* = 11.7, 4.3 Hz,

4H), 6.98 – 6.93 (m, 2H), 2.37 (t, J = 7.0 Hz, 4H), 1.57 (p, J = 7.1 Hz, 5H), 1.41 (s, 4H), 1.31 (s, 5H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 134.0, 128.1, 127.1, 122.6, 87.2, 78.7, 67.8, 65.1, 29.4, 29.1, 28.9, 28.3, 19.8. **IR** (KBr, cm⁻¹): 3115, 2930, 2856, 2231, 2149, 1798, 1616, 1531, 1406, 1210, 1090, 1037, 842, 703, 633, 503. **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₄NaS₂ 411.1212; found 411.1210.

1.10. Base-assisted proton transfer from 6' to 6

When tertiary propargyl ether **1ab** was tested under the standard conditions, a mixture of allenyne **6an**' (63%) and 1,3-diyne **6an** (16%) was obtained (eq 1). However, there was only **6an** when the reaction time was extended to 1.5h (eq 2). To figure out what has caused this isomerization, **6an**' was subjected to condition A and B (eq 3). This isomerization didn't occur under condition A but occurred under condition B, meaning that base could promote this allene–alkyne isomerization. Learned from these experiments, we believe that the final 1,3-diyne products were generated through isomerization of allenyne.

4-(p-tolylbuta-1,3-diyn-1-yl)tetrahydro-2H-pyran (6an)

4-(4-(p-tolyl)but-1-en-3-yn-1-ylidene)tetrahydro-2H-pyran (6an')

White solid (14.1 mg), m.p. = 141-143 °C, purified by chromatography (petroleum/ethyl acetate = 40/1), yield = 63% (1 min). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.33 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 7.9 Hz, 2H), 5.58 – 5.54 (m, 1H), 3.81 (ddd, *J* = 10.8, 6.3, 4.2 Hz, 2H), 3.73 (ddd, *J* = 11.1, 7.0, 4.1 Hz,

2H), 2.41 – 2.23 (m, 7H). ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 207.23, 138.28, 131.43, 129.16, 120.49, 100.14, 89.60, 82.59, 75.14, 68.27, 30.93, 21.59. **IR** (KBr, cm⁻¹): 3126, 2965, 2840, 2142, 1627, 1505, 1401, 1241, 1170, 1122, 1082, 1018, 889, 819, 752, 619, 527, 462. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₇O 225.1274; found 225.1271.

1.11. References

- (1) Uchiyama, C.; Miyadera, Y.; Hayashi, Y.; Yakushiji, F. ChemistrySelect 2017, 2 (13), 3794–3798.
- (2) Yoshida, M.; Nakagawa, T.; Kinoshita, K.; Shishido, K. J. Org. Chem. 2013, 78, 1687–1692.
- (3) Wang, Y.; Pritchard, G. J.; Kimber, M. C. European J. Org. Chem. 2020, 2020 (19), 2914–2922.
- (4) Min, X. L.; Xu, X. R.; He, Y. Org. Lett. 2019, 21 (22), 9188–9193.
- (5) Montgomery, T. D.; Rawal, V. H. Org. Lett. 2016, 18 (4), 740-743.
- (6) Zheng, Z.; Deng, G.; Liang, Y. RSC Adv. 2016, 6 (105), 103478-103481.
- (7) Gung, B. W.; Bailey, L. N.; Wonser, J. Tetrahedron Lett. 2010, 51 (17), 2251–2253.
- (8) Wang, X.; Gao, Q.; Buevich, A. V.; Yasuda, N.; Zhang, Y.; Yang, R. S.; Zhang, L. K.; Martin, G. E.; Williamson, R. T. J. Org. Chem. 2019, 84 (16), 10024–10031.
- (9) Huang, Z.; Shang, R.; Zhang, Z. R.; Tan, X. D.; Xiao, X.; Fu, Y. J. Org. Chem. 2013, 78 (9), 4551–4557.
- (10) Lepronier, A.; Achard, T.; Giordano, L.; Tenaglia, A.; Buono, G.; Clavier, H. Adv. Synth. Catal. **2016**, *358* (4), 631–642.
- (11) Kuwatani, Y.; Yamamoto, G.; Oda, M.; Iyoda, M. Bull. Chem. Soc. Jpn. 2005, 78 (12), 2188–2208.
- (12) Liu, L.; Sun, K.; Su, L.; Dong, J.; Cheng, L.; Zhu, X.; Au, C. T.; Zhou, Y.; Yin, S. F. *Org. Lett.* 2018, 20 (13), 4023–4027.
- (13) Wu, X.; Ji, H. J. Org. Chem. 2018, 83 (8), 4650-4656.

2. X-Ray diffraction analysis

2.1. Crystal data and structure refinement for 4a

Experimental Procedure

Single crystal of **4a** was grown from slow evaporation of DCM/PE solvent. A suitable crystal was selected and measured on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 169.99(10) K during data collection.

Figure S1. Ellipsoid plot of the crystal structure of **4a** (Prob = 50, Temp = 170 K).

Identification code	4a (CCDC 2142926)		
Empirical formula	$C_{30}H_{20}$		
Formula weight	380.46		
Temperature/K	169.99(10)		
Crystal system	monoclinic		
Space group	P2 ₁ /c		
a/Å	14.7343(13)		
b/Å	7.8467(5)		
c/Å	18.5969(16)		
α/°	90		
β/°	107.975(9)		
γ/°	90		
Volume/Å ³	2045.1(3)		
Z	4		
$\rho_{calc}g/cm^3$	1.236		
µ/mm ⁻¹	0.070		
F(000)	800.0		
Crystal size/mm ³	$0.14 \times 0.12 \times 0.11$		
Radiation	Mo Ka ($\lambda = 0.71073$)		
20 range for data collection/° 4.606 to 49.998			
Index ranges	$-17 \le h \le 17, -9 \le k \le 8, -16 \le l \le 22$		

Reflections collected	9228			
Independent reflections	$3606 [R_{int} = 0.0242, R_{sigma} = 0.0329]$			
Data/restraints/parameters	3606/0/271			
Goodness-of-fit on F ²	1.034			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0417, wR_2 = 0.0947$			
Final R indexes [all data]	$R_1=0.0569,wR_2=0.1048$			
Largest diff. peak/hole / e Å ⁻³ 0.13/-0.19				

3. Data of NMR spectra

¹H NMR spectrum (400 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 1a

¹H NMR spectrum (400 MHz, CDCl₃), ¹³C NMR spectrum (101 MHz, CDCl₃) and ¹⁹F spectrum NMR (471 MHz, CDCl₃) of 1c

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 1e

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 1f

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 1h

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 1k

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 1m

 1H NMR spectrum (500 MHz, CDCl₃) and ^{13}C NMR spectrum (126 MHz, CDCl₃) of 1n

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 10

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 1r

$^1\mathrm{H}$ NMR spectrum (400 MHz, CDCl_3) and $^{13}\mathrm{C}$ NMR spectrum (101 MHz, CDCl_3) of 1v

¹H NMR spectrum (400 MHz, CDCl₃) and ¹³C NMR spectrum (101 MHz, CDCl₃) of 1w 2.2.55 2.2.01 2.2.00 2.2.00 1.1.97 1.1.97 1.1.94 1.1.94 1.1.73 1.

5.5 5.0 4.5 fl (ppm) 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 f1 (ppm)

¹H NMR spectrum (400 MHz, CDCl₃) and ¹³C NMR spectrum (101 MHz, CDCl₃) of 1y

4.0 3.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 2.0 1.5

¹H NMR spectrum (400 MHz, CDCl₃) and ¹³C NMR spectrum (101 MHz, CDCl₃) of 1ae

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 2a

¹H NMR spectrum (500 MHz, CDCl₃), ¹³C NMR spectrum (126 MHz, CDCl₃) and ¹⁹F spectrum NMR (471 MHz, CDCl₃) of *E*-2c

¹H NMR spectrum (500 MHz, CDCl₃), ¹³C NMR spectrum (126 MHz, CDCl₃) and ¹⁹F spectrum NMR (471 MHz, CDCl₃) of *Z*-2c

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 2h ¹⁴C NMR spectrum (126 MHz, CDCl₃) of 2h ¹⁵C NMR spectrum (126 MHz, CDCl₃) of 2h ¹⁶C NMR spectrum (126 M

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 2i

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 2j

1 (ppm)

16

15

14

13

12

11

10

7.61 2.10 5.48 9.72 41.46

 $^1\mathrm{H}$ NMR spectrum (500 MHz, CDCl3) and $^{13}\mathrm{C}$ NMR spectrum (126 MHz, CDCl3) of 2k

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 21

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 2m

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of Z-20

 1H NMR spectrum (500 MHz, CDCl₃) and ^{13}C NMR spectrum (126 MHz, CDCl₃) of 2p

 $^1\mathrm{H}$ NMR spectrum (500 MHz, CDCl₃) and $^{13}\mathrm{C}$ NMR spectrum (126 MHz, CDCl₃) of 2q

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 2r

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 2s

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 2t

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of *d*-1a

¹H NMR spectrum (400 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of *d*₂-2a

¹H NMR spectrum (400 MHz, CDCl₃) and ¹³C NMR spectrum (151 MHz, CDCl₃) of *d*₂-2r

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 3b

¹H NMR spectrum (500 MHz, CDCl₃), ¹³C NMR spectrum (126 MHz, CDCl₃) and ¹⁹F spectrum NMR (471 MHz, CDCl₃) of 3c

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 3e

¹H NMR spectrum (500 MHz, CDCl₃), ¹³C NMR spectrum (126 MHz, CDCl₃) and ¹⁹F spectrum NMR (471 MHz, CDCl₃) of 3g

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 4a

¹H NMR spectrum (500 MHz, CDCl₃-CS₂) and ¹³C NMR spectrum (126 MHz, CDCl₃-CS₂) of 4b

¹H NMR spectrum (500 MHz, CDCl₃), ¹³C NMR spectrum (126 MHz, CDCl₃) and ¹⁹F spectrum NMR (471 MHz, CDCl₃) of 4c

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 r1 (ppm)

¹H NMR spectrum (500 MHz, CDCl₃-CS₂) and ¹³C NMR spectrum (126 MHz, CDCl₃-CS₂) of 4d

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR spectrum (500 MHz, CDCl₃-CS₂) and ¹³C NMR spectrum (126 MHz, CDCl₃-CS₂) of 4e

1H NMR spectrum (500 MHz, CDCl₃) and ^{13}C NMR spectrum (126 MHz, CDCl₃) of 4f

¹H NMR spectrum (500 MHz, CDCl₃), ¹³C NMR spectrum (126 MHz, CDCl₃) and ¹⁹F spectrum NMR (471 MHz, CDCl₃) of 4g

¹H NMR spectrum (400 MHz, CDCl₃) and ¹³C NMR spectrum (101 MHz, CDCl₃) of 6a

<-110.25
<-110.26</pre>

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 6b

 $^1\mathrm{H}$ NMR spectrum (400 MHz, CDCl₃) and $^{13}\mathrm{C}$ NMR spectrum (101 MHz, CDCl₃) of 6c

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 6d

¹H NMR spectrum (500 MHz, CDCl₃), ¹³C NMR spectrum (126 MHz, CDCl₃) and ¹⁹F spectrum NMR (471 MHz, CDCl₃) of 6e

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 6g

¹H NMR spectrum (400 MHz, CDCl₃) and ¹³C NMR spectrum (101 MHz, CDCl₃) of 6h

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 6i

¹H NMR spectrum (400 MHz, CDCl₃) and ¹³C NMR spectrum (101 MHz, CDCl₃) of 6j

¹H NMR spectrum (500 MHz, CDCl₃), ¹³C NMR spectrum (126 MHz, CDCl₃) and ¹⁹F spectrum NMR (471 MHz, CDCl₃) of 6k

¹H NMR spectrum (500 MHz, CDCl₃), ¹³C NMR spectrum (126 MHz, CDCl₃) and ¹⁹F spectrum NMR (471 MHz, CDCl₃) of 6m

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 6n

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 60

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 6p

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 6q

¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 6r


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 8 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9	5 1
	0000440000 00880000004444400	$\infty$
		4.5









### ¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 6u



210 200 190 140 130 120 f1 (ppm) -10 



### ¹H NMR spectrum (400 MHz, CDCl₃) and ¹³C NMR spectrum (101 MHz, CDCl₃) of 6v



### ¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 6w



## ¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 6x



### ¹H NMR spectrum (400 MHz, CDCl₃) and ¹³C NMR spectrum (101 MHz, CDCl₃) of 6y















# f1 (ppm)



### ¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 6af












## ¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 6ai







¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 6al



## ¹H NMR spectrum (500 MHz, CDCl₃) and ¹³C NMR spectrum (126 MHz, CDCl₃) of 6am





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)