Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Experimental Section

Materials: Sodium hydroxide (NaOH), ammonium chloride (NH₄Cl), potassium sulfate (K₂SO₄), hydrochloric acid (HCl), salicylic acid (C₇H₆O₃), sodium citrate dehydrate (C₆H₅Na₃O₇·2H₂O), *p*dimethylaminobenzaldehyde (C₉H₁₁NO), Nafion solution (5 wt %), anhydrous alcohol, sodium nitroferricyanide dihydrate (C₅FeN₆Na₂O·2H₂O), sodium nitrite (NaNO₂) and sodium hypochlorite (NaClO) were purchased from Aladdin Ltd. (Shanghai, China). Nitric acid (HNO₃), sulfuric acid (H₂SO₄), hydrogen peroxide (H₂O₂), hydrazine monohydrate (N₂H₄·H₂O), phosphoric acid (H₃PO₄) and ethyl alcohol (C₂H₅OH) were purchased from Beijing Chemical Corp. (China). chemical Ltd. in Chengdu. Titanium plate (0.2 mm thick) was purchased from Qingyuan Metal Materials Co., Ltd (Xingtai, China). All reagents used in this work were analytical grade without further purification.

Synthesis of TiO_{2-x} NBA/TP: The fabrication process of TiO_{2-x} NBA/TP were as follows: Firstly, titanium plates were cut into small pieces $(2.0 \times 4.0 \text{ cm}^2)$ and sonicated in acetone, ethanol, and distilled water for 15 min, respectively. After then, they were put into 40 mL of 5 M NaOH aqueous solution in 50 mL Teflon-lined autoclave. The autoclave was kept in an electric oven at 180°C for 24 h. After the autoclave was cooled down naturally to room temperature, the samples were moved out, washed with deionized water and ethanol several times and dried at 60 °C for 30 min. Then the samples were immersed in 1 M HCl for 1 h in order to exchange Na⁺ with H⁺. The as-prepared H₂Ti₂O₅·H₂O NBA/TP were rinsed with deionized water and ethanol several times and ethanol several times and dried at 60 °C for 30 min. Subsequently, H₂Ti₂O₅·H₂O NBA/TP were finally obtained.

Preparation of the TiO₂/TP: Typically, 10 mg of the commercial TiO₂ nanoparticle powder and 10 μ L of Nafion solution (5 wt %) were scattered in a mixture of 500 μ L water and 500 μ L anhydrous alcohol by ultrasonic treatment for 1 h to form a homogeneous liquid. Then, 50 μ L of the dispersion was loaded on a TP with an area of 1 × 0.5 cm² and dried in the N₂ atmosphere at 60 °C for 1 h.

Characterizations: XRD data were acquired by a LabX XRD-6100 X-ray diffractometer with a Cu Kα radiation (40 kV, 30 mA) of wavelength 0.154 nm (SHIMADZU, Japan). SEM measurements were carried out on a Gemini SEM 300 scanning electron microscope (ZEISS, Germany) at an accelerating voltage of 5 kV. XPS measurements were performed on an ESCALABMK II X-ray

photoelectron spectrometer using Mg as the exciting source. The absorbance data of spectrophotometer were measured on UV-Vis spectrophotometer. TEM image was obtained from a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. EPR spectrum was recorded on a Brüker EMX spectrometer at room temperature.

Electrochemical measurements: All electrochemical measurements were carried on the CHI660E electrochemical workstation (Shanghai, Chenhua) using a standard three-electrode setup. Electrolyte solution was Ar-saturated of 0.1 M NaOH with 0.1 M NO₂⁻, using TiO_{2-x} NBA/TP ($1.0 \times 0.5 \text{ cm}^2$) as the working electrode, graphite rod as the counter electrode and a Hg/HgO as the reference electrode. We use a H-type electrolytic cell separated by a Nafion 117 membrane which was protonated by boiling in ultrapure water, H₂O₂ (5%) aqueous solution and 0.5 M H₂SO₄ at 80 °C for another 2 h, respectively. All the potentials reported in our work were converted to reversible hydrogen electrode via calibration with the following equation: E (RHE) = E (Hg/HgO) + (0.098 + 0.0591 × pH) V and the presented current density was normalized to the geometric surface area.

Determination of NH₃: The NH₃ concentration in the solution was determined by colorimetry (the obtained electrolyte was diluted 40 times) using the indophenol blue method.¹ In detail, 2 mL of the solution after reaction, and 2 mL of 1 M NaOH chromogenic solution containing 5% salicylic acid and 5% sodium citrate. Then, I mL oxidizing solution of 0.05 M NaClO and 0.2 mL catalyst solution of $C_5FeN_6Na_2O$ (1 wt%) were added to the above solution. After standing in the dark for 2 h, the UV-Vis absorption spectra were measured. The concentration of NH₃ was identified using the absorbance at a wavelength of 655 nm. The concentration-absorbance curve was calibrated using the standard NH₄Cl solution with NH₃ concentrations of 0.25, 0.50, 0.75, 1.0, 1.50, 2.50, 3.50 and 5.0 ppm in 0.1 M NaOH solution. The fitting curve (y = 0.3896 x + 0.0178, R² = 0.9996) shows good linear relation of absorbance value with NH₃ concentration.

Determination of N₂H₄: In this work, we used the method of Watt and Chrisp to estimate whether N₂H₄ produced.² The chromogenic reagent was a mixed solution of 5.99 g C₉H₁₁NO, 30 mL HCl and 300 mL C₂H₅OH. In detail, 1 mL electrolyte was added into 1 mL prepared color reagent and standing for 15 min in the dark. The absorbance at 455 nm was measured to quantify the N₂H₄ concentration with a standard curve of hydrazine (y = 0.6497 x + 0.07655, R² = 0.9995).

Calculations of the FE and NH₃ yield rate:

FE toward NH₃ via NO₂RR was calculated by the following equation (the reduction of NO₂⁻ to

NH₃ consumes six electrons):

$$FE = (6 \times F \times [NH_3] \times V) / (M_{NH3} \times Q) \times 100\% (1)$$

NH₃ yield rate was calculated using the following equation:

NH₃ yield rate = ([NH₃] × V) / (M_{NH3} × t × A) (2)

Where F is the Faradic constant (96500 C mol⁻¹), [NH₃] is the measured NH₃ concentration, V is the volume of electrolyte in the cathode compartment (70 mL), M_{NH3} is the molar mass of NH₃, Q is the total quantity of applied electricity; t is the electrolysis time and A is the loaded area of catalyst (1.0 × 0.5 cm²).

DFT calculation details:

First-principles calculations with spin-polarized were carried out based on density functional theory (DFT) implemented in the VASP package,³ and the interaction between valence electrons and ionic core were expanded using the projector augmented wave (PAW) approach with a cutoff of 450 eV.⁴ Perdew-Burke-Ernzerhof functional (PBE) with semi-empirical corrections of DFT-D3 was adopted to describe exchange-correlation functional effect based on general gradient approximation (GGA).⁵ TiO₂(101) surface was modeled using a 2 × 2 supercell with three trilayers (O-Ti-O), of which the bottom trilayer was fixed. The thickness of the vacuum region is > 15 Å to avoid the spurious interaction. Hubbard U model was implemented with an effective U = 4 eV for Ti 3d orbitals.^{6,7} The Brillouin zone was sampled by 2 × 3 × 1 special k-points using the Monkhorst Pack scheme for structural configuration optimizations.⁸ The force convergence thresholds are 0.02 eV/Å and the total energy less than 1E-5 eV, respectively. The theoretical calculation results were processing and analyzed by VASPKIT software.⁹

Fig. S1 Cross-section SEM image of TiO_{2-x} NBA/TP.

Fig. S2 The ratio of Ti and O of TiO $_{2-x}$ NBA/TP.

Fig. S3 EPR spectra of the commercial TiO_2 (black curve) and the TiO_{2-x} NBA (red curve).

Fig. S4 LSV curves of TiO₂/TP and bare TP in 0.1 M NaOH with and without 0.1 M NO₂⁻.

Fig. S5 (a) UV-Vis absorption spectra and corresponding (b) calibration curve used for calculation of NH_3 concentration.

Fig. S6 (a) UV-Vis absorption spectra and corresponding (b) calibration curve used for calculation of N_2H_4 concentration.

Fig. S7 Calculated NH₃ yields and FEs of TiO_{2-x} NBA/TP, TiO₂/TP and bare TP toward NO₂RR in 0.1 M No₂⁻ at -0.7 V.

Fig. S8 (a) LSV curves of TiO_{2-x} NBA/TP in 0.1 M K₂SO₄ in the presence and absence of 0.1 M NO_2^{-} . (b) CA curves (from -0.4 V to -0.9 V) and (c) corresponding UV-Vis spectra of TiO_{2-x} NBA/TP. (d) Calculated NH₃ yields and FEs of TiO_{2-x} NBA/TP at different given potentials.

Fig. S9 UV-Vis absorption spectra of the electrolytes estimated by the method of Watt and Chrisp for the calculation of N₂H₄ concentration.

Fig. S10 (a) Chronoamperometry curves and (b) corresponding UV-Vis absorption spectra of TiO_{2-x} NBA/TP for electrochemical catalytic production of NH₃ during cycling tests in 0.1 M NaOH with 0.1 M NO₂⁻ at -0.7 V.

Fig. S11 LSV curves of TiO_{2-x} NBA/TP before and after 12 h electrolysis in 0.1 M NaOH with 0.1 M NO_2^{-} .

Fig. S12 NH₃ yields and FEs for TiO_{2-x} NBA/TP before and after 12 h electrolysis in 0.1 M NaOH with 0.1 M NO₂⁻ at -0.7 V.

Fig. S13 (a) SEM and (b)TEM images for $\rm TiO_{2-x}$ NBA after 12 h electrolysis.

Fig. S14 XRD patterns for TiO_{2-x} NBA/TP.

Fig. S15 Top views of $TiO_2(101)$ slab model with V_O .

Fig. S16 DOS for $TiO_2(101)$ slab model without and with V_0 .

Fig. S17 DOS for Ti_{5c}^{3+} and Ti_{4c}^{3+} atoms induced by $O_{2c} V_0$, respectively.

Fig. S18 Calculated free energies for NO_2^- adsorption on $TiO_2(101)$ slab model without and with V_0 and corresponding atomic configurations.

Fig. S19 Top views of NO_2^- adsorption on TiO₂ (101) surface with V_O .

Fig. S20 Top views of NO_2^- adsorption on pristine $TiO_2(101)$ surface.

Fig. S21 (a) Free energy diagram of different intermediates generated during the NO₂RR on TiO_{2-x} (101) along with the optimal pathway and (b) corresponding atomic configurations.

Table S1 Comparison of the catalytic performances of TiO_{2-x} NBA/TP with other reported NO2RRelectrocatalysts under ambient conditions.

Catalyst	Electrolyte	Performance	Ref.
TiO _{2-x} NBA/TP	0.1 M NaOH (NaNO ₂)	NH ₃ yield rate: 7898 μg h ⁻¹ cm ⁻² , FE _{NH3} : 92.7%	This work
MnO ₂ nanoarrays	0.1 M Na ₂ SO ₄ (NaNO ₂)	NH ₃ yield rate: 3.09×10^{-11} mol s ⁻¹ cm ⁻² , FE _{NH3} : 6%	10
Cobalt-tripeptide	1.0 M MOPS	NH ₃ yield rate: 3.01×10^{-10} mol s ⁻¹ cm ⁻² ,	11
complex	(1.0 M NaNO ₂)	FE_{NH3} : 90 ± 3%	11
Poly-NiTRP complex	0.1 M NaClO ₄ (NaNO ₂)	NH ₃ yield rate: 1.1 mM	12
Cu phthalocyanine complexes	0.1 M KOH (NaNO ₂)	FE _{NH3} : 78%	13
[Co(DIM)Br ₂] ⁺ (Carbon rod working electrode)	0.1 M solution of NaNO ₂	FE _{NH3} : 88%	14
Cu ₈₀ Ni ₂₀	1.0 M NaOH (20 mM NaNO ₂)	FE _{NH3} : 87.6%	15
Cu ₃ P nanowire array	0.1 M PBS (0.1M NaNO ₂)	NH ₃ yield rate: $1626.6 \pm 36.1 \ \mu g \ h^{-1} \ cm^{-2}$, FE _{NH3} : $91.2 \pm 2.5\%$	16
CoP nanoarray	0.1 M PBS (500 ppm NaNO ₂)	NH ₃ yield rate: 2260.7 ± 51.5 µg h ⁻¹ cm ⁻² , FE _{NH3} : 90 ± 2.3%	17
Ni ₂ P nanosheet array	0.1 M PBS (200 ppm NaNO ₂)	NH ₃ yield rate: $2692.2 \pm 92.1 \ \mu g \ h^{-1} \ cm^{-2}$, FE _{NH3} : $90.2 \pm 3\%$	18
Oxo-MoS _x	0.1 M NaNO ₂ in 0.2 M citric acid (pH = 5)	FE _{NH3} : 13.5%	19

Chemical reaction equation	Standard electrode potential	
$2 \text{ NO}_2^- + 8 \text{ H}^+ + 6 \text{ e}^- \longleftrightarrow \text{ N}_2(\text{g}) + 4 \text{ H}_2\text{O}$	$E^0 = 1.520 \text{ V} (\text{vs. NHE})$	
$2 \operatorname{NO}_2^- + 2 \operatorname{H}^+ + e^- \longrightarrow \operatorname{NO}(g) + \operatorname{H}_2\operatorname{O}$	$E^0 = 1.202 \text{ V} (\text{vs. NHE})$	
$2 \text{ NO}_2^- + 6 \text{ H}^+ + 4 \text{ e}^- \longleftarrow \text{N}_2\text{O}(g) + 3 \text{ H}_2\text{O}$	$E^0 = 1.396 \text{ V} (\text{vs. NHE})$	
$2 \operatorname{NO}_2^- + 6 \operatorname{H}^+ + 4 \operatorname{e}^- \longleftarrow \operatorname{NH}_3 \operatorname{OH}^+ + \operatorname{H}_2 \operatorname{O}$	$E^0 = 0.673 \text{ V} (\text{vs. NHE})$	
$2 \operatorname{NO}_2^- + 8 \operatorname{H}^+ + 6 \operatorname{e}^- \longleftarrow \operatorname{NH}_4^+ + 2 \operatorname{H}_2 \operatorname{O}$	$E^0 = 0.897 \text{ V} (\text{vs. NHE})$	
$2 \operatorname{NO}_2^- \longleftrightarrow \operatorname{NO}_2 + e^-$	$E^0 = 0.780 \text{ V} (\text{vs. NHE})$	

 Table S2 Standard electrode potentials for nitrite redox reactions.

References

- 1 D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, *Nat. Mater.*, 2013, **12**, 836–841.
- 2 G. W. Watt and J. D. Chrisp, *Anal. Chem.*, 1952, **24**, 2006–2008.
- 3 G. Kresse and J. Hafner, *Phys. Rev. B*, 1994, **49**, 14251–14269.
- 4 G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758–1775.
- 5 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- 6 E. Finazzi, C. D. Valentin, G. Pacchioni and A. Selloni, J. Chem. Phys., 2008, 129, 154113.
- 7 M. M. Islam, M. Calatayud and G. Pacchioni, J. Phys. Chem. C, 2011, 115, 6809–6814.
- 8 H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188–5192.
- 9 V. Wang, N. Xu, J. Liu, G. Tang and W. Geng, *Comput. Phys. Commun.*, 2021, 267, 108033.
- 10 R. Wang, Z. Wang, X. Xiang, R. Zhang, X. Shi and X. Sun, Chem. Commun., 2018, 54, 10340–10342.
- Y. Guo, J. R. Stroka, B. Kandemir, C. E. Dickerson and K. L. Bren, *J. Am. Chem. Soc.*, 2018, 140, 16888–16892.
- 12 P. Dreyse, M. Isaacs, K. Calfumán, C. Cáceres, A. Aliaga, M. J. Aguirre and D. Villagra, *Electrochim. Acta*, 2011, 56, 5230–5237.
- 13 N. Chebotareva and T. Nyokong, J. Appl. Electrochem., 1997, 27, 975–981.
- S. Xu, H. Y. Kwon, D. C. Ashley, C. H. Chen, E. Jakubikova and J. M. Smith, *Inorg. Chem.*, 2019, 58, 9443–9451.
- L. Mattarozzi, S. Cattarin, N. Comisso, P. Guerriero, M. Musiani, L. V. Gómez and E. Verlato, *Electrochim. Acta*, 2013, 89, 488–496.
- J. Liang, B. Deng, Q. Liu, G. Wen, Q. Liu, T. Li, Y. Luo, A. A. Alshehri, K. A. Alzahrani, D. Ma and X. Sun, *Green Chem.*, 2021, 23, 5487–5493.
- 17 G. Wen, J. Liang, Q. Liu, T. Li, X. An, F. Zhang, A. A. Alshehri, K. A. Alzahrani, Y. Luo, Q. Kong and X. Sun, *Nano Res.*, 2022, 15, 972–977.
- G. Wen, J. Liang, L. Zhang, T. Li, Q. Liu, X. An, X. Shi, Y. Liu, S. Gao, A. M. Asiri, Y. Luo,
 Q. Kong and X. Sun, J. Colloid Interface Sci., 2022, 606, 1055–1063.
- D. He, Y. Li, H. Ooka, Y. K. Go, F. Jin, S. H. Kim and R. Nakamura, *J. Am. Chem. Soc.*, 2018, 140, 2012–2015.