Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Do 2-Coordinate Iodine(I) and Silver(I) Complexes Form Nucleophilic Iodonium Interactions (NIIs) in Solution?

Scott Wilcox, Daniel Sethio, James Ward, Antonio Frontera, Roland Lindh, Kari Rissanen, and Máté Erdélyi

L

Table of Contents

1. Synthesis		
1.1.	General Information	S2
1.2.	Synthesis	\$3
1.3.	¹⁹ F DOSY Data	S5
2. NMR Spectra		S6
2.1.	Synthesised Compounds	S6
2.2.	Mixtures of Complexes & Addition of Reagents	S28
3. Computations		S72
3.1.	Computational Methods	S72
3.2.	Computational Results	S73
3.3.	Cartesian coordinates (Å) of optimized structures	S76
4. References		

Original FID's of NMR spectra are available, free of charge at Zenodo at DOI: 10.5281/zenodo.6078936

1. Synthesis

1.1 General Information

The solvents CH_2Cl_2 and CD_2Cl_2 were distilled over CaH_2 , whilst *n*-hexane was distilled over Na, benzophenone and tetraglyme. These dry solvents were stored in a glovebox over 3 Å molecular sieves, with CD_2Cl_2 being stored at -35 °C. All chemicals were purchased from commercial suppliers and were used without prior purification. For all syntheses and analyses, glassware was either dried at 150 °C or under high vacuum overnight prior to use. A glovebox was used for preparation of Ag⁺ and I⁺ complex samples, where Ag⁺ salts and I₂ were stored prior to use. An Eppendorf Centrifuge 5702 was used to centrifuge samples.

NMR spectra were recorded on an Agilent MR400-DD2 spectrometer fitted with a OneNMR probe. Chemical shifts were reported on the δ scale (ppm), with the residual solvent signal or with TMS as an internal reference; CD₂Cl₂ (δ_{H} 5.32, δ_{C} 53.84), TMS (δ_{H} 0.00, δ_{C} 0.00). Nitromethane (δ_{N} 0.0) was used as an external standard for ¹⁵N. For ¹H, ¹⁵N HMBC spectra, a capillary containing 1-methyl pyridinium iodide (0.45 M) in CD₃CN was inserted into the sample to act as an external reference (δ_{H} 5.18, δ_{N} - 177.79). For most ¹H, ¹⁵N HMBC spectra, a spectral window of 10 ppm (¹H) and 80 ppm (¹⁵N) were used, with 721 points in the direct dimension and 256 increments used in the indirect dimension, affording a resolution of 0.31 ppm/point in f1. ¹H NMR resonances were assigned considering chemical shift (δ), multiplicity, coupling constants (*J* Hz) and the number of hydrogens, and multiplicities of these were denoted as s (singlet), d (doublet), t (triplet), q (quartet), hep (heptet) and m (multiplet). MestReNova 14.2.1 was used to process NMR spectra.

Diffusion coefficients for ¹H nuclei were calculated according to an adjusted Stokes-Einstein equation,¹ which takes into account a correction factor for small, flat, linear molecules.

$$D = \frac{k_B T}{6 \pi \eta r_H} \rightarrow D = \frac{k_B T}{c f_s \pi \eta r_H} \qquad Eq. 1$$

where *D* is the diffusion coefficient (m² s⁻¹), k_B is Boltzmann's constant, *T* the temperature, *c* the c-factor for small molecules, f_s the form factor for non-spherical molecules, η the dynamic viscosity and r_H the hydrodynamic radius. The expected V_{vdw} from *Eq. 1* for Ag⁺ and I⁺ complexes, (**1**) and (**2**), is ~200 Å³ (from an r_{vdW} ~3.6 Å) - comparable to that of tolane, a monomeric species.

Diffusion NMR was also performed on ¹⁹F nuclei upon the counter-anion of the Ag⁺ and I⁺ 4methylpyridine complexes, PF₆⁻. Diffusion coefficients were calculated using a standard Stokes-Einstein equation (*left, Eq. 1*), as the anion itself is spherical in shape. Values were corrected for the gyromagnetic ratio of ¹⁹F, relative to those of ¹H, using $\gamma^{19}F/\gamma^{1}H = 0.8858$.² Results are shown in *Table S1*. [Bis(4-methylpyridine)silver(I)]hexafluorophosphate (1).³

In a glovebox, AgPF₆ (0.100 g, 0.40 mmol) was dissolved in dry CH₂Cl₂ (2 mL) with stirring in a dry vial. 4-Methylpyridine (0.077 mL, 0.79 mmol) was added and the mixture was stirred for 5 min before removal of stirrer bar. Dry *n*-Hexane (4 mL) was added to the mixture to precipitate the Ag⁺ complex **1**. The vial was then centrifuged for 10 min at 4400 rpm, the supernatant was removed, and the precipitate was dried *in vacuo* overnight to yield **1** as a white powder (0.171 g, 0.39 mmol, 98 %). ¹H NMR (400 MHz, 25 °C, CD₂Cl₂) δ [ppm] = 8.47 (d, *J* = 5.4 Hz, 2H, H-2/6), 7.41 (d, *J* = 5.4 Hz, 2H, H3/5), 2.48 (s, 3H, -CH₃). ¹³C NMR (101 MHz, 25 °C, CD₂Cl₂) δ [ppm] = 152.9 (C4), 151.6 (C2/6), 127.1 (C3/5), 21.6 (-CH₃). ¹⁵N NMR (41 MHz, detected *via* ¹H-¹⁵N HMBC at 400 MHz for ¹H, 25 °C, CD₂Cl₂) δ [ppm] = -130.8. ¹⁹F NMR (376 MHz, 25 °C, CD₂Cl₂) δ [ppm] = -72.95 (d, *J* = 712.5 Hz, 6F, -PF₆).

[Bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2).³

In a glovebox, **1** (0.075 g, 0.17 mmol) was dissolved in dry CH₂Cl₂ (1 mL) in a dry vial with stirring. Next, I₂ (0.043 g, 0.17 mmol) was dissolved in dry CH₂Cl₂ (1 mL) and was added dropwise over 10 min to the solution of **1**, until a faint purple colour was observed (indicating a minute excess of I₂). A yellow precipitate, AgI, was observed immediately upon addition of I₂ solution. The mixture was stirred for a further 20 min before centrifugation for 10 min at 4400 rpm. The resulting supernatant was transferred to another vial, where dry *n*-Hexane (2 mL) was added. The vial was cooled to -35 °C for 30 min to complete precipitation of 2. Centrifugation of this solution for 10 min at 4400 rpm, followed by removal of supernatant, addition of 2 mL *n*-hexane to wash, further centrifugation for 10 min at 4400 rpm and removal of supernatant, gave a white precipitate. The solid was dried *in vacuo* overnight to yield **2** as a crystalline, white solid (0.066 g, 0.14 mmol, 85 %). ¹H NMR (400 MHz, 25°C, CD₂Cl₂) δ [ppm] = 8.55 (d, *J* = 5.4 Hz, 2H, H2/6), 7.39 (d, *J* = 5.4 Hz, 2H, H3/5), 2.53 (s, 3H, -CH₃). ¹³C NMR (101 MHz, 25 °C, CD₂Cl₂) δ [ppm] = 155.8 (C4), 149.0 (C2/6), 129.0 (C3/5), 21.9 (-CH₃). ¹⁵N NMR (41 MHz, detected *via* ¹H-¹⁵N HMBC at 400 MHz for ¹H, 25 °C, CD₂Cl₂) δ [ppm] = -181.0. ¹⁹F NMR (376 MHz, 25 °C, CD₂Cl₂) δ [ppm] = -73.24 (d, *J* = 710.6 Hz, 6F, -PF₆).

To a 20 mL microwave vial, 1,2-diiodobenzene (2.529 g, 7.67 mmol), 2-ethynylpyridine (1.83 mL, 17.79 mmol), PdPPh₃Cl₂ (0.538 g, 0.77 mmol), CuI (161 mg, 0.84 mmol), diethylamine (12.00 mL) and dimethylformamide (4 mL) were added, and the vial was sealed. N₂ gas was bubbled through the reaction mixture for 2 min, followed by sonication for 2 min. The mixture was heated under microwave irradiation and stirring at 120 °C for 10 min. Thereafter, the resulting dark brown solution was filtered through a plug of Celite and washed with CH₂Cl₂ (100 mL). To the filtrate, H₂O was added and the two phases were separated. The aqueous phase was extracted with CH₂Cl₂ (3 × 35 mL) and the combined organic phases were dried with anhydrous MgSO₄, filtered and concentrated *in vacuo*. The brownblack residue was purified by column chromatography two consecutive times using EtOAc/Hexanes (2:3 to 4:1), followed by CH₂Cl₂/EtOAc (95:5 to 80:20) as eluents. This yielded the final product **3** (1.462 g, 5.22 mmol, 68 %) as an amber, crystalline solid. ¹H NMR (400 MHz, 25°C, CD₂Cl₂) δ [ppm] = 8.63 (m, 2H, H2), 7.75-7.64 (m, 6H, H5/4/10), 7.42 (BB' part of AA'BB', 2H, H11), 7.28 (ddd, *J* = 4.8, 4.8, 2.4 Hz, 2H, H3). ¹³C NMR (101 MHz, 25 °C, CD₂Cl₂) δ [ppm] = 150.6 (C2), 143.7 (C6), 136.5 (C4), 132.6 (C10), 129.3 (C11), 128.1 (C5), 125.7 (C3), 123.4 (C9), 93.5 (C7), 87.5 (C8).

[(1,2-bis(pyridin-2-ylethynyl)benzene)silver(I)]tetrafluoroborate (4).4-6

In a glovebox, **3** (0.008 g, 0.029 mmol) and AgBF₄ (0.006 mg, 0.029 mmol) were dissolved in dry CH₂Cl₂ with stirring for 5 min. Thereafter, dry *n*-Hexane (2 mL) was added to precipitate the Ag⁺ complex. The mixture was then centrifuged for 10 min at 4400 rpm, the supernatant removed and the white solid dried *in vacuo* overnight. The product, **4**, a white powder (0.012 g, 0.025 mmol, 87 %) was obtained. ¹H NMR (400 MHz, 25°C, CD₂Cl₂) δ [ppm] = 8.85 (dd, J = 5.4, 1.7 Hz, 2H, H2), 7.92 (dd, J = 7.9, 7.9 Hz, 2H, H4), 7.74 (d, J = 7.9 Hz, 2H, H5), 7.61 (AA' part of AA'BB', 2H, H10), 7.51 (dd, J = 7.7, 5.4, 1.4 Hz, 2H, H3), 7.39 (BB' part of AA'BB', 2H, H11). ¹³C NMR (101 MHz, 25 °C, CD₂Cl₂) δ [ppm] = 153.4 (C2) 143.6 (C6), 139.9 (C4), 133.4 (C10), 130.5 (C11), 128.8 (C5), 125.6 (C3), 123.8 (C9), 92.4 (C7), 91.1 (C8).

[(1,2-bis(pyridin-2-ylethynyl)benzene)iodine(I)]tetrafluoroborate (5).4-6

In a glovebox, **4** (0.012 g, 0.025 mmol) was dissolved in dry CH₂Cl₂ in a dry vial with stirring for 5 min. I₂ (0.007 g, 0.027 mmol) was dissolved in dry CH₂Cl₂ (0.5 mL) and this solution was added dropwise over 10 min to the solution of **4**, until a faint purple colour was observed (indicating a minute excess of I₂). A yellow precipitate, AgI, was observed immediately upon addition of I₂ solution. The mixture was stirred for a further 20 min before centrifugation for 10 min at 4400 rpm. The resulting supernatant was transferred to another vial, where dry *n*-Hexane (1 mL) was added. The vial was cooled to -35 °C for 30 min to complete precipitation of **5**. Centrifugation of this solution for 10 min at 4400 rpm, followed by removal of supernatant, addition of 1 mL *n*-Hexane to wash, further centrifugation for 10 min at 4400 rpm and removal of supernatant, gave a white precipitate. The solid was dried *in vacuo* overnight to yield **5** as a crystalline, white solid (0.012 g, 0.024 mmol, 98 %). ¹H NMR (400 MHz, 25°C, CD₂Cl₂) δ [ppm] = 8.83 (ddd, *J* = 5.7, 1.6 Hz, 2H, H2), 8.17 (ddd, *J* = 7.8, 7.8, 1.5 Hz, 2H, H4), 7.89 (dd, *J* = 7.9, 1.4 Hz, 2H, H5), 7.76 (AA' part of AA'BB', 2H, H10), 7.57 (BB' part of AA'BB', 2H, H11), 7.48 (ddd, *J* = 7.6, 5.6, 1.4 Hz, 2H, H3). ¹³C NMR (101 MHz, 25 °C, CD₂Cl₂) δ [ppm] = 151.1 (C2), 143.0 (C6), 142.6 (C4), 134.7 (C10), 131.3 (C11), 130.7 (C5), 126.9 (C3), 124.5 (C9), 98.9 (C8), 91.0 (C7).

1.3 ¹⁹F DOSY Data

Table S1. ¹⁹*F* NMR translational diffusion coefficients of the PF_6^- counter-anion of [bis(4-methylpyridine)-iodine(I)]⁺ and [bis(4-methylpyridine)silver(I)]⁺ complexes at different molar ratios yet at a constant overall concentration (44.4 mM, below given as 4 eq).

Molar Eq	D × 10 ⁻¹⁰ m/s ²	
[(4-Me-Pyr)₂Ag]⁺	[(4-Me-Pyr)₂I]⁺	PF ₆ ⁻
0	4	10.4
1	3	10.5
2	2	10.6
3	1	10.8
4	0	10.9

2. NMR Spectra

2.1 Synthesised Compounds

Figure S1. ¹*H NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) (400 MHz, CD*₂*Cl*₂, 25°*C).*

Figure S2. ¹³C NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) (101 MHz, CD₂Cl₂, 25°C).

Figure S3. ¹H NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) with capillary of 1-Methylpyridinium iodide in CD_3CN (400 MHz, CD_2Cl_2 , 25°C).

Figure S4. ¹H-¹⁵N HMBC NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (**1**), with capillary of 1-Methylpyridinium iodide in CD₃CN (400 & 41 MHz, CD₂Cl₂, 25°C).

Figure S5. ¹H DOSY Transform NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (**1**) (400 MHz, CD₂Cl₂, 25°C).

Figure S6. ¹⁹*F* NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) (376 MHz, CD₂Cl₂, 25°C).

Figure S7. ¹⁹F DOSY Transform NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) (376 MHz, CD₂Cl₂, 25°C).

Figure S8. ¹*H* NMR spectrum of [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**) (400 MHz, CD₂Cl₂, 25°C).

Figure S9. ¹³*C NMR spectrum of [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2) (101 MHz, CD*₂*Cl*₂, 25°*C).*

Figure S10. ¹H NMR spectrum of [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**), with capillary of 1-methylpyridinium iodide in CD₃CN (400 MHz, CD₂Cl₂, 25°C).

Figure S11. ¹H-¹⁵N HMBC NMR spectrum of [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**), with capillary of 1-methylpyridinium iodide in CD₃CN (400 & 41 MHz, CD₂Cl₂, 25°C).

Figure S12. ¹H DOSY Transform NMR spectrum of [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**) (400 MHz, CD₂Cl₂, 25°C).

Figure S13. ¹⁹F NMR spectrum of [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**) (376 MHz, CD₂Cl₂, 25°C).

Figure S14. ¹⁹F DOSY Transform NMR spectrum of [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**) (376 MHz, CD₂Cl₂, 25°C).

Figure S15. ¹*H* NMR spectrum of 1,2-bis(pyridin-2-ylethynyl)benzene (*3*) (400 MHz, CD₂Cl₂, 25°C).

Figure S16. ¹³C NMR spectrum of 1,2-bis(pyridin-2-ylethynyl)benzene (3) (101 MHz, CD₂Cl₂, 25°C).

Figure S17. ¹H NMR spectrum of [(1,2-bis(pyridin-2-ylethynyl)benzene)silver(I)]tetrafluoroborate (**4**) (400 MHz, CD₂Cl₂, 25°C).

Figure S18. ¹³C NMR spectrum of [(1,2-bis(pyridin-2-ylethynyl)benzene)silver(I)]tetrafluoroborate (**4**) (101 MHz, CD₂Cl₂, 25°C).

Figure S19. ¹*H* DOSY Transform NMR spectrum of [(1,2-bis(pyridin-2-ylethynyl)benzene)silver(I)]tetrafluoroborate (4) (400 MHz, CD₂Cl₂, 25°C).

Figure S20. ¹*H* NMR spectrum of [(1,2-bis(pyridin-2-ylethynyl)benzene)iodine(I)]tetrafluoroborate (5) (400 MHz, CD₂Cl₂, 25°C).

Figure S21. ¹³C NMR spectrum of [(1,2-bis(pyridin-2-ylethynyl)benzene)iodine(I)]tetrafluoroborate (5) (101 MHz,

Figure S21. ¹³C NMR spectrum of [(1,2-bis(pyridin-2-ylethynyl)benzene)iodine(I)]tetrafluoroborate (**5**) CD₂Cl₂, 25°C).

Figure S22. ¹H DOSY Transform NMR spectrum of [(1,2-bis(pyridin-2-ylethynyl)benzene)iodine(I)] tetrafluoroborate (**5**) (400 MHz, CD₂Cl₂, 25°C).

2.2 Mixtures of Complexes & Addition of Reagents

Figure S23. ¹H NMR spectrum of a 3:1 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) and [Bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2) (400 MHz, CD₂Cl₂, 25°C).

Figure S24. ¹H NMR spectrum of a 3:1 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (**1**) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**), with capillary of 1-methylpyridinium iodide in CD₃CN (400 MHz, CD₂Cl₂, 25°C).

Figure S25. ${}^{1}H{}^{15}N$ HMBC NMR spectrum of a 3:1 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2), with capillary of 1-methylpyridinium iodide in $CD_{3}CN$ (400 & 41 MHz, $CD_{2}Cl_{2}$, 25°C).

Figure S26. ¹H DOSY Transform NMR spectrum of a 3:1 mixture of [bis(4-methylpyridine)silver(I)] hexafluorophosphate (**1**) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**) (400 MHz, CD₂Cl₂, 25°C).

Figure S27. ¹⁹F NMR spectrum of a 3:1 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2) (376 MHz, CD₂Cl₂, 25°C).

Figure S28. ¹⁹F DOSY Transform NMR spectrum of a 3:1 mixture of [bis(4-methylpyridine)silver(I)] hexafluorophosphate (**1**) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**) (376 MHz, CD₂Cl₂, 25°C).

Figure S29. ¹H NMR spectrum of a 2:2 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2) (400 MHz, CD_2Cl_2 , 25°C).

Figure S30. ${}^{1}H^{-15}N$ HMBC NMR spectrum of a 2:2 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2), with capillary of 1-methylpyridinium iodide in CD₃CN (400 MHz, CD₂Cl₂, 25°C).

Figure S31. ${}^{1}H{}^{15}N$ HMBC NMR spectrum of a 2:2 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2), with capillary of 1-methylpyridinium iodide in $CD_{3}CN$ (400 & 41 MHz, $CD_{2}Cl_{2}$, 25°C).

Figure S32. ¹H DOSY Transform NMR spectrum of a 2:2 mixture of [bis(4-methylpyridine)silver(I)] hexafluorophosphate (**1**) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**) (400 MHz, CD₂Cl₂, 25°C).

Figure S33. ¹⁹F NMR spectrum of a 2:2 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2) (376 MHz, CD₂Cl₂, 25°C).

Figure S34. ¹⁹F DOSY Transform NMR spectrum of a 2:2 mixture of [bis(4-methylpyridine)silver(I)] hexafluorophosphate (**1**) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**) (376 MHz, CD₂Cl₂, 25°C).

Figure S35. ${}^{1}H{}^{-1}H$ NOESY spectrum of a 2:2 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2), $t_{mix} = 1 s$ (400 MHz, CD_2Cl_2 , 25°C, $t_{mix} = 1 s$).

Figure S36. Expansion of Fig. S35 showing an EXSY cross-peak between H-2 signals of an equimolar mixture of the two species in solution (400 MHz, CD_2Cl_2 , 25 °C, $t_{mix} = 1$ s). The EXSY cross-peak between the signals of the two complexes reveals 4-methylpyridine exchange during the mixing time.

Figure S36. ¹H NMR spectrum of a 1:3 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2) (400 MHz, CD_2Cl_2 , 25°C).

Figure S37. ¹H NMR spectrum of a 1:3 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2), with capillary of 1-Methylpyridinium iodide in CD₃CN (400 MHz, CD₂Cl₂, 25°C).

Figure S38. ${}^{1}H^{-15}N$ HMBC NMR spectrum of a 1:3 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2), with capillary of 1-methylpyridinium iodide in CD₃CN (400 & 41 MHz, CD₂Cl₂, 25°C).

Figure S39. ¹H DOSY Transform NMR spectrum of a 1:3 mixture of [bis(4-methylpyridine)silver(I)] hexafluorophosphate (**1**) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**) (400 MHz, CD₂Cl₂, 25°C).

Figure S40. ¹⁹F NMR spectrum of a 1:3 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2) (376 MHz, CD₂Cl₂, 25°C).

Figure S41. ¹⁹F DOSY Transform NMR spectrum of a 1:3 mixture of [bis(4-methylpyridine)silver(I)] hexafluorophosphate (**1**) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**) (376 MHz, CD₂Cl₂, 25°C).

(1) + 100% H2O 1H (for 1H-15N HMBC) (400 MHz CD2Cl2)

Figure S42. ¹H NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (**1**) with added H_2O (100 mol%), with capillary of 1-methylpyridinium iodide in CD_3CN (400 MHz, CD_2Cl_2 , 25°C).

Figure S43. ¹*H*-¹⁵*N* HMBC NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (**1**) with added H_2O (100 mol%), with capillary of 1-methylpyridinium iodide in CD₃CN (400 & 41 MHz, CD₂Cl₂, 25°C).

Figure S44. ¹H NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (**1**) with added 4-Methylpyridine (8 mol%), with capillary of 1-methylpyridinium iodide in CD₃CN (400 MHz, CD₂Cl₂, 25°C).

Figure S45. ¹H-¹⁵N HMBC NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (**1**) with added 4methylpyridine (8 mol%), with capillary of 1-methylpyridinium iodide in CD₃CN (400 & 41 MHz, CD₂Cl₂, 25°C).

Figure S46. ¹H NMR spectrum of [bis(4-methylpyridine)silver(1)]hexafluorophosphate (1) with added 4-methylpyridine (20 mol%), with capillary of 1-methylpyridinium iodide in CD_3CN (400 MHz, CD_2Cl_2 , 25°C).

Figure S47. ${}^{1}H^{-15}N$ HMBC NMR spectrum of [bis(4-methylpyridine)silver(1)]hexafluorophosphate (1) with added 4-methylpyridine (20 mol%), with capillary of 1-methylpyridinium iodide in CD₃CN (400 & 41 MHz, CD₂Cl₂, 25°C).

Figure S48. ¹H NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) with added trifluoroacetic acid (25 mol%), with capillary of 1-methylpyridinium iodide in CD_3CN (400 MHz, CD_2Cl_2 , 25°C).

Figure S49. ¹*H*-¹⁵*N HMBC NMR* spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) with added trifluoroacetic acid (25 mol%), with capillary of 1-methylpyridinium iodide in CD₃CN (400 & 41 MHz, CD₂Cl₂, 25°C).

Figure S50. ¹H NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (**1**) with added mixture of 4-methylpyridine (8 mol%) and trifluoroacetic acid (8 mol%), with capillary of 1-methylpyridinium iodide in CD₃CN (400 MHz, CD₂Cl₂, 25°C).

Figure S51. ¹H-¹⁵N HMBC NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (**1**) with added mixture of 4-methylpyridine (8 mol%) and Trifluoroacetic acid (8 mol%), with capillary of 1-methylpyridinium iodide in CD_3CN (400 & 41 MHz, CD_2Cl_2 , 25°C).

(1) + 4-Methylpyridine (100 mol%) + TFA (100 mol%) 1H (for 1H-15N HMBC) (400 MHz CD2Cl2)

Figure S52. ¹H NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (**1**) with added mixture of 4-methylpyridine (100 mol%) and trifluoroacetic acid (100 mol%), with capillary of 1-methylpyridinium iodide in CD_3CN (400 MHz, CD_2Cl_2 , 25°C).

Figure S53. ¹H-¹⁵N HMBC NMR spectrum of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (**1**) with added mixture of 4-methylpyridine (100 mol%) and trifluoroacetic acid (100 mol%), with capillary of 1-methylpyridinium iodide in CD₃CN (400 & 41 MHz, CD₂Cl₂, 25°C).

Figure S54. ¹H NMR spectrum of 4-methylpyridine with added trifluoroacetic acid (120 mol%), with capillary of 1methylpyridinium iodide in CD₃CN (400 MHz, CD₂Cl₂, 25°C).

Figure S55. ¹*H*-¹⁵*N HMBC NMR spectrum of 4-methylpyridine with added trifluoroacetic acid (120 mol%), with capillary of 1-methylpyridinium iodide in CD*₃*CN (400 & 41 MHz, CD*₂*Cl*₂*, 25°C).*

Figure S56. ¹H NMR spectrum of [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**) with added H_2O (5 mol%), with capillary of 1-methylpyridinium iodide in CD_3CN (400 MHz, CD_2Cl_2 , 25°C). The expansion below highlights the signals of protonated 4-methylpyridinium ions that are formed upon decomposition of the iodine(I) complex.

Figure S57. ¹H-¹⁵N HMBC NMR spectrum of [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**) with added H_2O (5 mol%), with capillary of 1-Methylpyridinium iodide in CD₃CN (400 & 41 MHz, CD₂Cl₂, 25°C).

Figure S58. ¹H NMR spectrum of a 2:2 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2), with added H_2O (50 mol%) and with a capillary of 1-methylpyridinium iodide in CD₃CN (400 MHz, CD₂Cl₂, 25°C).

Figure S59. ${}^{1}H^{-15}N$ spectrum of a 2:2 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (1) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (2), with added H_2O (50 mol%) and with a capillary of 1-methylpyridinium iodide in CD₃CN (400 & 41 MHz, CD₂Cl₂, 25°C).

Figure S60. ¹H NMR spectrum of a 2:2 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (**1**) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**), with added 4-methylpyridine (5 mol%) and with a capillary of 1-methylpyridinium iodide in CD_3CN (400 MHz, CD_2Cl_2 , 25°C).

Figure S61. ${}^{1}H^{-15}N$ spectrum of a 2:2 mixture of [bis(4-methylpyridine)silver(I)]hexafluorophosphate (**1**) and [bis(4-methylpyridine)iodine(I)]hexafluorophosphate (**2**), with added 4-methylpyridine (5 mol%) and with a capillary of 1-methylpyridinium iodide in CD₃CN (400 & 41 MHz, CD₂Cl₂, 25°C).

Figure S62. ¹H NMR spectrum of a 1:1 mix of [(1,2-bis(pyridin-2-ylethynyl)benzene)silver(I)]tetrafluoroborate (**4**) and [(1,2-bis(pyridin-2-ylethynyl)benzene)iodine(I)]tetrafluoroborate (**5**) (400 MHz, CD₂Cl₂, 25°C).

Figure S63. ${}^{1}H{}^{-1}H$ NOESY spectrum of a 1:1 mix of [(1,2-bis(pyridin-2-ylethynyl)benzene)silver(I)]tetrafluoroborate (4) and [(1,2-bis(pyridin-2-ylethynyl)benzene)iodine(I)]tetrafluoroborate (5), $t_{mix} = 1 s$ (400 MHz, CD_2CI_2 , 25°C).

Figure S64. Expansion of Fig. S63 showing a lack of EXSY crosspeaks between the two species in solution.

Figure S65. ¹H DOSY Transform NMR spectrum of a 1:1 mix of [(1,2-bis(pyridin-2-ylethynyl)benzene)silver(I)] tetrafluoroborate (**4**) and [(1,2-bis(pyridin-2-ylethynyl)benzene)iodine(I)] tetrafluoroborate (**5**) (400 MHz, CD₂Cl₂, 25°C).

Table S2. ¹⁵N NMR chemical shifts and ¹H NMR translational diffusion coefficients of [(1,2-bis(pyridin-2-ylethynyl)benzene)silver(I)] tetrafluoroborate (**4**) and [(1,2-bis(pyridin-2-ylethynyl)benzene)iodine(I)] tetrafluoroborate (**5**) complexes at different molar ratios yet at a constant overall concentration (40.0 mM, below given as 2 eq).

Molar Equivalents		$\delta^{ ext{15}}$ N (ppm)		D × 10 ⁻¹⁰ m/s ²	
Ag ⁺ Complex (4)	I⁺ Complex (5)	(4)	(5)	(4)	(5)
2	0	-119.9		9.21	
1	1	-119.9	-163.5	9.18	9.51
0	2		-163.6		9.56

3. Computations

3.1 Computational Methods

Starting from the previously reported X-ray structure,⁷ the equilibrium geometries of 2-coordinate iodine(I) and silver(I) complexes in solution were obtained using the M06-2X⁸, ω B97X-D⁹ and B3LYP^{10,11} functionals augmented with Grimme's D3 dispersion correction¹² and Ahlrichs' Def2-TZVP basis set.¹³ These three functionals are known to accurately describe systems exhibiting weak interactions.¹⁴ The polarizable continuum model (PCM) was used to account for dichloromethane solvation effects.¹⁵ Vibrational frequency calculations were conducted at the same level of theory to ensure the equilibrium geometry corresponding to a minimum on the potential energy surface by the absence of imaginary frequency.

All geometry optimization calculations were performed using the Gaussian 16 Rev. C.01,¹⁶ while the interaction energy calculations were conducted using the ORCA 5.0.1.¹⁷ The counterpoise correction of Boys and Bernadi procedure¹⁸ was used to deal with the basis set superposition error (BSSE) as implemented in ORCA. The free energy calculations were corrected using the Grimme's quasi rigid rotor approximation,¹⁹ as implemented in ORCA and in the Goodvibes program.²⁰ The electron density and energy density at the Ag⁺…I⁺ and π … π bond critical points were calculated using the AIMALL version 19.10.12 software.²¹ Reduced density gradient (RDG),²² independent gradient model (IGM),²³ density overlap regions indicator (DORI),²⁴ interaction region indicator (IRI),²⁵ and van der Waals surface analyses were carried out using the Multiwfn 3.7 program.²⁶ The RDG plot were constructed using the 0.4 a.u. isosurface cutoff and color scale of -0.035 – 0.035 a.u. Local mode force constants were calculated using the LModeA 2.02 program.²⁶ All analyses were computed using the M06-2X/def2-TZVP level of theory.
3.2 Computational Results

Table S3. Bond distances, electron density (ρ_c), energy density (H_c), bond energy (H_c/ρ_c), and local force constant of the $Ag^+ \cdots I^+$ interactions.

Level of theory	R (Å)	ρ _c (e/ų)	H₀ (h/ų)	H _c /ρ _c (h/e)	<i>k</i> ″(mdyn/Å)
M06-2X/def2-TZVP	3.376	0.106	-0.001	-0.005	0.173
B3LYP-D3/def2-TZVP	3.739	0.060	0.003	0.055	0.157

Table S4. Bond distances, electron density (ρ_c), energy density (H_c), bond energy (H_c/ρ_c), and local force constant of the $\pi \cdots \pi$ interactions.

Level of theory	R (Å)	ρ _c (e/ų)	H₀ (h/ų)	H _c /ρ _c (h/e)	<i>k^a</i> (mdyn/Å)
M06-2X/def2-TZVP	3.552	0.027	0.006	0.234	0.083
B3LYP-D3/def2-TZVP	3.736	0.030	0.006	0.194	0.150

Table S5. Calculated Gibbs free ene	ergy (ΔG) of 2-coordinate iodine(I) and silver(I) complexes.
--	------------------------------------	----------------------------

Level of theory	Δ E (kcal/mol)	Δ H (kcal/mol)	-T∆S (kcal/mol)	Δ G (kcal/mol)
ωB97X-D/def2-	126.02	100 10	16.04	
TZVP	+20.95	+20.40	+10.04	+44.51
M06-2X/def2-	6 1 6	1 20	+16 11	±11 2 1
TZVP	-0.10	-4.00	+10.11	+11.51
B3LYP-D3/def2-	0.52	7 50	+17 20	+0.70
TZVP	-9.55	-7.59	+17.56	+9.79
DLPNO-				
CCSD(T)/def2-	-6 50	-5 14	+16 11	+9 54
TZVP//M06-	0.50	5.11	10.11	
2X/def2-TZVP				

The energies shown in Table S4, in contrast to those in Table 2 in the main text, do not include correction for basis set superposition error (BSSE). The Gibbs free energies shown were calculated at the optimized structure and at the given level of theory, whereas for the energies given in Table 2, the geometries were computed on the M06-2X/Def2-TZVP level of theory. The electronic, enthalpic and entropic contributions were estimated at 1 atm, 298 K at various levels of theory, with the overall conclusion from the different computations showing identical trend apart from that performed with ω B97X-D/def2-TZVP. In our hands, computations performed at the ω B97X-D/def2-TZVP level of theory are not suitable for the estimation of the interaction energy of the studied iodine(I) and silver(I) complexes. All other functionals provide comparable electronic energies, enthalpies, entropies and Gibbs free energies, thereby mutually confirming each other.

Figure S66. Distribution of bond critical points (green dots), ring critical points (red dots), and bond paths (dashed lines) of 2-coordinate iodine(I) and silver(I) complexes calculated at the M06-2X/def2-TZVP level of theory. The bond path and bond critical point are found for the $Ag^+ \cdots I^+$.

Figure S67. Reduced density gradient (RDG) plot. The red, green, and blue surfaces correspond to repulsive, weak and strong attractive interactions, respectively. RDG plot show the weak interactions between $Ag^+ \cdots I^+$.

Figure S68. Independent gradient model (IGM) plot, where the green surfaces show the weak attractive interactions between $Ag^+ \cdots I^+$.

Figure S69. Density overlaps regions indicator (DORI) plot. The green surfaces show the weak attractive interactions between $Ag^+ \cdots I^+$.

Figure S70. Interaction region indicator (IRI) plot. The green surfaces show the weak attractive interactions between $Ag^+ \cdots I^+$. The red, green, and blue surfaces correspond to repulsive, weak and strong attractive interactions, respectively. IRI plot show the weak interactions between $Ag^+ \cdots I^+$.

Figure S71. Van der Waals surface of 2-coordinate iodine(I) and silver(I) complexes.

3.3 Cartesian coordinates (Å) of optimized structures

(4-Me-Pyr) ₂ Ag ⁺ optimized at the B3LYP-D3/Def2-TZVP/PCM(Dichloromethane)				
Zero-point correc	ction=	0.235736		
Thermal correction	on to Energy=	0.251590		
Thermal correction	on to Enthalpy=	0.252534		
Thermal correction	on to Gibbs Free Ene	rgy= 0.186796		
Sum of electronic	c and zero-point Ene	rgies= -722.172269		
Sum of electronic	c and thermal Energi	es= -722.156414		
Sum of electronic	c and thermal Enthal	pies= -722.155470		
Sum of electronic	c and thermal Free E	nergies= -722.221208		
Ag -0.000	000100 0.00550800	0.00010100		
N 2.141	107600 0.00181200	-0.00024300		
N -2.141	107400 0.00189400	0.00033600		
C 2.832	17500 -1.06160500	-0.44361900		
Н 2.252	292800 -1.90288200	-0.79794900		
C 4.214	26300 -1.10187600	-0.45326700		
Н 4.713	328000 -1.98889200	-0.81979300		
C 4.947	'84500 -0.00946000	0.00846900		
C 4.219	64400 1.08861200	0.46819100		
Н 4.724	105100 1.96822300	0.84549500		
C 2.838	1.06005300	0.44874400		
Н 2.263	301300 1.90386000	0.80362100		
C 6.446	32300 -0.00122800	-0.01035100		
Н 6.851	1.0125600 -1.01254200	-0.00445200		
Н 6.802	249900 0.49493300	-0.91732900		
Н 6.848	357300 0.54766400	0.84122300		
C -2.832	218400 -1.06154000	0.44364900		
Н -2.252	295000 -1.90279900	0.79804500		
C -4.214	127200 -1.10185700	0.45315000		
Н -4.713	328900 -1.98889500	0.81962000		
C -4.947	784500 -0.00946900	-0.00866700		
C -4.219	963100 1.08863300	-0.46830700		
Н -4.724	402400 1.96823200	-0.84565900		
C -2.838	321900 1.06011600	-0.44871600		
Н -2.262	299300 1.90394100	-0.80353200		
C -6.446	32300 -0.00129200	0.01001900		
Н -6.848	354100 0.54788200	-0.84138400		
Н -6.851	122700 -1.01261600	0.00377000		
Н -6.802	257200 0.49453800	0.91715700		

(4-Me-Pyr)₂Ag⁺ optimize	d at the ω B97)	K-D/Def2-TZVP/PCM(Dichloromethane)
Zero-point	correction=	0	.237885
Thermal c	orrection to Er	nergy=	0.253694
Thermal c	orrection to Er	nthalpy=	0.254639
Thermal c	orrection to G	ibbs Free Ener	gy= 0.188718
Sum of ele	ectronic and ze	ero-point Ener	gies= -721.935896
Sum of ele	ectronic and th	ermal Energie	s= -721.920087
Sum of ele	ectronic and th	ermal Enthalp	ies= -721.919143
Sum of ele	ectronic and th	ermal Free En	ergies= -721.985063
Ag	0.00000000	0.00464200	-0.00006600
Ν	2.13630100	0.00133600	0.00097200
Ν	-2.13630100	0.00127400	-0.00097800
С	2.82439400	-1.06130400	-0.43254300
Н	2.24399500	-1.90533100	-0.77992300
С	4.20256400	-1.10231100	-0.44310400
Н	4.70181700	-1.99203000	-0.80266600
С	4.93264400	-0.00839700	0.00823100
С	4.20725100	1.09036500	0.45854300
Н	4.71134900	1.97330200	0.82836600
С	2.82980900	1.05951800	0.43960100
Н	2.25294600	1.90564400	0.78774200
С	6.42881900	0.00005700	-0.01099300
Н	6.83160200	-1.01156300	-0.00054600
Н	6.78213500	0.49241100	-0.92001200
Н	6.82898400	0.55196100	0.83889100
С	-2.82440100	-1.06135600	0.43254600
Н	-2.24400800	-1.90539300	0.77991300
С	-4.20257300	-1.10233700	0.44315600
Н	-4.70183300	-1.99204700	0.80273200
С	-4.93264500	-0.00840000	-0.00812700
С	-4.20724600	1.09033600	-0.45849200
Н	-4.71134100	1.97327800	-0.82830400
С	-2.82980600	1.05946600	-0.43959700
Н	-2.25293800	1.90558300	-0.78775300
С	-6.42881500	0.00012900	0.01118600
Н	-6.82898900	0.55165000	-0.83894700
Н	-6.83165600	-1.01147200	0.00124600
Н	-6.78205500	0.49296000	0.91997400

(4-Me-Py	r)₂Ag⁺ optimize	d at the M06-2	X/Def2-TZVP/PCM(Dichloromethane)
Zero-poi	nt correction=	C).237346
Thermal	correction to Er	nergy=	0.253228
Thermal	correction to Er	nthalpy=	0.254172
Thermal	correction to Gi	bbs Free Ener	gy= 0.189134
Sum of e	lectronic and ze	ro-point Ener	gies= -721.762574
Sum of e	lectronic and th	ermal Energie	s= -721.746693
Sum of e	lectronic and th	ermal Enthalp	ies= -721.745748
Sum of e	lectronic and th	ermal Free En	ergies= -721.810787
Ag	-0.00006700	0.00057200	0.08946600
Ν	-2.20729300	0.00295800	0.02069600
Ν	2.20734700	0.00079800	0.02368800
С	-2.91154400	-1.07919300	0.37711000
Н	-2.34200200	-1.94103700	0.69900000
С	-4.29030200	-1.11516300	0.34234600
Н	-4.80761100	-2.01736500	0.64127600
С	-5.00171700	0.00755700	-0.07665400
С	-4.26138300	1.12495600	-0.44505300
Н	-4.75192300	2.02867100	-0.78057800
С	-2.88039400	1.08429700	-0.38313800
Н	-2.28912900	1.94543800	-0.66573800
С	-6.49862500	-0.00086900	-0.12000900
Н	-6.85512400	-0.82119000	-0.74392100
Н	-6.90229100	-0.15517300	0.88169400
Н	-6.88990400	0.93496600	-0.51265600
С	2.88298100	-1.08319800	-0.37732200
Н	2.29172500	-1.94452300	-0.65904100
С	4.26153500	-1.12387100	-0.43331400
Н	4.75417600	-2.02927900	-0.76214700
С	5.00224800	-0.00369500	-0.06368300
С	4.29086900	1.11654300	0.35315000
Н	4.80568200	2.01763300	0.65836600
С	2.90929400	1.08048400	0.38231000
Н	2.33987100	1.94239500	0.70454700
С	6.49810300	-0.00575400	-0.13509700
Н	6.92373500	0.79687700	0.46352200
Н	6.90123300	-0.95863200	0.20570900
Н	6.81794000	0.13546400	-1.16948800

(4-Me-Pyr)	₂l⁺ optimized	at the B3LYP-D	3/Def2-TZVP/PCM(Dichloromethane)
Zero-point	correction=	0	.235879
Thermal c	orrection to Er	nergy=	0.251569
Thermal c	orrection to Er	nthalpy=	0.252513
Thermal c	orrection to G	ibbs Free Ener	gy= 0.186923
Sum of ele	ectronic and ze	ero-point Ener	gies= -872.865063
Sum of ele	ectronic and th	ermal Energie	s= -872.849373
Sum of ele	ectronic and th	ermal Enthalp	ies= -872.848429
Sum of ele	ectronic and th	ermal Free En	ergies= -872.914019
1	-0.00000200	0.00199200	-0.00502700
Ν	2.28787600	0.00165500	-0.00363300
С	2.96196500	1.15970600	0.00233700
Н	2.37230400	2.06587500	0.00498400
С	4.34279300	1.19161900	0.00256500
Н	4.84621300	2.14866300	0.00451500
С	5.06973300	0.00023800	-0.00220600
С	4.34079300	-1.19134500	-0.01090800
Н	4.84387000	-2.14870700	-0.01975700
С	2.96121400	-1.15816100	-0.01073000
Н	2.37012900	-2.06331800	-0.01830300
С	6.56692400	-0.00641300	0.02624000
Н	6.91459200	-0.15535200	1.05219400
Н	6.96800000	-0.82219400	-0.57523400
Н	6.97800700	0.93617200	-0.33207300
С	-2.96197400	1.15978300	-0.01084200
Н	-2.37234700	2.06594900	-0.01841700
Н	-6.91461300	-0.15554700	1.05238300
Ν	-2.28787700	0.00178600	-0.00388500
С	-4.34285300	1.19167300	-0.01077200
С	-2.96120400	-1.15809200	0.00202200
С	-5.06972600	0.00032100	-0.00209100
Н	-4.84630400	2.14867000	-0.01944400
С	-4.34073100	-1.19129800	0.00234100
Н	-2.37007900	-2.06325000	0.00457100
С	-6.56691400	-0.00651500	0.02647300
Н	-4.84383400	-2.14868900	0.00418400
Н	-6.97831800	0.93569800	-0.33234300
Н	-6.96761400	-0.82272400	-0.57475400

(4-Me-Pyr) ₂	I ⁺ optimized a	at the ω B97X-I	D/Def2-TZVP/PCN	и(Dichloromethane)
Zero-point	correction=	(.238134 (Hartree	e/Particle)
Thermal co	rrection to Er	nergy=	0.253726	
Thermal co	rrection to Er	nthalpy=	0.254670	
Thermal co	rrection to Gi	ibbs Free Ener	gy= 0.18925	1
Sum of elec	ctronic and ze	ero-point Ener	gies= -872.6	14048
Sum of elec	ctronic and th	ermal Energie	s= -872.59	98456
Sum of elec	ctronic and th	ermal Enthalp	ies= -872.5	97512
Sum of elec	ctronic and th	ermal Free En	ergies= -872	.662930
I (0.00001100	0.00130700	0.00478200	
Ν	2.25971800	0.00139300	-0.00381100	
С	2.93167300	1.15504600	-0.01709400	
Н	2.34163000	2.06178500	-0.02936200	
С	4.30825500	1.18903300	-0.01735700	
Н	4.81166300	2.14594800	-0.03144900	
С	5.03223900	0.00072000	-0.00223200	
С	4.30672100	-1.18834700	0.00891700	
Н	4.81034700	-2.14536900	0.01617900	
С	2.93151400	-1.15382500	0.00844100	
Н	2.34046800	-2.05989800	0.01618900	
С	6.52709000	-0.00535100	0.02514400	
Н	6.87303100	-0.15151100	1.05104000	
Н	6.92539200	-0.82249000	-0.57531900	
Н	6.93530700	0.93651200	-0.33684500	
С -	-2.93096900	1.15539800	0.00922500	
H ·	-2.34069000	2.06204400	0.01707200	
H ·	-6.87693800	-0.27501600	1.02229400	
N	-2.25968300	0.00176900	-0.00354900	
С -	-4.30787200	1.18997100	0.01060400	
С -	-2.93216300	-1.15345700	-0.01648200	
С -	-5.03225000	0.00232900	-0.00061300	
H ·	-4.81080900	2.14712800	0.01882400	
С -	4.30705600	-1.18738200	-0.01605600	
H ·	-2.34137400	-2.05963800	-0.02861500	
С -	-6.52722400	-0.00593100	0.02315000	
H ·	-4.81104700	-2.14422400	-0.02901500	
H ·	-6.93556600	0.97106500	-0.22814500	
H ·	-6.92199100	-0.74695900	-0.67173200	

(4-Me-Pyr) ₂ I ⁺ optimized at the M06-2X/Def2-TZVP/PCM(Dichloromethal	ne)
Zero-point correction= 0.238008	
Thermal correction to Energy= 0.253506	
Thermal correction to Enthalpy= 0.254450	
Thermal correction to Gibbs Free Energy= 0.190676	
Sum of electronic and zero-point Energies= -872.401832	
Sum of electronic and thermal Energies= -872.386334	
Sum of electronic and thermal Enthalpies= -872.385390	
Sum of electronic and thermal Free Energies= -872.449165	
l 0.00001500 0.00192900 -0.00343600	
N 2.24971800 0.00168800 -0.00295600	
C 2.91939400 1.15696600 -0.01520700	
H 2.32511500 2.06108800 -0.02603600	
C 4.29837200 1.19076300 -0.01648800	
H 4.80397500 2.14648300 -0.03002900	
C 5.02058400 0.00042900 -0.00353800	
C 4.29621300 -1.19049800 0.00668300	
H 4.80168200 -2.14659700 0.01209600	
C 2.91886100 -1.15565900 0.00734400	
H 2.32315100 -2.05879600 0.01414000	
C 6.51640000 -0.00685000 0.02182800	
H 6.86280500 -0.16838500 1.04479300	
H 6.91069800 -0.81622000 -0.59077100	
H 6.92227700 0.93991000 -0.32766400	
C -2.91879100 1.15754600 0.00848000	
H -2.32439400 2.06164600 0.01548000	
H -6.86722600 -0.29936000 1.01111300	
N -2.24968900 0.00242600 -0.00234600	
C -4.29816500 1.19182400 0.00878500	
C -2.91942000 -1.15507200 -0.01420200	
C -5.02059500 0.00214000 -0.00167500	
H -4.80339100 2.14773000 0.01537400	
C -4.29638400 -1.18940800 -0.01488500	
H -2.32385000 -2.05824700 -0.02468500	
C -6.51653500 -0.00783900 0.01916200	
H -4.80218200 -2.14536400 -0.02713600	
H -6.92281100 0.97393900 -0.21281100	
H -6.90643300 -0.73488200 -0.69236100	

(4-Me-Pyr) ₂ Ag ⁺ (4-Me-Pyr) ₂ I ⁺ optimized at the B3LYP-D3/Def2-TZVP/PCM(Dichloromethan	e)
Zero-point correction= 0.475210	
Thermal correction to Energy= 0.507189	
Thermal correction to Enthalpy= 0.508133	
Thermal correction to Gibbs Free Energy= 0.407053	
Sum of electronic and zero-point Energies= -1595.048918	
Sum of electronic and thermal Energies= -1595.016939	
Sum of electronic and thermal Enthalpies= -1595.015995	
Sum of electronic and thermal Free Energies= -1595.117075	
l -0.06657500 -1.84812700 -0.11080300	
Ag 0.06684500 1.88611300 0.02195400	
N 2.21845000 -1.85518600 -0.09767600	
N 2.21437900 1.89483900 0.07588100	
N -2.07958700 1.90080300 0.13562800	
C 2.88894900 -1.31721300 -1.12513300	
H 2.29806800 -0.88055300 -1.91785800	
C 4.26938200 -1.32083700 -1.16750800	
H 4.76939400 -0.87170000 -2.01415900	
C 4.99910100 -1.89332200 -0.12605900	
C 4.27387500 -2.44347400 0.93413000	
H 4.78036000 -2.90183900 1.77264100	
C 2.89524300 -2.40963800 0.91988800	
H 2.30687700 -2.82843900 1.72411600	
C 6.49611300 -1.90674300 -0.12325100	
H 6.87513400 -1.26588800 0.67640400	
H 6.87060400 -2.91355700 0.06769600	
H 6.90395500 -1.55329700 -1.06826600	
C -2.97500300 -1.20555100 -1.19839700	
H -2.34737800 -0.75940800 -1.95692700	
H -7.00891800 -1.14983300 0.54363600	
C 2.95264400 2.44290300 -0.90551900	
H 2.41099300 2.87809100 -1.73362200	
C 4.33315700 2.45978000 -0.87690400	
H 4.87368600 2.91416300 -1.69659000	
C 5.01675400 1.89542200 0.20152900	
C 4.24149100 1.33128700 1.21260900	
H 4.70469900 0.86988500 2.07415700	
C 2.86190800 1.34733100 1.11675200	
H 2.24990100 0.90574700 1.89085300	
C 6.51412900 1.88816800 0.24837100	
H 6.91477100 1.30417700 -0.58333700	
H 6.90627500 2.90165400 0.14623800	
H 6.88602000 1.46356600 1.17915100	
C -2.84224700 2.52756000 -0.77734500	
H -2.32218100 3.00564900 -1.59550800	
C -4.22000700 2.56902900 -0.69304000	
H -4.78157300 3.08676400 -1.45934100	
C -4.87394000 1.94722600 0.37210200	
C -4.07342800 1.30118500 1.31186000	
H -4.51349800 0.79271700 2.15864700	
C -2.69863300 1.29671900 1.16218700	
H -2.06622500 0.79159300 1.87911300	

С	-6.36795500	1.97107900	0.48089700
Н	-6.71542600	1.45432600	1.37369100
Н	-6.73202200	2.99983900	0.51136800
Н	-6.81982600	1.49763900	-0.39321300
Ν	-2.35226800	-1.80124900	-0.17280200
С	-4.35319000	-1.15980400	-1.27848900
С	-3.07573500	-2.36980000	0.80428600
С	-5.13047900	-1.74333200	-0.27844500
Н	-4.81382100	-0.66202800	-2.12043200
С	-4.45431100	-2.35734200	0.77925800
Н	-2.52535100	-2.83615600	1.60920900
С	-6.62652300	-1.70631000	-0.31483600
Н	-5.00009100	-2.82638500	1.58666900
Н	-6.99682700	-1.23735100	-1.22432600
Н	-7.03537700	-2.71632000	-0.25019300

(4-Me-Pyr)₂Ag⁺···(4-Me-Pyr)₂I⁺ optimized at the ωB97X-D/Def2-TZVP/PCM(Dichloromethane) Zero-point correction= 0.478205 Thermal correction to Energy= 0.510836 Thermal correction to Enthalpy= 0.511780 Thermal correction to Gibbs Free Energy= 0.406302 Sum of electronic and zero-point Energies= -1594.504846 Sum of electronic and thermal Energies= -1594.472215 Sum of electronic and thermal Enthalpies= -1594.471270 Sum of electronic and thermal Free Energies= -1594.576749 L -0.04388500 -1.80314500 -0.11433200 Ag 0.04342500 1.79098400 0.06999100 Ν 2.21372800 -1.80553800 -0.08752500 Ν 2.17428600 1.82283800 0.06786000 Ν -2.08626400 1.84134400 0.14246400 С 2.89101000 -1.31911100 -1.13175100 Н 2.30446600 -0.93053400 -1.95378800 С 4.26591900 -1.31727800 -1.16295100 н 4.77298200 -0.91547000 -2.02957600 С 4.98714100 -1.83390600 -0.08950800 С 4.25735000 -2.33613400 0.98512600 н 4.75710100 -2.75559200 1.84783500 С 2.88179200 -2.30917400 0.95488400 н 2.28833600 -2.69781400 1.77224500 С 6.48083900 -1.87018800 -0.10144800 Н 6.88950500 -1.77915500 0.90411000 н 6.82028400 -2.82609200 -0.50740500 Н 6.89355900 -1.08192300 -0.72929000 С -2.93336600 -1.19484300 -1.19279900 Н -2.31191600 -0.75669900 -1.96245200 Н -7.00753800 -1.73009200 0.67149800 С 2.87346500 2.34082200 -0.95100700 Н 2.30480900 2.72386800 -1.78754200 С 4.24983100 2.39978800 -0.95416500 4.75698100 2.83350000 -1.80573300 н С 4.96919600 1.91545400 0.13384000 С 4.23283300 1.38083400 1.18638600 Н 4.72679400 0.99059500 2.06613800 С 2.85798300 1.35261000 1.11975300 Н 2.27629900 0.94415500 1.93545500 С 6.46153300 1.99118600 0.18116200 Н 6.89705000 1.89052300 -0.81240500 6.76732200 2.96358000 0.57412500 Н Н 6.87978400 1.22706500 0.83488400 С -2.81583700 2.43541100 -0.81112200 Н -2.27389800 2.87009900 -1.64029200 С -4.19092500 2.50591800 -0.75911200 Н -4.72398900 3.00198500 -1.55919600 С -4.87550200 1.95243500 0.31799700 С -4.10752800 1.33783800 1.30242900 Н -4.57359600 0.88985800 2.16976200 С -2.73676000 1.30278700 1.18286800 Н -2.13039900 0.82921600 1.94373000

С	-6.36401000	2.03703400	0.42731800
Н	-6.76929900	1.20669800	1.00420300
Н	-6.64187800	2.95995000	0.94167700
Н	-6.83593500	2.05591400	-0.55422500
Ν	-2.30097900	-1.77228200	-0.16699900
С	-4.30608500	-1.16088300	-1.26835700
С	-3.01339400	-2.33745700	0.81252200
С	-5.07309800	-1.73985900	-0.26038200
Н	-4.77561900	-0.68502700	-2.11844000
С	-4.38953400	-2.33594600	0.79653200
Н	-2.45583800	-2.79936800	1.61694900
С	-6.56599800	-1.74443200	-0.32405800
Н	-4.92613400	-2.80722000	1.60883500
Н	-6.94307000	-0.89785500	-0.89596000
Н	-6.90774200	-2.65571900	-0.82065900

(4-Me-Pyr) ₂ Ag ⁺ …(4-Me-Pyr) ₂ I ⁺ optimized at the M06-2X/Def2-TZVP/PCM(Dichloromethane)	
Zero-point correction= 0.477531	
Thermal correction to Energy= 0.509835	
Thermal correction to Enthalpy= 0.510779	
Thermal correction to Gibbs Free Energy= 0.408139	
Sum of electronic and zero-point Energies= -1594.172042	
Sum of electronic and thermal Energies= -1594.139738	
Sum of electronic and thermal Enthalpies= -1594.138794	
Sum of electronic and thermal Free Energies= -1594.241435	
l -0.11095700 -1.74349700 -0.13814500	
Ag 0.11361600 1.62195000 0.01276700	
N 2.13385400 -1.76963000 -0.15293900	
N 2.34242200 1.69543800 0.10446300	
N -2.11490400 1.76001300 0.11039000	
C 2.79544900 -1.22282600 -1.17610900	
H 2.19568800 -0.79181000 -1.96781400	
C 4.17429700 -1.20906400 -1.21745000	
H 4.67414100 -0.75453400 -2.06212000	
C 4.90251100 -1.77339100 -0.17392100	
C 4.18633100 -2.34646600 0.87679000	
H 4.69868400 -2.80455500 1.71193800	
C 2.80958200 -2.32619200 0.85890100	
H 2.21946200 -2.75608900 1.65756600	
C 6.39722900 -1.74164300 -0.15295500	
H 6.73579200 -1.04533200 0.61803000	
H 6.80009600 -2.72285600 0.09696900	
H 6.80304800 -1.42092800 -1.10967000	
C -2.99718100 -1.09316400 -1.16613900	
H -2.38167000 -0.66072900 -1.94497500	
H -6.96145900 -0.93517700 0.65973900	
C 3.06260400 2.29137000 -0.85473300	
H 2.50789500 2.70791400 -1.68536900	
C 4.43856700 2.38389700 -0.80439000	
H 4.96964800 2.87989300 -1.60624600	
C 5.12953400 1.84589500 0.27980700	
C 4.37322800 1.22511700 1.26831500	
H 4.84758500 0.78355900 2.13547000	
C 2.99632500 1.16982000 1.14466300	
H 2.39135800 0.68881600 1.90407000	
C 6.62235600 1.93662800 0.35861100	
H 7.07647300 1.39452700 -0.47283600	
H 6.94257400 2.97599700 0.27943600	
H 6.99933400 1.52511100 1.29265700	
C -2.82689400 2.37681400 -0.84132300	
H -2.26848500 2.77335600 -1.67929700	
C -4.19865800 2.51369000 -0.77540700	
H -4.72316100 3.02402600 -1.57261400	
C -4.89339800 1.99694900 0.31631000	
C -4.14599600 1.35482700 1.29798600	
H -4.62488600 0.92962000 2.17036600	
C -2.77321400 1.25840100 1.16015400	
H -2.17522900 0.76256600 1.91576500	

С	-6.38188600	2.12869800	0.41163700
Н	-6.76417300	1.68371100	1.32786700
Н	-6.66999500	3.18039600	0.38704500
Н	-6.85884700	1.64340400	-0.44175200
Ν	-2.35655800	-1.68666700	-0.15569600
С	-4.37512300	-1.03587100	-1.21065500
С	-3.05299900	-2.24186500	0.84293100
С	-5.12465100	-1.60445800	-0.18456300
Н	-4.85777400	-0.54359900	-2.04422100
С	-4.42969700	-2.21891600	0.85705200
Н	-2.47983900	-2.70784400	1.63366500
С	-6.61922900	-1.54813200	-0.17666700
Н	-4.95904300	-2.67900600	1.68050500
Н	-7.00784100	-1.12573500	-1.10026300
Н	-7.03681500	-2.54579300	-0.03888600

4. References

- 1. A. Mix, J. H. Lamm, J. Schwabedissen, E. Gebel, H. G. Stammler and N. W. Mitzel, *Chem. Commun.*, 2022, **58**, 3645.
- 2. P. S. Pregosin, Prog. Nucl. Magn. Spectr., 2006, 49, 261.
- 3. M. Bedin, A. Karim, M. Reitti, A. C. Carlsson, F. Topic, M. Cetina, F. Pan, V. Havel, F. Al-Ameri, V. Sindelar, K. Rissanen, J. Grafenstein and M. Erdelyi, *Chem Sci*, 2015, **6**, 3746.
- 4. A.-C. C. Carlsson, J. Grafenstein, J. L. Laurila, J. Bergquist and M. Erdelyi, *Chem. Commun.*, 2012, **48**, 1458.
- 5. A.-C. C. Carlsson, J. Grafenstein, A. Budnjo, J. L. Laurila, J. Bergquist, A. Karim, R. Kleinmaier, U. Brath and M. Erdelyi, *J. Am. Chem. Soc.*, 2012, **134**, 5706.
- 6. A.-C. C. Carlsson, K. Mehmeti, M. Uhrbom, A. Karim, M. Bedin, R. Puttreddy, R. Kleinmaier, A. A. Neverov, B. Nekoueishahraki, J. Grafenstein, K. Rissanen and M. Erdelyi, *J. Am. Chem. Soc.*, 2016, **138**, 9853.
- 7. J. S. Ward, A. Frontera and K. Rissanen, Chem. Commun., 2021, 57, 5094.
- 8. Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215.
- 9. J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615.
- 10. A. D. Becke, Phys. Rev. A, 1988, 38, 3098.
- 11. C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785.
- 12. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 13. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297.
- 14. D. Sethio, G. Raggi, R. Lindh and M. Erdélyi, J. Chem. Theory Comput., 2020, 16, 7690.
- 15. J. Tomasi, B. Mennucci and R. Cammi, Chem. rev., 2005, 105, 2999.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, CT, **2016**.
- 17. F. Neese, F. Wennmohs, U. Becker and C. Riplinger, J. Chem. Phys., 2020, 152, 224108.
- 18. S. F. Boys and F. Bernardi, *Mol. Phys.*, 1970, **19**, 553.
- 19. S. Grimme, Chem. Eur. J., 2012, 18, 9955.
- 20. G. Luchini, J. Alegre-Requena, I. Funes-Ardoiz, J. Rodríguez-Guerra, J. T. Chen and R. Paton, GoodVibes v3.0.0, 2019; Zenodo DOI:10.5281/zenodo.3346166.
- 21. T. A. Keith, TK Gristmill Software, Overland Park, KS, **2019**.
- 22. J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan and W. Yang, *J. Chem. Theory Comput.*, 2011, **7**, 625.
- 23. C. Lefebvre, G. Rubez, H. Khartabil, J.-C. Boisson, J. Contreras-García and E. Hénon, *Phys. Chem. Chem. Phys.*, 2017, **19**, 17928.
- 24. P. de Silva and C. Corminboeuf, J. Chem. Theory Comput., 2014, 10, 3745.
- 25. T. Lu and Q. Chen, Chem. Methods, 2021, 1, 231.
- 26. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580.