Table Of Contents

General Methods3
Synthetic Procedures. 3
Synthesis of ZnTMP_{2} 3
Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}(\mathrm{TMP})\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{6}\right\}^{+}\right](\mathbf{1})$ 4
Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{NAr})_{2}\right) \mathrm{Zn}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{4}\right\}^{+}\right](\mathbf{2})$ 4
Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}(\mathrm{TMP})\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{6}\right\}^{+}\right]$ 5
Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}{ }^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{6}\right\}^{+}\right](\mathbf{3 a})$: 5
Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}{ }^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right)\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{5}\right\}^{+}\right]$: 6
Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Cl}_{3}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{6}\right\}^{+}\right](\mathbf{3 b})$: 6
Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}{ }^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{6}\right\}^{+}\right](\mathbf{3 c})$: 7
Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{NAr} *)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{FNO}_{2}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{6}\right\}^{+}\right](\mathbf{3 d})$: 7
Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{2} \mathrm{NO}_{2}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{3}\right\}^{+}\right](\mathbf{3 e})$: 8
Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}{ }^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{\mathrm{x}}\right\}^{+}\right](\mathbf{3 f})$: 8
Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{6}\right\}^{+}\right](\mathbf{3 h})$ 9
Synthesis of $\left[(\mathrm{THF})_{6} \mathrm{~K}_{2} \mathrm{Zn}_{2}\left\{\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{NAr})_{2}\right\}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{4}\right)\right](\mathbf{3 j})$: 10
Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}^{*}\right)\left(\mathrm{NAr}^{*}\right) \mathrm{KZn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]_{\infty}(4)\right.$: 10
Studies on C-C bond forming reactions using 3a 11
General Experimental Procedure for the ${ }^{1} \mathrm{H}$ NMR Monitoring of the $\mathrm{Zn}-\mathrm{H}$ Exchange Reactions 12
NMR monitoring of the reaction of $\mathbf{1}$ with $1,3,5$ trifluorbenzene. 12
Reaction of $\mathbf{1}$ with 1,3,5 trifluorobenzene (2a) in presence of [2.2.2]cryptand 14
Reaction of [(PMDETA)KZn(TMP)Et ${ }_{2}$] with 2,4-difluoronitrobenzene 14
Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{FN}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{\mathrm{x}}\right\}^{+}\right](\mathbf{3 g})$ 14
Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{HF}_{4}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{\mathrm{x}}\right\}^{+}\right](\mathbf{3 i})$ 17
Reaction of $\mathbf{1}$ with variable amounts of pentafluorobenzene 19
Reaction of $\mathbf{1}$ with variable amount of 1,2,4,5-tetrafluorobenzene 23
X-ray Crystallography 28
Crystal Structure of $\mathbf{1}$ 33
Crystal Structure of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{NAr})_{2} \mathrm{Zn}(\mathrm{TMP})\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{6}\right\}^{+}\right]$ 34
Crystal Structure of 3a 34
Crystal Structure of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right)\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{5}\right\}^{+}\right]$ 35
Crystal Structure of $\mathbf{3 b}$ 35
Crystal Structure of $\mathbf{3 c}$ 36
Crystal Structure of 3d 36
Crystal Structure of $\mathbf{3 e}$ 37
Crystal Structure of $\mathbf{3 h}$ 37
Crystal Structure of $\mathbf{3} \mathbf{j}$ 38
Crystal Structure of 4 38
NMR spectra of the reported compounds 40
References 59

General Methods

All the reactions and manipulation were performed under protective Argon atmosphere; using the standard Schlenk technique or Glovebox MBraun equipped with a gas purification and recirculation unit. Hexane was dried over alumina column of Solvent Purification System (a MBraun MBSPS 5) and stored over activated $4 \AA$ molecular sieves collection and under argon atmosphere Tetrahydrofuran were dried over sodium and benzophenone ketyl and purified by distillation under argon atmosphere, after the collection it was stored over activated $4 \AA$ molecular sieves and argon atmosphere. $\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{NHAr} *)_{2}\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}^{*}\right)\left(\mathrm{NAr}^{*}\right) \mathrm{K}\right]_{\infty}\right.$ were prepared as reported in literature. ${ }^{[1,2]}$

NMR spectra were performed in J. Young's NMR tube, prior oven dried and flushed with argon. NMR spectra were recordered using a Bruker AV 400 spectrometer operating at 400.13 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}, 100.62 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ or a Bruker AV 400 spectrometer operating at 300 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}, 75 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were calibrated against the appropriate solvent signal. All the deuterated solvents for NMR were dried and distilled over $\mathrm{NaK}_{2.8}$ and stored over activated $4 \AA$ molecular sieves and argon atmosphere.

Synthetic Procedures

Synthesis of ZnTMP_{2}

2.72 mL of 2,2,6,6-tetramethylpiperidine (16 mmol) were solubilized in 10 mL of THF and then 10 mL of ${ }^{n} \mathrm{BuLi}$ solution (1.6 M in hexane) were added drop by drop affording a yellow solution. 1.09 g of ZnCl_{2} (8 mmol) were added, instantaneously a white precipitate was formed. The mixture was allowed to stir at room temperature for 1 h . All the volatiles were removed under reduced pressure affording a yellow waxy solid. 30 mL of Hexane were added affording a white suspension. The suspension was filtered through celite and the mother liquor was evaporated furnishing $\mathrm{Zn}(\mathrm{TMP})_{2}$ as white solid ($2700 \mathrm{mg} 98 \%$). The solid can be further purified via sublimation as reported in the literature. ${ }^{[3]}$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300.1 \mathrm{MHz}, \mathrm{D}_{8}\right.$-THF, 298 K) $\left.\delta(\mathrm{ppm}): 1.68\left(\mathrm{~m}, 4 \mathrm{H}, \gamma-\mathrm{CH}_{2}\right), 1.32(\mathrm{~m}, 8 \mathrm{H}, \beta-\mathrm{CH})_{2}\right), 1.22(\mathrm{~s}, 24 \mathrm{H}, \alpha-$ CH_{3})
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR $\left(75.5 \mathrm{MHz}, \mathrm{D}_{8}\right.$-THF, 298 K$) \delta(\mathrm{ppm}): 53.3\left(\mathrm{C}_{\mathrm{q}}\right), 39.8\left(\beta-\mathrm{CH}_{2}\right), 36.8\left(\alpha-\mathrm{CH}_{3}\right) 19.7\left(\gamma-\mathrm{CH}_{2}\right)$

Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}(\mathrm{TMP})\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{6}\right\}^{+}\right](\mathbf{1})$

vacuum, the white residue was dissolved in 5 mL of hexane and 2 mL of THF, affording a pale-yellow solution. Storage in freezer $\left(-33^{\circ} \mathrm{C}\right)$ for two days furnished colourless crystal of 1 ($641.6 \mathrm{mg} 67 \%$).
${ }^{1} \mathbf{H}-N M R\left(D_{8}\right.$-THF; 298K; 400 MHz$) \delta(\mathrm{ppm}): 7.28[\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}], 6.93\left[\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}^{*}\right], 6.71[\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}], 6.45[\mathrm{t}$, $2 \mathrm{H}, \mathrm{Ar}^{*}$], 4.14 [sept., $\left.4 \mathrm{H}, \mathrm{CH}^{i} \mathrm{Pr}\right], 3.61\left[\mathrm{~m}, 10 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2} \mathrm{THF}\right], 1.77\left[\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{THF}\right], 1.55\left[\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{CH}_{2}\right.$ TMP], 1.17 [m, 4H, $\beta-\mathrm{CH}_{2}$ TMP], $0.97\left[\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right.$ TMP] ${ }^{1} \mathrm{H}$ NMR integration revealed that approximately four molecules of the solvating THF present in $\mathbf{1}$ were removed under vacuum when drying the crystals
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR (D_{8}-THF; 298K, 100 MHz) $\delta(\mathrm{ppm}): 152.6,148.2,145.7$ [$\mathrm{C}_{\text {quaternary }} \mathrm{Ar}^{*}$ and Ph$], 136.3,126.5$, $122.4,117.5\left[\mathrm{CH}, \mathrm{Ar}^{*}\right.$ and Ph$], 68.4\left[\mathrm{O}-\mathrm{CH}_{2}\right.$ of THF], $53.2\left[\mathrm{C}_{\text {quaternary }} \mathrm{TMP}\right], 42.0\left[\beta-\mathrm{CH}_{2} \mathrm{TMP}\right], 37.0\left[\mathrm{CH}_{3}\right.$ TMP], $28.2\left[\mathrm{CH}{ }^{i} \mathrm{Pr}\right], 26.5\left[\mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right], 20.8\left[\gamma-\mathrm{CH}_{2} \mathrm{TMP}\right]$

Elemental analysis: analytical calculated: $\mathrm{C}_{61} \mathrm{H}_{94} \mathrm{KN}_{3} \mathrm{O}_{4} \mathrm{SiZn} \mathrm{C} 68.73$, H 8.89, N 3.94. Found: C 68.51, H 8.72, N 3.93 .

Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2}\right) \mathrm{Zn}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{4}\right\}^{+}\right]$(2)

126 mg of $\mathrm{KCH}_{2} \mathrm{SiMe}_{3}(1 \mathrm{mmol}), 346 \mathrm{mg}$ of $\mathrm{ZnTMP}_{2}(1 \mathrm{mmol})$ and 10 mL of hexane were added to a flushed Schlenk tube. The white suspension was left stirring for 2 hours until it becomes a fine suspension to which 1 mmol of $\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}^{*}\right)_{2}(530 \mathrm{mg})$ and 1 mL of THF were added, the yellowish suspension was gently heated and allowed to stir overnight. Volatiles were removed under vacuum and to the white residue 7 mL of hexane and 0.7 mL of THF was added, affording a pale-yellow suspension. The mixture was heated under reflux and let slowly cool down at room temperature depositing a crop of colourless crystals of 2 after 24 h at room temperature. (550 mg , yield 76%). The synthesis of this compound can be achieved using a different procedure reported in literature before. ${ }^{[2]}$
${ }^{1} \mathbf{H}-N M R\left(\mathrm{D}_{8}\right.$-THF; 298K; 600 MHz$) \delta(\mathrm{ppm}): 7.27$ [m, 4H,Ph], 6.94 [m, 6H, Ph], 6.7 [d, 4H Ar*], 6.42 [t, $\left.2 \mathrm{H}, \mathrm{Ar}^{*}\right], 4.15$ [sept, $\left.4 \mathrm{H}, \mathrm{CH}{ }^{\mathrm{i}} \mathrm{Pr}\right], 0.8\left[\mathrm{~d}, 24 \mathrm{H}, \mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right],-0.14\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right],-0.9\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ $\left.\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right]$. ${ }^{1} \mathrm{H}$ NMR integration revealed that approximately three THF molecules in 2 were removed under vacuum when drying the crystals.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR (D_{8}-THF; 298K; 150 MHz) $\delta(\mathrm{ppm}): 153.3,148.2,144.8\left[\mathrm{C}_{\text {quaternary }} \mathrm{Ar}^{*}\right.$ and Ph$], 136.1,126.66$, $126.5[\mathrm{CH} \mathrm{Ph}], 122.2,117.0\left[\mathrm{CH}\right.$ of $\left.\mathrm{Ar}^{*}\right], 28.3\left[\mathrm{CH}{ }^{i} \mathrm{Pr}\right], 25.0\left[\mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right], 3.4\left[\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right],-6.1\left[\mathrm{CH}_{2}\right.$ $\mathrm{CH}_{2} \mathrm{SiMe}_{3}$].

Elemental analysis: analytical calculated: $\mathrm{C}_{44} \mathrm{H}_{63} \mathrm{KN}_{2} \mathrm{OSi}_{2} \mathrm{Zn}$ C $66.34, \mathrm{H} 7.97$, N 3.52 . Found: C $66.27, \mathrm{H}$ 7.42, N 3.64.

Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}(\mathrm{TMP})\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{6}\right\}^{+}\right]$

solution was allowed to stir at reflux overnight. Volatiles were removed under vacuum, the white residue was dissolved in 2.5 mL of hexane and 1 mL of THF, affording a pale-yellow solution. Storage in freezer $\left(-33^{\circ} \mathrm{C}\right)$ for two days furnished colourless crystal of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}(\mathrm{TMP})\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{6}\right\}^{+}\right](541.5 \mathrm{mg} 65 \%)$.
${ }^{1} \mathbf{H}-N M R\left(\mathrm{D}_{8}\right.$-THF; 298K; 400 MHz$) \delta(\mathrm{ppm}): 7.29[\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}], 6.93\left[\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}{ }^{*}\right], 6.72[\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}], 6.45[\mathrm{t}$, $\left.2 \mathrm{H}, \mathrm{Ar}^{*}\right], 4.14$ [sept., $\left.4 \mathrm{H}, \mathrm{CH}^{i} \mathrm{Pr}\right], 3.62\left[\mathrm{~m}, 5 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2} \mathrm{THF}\right], 1.78$ [m,5H, $\left.\mathrm{CH}_{2} \mathrm{THF}\right], 1.55\left[\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{CH}_{2}\right.$ TMP], 1.17 [m, 4H, $\beta-\mathrm{CH}_{2}$ TMP], $0.97\left[\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{TMP}\right]^{1} \mathrm{H}$ NMR integration revealed that approximately five THF molecules in this compound were removed under vacuum when drying the crystals.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR (D_{8}-THF; $298 \mathrm{~K}, 100 \mathrm{MHz}$) $\delta(\mathrm{ppm}): 152.5,148.2,145.7$ [$\mathrm{C}_{\text {quaternary }} \mathrm{Ar}^{*}$ and Ph$], 136.3,126.6$, $126.4,122.4,117.4\left[\mathrm{CH}, \mathrm{Ar}^{*}\right.$ and Ph$], 68.4\left[\mathrm{O}-\mathrm{CH}_{2}\right.$ of THF], 53.2 [$\left.\mathrm{C}_{\text {quaternary }} \mathrm{TMP}\right], 42.0\left[\beta-\mathrm{CH}_{2}\right.$ of TMP], 37.0 $\left[\mathrm{CH}_{3} \mathrm{TMP}\right], 28.2\left[\mathrm{CH}^{i} \mathrm{Pr}\right], 26.5\left[\mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right], 20.8\left[\gamma-\mathrm{CH}_{2} \mathrm{TMP}\right]$

Elemental analysis: analytical calculated: $\mathrm{C}_{61} \mathrm{H}_{90} \mathrm{NaN}_{3} \mathrm{O}_{4} \mathrm{SiZn} \mathrm{C} 70.05, \mathrm{H} 8.67, \mathrm{~N} 4.02$. Found: C 69.83, H 8.94, N 4.09

Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{6}\right\}^{+}\right](\mathbf{3 a})$:
 388 mg of 1 (0.5 mmol) was solubilized in 5 mL of THF, 0.05 mL of $1,3,5$ trifluorobenzene $(0.5 \mathrm{mmol})$ were added. The resulting yellow solution was allowed to stir at room temperature for 48 h . All the volatiles were removed under reduced pressure. The white solid was solubilized with 2.5 mL of hexane and 1.5 mL of THF. Overnight storage in freezer $\left(-33^{\circ} \mathrm{C}\right)$ furnished colourless crystal of 3a. ($676.6 \mathrm{mg}, 85 \%$). The yield determined in NMR scale reaction using hexamethylbenzene as internal standard in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum was 90%.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{D}_{8}\right.$-THF; 298K; 400 MHz$) \delta(\mathrm{ppm}): 7.33[\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}], 6.97[\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}], 6.72\left[\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}{ }^{*}\right], 6.46[\mathrm{t}$, $\left.2 \mathrm{H}, \mathrm{Ar}^{*}\right], 6.33$ [m, 2H, $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}$] 4.19 [sept., $\left.4 \mathrm{H}, \mathrm{CH}^{i} \mathrm{Pr}\right], 3.61$ [m, 6H, O-CH2 THF], 1.77 [$\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}$ THF], 0.82 [d, $\left.24 \mathrm{H}, \mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right]{ }^{1} \mathrm{H}$ NMR integration revealed that approximately five THF molecules in 3a were removed under vacuum when drying the crystals.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR (D_{8}-THF; 298K, 100 MHz) $\delta(\mathrm{ppm}): 170.9,168.8$ [m, C - $\mathrm{F} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}$], 165.2 [$\mathrm{Zn}-\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}$], $152.5,147.2,145.0$ [$\mathrm{C}_{\text {quaternary }} \mathrm{Ar}^{*}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}$ and Ph$], 136.1,127.0,126.6,122.2,117.7$ [$\mathrm{CH}, \mathrm{Ar}^{*}$ and Ph$], 98.36$ $\left[\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right] 28.5\left[\mathrm{CH}{ }^{i} \mathrm{Pr}\right], 24.7\left[\mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right]$
${ }^{19}$ F-NMR (D_{8}-THF; 298K; 400 MHz$) \delta(\mathrm{ppm}):-83.45[\mathrm{~m}, 2 \mathrm{~F}],-116.0[\mathrm{~m}, 1 \mathrm{~F}]$

Elemental analysis: analytical calculated: $\mathrm{C}_{104} \mathrm{H}_{127} \mathrm{~F}_{6} \mathrm{~K}_{2} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Zn}_{2} \mathrm{C} 66.01, \mathrm{H} 6.77$, N 2.96 . Found: C 65.78, H 7.11, N 2.99

Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right)\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{5}\right\}^{+}\right]$:

523 mg of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}(\mathrm{TMP})\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{6}\right\}^{+}\right](0.94 \mathrm{mmol})$ was
 solubilized in 5 mL of THF, 0.097 mL of $1,3,5$ trifluorobenzene (0.94
mmol) were added. The resulting yellow solution was allowed to stir at reflux for 3 h . All the volatiles were removed under reduced pressure. the white solid was solubilized with 5 mL of hexane and 3 mL of THF, that was gently heated until a yellow solution was obtained. Colourless crystals of
 ${ }^{1} \mathrm{H}$-NMR analysis of the filtrate of the reaction showed that this complex is the only organometallic species present in
${ }^{1}{ }^{1} H-N M R\left(D_{8}-T H F ; ~ 298 K ; ~ 400 ~ M H z\right) ~ \delta(p p m): ~ 7.33 ~[m, ~ 4 H, ~ P h], ~ 6.97 ~[m, ~ 6 H, ~ P h], ~ 6.71 ~[d, ~ 4 H, ~ A r *], ~ 6.45 ~[t, ~$ $\left.2 \mathrm{H}, \mathrm{Ar}{ }^{*} \mathrm{~J}=7.5 \mathrm{~Hz}\right], 6.32\left[\mathrm{~m}, 2 \mathrm{H}_{\mathrm{C}} \mathrm{C}_{2} \mathrm{~F}_{3}\right] 4.19$ [sept., $\left.4 \mathrm{H}, \mathrm{CH} \operatorname{Pr}\right], 3.62\left[\mathrm{~m}, 10 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2} \mathrm{THF}\right], 1.77$ [m, 10H, $\left.\mathrm{CH}_{2} \mathrm{THF}\right], 0.82\left[\mathrm{~d}, 24 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Pr}\right]^{1} \mathrm{H}$ NMR integration revealed that approximately four THF molecules in this compound were removed under vacuum when drying the crystals.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR (D_{8}-THF; $298 \mathrm{~K}, 100 \mathrm{MHz}$) $\delta(\mathrm{ppm}): 152.5,147.2,145.0\left[\mathrm{C}_{\text {quaternary }} \mathrm{Ar}^{*}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right.$ and Ph$], 136.1$, 127.0, 126.6, 122.2, 117.7 [CH, Ar* and Ph], $98.36\left[\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right], 68.4\left[\mathrm{O}-\mathrm{CH}_{2} \mathrm{THF}\right], 28.5$ [CH $\left.{ }^{~} \mathrm{Pr}\right], 26.5$ [CH_{2} THF] $24.7\left[\mathrm{CH}_{3}{ }^{\mathrm{i}} \mathrm{Pr}\right]$. Relevant signals for the $\mathrm{Zn}-\mathrm{C}$ and for the C -F of the $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}$ could not detected.
${ }^{19} \mathbf{F}\{\mathbf{1} \mathbf{H}\}-\mathbf{N M R}\left(\mathrm{D}_{8}-\mathrm{THF} ; 298 \mathrm{~K} ; 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}):-83.4[\mathrm{~d}, 2 \mathrm{~F}],-116.1[\mathrm{t}, 1 \mathrm{~F}]$

Elemental analysis: analytical calculated: $\mathrm{C}_{58} \mathrm{H}_{74} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{SiZn}$ C 67.20 , H 7.20, N 2.70. Found: C $67.36, \mathrm{H}$ 7.65, N 2.79

Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Cl}_{3}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{6}\right\}^{+}\right](\mathbf{3 b})$:

388 mg of $1(0.5 \mathrm{mmol})$ was solubilized in 5 mL of THF, 90 mg of 1,3,5 trichlorobenzene (0.5 mmol) were added. The resulting yellow solution was allowed to stir at reflux for 21 h . All the volatiles were removed under reduced pressure. The white solid was solubilized with 3 mL of hexane and 1.5 mL of THF. Overnight storage in freezer $\left(-33^{\circ} \mathrm{C}\right)$ furnished colourless crystals of 3b ($265 \mathrm{mg}, 65 \%$). The yield determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using hexamethylbenzene as an internal standard was 96%.
${ }^{1} \mathbf{H}-N M R\left(\mathrm{D}_{8}\right.$-THF; 298K; 400 MHz$) \delta(\mathrm{ppm}): 7.36$ [m, 4H, Ph], 6.97 [m, 8H, Ph and $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Cl}_{3}$], 6.72 [d, 4H, Ar*], 6.46 [t, 2H, Ar*], 4.19 [sept., $\left.4 \mathrm{H}, \mathrm{CH}^{i} \mathrm{Pr}\right], 3.61$ [m, 9H, O-CH2 THF], 1.77 [m, 9H, CH ${ }_{2}$ THF], 0.79 [d, $\left.24 \mathrm{H}, \mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right]{ }^{1} \mathrm{H}$ NMR integration revealed that approximately four THF molecules in $\mathbf{3 b}$ were removed under vacuum when drying the crystals.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR (D_{8}-THF; 298K, 100 MHz) $\delta(\mathrm{ppm}): 152.5,147.3,145.8,145.1\left[\mathrm{C}_{\text {quaternary }} \mathrm{Ar}^{*}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Cl}_{3}\right.$ and Ph$]$, 136.3, 126.9, 126.6, 125.5, 122.3, $117.7\left[\mathrm{CH}, \mathrm{Ar}^{*}, \mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Cl}_{3}\right], 68.4\left[\mathrm{O}-\mathrm{CH}_{2} \mathrm{THF}\right], 28.4$ [CH $\left.{ }^{i} \mathrm{Pr}\right], 26.5$ [CH_{2} THF], $25.0\left[\mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right]$. Relevant signals for the $\mathrm{Zn}-\mathrm{C}$ and for the $C-\mathrm{Cl}$ of the $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Cl}_{3}$ group could not be detected.

Elemental analysis: analytical calculated: $\mathrm{C}_{134} \mathrm{H}_{152} \mathrm{Cl}_{9} \mathrm{~K}_{3} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Si}_{3} \mathrm{Zn}_{3} \mathrm{C} 62.01$, H 5.90, N 3.24. Found: C 61.81, H 6.04, N 3.25

388 mg of $\mathbf{1}(0.5 \mathrm{mmol})$ was solubilized in 5 mL of THF, 0.1 mL of 1,3 difluorobenzene $(0.5 \mathrm{mmol})$ were added. The resulting yellow solution was allowed to stir at reflux for 5 h . All the volatiles were removed under reduced pressure. The white solid was solubilized with 2.5 mL of Hexane and 1.5 mL of THF. Overnight storage in freezer $\left(-33^{\circ} \mathrm{C}\right)$ furnished colourless crystals of $3 \mathbf{c}$. ($448 \mathrm{mg}, 54 \%$). The yield determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using hexamethylbenzene as an internal standard was 90%.
${ }^{1} \mathbf{H}-N M R\left(D_{8}-\right.$ THF; 298K; 400 MHz) $\delta(\mathrm{ppm}): 7.35$ [m, 4H, Ph], $6.98[\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}], 6.92\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right] 6.71$ $\left[\mathrm{d}, 4 \mathrm{H}, \mathrm{Ar}^{*}\right], 6.5\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right], 6.45\left[\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}^{*}\right], 4.21$ [sept., $\left.4 \mathrm{H}, \mathrm{CH}^{i} \mathrm{Pr}\right], 0.83\left[\mathrm{~d}, 24 \mathrm{H}, \mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right] .{ }^{1} \mathrm{H}$ NMR integration revealed that approximately five THF molecules in $\mathbf{3 c}$ were removed under vacuum when drying the crystals.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR (D_{8}-THF; 298K, 100 MHz) $\delta(\mathrm{ppm})$: 152.7, 147.4, 145.1 [$\mathrm{C}_{\text {quaternary }} \mathrm{Ar}^{*}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}$ and Ph$], 136.2$, 126.9, 126.6, 122.2, 117.6 [CH, Ar* and Ph], 109.9, $109.5\left[\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\right] 28.5\left[\mathrm{CH}{ }^{i} \mathrm{Pr}\right], 24.7\left[\mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right]$. Relevant signals for the $\mathrm{Zn}-C$ and for the C-F of the $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}$ could not detected
${ }^{19} \mathbf{F}\{\mathbf{1} \mathbf{H}\}-N M R\left(D_{8}-\mathrm{THF} ; 298 \mathrm{~K} ; 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}):-85.75[\mathrm{~s}, 2 \mathrm{~F}]$
Elemental analysis: analytical calculated: $\mathrm{C}_{46} \mathrm{H}_{54} \mathrm{~F}_{2} \mathrm{KN}_{2} \mathrm{OSiZn} \mathrm{C} 67.25$, H 6.63, N 3.41. Found: C 67.22, H 6.31, N 3.73

Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{FNO}_{2}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{6}\right\}^{+}\right](\mathbf{3 d})$:

398 mg of $\mathbf{1}(0.5 \mathrm{mmol})$ was solubilized in 5 mL of THF. 0.05 mL of 3fluoronitrobenzene $(0.5 \mathrm{mmol})$ were added. The resulting deep red solution was allowed to stir at room temperature for 16 h . All the volatiles were removed under reduced pressure. The resulting red waxing solid was washed with 10 mL of hexane. The red solid was solubilized in 1 mL of THF and 3 mL of Hexane. Overnight storage in freezer $\left(-33^{\circ} \mathrm{C}\right)$ furnishing red crystals of 3d ($205 \mathrm{mg} 46 \%$). The yield determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using hexamethylbenzene as an internal standard was 69%.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{D}_{8}\right.$-THF; 298K; 300 MHz) $\delta(\mathrm{ppm}): 7.94\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{FNO}_{2}\right], 7.48[\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}], 7.16[\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{FNO}_{2}\right] 6.97[\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}], 6.67$ [d, 4H, Ar*], $6.40\left[\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}^{*}\right], 4.36$ [sept., 4H, CH $\left.{ }^{i} \mathrm{Pr}\right], 3.62$ [m, 6 H, $\mathrm{O}_{\left.-\mathrm{CH}_{2} \mathrm{THF}\right], 1.77\left[\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{THF}\right], 0.79\left[\mathrm{~d}, 24 \mathrm{H}, \mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right]{ }^{1} \mathrm{H} \text { NMR integration revealed that approximately }}$ five THF molecules in $\mathbf{3 d}$ were removed under vacuum when drying the crystals.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR (D_{8}-THF; $298 \mathrm{~K}, 75 \mathrm{MHz}$) $\delta(\mathrm{ppm}): 147.6,144.9\left[\mathrm{C}_{\text {quaternary }} \mathrm{Ar}^{*}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{FNO}_{2}\right.$ and Ph$], 136.3$, 129.4, 126.3, 126.1 121.9, 117.1 [CH, Ar*, $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{FNO}_{2}$ and Ph$], 68.0\left[\mathrm{O}-\mathrm{CH}_{2} \mathrm{THF}\right], 28.0\left[\mathrm{CH}{ }^{i} \mathrm{Pr}\right], 26.2\left[\mathrm{CH}_{2}\right.$ THF], $24.6\left[\mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right]$. Relevant signals for the $\mathrm{Zn}-\mathrm{C}$ and for the C-F of the $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{FNO}_{2}$ could not detected
${ }^{19}$ F-NMR (D ${ }_{8}$-THF; 298K; 300 MHz) $\delta(\mathrm{ppm}):-82.26[\mathrm{~s}, 1 \mathrm{~F}]$

Due to the high air and moisture sensitivity of $\mathbf{3 c}$ it was not possible to obtain satisfactory elemental analysis

$$
\text { Synthesis of }\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{2} \mathrm{NO}_{2}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{3}\right\}^{+}\right](\mathbf{3 e}) \text { : }
$$

778 mg of $\mathbf{1}$ (1 mmol) was solubilized in 3.6 mL of THF in a Schlenk bottle
 wrapped in tin foil to prevent the contact with light. 0.11 mL of 2,4 difluoronitrobenzene (1 mmol) were added. The resulting deep red solution was allowed to stir at room temperature for 30 minutes. 6 mL of hexane were slowly added to the solution and then the mixture was stored overnight in freezer $\left(-33^{\circ} \mathrm{C}\right)$ furnishing yellow crystals of $\mathbf{3 e}$ ($520 \mathrm{mg} 55 \%$). The yield determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using hexamethylbenzene as an internal standard was 90%.
${ }^{1} \mathbf{H}-N M R\left(\mathrm{D}_{8}\right.$-THF; 298K; 300 MHz) $\delta(\mathrm{ppm}): 7.79\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{2} \mathrm{NO}_{2}\right], 7.35[\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}], 6.99[\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{Ph}], 6.74\left[\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}^{*}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{2} \mathrm{NO}_{2}\right], 6.48\left[\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}^{*}\right], 4.19$ [sept., $\left.4 \mathrm{H}, \mathrm{CH}{ }^{i} \mathrm{Pr}\right], 3.62$ [m, $\left.9 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2} \mathrm{THF}\right]$, 1.77 [m, 9H, CH $\left.\mathrm{CH}_{2} \mathrm{THF}\right], 0.82$ [d, $\left.24 \mathrm{H}, \mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right] .{ }^{1} \mathrm{H}$ NMR integration revealed that approximately five THF molecules in 3d were removed under vacuum when drying the crystals.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR (D_{8}-THF; 298K, 75 MHz) $\delta(\mathrm{ppm}): 152.7,147.4,145.1$ [$\mathrm{C}_{\text {quaternary }} \mathrm{Ar}^{*}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{2} \mathrm{NO}_{2}$ and Ph$]$, 136.2, 126.9, 126.6, 122.2, 117.6 [CH, Ar* and Ph], 109.9, $109.5\left[\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{2} \mathrm{NO}_{2}\right] 28.5\left[\mathrm{CH}{ }^{i} \mathrm{Pr}\right], 24.7\left[\mathrm{CH}_{3}\right.$ $\left.{ }^{i} \mathrm{Pr}\right]$. Relevant signals for the $\mathrm{Zn}-\mathrm{C}$ and for other quaternary C of the $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{2} \mathrm{NO}_{2}$ fragment could not detected
${ }^{19}$ F-NMR (D_{8}-THF; 298K; 300 MHz$) \delta(\mathrm{ppm}):-85.75$ [s, 2F]

Elemental analysis: analytical calculated: $\mathrm{C}_{50} \mathrm{H}_{62} \mathrm{~F}_{2} \mathrm{KN}_{3} \mathrm{O}_{4} \mathrm{SiZn} \mathrm{C} 63.61, \mathrm{H} 6.65, \mathrm{~N} 4.47$. Found: C 63.26, H 6.91, N 4.12

Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{\mathrm{x}}\right\}^{+}\right](\mathbf{3 f})$:

338 mg of $1(0.44 \mathrm{mmol})$ was solubilized in 5 mL of THF, 99.5 mg of $2-$ (2,4-difluorophenil)pyridine (0.5 mmol) were added. The resulting yellow solution was allowed to stir at reflux for 3 h . All the volatiles were removed under reduced pressure. 10 mL of hexane was added affording a white suspension. The suspension was filtered through celite and a white solid of 3f was isolated ($195 \mathrm{mg}, 54 \%$). The yield determined in NMR scale reaction using hexamethylbenzene as internal standard in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum was 95\%.
${ }^{1} \mathbf{H}-N M R\left(\mathrm{D}_{8}\right.$-THF; 298K; 400 MHz$) \delta(\mathrm{ppm}): 8.51\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}\right], 7.78\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}\right], 7.74$ [m, $\left.1 \mathrm{H}, \mathrm{CH} \mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}\right], 7.64\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}\right], 7.36[\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}], 7.08$ [dd, $\left.1 \mathrm{H}, \mathrm{CH} \mathrm{C} \mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}\right], 6.99$ [m, $6 \mathrm{H}, \mathrm{Ph}], 6.72$ [d, $\left.4 \mathrm{H}, \mathrm{Ar}^{*}\right], 6.65\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}\right], 6.46\left[\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}^{*}\right], 4.24$ [sept., $\left.4 \mathrm{H}, \mathrm{CH}{ }^{i} \mathrm{Pr}\right], 0.84$ [d, 24H,
$\left.\mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right] .{ }^{1} \mathrm{H}$ NMR integration revealed that approximately five THF molecules in $\mathbf{3 f}$ were removed under vacuum when drying the crystals.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR (D_{8}-THF; 298K, 75 MHz) $\delta(\mathrm{ppm}): 152.7$ [$\mathrm{C}_{\text {quaternary }} \mathrm{Ar}^{*}, \mathrm{Ph}, \mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}$], 150.1 [CH $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}$], 147.3, 145.1 [C $\mathrm{C}_{\text {quaternary }} \mathrm{Ar}^{*}$, $\mathrm{Ph}, \mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}$], 136.2, 131.6 [CH Ph and $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}$], 126.7 [$\mathrm{C}_{\text {quaternary }}$ Ar^{*}, Ph , pyr or $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}$], 126.6, 125.0, 122.3, $122.0117 .7,110.6$ [$\left.\mathrm{CH} \mathrm{Ar}{ }^{*}, ~ \mathrm{Ph}, \mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}\right], 28.5$ [CH $\left.{ }^{i} \mathrm{Pr}\right]$, $24.8\left[\mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right]$. Relevant signals for the $\mathrm{Zn}-C$ and for other quaternary C of the $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}_{2}$ fragment could not be detected
${ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\}-\mathbf{N M R}\left(\mathrm{D}_{8}\right.$-THF; 298K; 400 MHz$) \delta(\mathrm{ppm}):-85.32[\mathrm{~d}, 1 \mathrm{~F}],-87.31[\mathrm{~d}, 1 \mathrm{~F}]$

Due to the sensitivity of $\mathbf{3 f}$ it was not possible to obtain satisfactory elemental analysis
Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{6}\right\}^{+}\right](\mathbf{3 h})$

493 mg of 19 (0.46 mmol) were solubilized in 5 mL of THF. The solution was cooled down to $-40^{\circ} \mathrm{C}$. 0.05 mL of pentaflurobenzene (0.5 mmol) were added. The mixture was allowed to stir for 30 minutes at room temperature. All the volatiles were removed under reduced pressure. The resulting waxy solid was suspended in 10 mL of hexane and the suspension was filtered through celite. The remaining yellow-white solid was solubilized in 3 mL of hexane and 0.8 mL of THF. Overnight storage in the freezer $\left(-15^{\circ} \mathrm{C}\right)$
furnishing yellow crystals of $\mathbf{3 h}$. Any attempt in isolating the pure product was unsuccessful due to the cocrystallization of $\left[\mathrm{K}(\mathrm{THF})_{x} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{6}\right)_{3}\right]$ and $\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}^{*}\right)_{2}$. The yield determined in NMR scale reaction using hexamethylbenzene as internal standard in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum was 91%.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{D}_{8}\right.$-THF; 298K; 300 MHz$) \delta(\mathrm{ppm}): 7.33[\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}], 6.99[\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}], 6.73\left[\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}^{*}\right], 6.48[\mathrm{t}$, $\left.2 \mathrm{H}, \mathrm{Ar}^{*}\right], 4.16$ [sept., $\left.4 \mathrm{H}, \mathrm{CH}^{i} \mathrm{Pr}\right], 3.61\left[\mathrm{~m}, 6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2} \mathrm{THF}\right], 1.77\left[\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{THF}\right], 0.81\left[\mathrm{~d}, 24 \mathrm{H}, \mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right]$ ${ }^{1} \mathrm{H}$ NMR integration revealed that approximately five THF molecules in $\mathbf{3 h}$ were removed under vacuum when drying the crystals.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR (D_{8}-THF; 298K, 75 MHz) $\delta(\mathrm{ppm}): 151.7,146.3144 .7\left[\mathrm{C}_{\text {quaternary }} \mathrm{Ar}^{*}, \mathrm{C}_{6} \mathrm{~F}_{5}\right.$ and Ph$], 135.8$, $126.8,126.4[\mathrm{CH} \operatorname{Ph}] 122.0,117.8\left[\mathrm{CH} \mathrm{Ar}{ }^{*}\right], 68.0\left[\mathrm{O}-\mathrm{CH}_{2} \mathrm{THF}\right], 28.2\left[\mathrm{CH}^{i} \mathrm{Pr}\right], 26.2\left[\mathrm{CH}_{2} \mathrm{THF}\right], 24.3\left[\mathrm{CH}_{3}\right.$ $\left.{ }^{i} \mathrm{Pr}\right]$. Relevant signals of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ fragment could not be detected.
${ }^{19}$ F-NMR (D_{8}-THF; 298K; 300 MHz) $\delta(\mathrm{ppm}):-114.4[\mathrm{~m}, 2 \mathrm{~F}],-160.5[\mathrm{t}, 1 \mathrm{~F}],-164.4[\mathrm{~m}, 2 \mathrm{~F}]$

Compound $\mathbf{3 h}$ could not be isolated as a pure compound. Hence not satisfactory elemental analysis could be obtained.

Synthesis of $\left[(\mathrm{THF})_{6} \mathrm{~K}_{2} \mathrm{Zn}_{2}\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2}\right\}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{4}\right)\right](\mathbf{3 j})$:

397 mg of $\mathbf{1}(0.39 \mathrm{mmol})$ were solubilised in 5 mL of THF. The solution was cooled down to $-40^{\circ} \mathrm{C}$ and 0.02 mL of $1,2,4,5$ tetrafluorobenzne $(0.1 \mathrm{mmol})$ were added dropwise. The resulting solution was allowed
to stir at room temperature for 30 minutes. The solution was then left to stir at reflux for 16 h . The next day all the volatiles were removed under reduced pressure. The obtained white solid was washed with 6 mL of hexane and solubilized in 2 ml of THF. Layering 1.5 mL of hexane on the yellow solution furnished colourless crystals of $\mathbf{3 j}$ ($59 \mathrm{mg}, 11 \%$). \%). The yield determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using hexamethylbenzene as an internal standard was 84%.
${ }^{1} \mathbf{H}$-NMR (D_{8}-THF; 298K; 300 MHz$) \delta(\mathrm{ppm}): 7.29[\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ph}], 6.97[\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph}], 6.74\left[\mathrm{~d}, 8 \mathrm{H}, \mathrm{Ar}^{*}\right], 6.48[\mathrm{t}$, $\left.4 \mathrm{H}, \mathrm{Ar}^{*}\right], 4.13$ [sept., $\left.8 \mathrm{H}, \mathrm{CH}^{i} \mathrm{Pr}\right], 3.61$ [m, 10H, O-CH2 THF], 1.77 [m, 10H, CH2 THF], 0.78 [d, 48H, CH_{3} $\left.{ }^{i} \mathrm{Pr}\right]$.
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR (D_{8}-THF; 298K, 100 MHz) $\delta(\mathrm{ppm}): 152.5,146.4144 .9$ [$\mathrm{C}_{\text {quaternary }} \mathrm{Ar}^{*}, \mathrm{C}_{6} \mathrm{~F}_{4}$ and Ph], 135.7, $126.8,126.3$ [CH Ph] 122.0, 117.3 [$\left.\mathrm{CH}, \mathrm{Ar}^{*}\right], 68.0\left[\mathrm{O}-\mathrm{CH}_{2} \mathrm{THF}\right], 28.1\left[\mathrm{CH}{ }^{i} \mathrm{Pr}\right], 26.2\left[\mathrm{CH}_{2} \mathrm{THF}\right], 24.2\left[\mathrm{CH}_{3}\right.$ $\left.{ }^{i} \mathrm{Pr}\right]$. Relevant signals of the $\mathrm{C}_{6} \mathrm{~F}_{4}$ fragment could not be detected.
${ }^{19}$ F-NMR (D_{8}-THF; 298K; 300 MHz$) \delta(\mathrm{ppm}):-119.0[\mathrm{~s}, 4 \mathrm{~F}]$

Elemental analysis: analytical calculated: $\mathrm{C}_{106} \mathrm{H}_{137} \mathrm{~F}_{4} \mathrm{~K}_{2} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Zn}_{2} \mathrm{C} 65.03$, H 7.19, N 2.92. Found: C 65.17, H 7.41, N 3.03

Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}^{*}\right)\left(\mathrm{NAr}^{*}\right) \mathrm{KZn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]_{\infty}(4)\right.$:

398 mg of $1(0.5 \mathrm{mmol})$ were solubilized in 5 mL of THF. The solution was cooled down to $-40^{\circ} \mathrm{C} .0 .17 \mathrm{~mL}$ of pentaflurobenzene $(1.5 \mathrm{mmol})$ were added. The mixture was allowed to stir for 1 h at room temperature. All the volatiles were removed under reduced pressure. The resulting yellow solid was solubilized in 1 mL of flurobenzene and 1.2 mL of hexane. Overnight storage in fridge $\left(4^{\circ} \mathrm{C}\right)$ furnishing red crystals of 4 which was isolated with variable amounts of $\left(\left[\mathrm{K}(\mathrm{THF})_{\mathrm{x}} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{6}\right)_{3}\right]\right.$ and $\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}^{*}\right)_{2}$. Despite numerous attempts 4 could not be isolated as a pure compound which precluded the collection of satisfactory elemental analysis data or a meaningful ${ }^{13} \mathrm{C}$ NMR spectrum.
${ }^{1} \mathbf{H}-N M R\left(\mathrm{D}_{8}\right.$-THF; 298K; 300 MHz$) \delta(\mathrm{ppm}): 7.67[\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}], 7.05[\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}], 6.92\left[\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}{ }^{*}\right], 6.76[\mathrm{t}$, $\left.1 \mathrm{H}, \mathrm{Ar}^{*}\right], 6.72$ [d, 2H, Ar*], 6.59 [t, 1H, Ar*], 4.13 [sept., 2H, CH $\left.{ }^{i} \mathrm{Pr}\right], 3.61$ [m, 6H, O-CH2 THF], 2.55 [sept., $\left.2 \mathrm{H}, \mathrm{CH}^{i} \mathrm{Pr}\right], 1.77\left[\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{THF}\right], 0.88\left[\mathrm{~d}, 12 \mathrm{H}, \mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right], 0.55\left[\mathrm{~d}, 12 \mathrm{H}, \mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right]$ It should be noted that the resonance for the NH is overlapping with the residual signal of the solvent.
${ }^{19}$ F-NMR (D ${ }_{8}$-THF; 298K; 300 MHz$) \delta(\mathrm{ppm}):-115.5[\mathrm{~m}, 2 \mathrm{~F}],-163.5[\mathrm{t}, 1 \mathrm{~F}],-165.2[\mathrm{~m}, 2 \mathrm{~F}]$

Studies on C-C bond forming reactions using 3a

[^0]

384 mg of $\mathbf{3 a}(0.5 \mathrm{mmol}), 18.3 \mathrm{mg}$ of [1,1'-Bis(diphenylphosphino)ferrocene]dichloropalladium(II) $\left(\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right)(0.025 \mathrm{mmol}, 5 \%), 13 \mathrm{mg}$ of triphenylphosphine $(0.05 \mathrm{mmol}, 10 \%)$ and 82 mg of 4Bromobenzonitrile (0.45 mmol) were solubilized in 10 mL of THF. The mixture was let stir for 20 h at $66^{\circ} \mathrm{C}$. The reaction were quenched with a saturated solution $\mathrm{NH}_{4} \mathrm{Cl}$ and extract with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with HCl , dried with MgSO_{4} and concentrated. 11.7 mg of hexamethylbenzene were added as internal standard (NMR yield $0.28 \mathrm{mmol}, 63 \%$). The compound was purified by chromatographic column (silica gel, hexane:ethyl acetate, $80: 20$) affording an isolate yield of 49%. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectra fully agreed with those reported in literature. ${ }^{[4]}$
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3} ; 298 \mathrm{~K} ; 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 7.75[\mathrm{~d}, 2 \mathrm{H}], 7.55[\mathrm{~d}, 2 \mathrm{H}], 6.80[\mathrm{~m}, 2 \mathrm{H},]{ }^{\mathbf{1 9} \mathbf{F}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; ~\right.}$ $298 \mathrm{~K} ; 400 \mathrm{MHz}) \delta(\mathrm{ppm}):-106.4[\mathrm{t}, 1 \mathrm{~F}],-110.0[\mathrm{~d}, 2 \mathrm{~F}]$

Phenyl(2,4,6-trifluorophenyl)methanone

384 mg of $\mathbf{3 a}(0.5 \mathrm{mmol})$ were solubilized in 5 mL of THF. The mixture was cooled down to $-20^{\circ} \mathrm{C} .286 \mathrm{mg}$ of $\mathrm{CuI}(1.5 \mathrm{mmol})$ and 0.18 mL of benzoylchloride $(1.5 \mathrm{mmol})$ were added. The flask was removed from the bath and the mixture was allowed to reach the room temperature. The mixture was let stir for 16 h , affording a red-brown solution. The reaction was quenched with a saturated solution $\mathrm{NH}_{4} \mathrm{Cl}$ and extract with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with HCl , dried with MgSO_{4} and concentrated. 10.2 mg of Hexamethylbenzene were added as internal standard (NMR yield $0.35 \mathrm{mmol}, 70 \%$). The compound was purified by chromatographic column (silica gel, hexane: ethyl acetate, $80: 20$), despite the attempt of a complete purification impurities were still present together with the products. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectra are in agreement with those previously reported in literature for this compound. ${ }^{[5]}$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3} ; 298 \mathrm{~K} ; 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 7.86[\mathrm{~d}, 2 \mathrm{H}], 7.64[\mathrm{~m}, 1 \mathrm{H}], 7.50[\mathrm{t}, 2 \mathrm{H}], 6.78[\mathrm{~m}, 2 \mathrm{H}$,
${ }^{19} \mathbf{F}-\mathbf{N M R}\left(\mathrm{CDCl}_{3} ; 298 \mathrm{~K} ; 400 \mathrm{MHz}\right) \delta(\mathrm{ppm}):-103.6[\mathrm{~m}, 1 \mathrm{~F}],-108.1[\mathrm{t}, 2 \mathrm{~F}]$

General Experimental Procedure for the ${ }^{1} \mathrm{H}$ NMR Monitoring of the $\mathrm{Zn}-\mathrm{H}$ Exchange Reactions

In a glovebox, a J. Young's NMR tube was filled with 78 mg of $\mathbf{1}(0.1 \mathrm{mmol}), 16 \mathrm{mg}$ of hexamethylbenzene $(0.09 \mathrm{mmol})$ as internal standard and 0.45 mL of $\mathrm{D}_{8}-\mathrm{THF}$. The initial ratio of base calculated by integration in ${ }^{1} \mathrm{H}$-NMR spectrum relative to the Hexamethylbenzene. 0.1 mmol of fluoroarene was introduced and the mixture was heated at $69^{\circ} \mathrm{C}$ in an oil bath (when needed). The reactions times were measured from this point in regular intervals of time until full conversion by ${ }^{1} \mathrm{H}$ NMR spectrum. All the yields were calculated by integration of the products relative to the hexamethylbenzene in the ${ }^{1} \mathrm{H}$ NMR spectrum.

NMR monitoring of the reaction of $\mathbf{1}$ with 1,3,5 trifluorbenzene
75.7 mg of $\mathbf{1}(0.1 \mathrm{mmol})$ and 18.6 mg of hexamethylbenzene were solubilized in 0.5 mL of D_{8}-THF together with a precise amount of Hexamethylbenzene (used as internal standard) in a Young j tube. $9.8 \mu \mathrm{~L}$ of 1,3,5 trifluorobenzene (2a) were added to the mixture. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum was recorded 5 ' minutes after the addition of the fluorarene (Figure S 1). The mixture was heated for 3 hours at $69^{\circ} \mathrm{C}$ in an oil bath. New NMR spectrum was recorded after the heating (Figure S 2). The amount of the component of the mixture were calculated against the mass of the internal standard according to the following equation:
$n_{c}=\frac{\int \text { signal }}{N_{H}} * \frac{m_{\text {hex. }} \text { equation } 1}{M M_{\text {hex. }} .}$
$\mathrm{n}_{\mathrm{c}}=$ number of moles of the compounds $\mathrm{N}_{\mathrm{H}}=$ number of the proton assigned to the chosen resonance $\mathrm{m}_{\text {hex. }}=$ mass of hexamethylbenzene $\mathrm{MM}_{\text {hex. }}=$ molecular mass of hexamethylbenzene

Scheme S 1 Metalation of 1,3,5 trifluorobenzene monitored by NMR spectroscopy. The spectra re recorded after the addition of triflurobenzene and after 3 h at $69^{\circ} \mathrm{C}$. The number of moles are calculated against Hexamethylbenzene. ($a=$ NMR yield)

Figure $\mathbf{S} \mathbf{1}^{l} \mathrm{H}-\mathrm{NMR}\left(D_{8}-T H F, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of reaction between 1 and 1,3,5 triflurobenzene, after 5 minutes at room temperature. $(*=$ hexamethylbenzene, $*=1, *=3 a, *=T M P(H), *=1,3,5$ trifluorobenzene)

> *

$$
\begin{gathered}
* \\
\hline \\
\\
\\
* * * \\
\\
\\
*
\end{gathered}
$$

Figure S $2{ }^{1} \mathrm{H}$-NMR (D_{8}-THF, 400 MHz , 298 K) spectrum of reaction between 1 and 1,3,5 triflurobenzene, after 3 hours at $69^{\circ} \mathrm{C} .\left(^{*}=\right.$ hexamethylbenzene, $\left.*=3 a, *=T M P(H)\right)$

Reaction of $\mathbf{1}$ with $1,3,5$ trifluorobenzene (2a) in presence of [2.2.2]cryptand

38 mg of $1(0.05 \mathrm{mmol})$ and 8.8 mg of hexamethylbenzene $(0.05 \mathrm{mmol})$, used as internal standard, were solubilised in $0.45 \mathrm{~mL} \mathrm{D}_{8}$-THF affording a light yellow mixture. 19.6 mg of [2.2.2]cryptand (0.05 mmol) and $5.4 \mu \mathrm{~L}$ of $1,3,5$ trifluorobenzene $(0.05 \mathrm{mmol})$ were added to the solution. The mixture was heated in a hot bath at $69^{\circ} \mathrm{C}$ for 3 h . 3a was found formed in 96% yield, by integration against hexamethylbenzene in ${ }^{1} \mathrm{H}$ NMR spectrum.

Reaction of [(PMDETA)KZn(TMP)Et ${ }_{2}$] with 2,4-difluoronitrobenzene

47 mg of $\left[(\mathrm{PMDETA}) \mathrm{KZn}(\mathrm{TMP}) \mathrm{Et}_{2}\right](0.1 \mathrm{mmol})$ freshly prepared, according to the method reported in the literature, ${ }^{[6]}$ were solubilized in $0.45 \mathrm{~mL}^{\text {of }} \mathrm{C}_{6} \mathrm{D}_{6}$ affording a light yellow solution. $3 \mu \mathrm{~L}$ of hexafluorobenzene (0.025 mmol) and 7.7 mg of hexamethylbenzene (0.05 mmol) were added as internal standards. $11 \mu \mathrm{~L}$ of 2,4difluronitrobenzene $(0.1 \mathrm{mmol})$ were added dropwise to the mixture. After the addition an insoluble dark precipitate appears instantaneously. The ${ }^{19} \mathrm{~F}$-NMR spectrum shows two signals compatible with metalation in C3 position, their yield was calculated in 8% yield by integration against hexafluorobenzene. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum shows an intractable mixture of products.

Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{FN}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{\mathrm{x}}\right\}^{+}\right](\mathbf{3 g})$

 as internal standard, were solubilised in 0.45 mL of D_{8}-THF affording a yellow solution, $4.1 \mu \mathrm{~L}$ of 3 -Fluoropyridine (0.05 mmol). The mixture was heated at $69^{\circ} \mathrm{C}$ for 16 h . The yield determined using hexamethylbenzene as internal standard was 89%.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathrm{D}_{8}\right.$-THF; 298K; 400 MHz$) \delta(\mathrm{ppm}): 7.96[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 6], 7.92$ [t, 1H, H5], 7.32 [m, 4H, Ph], 7.23 [m, 1H, H4], 6.99 [m, 6H, Ph], 6.75 [d, 4H, Ar*], 6.50 [t, 2H, Ar*], 4.20 [sept., $\left.4 \mathrm{H}, \mathrm{CH}{ }^{i} \mathrm{Pr}\right], 0.86\left[\mathrm{~d}, 24 \mathrm{H}, \mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right]$
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR $\left(\mathrm{D}_{8}-\mathrm{THF} ; 298 \mathrm{~K}, 75 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 168.3,152.2,146.8,144.5\left[\mathrm{C}_{\text {quaternary }} \mathrm{Ar}^{*}, \mathrm{Ph}^{2}, \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{FN}\right]$, 143.8 [$\mathrm{CH} \mathrm{C}_{6} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{FN}$], 135.9 [CH Ph$], 135.2$ [$\mathrm{CH} \mathrm{C} 5 \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{FN}$], 134.9 [$\mathrm{CH} \mathrm{C} 4 \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{FN}$], 126.4 [CH Ph], $122.0,117.5\left[\mathrm{CH} \mathrm{Ar}{ }^{*}\right], 49.9\left[\mathrm{C}_{\text {quaternary }} \operatorname{TMP}(\mathrm{H})\right], 38.9\left[\beta-\mathrm{CH}_{2} \operatorname{TMP}(\mathrm{H})\right], 32.2\left[\mathrm{CH}_{3} \operatorname{TMP}(\mathrm{H})\right], 28.1\left[\mathrm{CH}{ }^{i} \mathrm{Pr}\right]$, $24.2\left[\mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right], 19.4\left[\gamma-\mathrm{CH}_{2} \mathrm{TMP}(\mathrm{H})\right]$,
${ }^{19} \mathbf{F}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR $\left(\mathrm{D}_{8}\right.$-THF; 298K; 400 MHz$) \delta(\mathrm{ppm}):-102.2[\mathrm{~s}, 1 \mathrm{~F}]$

Figure $\mathbf{S} 3{ }^{1} \mathrm{H}$-NMR (D_{8}-THF, $400 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of reaction between 1 and 3-fluorpyrdine, after 16 hours at $69^{\circ} \mathrm{C}$. The spectrum was magnified in the area between 8.2 and $7.5 \mathrm{ppm} .(*=$ hexamethylbenzene, $*=\operatorname{TMP}(H))$

Figure S $\mathbf{4}{ }^{13} C\{H\}$-NMR ($D_{8}-T H F, 75 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of reaction between 1 and 3-fluorpyrdine, after 16 hours at $69^{\circ} \mathrm{C} .\left({ }^{*}=\right.$ hexamethylbenzene, $\left.*=\operatorname{TMP}(H)\right)$

Figure S5 $5{ }^{19} \mathrm{~F}$-NMR (D_{8}-THF, $300 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of reaction between 1 and 3-fluorpyrdine, after 16 hours at $69^{\circ} \mathrm{C}$. (${ }^{*}=1,2,4,5$-tetraflurobenzene)

Figure S $6^{l} \mathrm{H}$-COSY (D_{8}-THF, $300.1 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of $\mathbf{3 g}$ magnified between 8.2 and 7.0 ppm , in the spectrum it is possible notice the correlation between the proton $H 5$ and both the protons H4 and H6. The resonance of the proton in C4 appears as a triplet due to the coupling with the fluorine atom. ([Zn] = [\{Ph $\left.\left.\left.\mathrm{Si}_{2}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\right\}^{-}\right],{ }^{*}\right)$

Synthesis of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{HF}_{4}\right)\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{\mathrm{x}}\right\}^{+}\right](\mathbf{3 i})$

($0.05 \mathrm{mmol}, 1$ eq.) were added to the mixture. The yield determined using hexamethylbenzene as internal standard was 89%.
${ }^{1} \mathbf{H}-N M R\left(D_{8}\right.$-THF; 298K; 400 MHz$) \delta(\mathrm{ppm}): 7.37$ [m, 4H, Ph], $7.00[\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}], 6.80\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{HF}_{4}\right] 6.75$ [d, $\left.4 \mathrm{H}, \mathrm{Ar}^{*}\right], 6.50\left[\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}^{*}\right], 4.20$ [sept., $\left.4 \mathrm{H}, \mathrm{CH}{ }^{i} \operatorname{Pr}\right], 0.84$ [d, 24H, $\mathrm{CH}_{3}{ }^{i} \mathrm{Pr}$]
${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$-NMR (D_{8}-THF; 298K, 75 MHz) $\delta(\mathrm{ppm}): 151.9,146.6,144.7\left[\mathrm{C}_{\text {quaternary }} \mathrm{Ar}^{*}, \mathrm{Ph}, \mathrm{C}_{5} \mathrm{HF}_{4}\right], 135.9,126.4$ [CH Ph], 122.0, 117.7 [CH Ar*], $28.2\left[\mathrm{CH}{ }^{i} \mathrm{Pr}\right], 24.3\left[\mathrm{CH}_{3}{ }^{i} \mathrm{Pr}\right]$
${ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\}$-NMR (D_{8}-THF; 298K; 400 MHz) $\delta(\mathrm{ppm}):-116.4[\mathrm{~m}, 2 \mathrm{~F}],-142.1[\mathrm{~m}, 2 \mathrm{~F}]$

Figure $\mathbf{S} 7{ }^{1} \mathrm{H}-\mathrm{NMR}\left(D_{8}-T H F, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of reaction between 1 and leq. of 1,2,4,5 tetraflurobenzene. ($*=$ hexamethylbenzene, $*=T M P(H), *=$ tetrafluorotoluene $\left.*=P h_{2} S i(N H A r *)_{2}\right)$

Figure $\mathbf{S} \mathbf{8}{ }^{13} C\{H\}-N M R\left(D_{8}-T H F, 75 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of reaction between $\mathbf{1}$ and leq. of 1,2,4,5 tetraflurobenzene. $\left(*=\right.$ hexamethylbenzene, $\left.{ }^{*}=T M P(H), *=\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}{ }^{*}\right)_{2}\right)$

Figure S $9{ }^{19} \mathrm{~F}$-NMR ($D_{8}-T H F, 300 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of reaction between 1 and leq. of 1,2,4,5-tetraflurobenzene, after 5 minutes. $\left(^{*}=\left[K(T H F)_{x} \mathrm{Zn}\left(C_{6} F_{4} H\right)_{3}\right], *=1,2,4,5\right.$-tetraflurobenzene)

Reaction of $\mathbf{1}$ with variable amounts of pentafluorobenzene

51 mg of $\mathbf{1}(0.07 \mathrm{mmol})$, were solubilised in $0.45 \mathrm{~mL} \mathrm{D}_{8}$-THF affording a light yellow mixture, $4.4 \mu \mathrm{~L}$ of α, α, α trifluorotoluene $(0.036 \mathrm{mmol})$ and 8.8 mg of hexamethylbenzene $(0.05 \mathrm{mmol})$ were added as internal standards. The tube was placed in cold bath at $-40^{\circ} \mathrm{C}$ and $7.8 \mu \mathrm{~L}$ of pentafluorobenzene ($0.07 \mathrm{mmol}, 1 \mathrm{eq}$.) were added to the mixture. The solution was allowed to warm up at room temperature for 5 minutes before the analysis with multinuclear NMR spectroscopy was performed. The addition of pentafluorobenzene were repeated in total 3 times. The products are summarized in Scheme $\mathbf{S} 2$

Scheme S 2 Metalation of the pentaflurobenzene using 1 as base.

Figure S $10{ }^{l} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{8}-T H F, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of reaction between $\mathbf{1}$ and leq. of pentaflurobenzene, after 5 minutes. $\left(*=3 \boldsymbol{h}, *=\mathrm{Ph}_{2} \mathrm{Si}\left(N A r^{*}\right)_{2}, *=\right.$ hexamethylbenzene, $\left.*=\operatorname{TMP}(H)\right)$

Figure S $11{ }^{19} \mathrm{~F}$-NMR ($D_{8}-T H F, 300 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of reaction between 1 and leq. of pentaflurobenzene, after 5 minutes. $\left(*=3 h, *=4 *=\left[K(T H F)_{x} Z n\left(C_{6} F_{6}\right)_{3}\right], *=\right.$ trifluorotoluene)

The addition of the first equivalent of pentafluorobenzene, leads to a complete conversion of $\mathbf{1}$ in $\mathbf{3 h}$. The reaction proceeds with concomitant formation of $\operatorname{TMP}(\mathrm{H})$ (as shown in Figure S 5). The 19F-NMR
spectrum confirms the presence of only 3 h , as the major product of the reaction (4 and $\left[\mathrm{K}(\mathrm{THF})_{\mathrm{x}} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$ are present only in traces) (Figure S 6)

Figure $\mathbf{S} 12{ }^{l} \mathrm{H}-\mathrm{NMR}\left(D_{8}-T H F, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of reaction between $\mathbf{1}$ and 3eq. of pentaflurobenzene, after 5 minutes. $\left(*=3 \boldsymbol{h}, *=4 *=\operatorname{Ph}_{2} \operatorname{Si}\left(N H A r^{*}\right)_{2}\right.$, $*=$ hexamethylbenzene, $\left.*=\operatorname{TMP}(H)\right)$

Figure S $13{ }^{19} \mathrm{~F}$-NMR (D_{8}-THF, $300 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of reaction between 1 and leq. of pentaflurobenzene, after 5 minutes. $\left(^{*}=3 \boldsymbol{h}, *=4 *=\left[K(T H F)_{x} \mathrm{Zn}\left(C_{6} F_{6}\right)_{3}\right]\right.$, $*=$ trifluorotoluene, $*=$ pentaflurobenzene)

Adding a three fold excess of pentafluorobenzene $\mathbf{1}$ exhibits a polybasicity. 3h further reacts through the silyl bis(amido) ligand, generating 4 and $\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}^{*}\right)_{2}$ (Figure S 7). Notably the reaction did not proceed stepwise and $\mathbf{4}$ and $\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}^{*}\right)_{2}$ were generated with almost the same ratio. Pentafluorobenzene is still present in the mixture (Figure S 8) after 5 minutes due to the slower reactivity of $\left[\mathrm{Ph}_{2} \mathrm{Si}_{\mathrm{i}}\left(\mathrm{NHAr}^{*}\right)_{2}\right]^{-}$towards protonation. After 16 h the reaction goes to completion consuming all the pentafluorobenzene and having $\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}^{*}\right)_{2}($ Figure $\mathbf{S} 9)\left[\mathrm{K}(\mathrm{THF})_{\mathrm{x}} \mathrm{Zn}_{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{6}\right)_{3}\right]}\right.$ (Figure $\left.\mathbf{S} \mathbf{1 0}\right)$ as only products.

Figure $\mathbf{S} 14{ }^{l} \mathrm{H}$-NMR ($D_{8}-T H F, 300 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of reaction between 1 and 3eq. of pentaflurobenzene, after 16 hours. $\left({ }^{*}=\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}{ }^{*}\right)_{2},{ }^{*}=\right.$ hexamethylbenzene, $\left.*=T M P(H)\right)$

Figure S $15{ }^{19} \mathrm{~F}$-NMR ($D_{8}-T H F, 300 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of reaction between 1 and 3 eq. of pentaflurobenzene, after 16 hours. $\left({ }^{*}=\left[K(T H F)_{x} Z n\left(C_{6} F_{6}\right)_{3}\right]\right.$, $*=$ trifluorotoluene, $*=$ pentaflurobenzene)

Reaction of $\mathbf{1}$ with variable amount of 1,2,4,5-tetrafluorobenzene
34.2 mg of $1(0.05 \mathrm{mmol})$, were solubilised in $0.45 \mathrm{~mL} \mathrm{D}_{8}$-THF affording a light yellow mixture, $4 \mu \mathrm{~L}$ of α, α, α trifluorotoluene $(0.032 \mathrm{mmol})$ and 10.1 mg of hexamethylbenzene $(0.06 \mathrm{mmol})$ were added as internal standards. The tube was placed in cold bath at $-40^{\circ} \mathrm{C}$ and $5 \mu \mathrm{~L}$ of $1,2,4,5$ tetrafluorobenzene ($0.05 \mathrm{mmol}, 1$ eq.) were added to the mixture. The solution was allowed to warm up at room temperature for 5 minutes before the analysis with multinuclear NMR spectroscopy was performed. The addition of tetrafluorobenzene were repeated in total 3 times. The products are summarized in Scheme S 3..

Scheme S 3 Metalation of the 1,2,4,5 tetrafluorobenzene using 1 as base

Figure S $16{ }^{1} \mathrm{H}$-NMR (D_{8}-THF, $300 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of reaction between 1 and leq. of 1,2,4,5-tetraflurobenzene, after 5 minutes. $\left(*=3 i, *=P h_{2} \operatorname{Si}\left(N A r^{*}\right)_{2}, *=\right.$ hexamethylbenzene, $\left.*=T M P(H)\right)$

Figure S $17{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{D}_{8^{-}} T H F, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of reaction between 1 and leq. of 1,2,4,5-tetraflurobenzene, after 5 minutes. $\left(*=3 i\right.$, $*=\left[K(T H F)_{x} Z n\left(C_{6} F_{4} H\right)_{3}\right], *=$ trifluorotoluene, $*=1,2,4,5$-tetraflurobenzene)

The addition of the first equivalent of 1,2,4,5-tetrafluorobenzene, leads to a complete conversion of $\mathbf{1}$ in $\mathbf{3 i}$. The reaction proceeds via liberation of $\mathrm{TMP}(\mathrm{H})$ (as shown in Figure $\mathbf{S} \mathbf{1 1}$). The ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectrum confirms
the presence of $\mathbf{3 i}$, as the principle product of the reaction $\left(\left[\mathrm{K}(\mathrm{THF})_{\mathrm{x}} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{4} \mathrm{H}\right)_{3}\right]\right.$ and unreacted tetrafluorobenzene are present only in traces (Figure S 12)

Figure S $18{ }^{l} \mathrm{H}$-NMR (D_{8}-THF, $300 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of reaction between 1 and 3eq. of 1,2,4,5-tetraflurobenzene, after 5 minutes. $\left(*=3 i\right.$, ${ }^{*}=\left[K(T H F)_{x} \mathrm{Zn}_{\{ }\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(N H A r^{*}\right)\left(N A r^{*}\right)\right\}\left(\mathrm{C}_{6} F_{4} H\right)_{2}\right] *=\mathrm{Ph}_{2} \operatorname{Si}\left(N H A r^{*}\right)_{2}$, ${ }^{*}=$ hexamethylbenzene, $*=$ TMP(H))

Figure S $19{ }^{19} \mathrm{~F}$-NMR (D_{8}-THF, $300 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of reaction between 1 and 3eq. of 1,2,4,5-tetraflurobenzene, after 5 minutes. $\left(*=3 i, *=\left[K(T H F)_{x} \mathrm{Zn}_{\{ }\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(N H A r^{*}\right)\left(N A r^{*}\right)\right\}\left(C_{6} F_{4} H\right)_{2}\right] *=\left[K(T H F)_{x} \mathrm{Zn}\left(C_{6} F_{4} H\right)_{3}\right]\right.$, ${ }^{*}=$ trifluorotoluene, *=1,2,4,5-tetraflurobenzene)

Adding a threefold excess of 1,2,4,5-tetrafluorobenzene 1 exhibits a polybasicity, in fact 3i further reacts through the silyl bis(amido) ligand, generating $\left[\mathrm{K}(\mathrm{THF})_{\mathrm{x}} \mathrm{Zn}\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}^{*}\right)\left(\mathrm{NAr}^{*}\right)\right\}\left(\mathrm{C}_{6} \mathrm{~F}_{4} \mathrm{H}\right)_{2}\right]$ and $\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}^{*}\right)_{2}$ (Figure $\mathbf{S} \mathbf{1 3}$). 1,2,4,5-tetrafluorobenzene is still present in the mixture (Figure S 14) after 5 minutes due to the slower reactivity of $\left[\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}^{*}\right)_{2}\right]^{2-}$ towards protonation. After 16 h the reaction goes to completion consuming most of the $1,2,4,5$-tetrafluorobenzene and having $\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}^{*}\right)_{2}$ (Figure \mathbf{S} 15) $\left[\mathrm{K}(\mathrm{THF})_{\mathrm{x}} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{~F}_{6}\right)_{3}\right]$ (Figure $\mathbf{S} \mathbf{1 6}$) as only products.

Figure $\mathbf{S} 20{ }^{l} \mathrm{H}-\mathrm{NMR}$ (D_{8}-THF, $300 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of reaction between 1 and 3eq. of 1,2,4,5-tetraflurobenzene, after 16 hours. $\left({ }^{*}=\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}{ }^{*}\right)_{2},{ }^{*}=\right.$ hexamethylbenzene, $\left.*=\operatorname{TMP}(H)\right)$

Figure S $21{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{D}_{8}-\mathrm{THF}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of reaction between 1 and 3eq. of 1,2,4,5-tetraflurobenzene, after 16 hours. $\left(*=\left[K(T H F)_{x} Z n\left(C_{6} F_{4} H\right)_{3}\right]\right.$, ${ }^{*}=$ trifluorotoluene, ${ }^{*}=1,2,4,5$-tetraflurobenzene e)

X-ray Crystallography

A crystal of $\mathbf{1}$ or $\mathbf{3 a - j}$ is immersed in parabar oil was mounted at ambient conditions and transferred into the stream of nitrogen (100 K for $\mathbf{3 b}$, $\mathbf{3 d}$, $\mathbf{3 e}$, $\mathbf{3 h}$, $\mathbf{3 j}$ and $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}^{*}\right)\left(\mathrm{NAr}^{*}\right) \mathrm{Zn}^{\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}^{-}\left\{\mathrm{K}(\mathrm{THF})_{1}\right\}^{+}\right], 123 \mathrm{~K} .}\right.\right.$ for 1, 3a, 3c, $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}(\mathrm{TMP})\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{6}\right\}^{+}\right]$and $\left.\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right)\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{5}\right\}^{+}\right]\right)$. All measurements were made on a RIGAKU Synergy S area-detector diffractometer and Oxford Diffraction Gemini S or Xcalibur E ${ }^{6}$ using mirror optics monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.54184 \AA$) or Mo K $\alpha(\lambda$ $=0.71073 \AA$). The unit cell constants and an orientation matrix for data collection were obtained from a leastsquares refinement of the setting angles of reflections in the range:
$-3.398^{\circ}<\theta<73.102^{\circ}$ for $\mathbf{1}$. A total of 2192 frames were collected using ω scans, with 1.335 second exposure time (15 s for high-angle reflections and 5.33 s for medium-angle reflections), a rotation angle of 1° per frame, a crystal-detector distance of 45.0 mm , at $\mathrm{T}=123.35(10) \mathrm{K}$
$-3.7300^{\circ}<\theta<73.1710^{\circ}$ for $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{NAr})_{2} \mathrm{Zn}(\mathrm{TMP})\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{6}\right\}^{+}\right]$A total of 2097 frames were collected using ω scans, with 1.53 second exposure time (15 s for high-angle reflections and 6.115 s for medium-angle reflections), a rotation angle of 1° per frame, a crystal-detector distance of 45.0 mm , at $\mathrm{T}=123(2) \mathrm{K}$

- $4.3560^{\circ}<\theta<72.5470^{\circ}$ for 3a. A total of 1388 frames were collected using ω scans, with 2.71 second exposure time (35 s for high-angle reflections and 10.84 s for medium-angle reflections), a rotation angle of 1° per frame, a crystal-detector distance of 45.0 mm , at $\mathrm{T}=123$ (2) K
$-3.8130<\theta<73.1290^{\circ}$ for $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{NAr})_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right)\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{5}\right\}^{+}\right]$. A total of 2674 frames were collected using ω scans, with 1 second exposure time (9 s for high-angle reflections and 3 s for medium-angle reflections), a rotation angle of 1° per frame, a crystal-detector distance of 45.0 mm , at $\mathrm{T}=123(2) \mathrm{K}$
$-3.4490^{\circ}<\theta<71.4310^{\circ}$ for $\mathbf{3 b}$. A total of 3684 frames were collected using ω scans, with 0.5 second exposure time (2.75 s for high-angle reflections), a rotation angle of 0.5° per frame, a crystal-detector distance of 34.0 mm , at $\mathrm{T}=100(2) \mathrm{K}$.
$-2.296^{\circ}<\theta<76.484^{\circ}$ for $\mathbf{3 c}$. A total of 11258 frames were collected using ω scans, with 2 second exposure time (12 s for high-angle reflections), a rotation angle of 0.5° per frame, a crystal-detector distance of 34.0 mm , at $\mathrm{T}=173.15(10)$
- $3.487^{\circ}<\theta<68.084^{\circ}$ for $\mathbf{3 d}$. A total of 3020 frames were collected using ω scans, with 5 second exposure time (12 s for high-angle reflections), a rotation angle of 0.5° per frame, a crystal-detector distance of 34.0 mm , at $\mathrm{T}=84.8(6) \mathrm{K}$.
$-2.7800^{\circ}<\theta<76.7790^{\circ}$ for $\mathbf{3 e}$. A total of 3332 frames were collected using ω scans, with 0.1 second exposure time (0.25 s for high-angle reflections), a rotation angle of 0.5° per frame, a crystal-detector distance of 34.0 mm , at $\mathrm{T}=100.00(10) \mathrm{K}$.
$-3.098^{\circ}<\theta<77.579^{\circ}$ for $\mathbf{3 h}$. A total of 6512 frames were collected using ω scans, with 0.7 second exposure time (4 s for high-angle reflections), a rotation angle of 0.5° per frame, a crystal-detector distance of 34.0 mm , at $T=100.0(5) K$.
$-2.965^{\circ}<\theta<79.598^{\circ}$ for $\mathbf{3 j}$. A total of 6306 frames were collected using ω scans, with 0.8 second exposure time (3 s for high-angle reflections), a rotation angle of 0.5° per frame, a crystal-detector distance of 34.0 mm , at $\mathrm{T}=100.01(10) \mathrm{K}$.
$-2.860^{\circ}<\theta<76.442^{\circ}$ for 4 A total of 5894 frames were collected using ω scans, with 0.8 second exposure time (3.1s for high-angle reflections), a rotation angle of 0.5° per frame, a crystal-detector distance of 65.0 mm , at $\mathrm{T}=173.00(10) \mathrm{K}$.

Data reduction was performed using the CrysAlisPro program ${ }^{[7]}$. The intensities were corrected for Lorentz and polarization effects, and an absorption correction based on the multi-scan method using SCALE3 ABSPACK in CrysAlisPro ${ }^{[7]}$ was applied.

The structures were solved by direct methods using $S H E L X T^{[8]}$, which revealed the positions of all nonhydrogen atoms of the title compound. All non-hydrogen atoms were refined anisotropically. H -atoms were assigned in geometrically calculated positions and refined using a riding model where each H -atom was assigned a fixed isotropic displacement parameter with a value equal to 1.2 Ueq of its parent atom (1.5Ueq for methyl groups).
refinement of the structures was carried out on F^{2} using full-matrix least-squares procedures, which minimized the function $\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2}$. The weighting scheme was based on counting statistics and included a factor to downweight the intense reflections. All calculations were performed using the $S H E L X L-2014 / 7^{[9]}$ program in OLEX2.4 ${ }^{[10]}$

The X-ray crystal structure determination service unit of the Department of Chemistry and Biochemistry of the University of Bern is acknowledged for measuring, solving, refining and summarizing the structures of compounds $\mathbf{3 b}$, $\mathbf{3 c} \mathbf{3 d}, \mathbf{3 e}, \mathbf{3 h}, \mathbf{3 j}$ and $\mathbf{4}$. The Synergy diffractometer was partially funded by the Swiss National Science Foundation (SNF) within the R'Equip programme (project number 206021_177033).

Selected crystallographic data are presented in Table S1-S4 and full details in cif format can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.uk/data_request/cif

Table S 1 Crystal data and structure refinement details for compounds 1, 3a, 3b

Compound	$\mathbf{1}$	3a	3b
CCDC number	2151990	2151992	2151994
Empirical	$\mathrm{C}_{69} \mathrm{H}_{110} \mathrm{KN}_{3} \mathrm{O}_{6} \mathrm{SiZn}$	$\mathrm{C}_{70} \mathrm{H}_{102} \mathrm{~F}_{3} \mathrm{KN}_{2} \mathrm{O}_{7} \mathrm{SiZn}$	$\mathrm{C}_{70} \mathrm{H}_{102} \mathrm{Cl}_{3} \mathrm{KN}_{2} \mathrm{O}_{7} \mathrm{SiZn}$
formula			
Formula weight	1210.15	1273.09	1322.44
Temperature $/ \mathrm{K}$	$123(2)$	$123(2)$	$100.00(10)$
Crystal system	monoclinic	$\mathrm{P} 2_{1} / \mathrm{c}$	$\mathrm{C} 2 / \mathrm{c}$
Space group			monoclinic

a / \AA	15.8130(1)	35.0797(7)	20.6110(6)
b/Å	16.9447(1)	15.7345(3)	15.6044(5)
c/ \AA	25.5040(2)	25.6152(4)	23.2737(8)
$\alpha /{ }^{\circ}$	90	90	90
$\beta /{ }^{\circ}$	91.405(1)	98.473(2)	109.050(3)
$\gamma /{ }^{\circ}$	90	90	90
Volume/ \AA^{3}	6831.65(8)	13984.3(4)	7075.4(4)
Z	4	8	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.177	1.209	1.241
μ / mm^{-1}	1.597	1.658	2.613
F(000)	2624.0	5456.0	2824.0
Crystal size/ mm^{3}	$1.0 \times 0.5 \times 0.3$	$0.8 \times 0.6 \times 0.6$	$0.264 \times 0.083 \times 0.067$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for refinement data ${ }^{\circ}$	6.262 to 146.178	6.9 to 146.252	6.946 to 129.306
Index ranges	$\begin{gathered} -18 \leq \mathrm{h} \leq 19,-20 \leq \mathrm{k} \leq 19 \\ 31 \leq 1 \leq 28 \end{gathered}$	$\begin{gathered} --43 \leq h \leq 41,-19 \leq k \leq 14, \\ 31 \leq 1 \leq 30 \end{gathered}$	$\begin{gathered} -23 \leq h \leq 24,-17 \leq \mathrm{k} \leq 18,- \\ 27 \leq 1 \leq 27 \end{gathered}$
Reflections collected	60911	37197	75990
Independent reflections	$\begin{gathered} 13559\left[\mathrm{R}_{\text {int }}=0.0482,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0306\right] \end{gathered}$	$\begin{gathered} 13808\left[\mathrm{R}_{\text {int }}=0.0552,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0492\right] \end{gathered}$	$\begin{gathered} 11930\left[\mathrm{R}_{\mathrm{int}}=0.1091,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.1368\right] \end{gathered}$
Data/restraints/ parameters	13559/33/781	13808/397/923	11930/556/822
Goodness-of-fit on F^{2}	1.030	1.014	1.414
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0439, \mathrm{wR}_{2}=0.1123$	$\mathrm{R}_{1}=0.0813, \mathrm{w}_{2}=0.2241$	$\mathrm{R}_{1}=0.1244, \mathrm{wR}_{2}=0.3502$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0507, \mathrm{wR}_{2}=0.1186$	$\mathrm{R}_{1}=0.1002, \mathrm{wR}_{2}=0.2547$	$\mathrm{R}_{1}=0.1547, \mathrm{wR}_{2}=0.3854$
Largest diff. peak/hole / e \AA^{-3}	0.62/-0.29	0.83/-0.63	1.05/-0.62

Table S 2 Crystal data and structure refinement details for compounds $\mathbf{3 c}$, $\mathbf{3 d}$, $\mathbf{3} \boldsymbol{e}$

Compound	3 c	3d	3 e
CCDC number	2151995	2151996	2151997
Empirical formula	$\mathrm{C}_{66} \mathrm{H}_{95} \mathrm{~F}_{2} \mathrm{KN}_{2} \mathrm{O}_{6} \mathrm{SiZn}$	$\mathrm{C}_{70} \mathrm{H}_{103} \mathrm{FKN}_{3} \mathrm{O}_{9} \mathrm{SiZn}$	$\mathrm{C}_{54} \mathrm{H}_{70} \mathrm{~F}_{2} \mathrm{KN}_{3} \mathrm{O}_{5} \mathrm{SiZn}$
Formula weight	1182.99	1282.11	1011.69
Temperature/K	173.15(10)	84.8(6)	100.00(10)
Crystal system	triclinic	monoclinic	monoclinic
Space group	P-1	P2 ${ }_{1} / \mathrm{c}$	P2 ${ }_{1} / \mathrm{c}$
a / \AA ¢	18.6356(2)	22.630(3)	11.68683(6)
b/A	18.8587(3)	15.7650(10)	14.09772(9)
c/ \AA	18.8788(3)	20.4853(17)	31.61154(15)
$\alpha{ }^{\circ}$	90.4963(14)	90	90
$\beta /{ }^{\circ}$	93.1729(12)	108.879(12)	91.4303(5)
γ^{10}	92.1929(12)	90	90
Volume $/ \AA^{3}$	6619.39(18)	6915.2(13)	5206.62(5)
Z	4	4	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.187	1.231	1.291

μ / mm^{-1}	1.681	1.664	2.043
F(000)	2536.0	2752.0	2144.0
Crystal size/mm ${ }^{3}$	$0.168 \times 0.13 \times 0.085$	$0.304 \times 0.217 \times 0.122$	$0.17 \times 0.12 \times 0.09$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for refinement data $/{ }^{\circ}$	4.688 to 138.264	6.962 to 95.676	5.594 to 154.234
Index ranges	$\begin{gathered} -22 \leq \mathrm{h} \leq 22,-22 \leq \mathrm{k} \leq 22,- \\ 22 \leq 1 \leq 22 \end{gathered}$	$\begin{gathered} -21 \leq \mathrm{h} \leq 21,-14 \leq \mathrm{k} \leq 15, \\ 19 \leq 1 \leq 16 \end{gathered}$	$\begin{gathered} -14 \leq \mathrm{h} \leq 12,-16 \leq \mathrm{k} \leq 17, \\ 39 \leq 1 \leq 39 \end{gathered}$
Reflections collected	236341	38045	55788
Independent reflections	$\begin{gathered} 24646\left[\mathrm{R}_{\text {int }}=0.0897,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0399\right] \end{gathered}$	$\begin{gathered} 6426\left[\mathrm{R}_{\text {int }}=0.1321, \mathrm{R}_{\text {sigma }}=\right. \\ 0.0636] \end{gathered}$	$\begin{gathered} 10802\left[\mathrm{R}_{\mathrm{int}}=0.0366\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0268\right] \end{gathered}$
Data/restraints/p arameters	24646/520/1456	6426/515/778	10802/0/622
Goodness-of-fit on F^{2}	1.338	1.035	1.039
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.1143, \mathrm{wR}_{2}=0.3376$	$\mathrm{R}_{1}=0.1316, \mathrm{wR}_{2}=0.3393$	$\mathrm{R}_{1}=0.0358, \mathrm{wR}_{2}=0.0873$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1576, \mathrm{wR}_{2}=0.3734$	$\mathrm{R}_{1}=0.1510, \mathrm{wR}_{2}=0.3580$	$\mathrm{R}_{1}=0.0412, \mathrm{wR}_{2}=0.0908$
Largest diff. peak/hole / e \AA^{-3}	1.12/-0.83	1.15/-0.62	0.62/-0.50

Table S 3 Crystal data and structure refinement details for compounds 3h, 3j, 4

Compound	3h	3j	4
CCDC number	2151998	2151999	2152000
Empirical formula	$\mathrm{C}_{70} \mathrm{H}_{100} \mathrm{~F}_{5} \mathrm{KN}_{2} \mathrm{O}_{7} \mathrm{SiZn}$	$\mathrm{C}_{110} \mathrm{H}_{152} \mathrm{~F}_{4} \mathrm{~K}_{2} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Zn}_{2}$	$\mathrm{C}_{52} \mathrm{H}_{52} \mathrm{~F}_{10} \mathrm{KN}_{2} \mathrm{OSiZn}$
Formula weight	1309.07	1999.47	1043.51
Temperature/K	100.0(5)	100.01(10)	173.00(10)
Crystal system	monoclinic	monoclinic	triclinic
Space group	C2/c	$\mathrm{P} 21 / \mathrm{n}$	P-1
a / \AA	35.1874(3)	12.14746(7)	$10.92365(17)$
b/ \AA	15.60249 (10)	29.80377(15)	15.3180(4)
c/Å	25.53322(18)	15.17589(8)	15.4312(2)
$\alpha /{ }^{\circ}$	90	90	86.8366(16)
$\beta /{ }^{\circ}$	99.1052(7)	105.0495(6)	86.8944(13)
$\gamma /{ }^{\circ}$	90	90	72.2944(17)
Volume/ \AA^{3}	13841.39(17)	5305.84(5)	2454.12(8)
Z	8	2	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.256	1.252	1.412
μ / mm^{-1}	1.733	1.976	2.363
$\mathrm{F}(000)$	5584.0	2132.0	1078.0
Crystal size/ mm^{3}	$0.263 \times 0.215 \times 0.161$	$0.254 \times 0.088 \times 0.068$	$0.15 \times 0.1 \times 0.05$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for refinement data/ ${ }^{\circ}$	6.21 to 150.04	5.93 to 135.146	5.74 to 154.742
Index ranges	$\begin{gathered} -44 \leq \mathrm{h} \leq 40,-19 \leq \mathrm{k} \leq 19 \\ 31 \leq 1 \leq 31 \end{gathered}$	$\begin{gathered} -14 \leq h \leq 14,-35 \leq k \leq 35, \\ 17 \leq 1 \leq 18 \end{gathered}$	$\begin{gathered} \mathrm{h} \leq 12,-19 \leq \mathrm{k} \leq \\ 19 \leq 1 \leq 19 \end{gathered}$
Reflections	140186	100664	47554

collected
Independent $\quad 14236\left[R_{\text {int }}=0.0487, \quad 9576\left[R_{\text {int }}=0.0412, R_{\text {sigma }}=10199\left[R_{\text {int }}=0.0666\right.\right.\right.$, reflections $\left.\mathrm{R}_{\text {sigma }}=0.0524\right]$
Data/restraints/p arameters

14236/233/976
0.0452]
$\left.\mathrm{R}_{\text {sigma }}=0.0347\right]$
amm
Goodness-of-fit on F^{2}
1.044
1.030

10199/77/597
$\mathrm{R}_{1}=0.0727, \mathrm{wR}_{2}=0.1995 \mathrm{R}_{1}=0.0359, \mathrm{wR}_{2}=0.0965 \mathrm{R}_{1}=0.0659, \mathrm{wR}_{2}=0.1950$ $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff.
peak/hole / e \AA^{-3}
$\mathrm{R}_{1}=0.0793, \mathrm{wR}_{2}=0.2065 \quad \mathrm{R}_{1}=0.0372, \mathrm{wR}_{2}=0.0975 \mathrm{R}_{1}=0.0716, \mathrm{wR}_{2}=0.2012$

Table S $\mathbf{4}$ Crystal data and structure refinement details for compounds $\left[\left\{\mathrm{Ph} h_{2} \mathrm{Si}\left(\mathrm{NAr} r^{*}\right)_{2} \mathrm{Zn}(\mathrm{TMP})\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{6^{\prime}}\right\}^{+}\right]$, $\left.\left[\left\{\mathrm{Ph}{ }_{2} \mathrm{Si}(\mathrm{NAr})_{2}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right)\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{5}\right\}^{+}\right]$

Compound
CCDC number
$\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}(\mathrm{TMP})\right\}^{-}\left\{\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{NAr} *)_{2} \mathrm{Zn}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right)\right\}^{-}\{ \right.\right.\right.$
$\left.\left.\mathrm{Na}(\mathrm{THF})_{6}\right\}^{+}\right]$
2151991

Empirical formula
$\mathrm{C}_{69} \mathrm{H}_{110} \mathrm{~N}_{3} \mathrm{NaO}_{6} \mathrm{SiZn}$
$\mathrm{C}_{62} \mathrm{H}_{86} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{SiZn}$
Formula weight
$1194.04 \quad 1112.77$
Temperature/K
Crystal system
Space group
123(2)
triclinic
P-1
a/ \AA
10.47530(10)
b/ \AA
35.3408(5)

123(2)
monoclinic
P2 ${ }_{1} / \mathrm{c}$
37.5660(5)
$\alpha /{ }^{\circ} \quad 87.6370(10)$
$\beta /{ }^{\circ} \quad 82.6610(10)$
$\gamma /{ }^{\circ} \quad 88.9470(10)$
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
13780.3(3)

8
1.151
16.8242(2)
15.0900(2)
25.0756(4)

90
109.534(2)

90
5999.71(16)

4
1.232
$\begin{array}{lll}\mu / \mathrm{mm}^{-1} & 1.104 & 1.293\end{array}$
$\mathrm{F}(000)$
5184.0
2376.0

Crystal size $/ \mathrm{mm}^{3}$

$$
0.9 \times 0.6 \times 0.6
$$

$1.0 \times 0.6 \times 0.4$
Radiation $\mathrm{CuKa}(\lambda=1.54184)$
$\operatorname{CuK} \alpha(\lambda=1.54184)$
2Θ range for
refinement data $/{ }^{\circ}$
9.922 to 146.38
6.95 to 146.36

Index ranges $\begin{array}{cc}-11 \leq h \leq 12,-39 \leq k \leq 43, ~ & -18 \leq h \leq 20,-18 \leq k \leq 18,-31 \\ -45 \leq 1 \leq 46 & \leq 1 \leq 30\end{array}$
Reflections
collected
Independent
reflections
Data/restraints/p arameters
Goodness-of-fit
on F^{2}
125953
67540
$54223\left[\mathrm{R}_{\text {int }}=0.0380, \quad 11935\left[\mathrm{R}_{\text {int }}=0.0362, \mathrm{R}_{\text {sigma }}=\right.\right.$
$\left.\mathrm{R}_{\text {sigma }}=0.0441\right]$
54223/423/3056
11935/37/724
1.023
1.029

Final R indexes $R_{1}=0.0615, \mathrm{wR}_{2}=0.1656 \quad \mathrm{R}_{1}=0.0432, \mathrm{wR}_{2}=0.1154$

$$
[\mathrm{I}>=2 \sigma(\mathrm{I})]
$$

Final R indexes [all data]

$$
\mathrm{R}_{1}=0.0738, \mathrm{wR}_{2}=0.1776 \quad \mathrm{R}_{1}=0.0458, \mathrm{wR}_{2}=0.1184
$$

Largest diff.
peak/hole / e \AA^{-3}

Crystal Structure of $\mathbf{1}$

Figure S 22 Crystal structure of 1. Thermal ellipsoids are rendered at 50% probability. Hydrogen atoms and disordered components in THF are omitted, carbon atoms of Aryl and THF fragments are drawn as wire frames for clarity. Selected bond distances (Å) and angles (${ }^{\circ}$) N2-Zn1 1.9828(13), N1-Zn1 2.0123(14), Zn1-N3 1.8899(14), N2-Zn1-N1 79.50(5), N2-Zn1-N3 140.06(6), N1-Zn1-N3 139.51(5)

Crystal Structure of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{NAr} *)_{2} \mathrm{Zn}(\mathrm{TMP})\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{6}\right\}^{+}\right]$

Figure S 23 Crystal structure of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(N A r^{*}\right)_{2} \mathrm{Zn}(T M P)\right\}^{-}\left\{\mathrm{Na}(T H F)_{6}\right\}^{+}\right]$. Thermal ellipsoids are rendered at 50% probability. Hydrogen atoms are omitted, and carbon atoms of aryl and THF fragments are drawn as wireframes for clarity. The asymmetric unit contains 4 different anions and 4 cations all in general positions which are very similar, and therefore only one was represented (the one with least disorder), the selected bond and angle distances reported referred only to this structure. Selected bond distance (A) and angles (${ }^{\circ}$): N10-Zn4 1.9814(19), N11-Zn4 2.0080(18), Zn4-N12 1.887(19), N10-Zn4-N11 80.26(8), N10-Zn4-N12 138.43(8), N11-Zn4-N12 139.96(8), N10-Si4-N11 97.94(9), Si4-N10Zn4 90.68(9), Si4-N11-Zn4 89.61(8).

Crystal Structure of 3a

Figure S 24 Crystal structure of 3a. Thermal ellipsoids are rendered at 50\% probability. Hydrogen atoms and disordered components in THF are omitted, and carbon atoms of Ar*, phenyl ring and THF fragments are drawn as wire frames for clarity. Selected bond distances (A) and angles (${ }^{\circ}$) N2-Zn1 1.969(3), N1-Zn1 1.952(2), Zn1-C37 1.970(3), N2-Si1-N1 96.74(13), N2-Zn1-N1 81.01(11), Si1-N1-Zn1 91.32(11), Si1-N2-Zn1 90.71(12), N2-Zn1-C37 140.66(13), N1-Zn1-C37 137.56(13)

Crystal Structure of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right)\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{5}\right\}^{+}\right]$

Figure S 25 Crystal structure of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} F_{3}\right)\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{5}\right\}^{+}\right]$. Thermal ellipsoids are rendered at 50% probability. Hydrogen atoms (with the exception of H32C) and disordered components in THF are omitted, and carbon atoms of Ar*, phenyl ring and THF fragments are drawn as wireframes for clarity. Symmetry transformations used to generate symmetrical atoms: 1-x, 1-y,1-z. Selected bond distances (\AA) and angles $\left(^{\circ}\right.$) N2-Zn1 1.9799(13), N1-Zn1 1.9547(13), Zn1-C37 1.9596(17), N2-Si1-N1 97.12(6), N2-Zn1-N1 81.19(5), Sil-N1-Zn1 90.53(6), Si1-N2-Zn1 90.13(6), N2-Zn1-C37 135.49(6), N1-Zn1-C37 142.55(6).

Crystal Structure of 3b

Figure S 26 Anionic moiety of 3b. Thermal ellipsoids are rendered with 30\% probability. Hydrogen atoms are omitted and carbon atoms of $\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2\}^{2-}}$ are drawn as wireframe for clarity. The asymmetric unit is neutral by the presence of two half $K(T H F)_{6}$ units, where both half occupied K atoms are sitting on a special position (inversion centre) not shown here.

Crystal Structure of 3c

Figure S 27 Anionic moiety of 3c. Thermal ellipsoids are rendered with 30% probability. Hydrogen atoms are omitted and carbon atoms of $\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{NAr})_{2\}^{2}}$ are drawn as wireframe for clarity. The asymmetric unit has 2 different molecular structures very similar, so only one was represented

Crystal Structure of 3d

Figure S 28 Anionic Moiety of 3d. Hydrogen atoms and disorder in the ${ }^{i} P r$ group are omitted for clarity. Carbon atoms of $\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2\}^{2}}$ are drawn as wireframe. Thermal ellipsoids are rendered at 20% probability. The asymmetric unit is neutral by the presence of two half $K(T H F)_{6}$ units, where both half occupied K atoms are sitting on a special position (inversion centre) not shown here.

Crystal Structure of $\mathbf{3 e}$

Figure S 29 Crystal structure of $\mathbf{3 e}$, ellipsoids are rendered with 50% probability. Hydrogen atoms and disordered components in THF are omitted, carbon atoms of Aryl and THF fragments are drawn as wireframe for clarity. Selected bond distances (\AA) and angles (${ }^{\circ}$): Zn1-C8 1.9648(16), N1-Zn1 1.9633(13), N2-Zn1 1.9536(14), K1-F1 2.7149(10), K1O1 2.8946(13), K1-C $C_{\text {aryl }}$ ranging from 3.1875(17) to 3.5912(16), Si1-N2-Zn1 90.52(6), N2-Zn1-N1 81.58(6), N1-Zn1-C8 129.41(6), N2-Zn1-C8 146.70(6), Si1-N1-Zn1 90.05(6)

Crystal Structure of 3h

Figure S 30 Crystal structure of anionic moiety of 3h. Hydrogens atoms are omitted and carbon atoms (except for the pentafluoroaryl anion) are drawn as wireframe for clarity. Disorder components of fluorine atoms were omitted for clarity. The asymmetric unit is neutral by the presence of two half $K(T H F)_{6}$ units, where both half occupied K atoms are sitting on a special position (inversion centre and a two fold axis) not shown here. Selected bond distances (\AA) and angles (${ }^{\circ}$: N1-Zn1 1.921(4), N2-Zn1 1.988(4), Zn1-C1 1.984(5), Sil-N1-Zn1 40.97(10), Sil-N2-Zn1 40.80(9), N1-Zn1-N2 81.75(16), N1-Zn1-C1 141.5(2), N2-Zn1-C1 135.1(2)

Crystal Structure of 3j

Figure $\mathbf{S} 31$ Crystal structure of 3j, ellipsoids are rendered with 50\% probability. Hydrogen atoms and disordered components in THF, ${ }^{i} P r$ group and phenyl are omitted, carbon atoms of Aryl (except for the tetrafluoro dianion) and THF fragments are drawn as wire frames for clarity. Symmetry transformations used to generate symmetrical atoms: 1x, 1-y, 1-z. Selected bond distances (Å) and angles (${ }^{\circ}$):N1-Zn1 1.9872(14),N2-Zn1 1.9474(14) Zn1-C1 1.9689(17), K1F2 2.6792(13), K1-C Ar* * ranging from 3.080(2) to 3.2702(19),), Si1-N1-Zn1 90.03(6), Si1-N2-Zn1 91.66(6), N1-Zn1-N2 81.12(6), N1-Zn1-C1 139.39(6), N2-Zn1-C1 138.88(7)

Crystal Structure of 4

Figure S 32 Crystal structure of 4. Ellipsoids are rendered with 50\% probability. Hydrogen atoms and disordered components in THF are omitted, and carbon atoms of Aryl and THF fragments are drawn as wire frames for clarity. Symmetry transformations used to generate symmetrical atoms I: $1+x, y, z ; I I: 1-x, 1-y, 1-z ; I I I:-1+x, y, z$. Selected bond distances (Å) and angles (${ }^{\circ}$):N1-Zn1 1.940(2), Zn1-C39 2.022(3), Zn1-C45 2.033(3), K1-F ranging from 2.681(3) to $3.436(3), K_{1-C}$ Ar*$^{*} 3.061(3)$ to $3.536(3)$, N1-Zn1-C39 123.11(11), N1-Zn1-C45 120.01(11), C39-Zn1-C45 116.69(12)

Figure S 33 Polymeric structure of 4 Ellipsoids are rendered with 50% probability. Hydrogen atoms and disordered components in THF are omitted, fluorine and carbon atoms are drawn as wire frames for clarity. Symmetry transformations used to generate symmetrical atoms $1-x, 1-y,-z ; 1+x, y, z ; 1-x, 1-y, 1-z ;-x, 1-y,-z ; x, y, 1+z ; 2-x, 1-y,-$ $z ; 1+x, y, 1+z$.

NMR spectra of the reported compounds

Figure S $\mathbf{3 4}{ }^{1} \mathrm{H}$-NMR (D_{8}-THF, 400 MHz , 298 K) spectrum of $\mathbf{1}$

Figure $\mathbf{S} \mathbf{3 5}{ }^{13} C_{\{ }\{H\}$-NMR spectrum ($D_{8}-T H F, 100 \mathrm{MHz}, 298 \mathrm{~K}$) of $\mathbf{1}$

Figure S $36{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{8}-\mathrm{THF}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}{ }^{*}\right)_{2} \mathrm{Zn}(\mathrm{TMP})\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{6\}^{+}}{ }^{+}\right]\right.$

Figure S $37{ }^{13} C\{H\}-N M R$ spectrum $\left(D_{8^{-}} T H F, 100 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(N A r^{*}\right)_{2} \mathrm{Zn}(T M P)\right\}^{-}\left\{\mathrm{Na}(T H F)_{6}\right\}^{+}\right]$

Figure S $\mathbf{3 8}{ }^{l} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{8}-T H F, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of $\mathbf{3 a}$

Figure $\mathbf{S} \mathbf{3 9}{ }^{13} C_{\{ }\{H\}-N M R$ spectrum ($D_{8}-T H F, 100 \mathrm{MHz}, 298 \mathrm{~K}$) of $\mathbf{3 a}$

Figure S $40{ }^{19} \mathrm{~F}$-NMR ($\mathrm{D}_{8}-\mathrm{THF}, 400 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of $\mathbf{3 a}$

Figure S $41{ }^{l} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{8}-\mathrm{THF}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}{ }^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right)\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{5}\right\}^{+}\right]$

Figure $\mathbf{S} \mathbf{4 2}{ }^{13} C_{\{ }\{H\}-N M R$ spectrum $\left(D_{8}-T H F, 75 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right)\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{5}\right\}^{+}\right]$

Figure S $\mathbf{4 3}{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{D}_{8}-\mathrm{THF}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of $\left[\left\{\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NAr}^{*}\right)_{2} \mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}\right)\right\}^{-}\left\{\mathrm{Na}(\mathrm{THF})_{5}\right\}^{+}\right]$

Figure S $44{ }^{l} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{8}-\mathrm{THF}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of $\mathbf{3 b}$

Figure $\mathbf{S} \mathbf{4 5}{ }^{13} C\{H\}$-NMR spectrum $\left(D_{8}-T H F, 75 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathbf{3 b}$

Figure $\mathbf{S} 46{ }^{l} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{8}-\mathrm{THF}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of $\mathbf{3 c}$

Figure $\mathbf{S} \mathbf{4 7}{ }^{13} C_{\{ }\{H\}$-NMR spectrum $\left(D_{8}-T H F, 75 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathbf{3 c}$

Figure $\mathbf{S} \mathbf{4 8}{ }^{19} \mathrm{~F}$-NMR ($D_{8}-T H F, 300 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of $\mathbf{3 c}$

Figure S $49{ }^{l}{ }^{l} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{8}-\mathrm{THF}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of $3 \boldsymbol{d}$

Figure S $50{ }^{13} C\{H\}$-NMR spectrum ($D_{8}-T H F, 75 \mathrm{MHz}, 298 \mathrm{~K}$) of $\mathbf{3 d}$

Figure S $51{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{D}_{8}-\mathrm{THF}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of 3d

Figure $\mathbf{S} 52{ }^{l} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{8}-\mathrm{THF}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of $\mathbf{3 e}$

Figure S $53{ }^{13} C\{H\}-N M R$ spectrum ($D_{8}-T H F, 75 \mathrm{MHz}, 298 \mathrm{~K}$) of $\mathbf{3} \boldsymbol{e}$

Figure S $54{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(D_{8}-\mathrm{THF}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of $\mathbf{3 e}$

Figure S $55{ }^{l} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{8}-T H F, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of $\mathbf{3 f}$

Figure $\mathbf{S} 56{ }^{13} C_{\{ }\{H\}-N M R$ spectrum $\left(D_{8}-T H F, 100 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathbf{3 f}$

Figure S $57{ }^{19} \mathrm{~F}$-NMR (D_{8}-THF, $300 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of $\mathbf{3 f}$

Figure S $58{ }^{l} \mathrm{H}$-NMR ($D_{8}-T H F, 300 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of $\mathbf{3 h}$. Some impurities (${ }^{*}$) are present due to the polibasicity reactivity of 1 towards pentafluorobenzene.

Figure S $59{ }^{13} C\{H\}$-NMR spectrum ($D_{8}-T H F, 75 \mathrm{MHz}, 298 \mathrm{~K}$) of $\mathbf{3 h}$

Figure S $60{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(D_{8}-T H F, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of $\mathbf{3 h}$. Some impurities $\left({ }^{*}\right)$ are present due to the polibasicity reactivity of 1 towards pentafluorobenzene.

Figure $\mathbf{S} 61{ }^{l} \mathrm{H}-\mathrm{NMR}\left(D_{8}-T H F, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of $3 \mathbf{j}$

Figure S $62{ }^{13} C\{H\}-N M R$ spectrum ($D_{8}-T H F, 75 \mathrm{MHz}, 298 \mathrm{~K}$) of $3 \mathbf{j}$

Figure S $63{ }^{19} \mathrm{~F}$-NMR (D_{8}-THF, $300 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of $3 \mathbf{j}$

Figure S $64{ }^{l} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{8}-\mathrm{THF}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of $\mathbf{4}\left({ }^{*}=\left[\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{NHAr}{ }^{*}\right)_{2}\right]\right.$ impurity $)$

Figure S $65{ }^{19} \mathrm{~F}$-NMR ($D_{8}-T H F, 300 \mathrm{MHz}$, 298 K) spectrum of $4\left(*=\left[K(T H F)_{x} Z n\left(C_{6} F_{6}\right)_{3}\right]\right)$

Figure $\mathbf{S} \mathbf{6 6}{ }^{l} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of the crude of the synthesis of $2^{\prime}, 4^{\prime}, 6^{\prime}$-trifluoro-[1, 1^{\prime}-biphenyl]-4-carbonitrile. The NMR yield was calculated against the integral of hexamethylbenzene, using the equation 1. The calculated yield is 63% (using as limiting reagent 4-Bromobenzonitrile, 0.45 mmol)

Figure $\mathbf{S} \mathbf{6 7}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of the crude of the synthesis of 2', $4^{\prime}, 6$ '-trifluoro-[1, 1^{\prime}-biphenyl]-4-carbonitrile, after purification via silica-gel column

Figure S $68{ }^{19} \mathrm{~F}$-NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of the crude of the synthesis of 2', $\mathbf{4}^{\prime}$, 6 '-trifluoro-[1, 1^{\prime}-biphenyl]-4-carbonitrile, after purification via silica-gel column

Figure S $69{ }^{l} H-N M R\left(C D C l_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of the crude of the synthesis of Phenyl(2,4,6trifluorophenyl)methanone. The NMR yield was calculated against the integral of hexamethylbenzene, using the equation 1. The calculated yield is 70%

Figure $\mathbf{S} 70{ }^{l} H-N M R\left(C D C l_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of the crude of the synthesis of Phenyl(2,4,6trifluorophenyl)methanone. after gel purification column.

Figure S $71{ }^{19} \mathrm{~F}$-NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of the crude of the synthesis of Phenyl(2,4,6trifluorophenyl)methanone. after gel purification column.

References

[1] V. L. Blair, W. Clegg, A. R. Kennedy, Z. Livingstone, L. Russo, E. Hevia, Angew. Chemie 2011, 123, 10031-10034.
[2] P. Mastropierro, A. R. Kennedy, E. Hevia, Eur. J. Inorg. Chem. 2021, 2021, 1016-1022.
[3] W. S. Rees, O. Just, H. Schumann, R. Weimann, Polyhedron 1998, 17, 1001-1004.
[4] J.-J. Dai, J.-H. Liu, D.-F. Luo, L. Liu, Chem. Commun. 2011, 47, 677-679.
[5] R. McLellan, M. Uzelac, A. R. Kennedy, E. Hevia, R. E. Mulvey, Angew. Chem. Int. Ed. 2017, 56, 9566-9570.
[6] B. Conway, D. V. Graham, E. Hevia, A. R. Kennedy, J. Klett, R. E. Mulvey, Chem. Commun. 2008, 2638-2640.
[7] Oxford-Diffraction, CrysAlisPro (Version 1.171.40.37a)., Oxford Diffraction Ltd., Yarnton, Oxfordshire, UK, 2018.
[8] G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3-8.
[9] G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3-8.
[10] O. V Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr.

2009, 42, 339-341.

[^0]: 2',4',6'-trifluoro-[1,1'-biphenyl]-4-carbonitrile

