Supporting Information

Expedient Ni-catalyzed C-H/C-H cross-dehydrogenative coupling of aryl amides with azoles

Tanumay Sarkar,^a Prabhat Kumar Maharana,^a Subhasish Roy,^b and Tharmalingam

Punniyamurthy*a

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.

E-mail: tpunni@iitg.ac.in.

^bDepartment of Chemistry, School of Fundamental and Applied Sciences, Assam Don Bosco University, Kamarkuchi, Sonapur-782402, India

1	General Information	S2
2	Crystal Structure and Data of 3ga	S2-S3
3	Optimization of the Reaction Conditions	S4
4	Investigation on Reactivity of DG	S5
5	General Procedure for the Oxidative C-H Heteroarylation	S5
6	Procedure for the Synthesis of 4 , 5 and 6	S6-S7
7	Scale-up Synthesis of 3ga	S7
9	Procedure for the Synthesis of [D ₃]-1g	S7
9	Mechanistic Investigation	S8-S10
10	References	S10
11	Characterization Data of 3b'a-d'a , 3aa-gq and 4-6	S11-S30
12	NMR (¹ H, ¹³ C and ¹⁹ F) Spectra of 3b'a-d'a , 3aa-gq and 4-6	S31-S76

Table of Contents

General Information. NiCl₂ (99%), Ni(OAc)₂•4H₂O (99.99%), Ni(PPh₃)₂Cl₂ (99.99%), Ni(COD)₂ (99%), Ag₂O (99.99%), P(*o*-Tol)₃ (97%) and 1-AdCO₂H (99%) were purchased from Aldrich and used as received. The solvents were dried prior to use according to the standard procedure. Carboxamides¹ and azoles² were prepared according to reported procedure. SRL silica gel G/GF 254 plates were used for analytical TLC and SRL silica gel (100-200 mesh) was used for column chromatography. NMR (¹H, ¹³C and ¹⁹F) spectra were recorded with Bruker Avance III 600, Ascend 400 and 500 MHz spectrometers using CDCl₃ as solvent and TMS as an internal standard. Chemical shifts (δ) and spin-spin coupling constant (*J*) are reported in ppm and in Hz, respectively, and other data are reported as follows: s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, dd = doublet of doublets. Melting points were determined using a Büchi B-540 apparatus and are uncorrected. FT-IR spectra were collected on Perkin Elmer IR spectrometer. Q-Tof ESI-MS instrument (model HAB 273) was used for recording mass spectra. Single crystal X-ray data of **3ga** was collected on a Bruker SMART APEX equipped with a CCD area detector using Mo/K α radiation and the structure was solved by direct method using *SHELXL-18* (Göttingen, Germany).

Crystal Structure and Data of 3ga

Figure S1. ORTEP diagram of 2-(benzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4methylbenzamide **3ga** (CCDC 2152876) with 50% ellipsoid. H-omitted for clarity.

Identification code	3ga
Empirical formula	'C24 H19 N3 O3'
Formula weight	397.43

Crystal habit, colour	block/Colorless		
Temperature, <i>T</i> /K	296 K		
Wavelength, λ/Å	0.71073		
Crystal system	'monoclinic'		
Space group	'P 21/c'		
Unit cell dimensions	a = 15.661(2) Å		
	b = 21.437(3) Å		
	c = 12.3333(18) Å		
	$\alpha = 90$		
	$\beta = 111.862(9)$		
	$\gamma = 90$		
Volume, V/Å ³	3842.8(9)		
Ζ	8		
Calculated density, Mg·m ⁻³	1.370		
Absorption coefficient, μ/mm^{-1}	0.092		
F(000)	1656.0		
θ range for data collection	1.40 to 25°		
Limiting indices	$-18 \le h \le 17, -25 \le k \le 25, -14 \le l \le 14$		
Reflection collected / unique	6550/ 4713		
Completeness to θ	96.6%		
Absorption correction	Multi-scan		
Max. and min. transmission	0.984 and 0.977		
Refinement method	'SHELXL-2018/3 (Sheldrick, 2018)'		
Data / restraints / parameters	6550/0/544		
Goodness–of–fit on F ²	1.010		
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0618, wR2 = 0.1806		
<i>R</i> indices (all data)	R1 = 0.0856, wR2 = 0.2080		

	O DG + H ₃ C	N N N N N N N N N N N N N N N N N N N	nol% NiCl ₂ nd, additive ant, solvent, °C, 8 h	O DG N CH ₃	DG =
	ັ 1g	2a		3ga	
Entry	Ligand	Additive	Oxidant	Solvent	Yield $(\%)^b$
1	PCy ₃	1-AdCO ₂ H	Ag ₂ CO ₃	Toluene	61
2	$P(o-Tol)_3$	1-AdCO ₂ H	Ag ₂ CO ₃	Toluene	69
3	DPPE	1-AdCO ₂ H	Ag ₂ CO ₃	Toluene	n.r.
4	-	1-AdCO ₂ H	Ag ₂ CO ₃	Toluene	n.r.
5	$P(o-Tol)_3$	PivOH	Ag ₂ CO ₃	Toluene	62
6	$P(o-Tol)_3$	TFA	Ag ₂ CO ₃	Toluene	n.r.
7	$P(o-Tol)_3$	KOAc	Ag ₂ CO ₃	Toluene	12
8	$P(o-Tol)_3$	-	Ag ₂ CO ₃	Toluene	n.r.
9	$P(o-Tol)_3$	1-AdCO ₂ H	Ag ₂ O	Toluene	75
10	$P(o-Tol)_3$	1-AdCO ₂ H	BQ	Toluene	n.r.
11	$P(o-Tol)_3$	1-AdCO ₂ H	Cu(OAc) ₂	Toluene	18
12	$P(o-Tol)_3$	1-AdCO ₂ H	-	Toluene	n.r.
13	$P(o-Tol)_3$	1-AdCO ₂ H	Ag ₂ O	$(CH_2Cl)_2$	53
14	P(<i>o</i> -Tol) ₃	1-AdCO ₂ H	Ag ₂ O	1,4-Dioxane	81
15	$P(o-Tol)_3$	1-AdCO ₂ H	Ag ₂ O	DMF	55

Table S1. Optimization of the Reaction Conditions^a

^{*a*}Reaction conditions: **1g** (0.2 mmol), **2a** (0.24 mmol), [Ni] (10 mol %), ligand (20 mol %), additive (0.2 mmol), oxidant (0.2 mmol), solvent (2 mL), 110 °C, 8 h. ^{*b*}Isolated yield. n.r. = no reaction.

Scheme S1. Investigation on Reactivity of DG^a

^{*a*}Reaction conditions: DGs **1a'-h'** (0.2 mmol), **2a** (0.24 mmol), NiCl₂ (10 mol %), P(*o*-Tol)₃ (20 mol %), Ag₂O (0.2 mmol), Ad-CO₂H (0.2 mmol), 1,4-dioxane (2 mL), 110 °C, 8 h. ^{*b*}Isolated yield.

General Procedure for the Oxidative C-H Heteroarylation. A mixture of amide 1 (0.2 mmol), azole 2 (0.24 mmol), NiCl₂ (0.02 mmol, 3 mg), P(o-Tol)₃ (0.04 mmol, 12 mg), Ag₂O (0.2 mmol, 46 mg) and 1-AdCO₂H (0.2 mmol, 36 mg) was stirred in 1,4-dioxane (2 mL) at 110 °C for 8 h under air. The progress of the reaction was monitored by TLC using ethyl acetate and hexane. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate (20 mL) and passed through a short pad of celite. The organic layer was washed with brine (2 × 5 mL) and water (2 × 5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using ethyl acetate/hexane as an eluent to afford **3**.

Scheme S2. Removal of the Directing Group.

Synthesis of 4 and **5**.^{3a} Di-*tert*-butyl dicarbonate (1 mmol, 218 mg) was added to a solution of 2-(benzo[d]oxazol-2-yl)-*N*-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-methylbenzamide **3ga** (0.1 mmol, 40 mg) and DMAP (0.2 mmol, 24 mg) in CH₃CN (2 mL) and was stirred at 40 °C for 3 h under air. The solvent was evaporated under reduced pressure to give a residue, which was purified by silica gel column chromatography using ethyl acetate/*n*-hexane as the eluent to furnish **4** as a yellow solid. Next, to a stirred a solution of **4** (0.07 mmol, 35 mg) in Et₂O/EtOH (4/1, v/v, 3 mL), EtONa (20% w/w in EtOH, 0.21 mmol, 71 mg) was added at 0 °C under inert atmosphere and the resultant mixture was stirred at room temperature for 12 h. The reaction mixture was then diluted with ethyl acetate (10 mL) and washed with 1 N HCl (1 × 5 mL), brine (2 × 5 mL) and water (5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified by a silica gel column chromatography using ethyl acetate/hexane as the eluent to afford **5** in 63% yield (11 mg).

Synthesis of 6.^{3b} A mixture of 2-(benzo[d]oxazol-2-yl)-*N*-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4methylbenzamide **3ga** (0.1 mmol, 40 mg) in conc. HCl (1 mL) was stirred at 190 °C for 2 h in a sealed tube. The mixture was cooled to room temperature and treated with NaOH solution until the pH was adjusted to 9. The aqueous layer was extracted with dichloromethane (3×5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue, which was purified on silica gel column chromatography to afford 2-(*m*-tolyl)benzo[d]oxazole **6** as a brown solid in 57% yield (12 mg).

Scale-up Synthesis of 3ga. A mixture of N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-methylbenzamide 1g (2 mmol, 560 mg), benzoxazole 2a (2.4 mmol, 286 mg), NiCl₂ (0.2 mmol, 26 mg), P(o-Tol)₃ (0.4 mmol, 122 mg), Ag₂O (2 mmol, 464 mg) and 1-AdCO₂H (2 mmol, 360 mg) was stirred in 1,4-dioxane (20 mL) at 110 °C for 12 h under air. The reaction mixture was then cooled to room temperature, diluted with ethyl acetate (20 mL) and passed through a short pad of celite. The workup and purification of the product was performed as described in the general procedure to afford 3ga in 76% yield (603 mg).

Synthesis of $[D_3]$ -1g. *N*-(2-(4,5-Dihydrooxazol-2-yl)phenyl)-4-methylbenzamide 1g (0.2 mmol, 56 mg), Pd(TFA)₂ (0.01 mmol, 3 mg), D₂O (4 mmol, 80 mg) and toluene (1 mL) were stirred at 130 °C for 1 h in a sealed tube. The resultant mixture was extracted with ethyl acetate (2 × 5 mL) and the organic layer was dried over Na₂SO₄. Evaporation of the solvent gave a residue that was purified on silica gel column chromatography using ethyl acetate/hexane to afford [D₃]-1g in 98% yield. The deuterium incorporation was determined using 400 MHz ¹H NMR as 93% D was incorporated into the two *ortho* positions of the carboxamide aryl ring.

Mechanistic Investigation

H/D Exchange Experiment of 1g with D₂O in the Absence of 2a.

N-(2-(4,5-Dihydrooxazol-2-yl)phenyl)-4-methylbenz-amide **1g** (0.2 mmol, 56 mg), NiCl₂ (0.02 mmol, 3 mg), P(*o*-Tol)₃ (0.04 mmol, 12 mg), Ag₂O (0.2 mmol, 46 mg), 1-AdCO₂H (0.2 mmol, 36 mg) and D₂O (4 mmol, 80 mg) were stirred in 1,4-dioxane (2 mL) at 110 °C for 1 h under air. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (2×5 mL) and passed through a short pad of celite. The work-up and purification were performed as described in the general procedure. 400 MHz ¹H NMR analysis of the product showed no deuterium incorporation.

H/D Exchange Experiment of 2a with D₂O in the Absence of 1g.

Benzoxazole **2a** (0.2 mmol, 24 mg), NiCl₂ (0.02 mmol, 3 mg), P(o-Tol)₃ (0.04 mmol, 12 mg), Ag₂O (0.2 mmol, 46 mg), 1-AdCO₂H (0.2 mmol, 36 mg) and D₂O (4 mmol, 80 mg) were stirred in 1,4-dioxane (2 mL) at 110 °C for 1 h under air. The reaction mixture was cooled, diluted with

ethyl acetate (2×5 mL) and passed through a short pad of celite. The work-up and purification were performed as described in the general procedure. The deuterium incorporation was calculated using 400 MHz ¹H NMR as 92%.

H/D Exchange Experiment of 1g with D₂O in the Presence of 2a.

A mixture of amide **1g** (0.2 mmol, 56 mg), benzoxazole **2a** (0.24 mmol, 28 mg), NiCl₂ (0.02 mmol, 3 mg), P(o-Tol)₃ (0.04 mmol, 12 mg), Ag₂O (0.2 mmol, 46 mg), 1-AdCO₂H (0.2 mmol, 36 mg) and D₂O (4 mmol, 80 mg) was stirred in 1,4-dioxane (2 mL) at 110 °C for 1 h under air. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (2 × 5 mL) and passed through a short pad of celite. The work-up and purification were performed as described in the general procedure. 400 MHz ¹H NMR analysis revealed no deuterium incorporation into carboxamide while 87% D was observed at the 2-position of benzoxazole.

Intermolecular Kinetic Isotope Effect Experiment using 1g and [D₃]-1g.

A mixture of 1g (0.2 mmol, 56 mg) and $[D_3]$ -1g (0.2 mmol, 57 mg) was reacted with 2a (0.2 mmol, 24 mg) for 1 h under standard reaction condition. The resulting solution was then diluted with ethyl acetate (2 x 5 mL), passed through a short pad of celite, washed with brine (2 x 5 mL) and water (5 mL). Drying (Na₂SO₄) and evaporation of the solvent produced a residue, which was

purified on silica gel column chromatography using ethyl acetate/hexane as the eluent to afford a mixture of $3ga/[D_n]$ -3ga. The intermolecular k_H/k_D was found to be 1.14, based on the 400 MHz ¹H NMR spectroscopy.

Intermolecular Kinetic Isotope Effect Experiment using 2a and [D]-2a.

N-(2-(4,5-Dihydrooxazol-2-yl)phenyl)-4-methylbenzamide **1g** (0.2 mmol, 56 mg) was reacted with **2a** (0.2 mmol, 24 mg) and [D]-**2a** (0.2 mmol, 24 mg) for 1 h under the standard reaction condition. The resulting solution was diluted with ethyl acetate (2 x 5 mL), passed through a short pad of celite, washed with brine (2 x 5 mL) and water (5 mL). Drying (Na₂SO₄) and evaporation of the solvent produced a residue, which was purified on silica gel column chromatography using ethyl acetate/hexane as the eluent to afford a mixture of unreacted **2a** and [D]-**2a**. The intermolecular $k_{\rm H}/k_{\rm D}$ was found to be 1.08, based on the 400 MHz ¹H NMR spectroscopy analysis.

References

- For preparation of carboxamides, see: a) M. Shang, S.-Z. Sun, H.-L. Wang, B. N. Laforteza, H.-X. Dai and J.-Q. Yu, *Angew. Chem., Int. Ed.*, 2014, **53**, 10439; b) M. Shang, M.-M. Wang, T. G. Saint-Denis, M.-H. Li, H.-X. Dai and J.-Q. Yu, *Angew. Chem., Int. Ed.*, 2017, **56**, 5317; c) J.-F. Yu, J.-J. Li, P. Wang and J.-Q. Yu, *Angew. Chem., Int. Ed.*, 2019, **58**, 18141.
- For preparation of azoles, see: a) M. Kitahara, N. Umeda, K. Hirano, T. Satoh and M. Miura, *J. Am. Chem. Soc.*, 2011, **133**, 2160; b) M. Nishino, K. Hirano, T. Satoh and M. Miura, *Angew. Chem., Int. Ed.*, 2012, **51**, 6993; c) R. Odani, K. Hirano, T. Satoh and M. Miura, *J. Org. Chem.*, 2013, **78**, 11045.
- a) M. Shang, H.-L. Wang, S.-Z. Sun, H.-X. Dai and J.-Q. Yu, *J. Am. Chem. Soc.*, 2014, 136, 11590; b) L.-L. Xu, X. Wang, B. Ma, M.-X. Yin, H.-X. Lin, H.-X. Dai and J.-Q. Yu, *Chem. Sci.*, 2018, 9, 5160.

Characterization Data

2-(Benzo[d]oxazol-2-yl)-N-(2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenyl)-4-methylbenzamide 3b'a. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.54$; colorless solid; mp 173-174 °C; yield 55% (48 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.76 (s, 1H), 8.89 (d, J = 8.4 Hz, 1H), 8.03 (s, 1H), 7.81-7.78 (m, 1H), 7.72-7.68 (m, 2H), 7.54-7.50 (m, 1H), 7.41-7.36 (m, 2H), 7.32-7.26 (m, 2H), 7.13-7.09 (m, 1H), 4.17-4.13 (m, 1H), 3.91-3.79 (m, 2H), 2.49 (s, 3H), 1.60-1.51 (m, 1H), 0.75-0.72 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 163.3, 162.5, 151.1, 141.9, 140.5, 140.2, 135.4, 132.6, 131.8, 130.8, 129.1, 128.6, 125.27, 125.22, 124.5, 122.6, 120.3, 120.1, 113.6, 110.7, 72.5, 69.4, 33.0, 21.3, 18.7, 18.5; FT-IR (KBr) 3009, 2962, 1683, 1635, 1610, 1536, 1449, 1275, 1260, 749 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₇H₂₆N₃O₃: 440.1969, found: 440.1969.

2-(Benzo[d]oxazol-2-yl)-4-methyl-N-(2-(4-methyl-4,5-dihydrooxazol-2-yl)phenyl)benzamide 3c'a. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.52$; colorless solid; mp 169-170 °C; yield 71% (58 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.64 (s, 1H), 8.89 (d, J = 8.4 Hz, 1H), 8.06-8.05 (m, 1H), 7.82-7.79 (m, 1H), 7.76-7.72 (m, 2H), 7.56-7.52 (m, 1H), 7.47-7.44 (m, 1H), 7.39-7.37 (m, 1H), 7.34-7.27 (m, 2H), 7.15-7.11 (m, 1H), 4.19-4.09 (m, 2H), 3.74-3.71 (m, 1H), 2.52 (s, 3H), 1.14 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 163.2, 162.6, 151.1, 141.9, 140.7, 140.1, 135.3, 132.6, 131.9, 131.0, 129.0, 128.8, 125.3, 125.2, 124.5, 122.6, 120.3, 120.2, 113.7, 110.7, 72.6, 61.7, 21.4, 21.3; FT-IR (KBr) 3009, 2988, 1683, 1634, 1610, 1536, 1447, 1275, 1260, 749 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₅H₂₂N₃O₃: 412.1656, found: 412.1657.

N-(2-(1H-Pyrazol-1-yl)phenyl)-2-(benzo[d]oxazol-2-yl)-4-methylbenzamide 3d'a. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.46$; colorless solid; mp 154-155 °C; yield 63% (50 mg); ¹H NMR (400 MHz, CDCl₃) δ 10.61 (s, 1H), 8.58 (d, *J* = 8.0 Hz, 1H), 7.93 (s, 1H), 7.59-7.57 (m, 1H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.42-7.33 (m, 4H), 7.30-7.27 (m, 1H), 7.21-7017 (m, 3H), 7.14-7.09 (m, 1H), 6.03-6.02 (m, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 161.9, 151.0, 141.9, 140.9, 140.8, 134.9, 132.1, 131.6, 130.8, 129.5, 129.4, 128.6, 128.0, 125.2, 124.8, 124.48, 124.46, 123.6, 122.2, 120.4, 110.6, 106.7, 21.4; FT-IR (KBr) 3006, 1681, 1599, 1529, 1513, 1452, 1275, 1260, 749 cm⁻¹; HRMS (ESI) *m*/*z* [M+H]⁺ calcd for C₂₄H₁₉N₄O₂: 395.1503, found: 395.1505.

2-(Benzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)benzamide 3aa. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.42$; colorless solid; mp 180-181 °C; yield 77%

(59 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.47 (s, 1H), 8.87 (d, J = 8.4 Hz, 1H), 8.26-8.22 (m, 1H), 7.84-7.80 (m, 1H), 7.77-7.75 (m, 1H), 7.71-7.69 (m, 1H), 7.65-7.60 (m, 2H), 7.55-7.51 (m, 1H), 7.34-7.24 (m, 3H), 7.13-7.09 (m, 1H), 3.99 (t, J = 9.6 Hz, 2H), 3.71 (t, J = 9.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 164.4, 162.2, 151.1, 141.9, 139.8, 137.9, 132.6, 131.4, 130.3, 129.1, 129.0, 125.3, 125.0, 124.5, 122.8, 120.5, 120.2, 113.8, 110.7, 66.1, 54.4; FT-IR (KBr) 2976, 1681, 1634, 1610, 1532, 1448, 1303, 1058, 747 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₃H₁₈N₃O₃: 384.1343, found: 384.1346.

2-(Benzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-6-methylbenzamide 3ba. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.52$; colorless solid; mp 148-149 °C; yield 67% (53 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.14 (s, 1H), 8.83 (d, J = 8.4 Hz, 1H), 8.17-8.15 (m, 1H), 7.78-7.76 (m, 1H), 7.65-7.62 (m, 1H), 7.60-7.55 (m, 1H), 7.50-7.43 (m, 2H), 7.29-7.21 (m, 3H), 7.13 (t, J = 7.6 Hz, 1H), 3.99-3.94 (m, 2H), 3.66 (t, J = 9.2 Hz, 2H), 2.55 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.1, 164.2, 162.1, 150.8, 141.9, 139.6, 137.4, 136.5, 133.6, 132.4, 129.3, 129.1, 127.1, 125.2, 124.5, 124.1, 122.9, 121.2, 120.2, 114.2, 110.5, 66.0, 54.4, 19.6; FT-IR (KBr) 2978, 1684, 1528, 1446, 1300, 1056, 743 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₄H₂₀N₃O₃: 398.1499, found: 398.1502.

2-(Benzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-6-fluorobenzamide 3ca. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.46$; colorless solid; mp 153-154 °C;

yield 69% (55 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.47 (s, 1H), 8.84 (d, J = 8.4 Hz, 1H), 8.13 (d, J = 8.0 Hz, 1H), 7.81-7.79 (m, 1H), 7.69-7.66 (m, 1H), 7.61-7.55 (m, 2H), 7.38-7.27 (m, 4H), 7.18-7.14 (m, 1H), 4.03 (t, J = 9.6 Hz, 2H), 3.71 (t, J = 9.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 162.9, 161.2 ($J_{C-F} = 247.9$ Hz), 160.8 ($J_{C-F} = 3.4$ Hz), 151.0, 141.9, 139.6, 132.6, 131.2 ($J_{C-F} = 8.6$ Hz), 129.1, 126.6 ($J_{C-F} = 4.3$ Hz), 126.1 ($J_{C-F} = 20.8$ Hz), 125.7, 125.4 ($J_{C-F} = 3.2$ Hz), 124.8, 123.2, 121.1, 120.6, 119.1 ($J_{C-F} = 22.1$ Hz), 114.2, 110.8, 66.2, 54.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -114.5; FT-IR (KBr) 2979, 1690, 1635, 1535, 1448, 1307, 1244, 945, 748 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₃H₁₇FN₃O₃: 402.1248, found: 402.1251.

2-(Benzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-5-methylbenzamide 3ea. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.50$; colorless solid; mp 182-183 °C; yield 74% (59 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.42 (s, 1H), 8.88 (d, J = 8.4 Hz, 1H), 8.17 (d, J = 8.0 Hz, 1H), 7.78-7.76 (m, 1H), 7.71-7.68 (m, 1H), 7.65 (s, 1H), 7.58-7.54 (m, 1H), 7.47-7.44 (m, 1H), 7.33-7.24 (m, 3H), 7.15-7.11 (m, 1H), 3.95 (t, J = 10 Hz, 2H), 3.68 (t, J = 9.2 Hz, 2H), 2.51 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.1, 164.3, 162.4, 151.0, 142.1, 142.0, 139.8, 137.8, 132.5, 131.1, 130.2, 129.8, 129.0, 125.1, 124.4, 122.7, 122.0, 120.6, 120.0, 113.9, 110.6, 66.0, 54.3, 21.6.; FT-IR (KBr) 2976, 1682, 1611, 1533, 1448, 1305, 1059, 749 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₄H₂₀N₃O₃: 398.1499, found: 398.1514.

2-(Benzo[d]oxazol-2-yl)-5-chloro-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)benzamide 3fa. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.46$; colorless solid; mp 186-187 °C; yield 76% (63 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.53 (s, 1H), 8.82 (d, J = 8.4 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 7.80-7.52 (m, 5H), 7.33-7.25 (m, 3H), 7.13 (t, J = 7.6 Hz, 1H), 3.99 (t, J = 9.6 Hz, 2H), 3.70 (t, J = 9.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 164.4, 161.2, 151.0, 141.8, 139.5, 139.1, 137.7, 132.6, 131.6, 130.5, 129.3, 129.1, 125.5, 124.7, 123.4, 123.0, 120.6, 120.3, 113.9, 110.7, 66.1, 54.3; FT-IR (KBr) 2981, 1681, 1611, 1531, 1448, 1304, 1058, 745 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₃H₁₇ClN₃O₃: 418.0953, found: 418.0962.

2-(Benzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-methylbenzamide 3ga. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.48$; colorless solid; mp 161-162 °C; yield 81% (64 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.35 (s, 1H), 8.79 (d, J = 8.4 Hz, 1H), 7.97 (s, 1H), 7.69-7.61 (m, 3H), 7.47-7.43 (m, 1H), 7.37 (d, J = 7.6 Hz, 1H), 7.25-7.16 (m, 3H), 7.02 (t, J = 7.2 Hz, 1H), 3.91 (t, J = 9.6 Hz, 2H), 3.63 (t, J = 9.6 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 167.9, 164.4, 162.6, 151.1, 141.9, 140.7, 139.9, 135.3, 132.6, 132.1, 130.9, 129.2, 129.0, 125.3, 125.0, 124.5, 122.7, 120.5, 120.1, 113.8, 110.7, 66.1, 54.4, 21.4; FT-IR (KBr) 3006, 2921, 1636, 1610, 1535, 1449, 1306, 1275, 1260, 749 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₄H₂₀N₃O₃: 398.1499, found: 398.1508.

2-(Benzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-fluorobenzamide 3ha. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.54$; colorless solid; mp 187-188 °C; yield 77% (62 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.48 (s, 1H), 8.85 (d, J = 8.4 Hz, 1H), 7.95-7.92 (m, 1H), 7.83-7.76 (m, 2H), 7.71-7.69 (m, 1H), 7.56-7.52 (m, 1H), 7.39-7.27 (m, 4H), 7.14-7.10 (m, 1H), 3.99 (t, J = 9.6 Hz, 2H), 3.70 (t, J = 9.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9 ($J_{C-F} = 241.4$ Hz), 162.0, 161.0, 151.1, 141.8, 139.8, 134.2 ($J_{C-F} = 3.6$ Hz), 132.7, 131.4 ($J_{C-F} = 8.6$ Hz), 129.1, 127.4 ($J_{C-F} = 8.8$ Hz), 125.8, 124.8, 122.9, 120.5, 120.4, 118.5 ($J_{C-F} = 21.4$ Hz), 117.3 ($J_{C-F} = 24.3$ Hz), 113.8, 110.8, 66.2, 54.4; FT-IR (KBr) 3006, 1691, 1635, 1535, 1449, 1275, 749 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₃H₁₇FN₃O₃: 402.1248, found: 402.1244.

3-(Benzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-[1,1'-biphenyl]-4-carboxamide 3ia. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane R_f = 0.40; colorless solid; mp 166-167 °C; yield 72% (66 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.53 (s, 1H), 8.89 (d, *J* = 8.4 Hz, 1H), 8.476-8.472 (m, 1H), 7.92-7.85 (m, 2H), 7.79-7.71 (m, 4H), 7.57-7.48 (m, 3H), 7.45-7.40 (m, 1H), 7.36-7.28 (m, 3H), 7.14-7.10 (m, 1H), 4.00 (t, *J* = 9.6 Hz, 2H), 3.74 (t, *J* = 9.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 164.4, 162.3, 151.2, 143.3, 142.0, 139.9, 139.3, 136.6, 132.6, 129.8, 129.7, 129.1, 129.0, 128.4, 127.4, 125.7, 125.4, 124.6, 122.8, 120.5, 120.3, 113.8, 110.7, 66.1, 54.4; FT-IR (KBr) 3031, 1681, 1635, 1534, 1448, 1305, 1060, 749 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₉H₂₂N₃O₃: 460.1656, found: 46.1657.

2-(benzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(trifluoromethyl)benza-

mide 3ja. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.46$; colorless solid; mp 139-140 °C; yield 74% (67 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.59 (s, 1H), 8.85 (d, J = 8.4 Hz, 1H), 8.55 (s, 1H), 7.94-7.87 (m, 2H), 7.80-7.78 (m, 1H), 7.73-7.70 (m, 1H), 7.58-7.54 (m, 1H), 7.37-7.29 (m, 3H), 7.17-7.13 (m, 1H), 4.02 (t, J = 9.6 Hz, 2H), 3.71 (t, J = 9.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 164.5, 160.7, 151.1, 141.8, 140.8, 139.6, 132.7, 132.4, 129.7, 129.2, 128.0 ($J_{C-F} = 3.4$ Hz), 127.4 ($J_{C-F} = 3.8$ Hz), 125.9, 125.8, 124.9, 123.2, 122.1, 120.67, 120.60, 114.0, 110.8, 66.2, 54.4; ¹⁹F NMR (377 MHz, CDCl₃) δ -63.0; FT-IR (KBr) 2978, 1687, 1636, 1536, 1449, 1309, 1278, 1131, 749 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₄H₁₇F₃N₃O₃: 452.1217, found: 452.1229.

2-(Benzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-formylbenzamide 3ka. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.42$; colorless solid; mp 165-166 °C; yield 68% (56 mg); ¹H NMR (600 MHz, CDCl₃) δ 12.61 (s, 1H), 10.18 (s, 1H), 8.84 (d, J = 8.4 Hz, 1H), 8.76 (s, 1H), 8.15-8.13 (m, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.727.70 (m, 1H), 7.56 (t, J = 8.4 Hz, 1H), 7.38-7.30 (m, 3H), 7.16-7.14 (m, 1H), 4.02 (t, J = 9.0 Hz, 2H), 3.70 (t, J = 9.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 190.8, 166.7, 164.5, 160.8, 151.1, 142.4, 141.8, 139.5, 137.4, 132.7, 132.2, 131.3, 129.9, 129.2, 126.0, 125.9, 124.9, 123.2, 120.6, 120.5, 113.9, 110.8, 66.2, 54.4; FT-IR (KBr) 2979, 1696, 1614, 1535, 1449, 1309, 1246, 1057, 751 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₄H₁₈N₃O₄: 412.1292, found: 412.1287.

2-(Benzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4,5-dimethylbenzamide 3Ia. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.54$; colorless solid; mp 182-183 °C; yield 71% (58 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.37 (s, 1H), 8.87 (d, J = 8.4 Hz, 1H), 8.02 (s, 1H), 7.74-7.72 (m, 1H), 7.69-7.67 (m, 1H), 7.60 (s, 1H), 7.55-7.50 (m, 1H), 7.30-7.21 (m, 3H), 7.11-7.07 (m, 1H), 3.91 (t, J = 9.6 Hz, 2H), 3.64 (t, J = 9.6 Hz, 2H), 2.40-2.39 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 164.3, 162.7, 151.1, 141.9, 140.8, 139.9, 139.4, 135.4, 132.5, 131.2, 130.5, 129.0, 125.0, 124.4, 122.6, 122.2, 120.5, 119.9, 113.8, 110.6, 66.0, 54.3, 19.9, 19.7; FT-IR (KBr) 2973, 1681, 1609, 1531, 1447, 1305, 1058, 748 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₅H₂₂N₃O₃: 412.1656, found: 412.1657.

2-(Benzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-5-fluoro-4-methylbenzamide 3ma. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.46$; colorless solid; mp 165-166

°C; yield 73% (60 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.44 (s, 1H), 8.76 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 7.2 Hz, 1H), 7.70-767 (m, 1H), 7.62-7.60 (m, 1H), 7.48-7.44 (m, 1H), 7.41 (d, J = 9.2 Hz, 1H), 7.25-7.16 (m, 3H), 7.08-7.02 (m, 1H), 3.91 (t, J = 9.6 Hz, 2H), 3.63 (t, J = 9.2 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 164.4, 164.0, 161.8, 161.5, 151.1, 141.9, 139.7, 137.6 (J_{C-F} = 7.5 Hz), 133.9, 133.8, 132.7, 129.1, 128.0, 127.8, 125.3, 124.6, 123.0, 120.9 (J_{C-F} = 3.8 Hz), 120.5, 120.1, 116.3 (J_{C-F} = 24.7 Hz), 113.9, 110.7, 66.1, 54.3, 14.6 (J_{C-F} = 3.0 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -111.5; FT-IR (KBr) 2987, 1683, 1635, 1533, 1448, 1312, 1059, 749 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₄H₁₉FN₃O₃: 416.1405, found: 416.1407.

3-(Benzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)thiophene-2-carboxamide

3na. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.40$; thick liquid; yield 67% (52 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.89 (s, 1H), 8.88 (d, J = 8.4 Hz, 1H), 7.81-7.78 (m, 1H), 7.77-7.73 (m, 2H), 7.57-7.52 (m, 2H), 7.38-7.29 (m, 3H), 7.16-7.12 (m, 1H), 3.86 (t, J = 9.6 Hz, 2H), 3.27 (t, J = 9.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 160.4, 158.9, 150.7, 142.1, 141.7, 139.4, 132.6, 129.7, 129.3, 128.8, 126.8, 125.6, 124.8, 123.1, 120.6, 120.2, 114.2, 110.8, 66.2, 54.1; FT-IR (neat) 2922, 1637, 1614, 1538, 1450, 1275, 1260, 749 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₁H₁₆N₃O₃S: 390.0907, found: 390.0909.

2-(Benzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-1-naphthamide3oa.Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.42$; colorless solid; mp 188-189 °C;

yield 65% (56 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.45 (s, 1H), 9.01 (d, *J* = 8.4 Hz, 1H), 8.44 (d, *J* = 8.4 Hz, 1H), 8.31-8.29 (m, 1H), 8.09 (d, *J* = 8.8 Hz, 1H), 7.98-7.96 (m, 1H), 7.82-7.80 (m, 1H), 7.73-7.72 (m, 1H), 7.69-7.63 (m, 3H), 7.35-7.28 (m, 3H), 7.21 (t, *J* = 7.6 Hz, 1H), 4.12-4.07 (m, 1H), 3.83-3.78 (m, 1H), 3.58-3.51 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 164.1, 162.2, 151.1, 142.0, 139.7, 136.1, 134.8, 132.5, 130.6, 129.9, 129.1, 128.25, 128.22, 127.9, 126.8, 125.4, 125.2, 124.6, 123.1, 121.4, 121.1, 120.3, 114.4, 110.7, 66.0, 54.3; FT-IR (KBr) 2987, 1684, 1636, 1531, 1448, 1300, 1260, 1061, 750 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₇H₂₀N₃O₃: 434.1499, found: 434.1499.

2-(Benzo[d]oxazol-2-yl)-N-(4-chloro-2-(4,5-dihydrooxazol-2-yl)phenyl)-4-methylbenzamide 3pa. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.38$; colorless solid; mp 179-180 °C; yield 70% (60 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.49 (s, 1H), 8.967-8.962 (m, 1H), 8.05-8.04 (m, 1H), 7.72-7.66 (m, 3H), 7.46-7.44 (m, 1H), 7.36-7.27 (m, 3H), 7.09-7.06 (m, 1H), 3.98 (t, *J* = 10 Hz, 2H), 3.70 (t, *J* = 9.2 Hz, 2H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 163.8, 162.4, 151.1, 141.9, 141.0, 140.8, 138.6, 134.8, 132.2, 130.9, 130.0, 129.3, 125.4, 125.0, 124.6, 122.9, 120.4, 120.2, 112.0, 110.7, 66.2, 54.4, 21.4; FT-IR (KBr) 2988, 1685, 1637, 1576, 1523, 1408, 1275, 1260, 1059, 749 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₄H₁₉ClN₃O₃: 432.1109, found: 432.1115.

2-(Benzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)-4-methylphenyl)-4-methylbenzamide 3qa. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.42$; colorless solid; mp 161-162 °C; yield 69% (57 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.45 (s, 1H), 8.72 (s, 1H), 8.06 (s, 1H), 7.75-7.72 (m, 2H), 7.66 (d, J = 8.0 Hz, 1H), 7.47-7.44 (m, 1H), 7.3-7.26 (m, 3H), 6.95-6.92 (m, 1H), 3.96 (t, J = 9.6 Hz, 2H), 3.69 (t, J = 9.6 Hz, 2H), 2.52 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 164.4, 162.6, 151.1, 143.3, 141.9, 140.7, 139.8, 135.3, 132.1, 130.9, 129.2, 128.9, 125.2, 124.9, 124.5, 123.6, 120.9, 120.1, 111.2, 110.7, 65.9, 54.3, 22.1, 21.4; FT-IR (KBr) 2981, 1680, 1632, 1577, 1535, 1451, 1297, 1242, 1056, 747 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₅H₂₂N₃O₃: 412.1656, found: 412.1657.

2-(5-Chlorobenzo[d]oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-methylbenzamide 3gb. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane R_f = 0.44; colorless solid; mp 164-165 °C; yield 79% (68 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.50 (s, 1H), 8.85 (d, *J* = 8.4 Hz, 1H), 7.99 (s, 1H), 7.79-7.77 (m, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.68-7.67 (m, 1H), 7.53-7.49 (m, 1H), 7.45-7.43 (m, 1H), 7.26-7.21 (m, 2H), 7.12-7.08 (m, 1H), 4.08 (t, *J* = 9.6 Hz, 2H), 3.77 (t, *J* = 9.6 Hz, 2H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 164.5, 164.0, 149.7, 143.0, 140.8, 139.9, 135.3, 132.6, 132.4, 131.0, 129.9, 129.1, 129.0, 125.5, 124.7, 122.7, 120.2, 120.0, 113.6, 111.4,

66.1, 54.4, 21.3; FT-IR (KBr) 2987, 1677, 1609, 1531, 1446, 1301, 1258, 1056, 751 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₄H₁₉ClN₃O₃: 432.1109, found: 432.1111.

N-(2-(4,5-Dihydrooxazol-2-yl)phenyl)-4-methyl-2-(5-methylbenzo[d]oxazol-2-yl)benzamide 3gc. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.52$; colorless solid; mp 156-157 °C; yield 77% (63 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.42 (s, 1H), 8.86 (d, J = 8.4 Hz, 1H), 8.02 (s, 1H), 7.76-7.74 (m, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.53-7.47 (m, 2H), 7.42-7.40 (m, 1H), 7.18 (d, J = 8.4 Hz, 1H), 7.11-7.04 (m, 2H), 3.98 (t, J = 9.6 Hz, 2H), 3.71 (t, J = 9.6 Hz, 2H), 2.48 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 164.3, 162.6, 149.4, 142.1, 140.6, 139.9, 135.2, 134.3, 132.5, 131.9, 130.8, 129.1, 129.0, 126.3, 125.1, 122.6, 120.4, 119.9, 113.7, 110.0, 66.0, 54.4, 21.5, 21.3; FT-IR (KBr) 2984, 1682, 1609, 1531, 1446, 1301, 1261, 1057, 945, 765 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₅H₂₂N₃O₃: 412.1656, found: 412.1652.

N-(2-(4,5-Dihydrooxazol-2-yl)phenyl)-4-methyl-2-(5-nitrobenzo[d]oxazol-2-yl)benzamide 3gd. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.46$; yellow solid; mp 191-192 °C; yield 71% (63 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.65 (s, 1H), 8.84 (d, J = 8.8 Hz, 1H), 8.60-8.59 (m, 1H), 8.26-8.23 (m, 1H), 8.00 (s, 1H), 7.83-7.81 (m, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.56-7.46 (m, 3H), 7.15-7.11 (m, 1H), 4.18 (t, J = 9.6 Hz, 2H), 3.87 (t, J = 9.6 Hz, 2H), 2.52 (s,

3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 165.9, 164.7, 154.6, 145.4, 142.3, 141.1, 139.9, 135.5, 132.9, 132.8, 131.4, 129.3, 128.9, 124.5, 122.9, 121.3, 120.1, 116.5, 113.6, 110.9, 66.2, 54.5, 21.4; FT-IR (KBr) 3108, 2984, 1680, 1610, 1525, 1305, 1058, 750 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₄H₁₉N₄O₅: 443.1350, found: 443.1337.

N-(2-(4,5-Dihydrooxazol-2-yl)phenyl)-4-methyl-2-(6-nitrobenzo[d]oxazol-2-yl)benzamide

3ge. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.48$; yellow solid; mp 188-189 °C; yield 73% (64 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.69 (s, 1H), 8.84 (d, J = 8.4 Hz, 1H), 8.31-8.26 (m, 2H), 8.00 (s, 1H), 7.84-7.75 (m, 3H), 7.55-7.50 (m, 2H), 7.14 (t, J = 7.6 Hz, 1H), 4.20 (t, J = 9.6 Hz, 2H), 3.89 (t, J = 9.6 Hz, 2H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 167.1, 164.8, 150.2, 147.2, 145.3, 141.1, 139.9, 135.8, 133.1, 132.8, 131.5, 129.3, 128.9, 124.6, 123.0, 120.7, 120.2, 120.1, 113.6, 107.4, 66.2 54.6, 21.4; FT-IR (KBr) 2992, 1682, 1583, 1523, 1447, 1305, 1274, 1059, 764 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₄H₁₉N₄O₅: 443.1350, found: 443.1336.

N-(2-(4,5-Dihydrooxazol-2-yl)phenyl)-4-methyl-2-(5-(2-nitrophenyl)oxazol-2-yl)benzamide 3gg. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.42$; yellow solid; mp 199-200 °C; yield 70% (65 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.54 (s, 1H), 8.91 (d, J = 8.4 Hz, 1H), 7.96

(s, 1H), 7.72-7.69 (m, 2H), 7.64 (d, J = 7.6 Hz, 1H), 7.52-7.44 (m, 3H), 7.40-7.37 (m, 1H), 7.33-7.29 (m, 1H), 7.23-7.19 (m, 1H), 7.06-7.02 (m, 1H), 4.24 (t, J = 9.6 Hz, 2H), 3.85 (t, J = 9.6 Hz, 2H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 164.4, 161.4, 146.7, 146.0, 140.6, 140.1, 134.4, 132.4, 132.4, 131.7, 129.9, 129.2, 128.8, 128.5, 124.2, 124.1, 122.7, 121.3, 120.2, 113.6, 66.2, 54.5, 21.4; FT-IR (KBr) 2987, 1681, 1530, 1306, 1275, 1261, 1057, 749 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₆H₂₁N₄O₅: 469.1506, found: 469.1508.

N-(2-(4,5-Dihydrooxazol-2-yl)phenyl)-4-methyl-2-(5-(3-nitrophenyl)oxazol-2-yl)benzamide 3gh. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.44$; yellow solid; mp 194-195 °C; yield 74% (69 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.56 (s, 1H), 8.95 (d, J = 8.4 Hz, 1H), 8.29-8.28 (m, 1H), 8.05-8.02 (m, 1H), 7.986-7.980 (m, 1H), 7.72-7.70 (m, 1H), 7.67-7.61 (m, 2H), 7.54-7.49 (m, 2H), 7.41-7.39 (m, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.08-7.03 (m, 1H), 4.22 (t, J = 9.6 Hz, 2H), 3.88 (t, J = 9.6 Hz, 2H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 164.5, 161.3, 149.6, 148.6, 140.6, 140.0, 134.5, 132.7, 131.7, 129.9, 129.8, 129.5, 129.2, 128.8, 125.1, 124.3, 122.79, 122.73, 120.2, 118.7, 113.5, 66.2, 54.5, 21.4; FT-IR (KBr) 3009, 1681, 1526, 1348, 1305, 1261, 1060, 750 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₆H₂₁N₄O₅: 469.1506, found: 469.1507.

N-(2-(4,5-Dihydrooxazol-2-yl)phenyl)-4-methyl-2-(5-(3-(trifluoromethyl)phenyl)oxazol-2-yl)benzamide 3gi. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane R_f = 0.48; colorless solid; mp 157-158 °C; yield 72% (71 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.53 (s, 1H), 8.95 (d, *J* = 8.4 Hz, 1H), 7.97 (s, 1H), 7.75-7.70 (m, 2H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.55-7.49 (m, 2H), 7.45-7.43 (m, 2H), 7.40-7.37 (m, 1H), 7.31-7.27 (m, 1H), 7.08-7.04 (m, 1H), 4.21 (t, *J* = 10.0 Hz, 2H), 3.87 (t, *J* = 9.2 Hz, 2H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 164.6, 161.0, 150.6, 140.6, 140.1, 134.6, 132.7, 131.9 (*J*_{C-F} = 32.6 Hz), 131.4, 129.8, 129.4, 129.2, 128.8, 128.5, 127.9 (*J*_{C-F} = 270.6 Hz), 127.2, 124.9 (*J*_{C-F} = 3.8 Hz), 124.6, 124.4, 122.7, 120.9 (*J*_{C-F} = 3.9 Hz), 120.1, 113.5, 66.2, 54.6, 21.4; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.9; FT-IR (KBr) 2984, 1682, 1609, 1532, 1447, 1304, 1262, 1124, 1060, 751 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₇H₂₁F₃N₃O₃: 492.1530, found: 492.1533.

2-(5-(4-Chlorophenyl)oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-methylbenzamide 3gj. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.54$; colorless solid; mp 191-192 °C; yield 78% (71 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.51 (s, 1H), 8.95 (d, J = 8.4 Hz, 1H), 7.96 (s, 1H), 7.76-7.73 (m, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.56-7.52 (m, 1H), 7.38-7.35 (m, 2H), 7.32-7.29 (m, 2H), 7.16-7.08 (m, 3H), 4.21 (t, J = 9.6 Hz, 2H), 3.86 (t, J = 9.6 Hz, 2H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 164.5, 160.5, 151.0, 140.4, 140.1, 134.4, 134.1, 132.6, 131.3, 129.6, 129.3, 129.0, 128.7, 126.1, 125.3, 124.6, 123.5, 122.7, 120.2, 113.6, 66.2, 54.6, 21.4; FT-IR (KBr) 2992, 1682, 1635, 1533, 1447, 1305, 1261, 1057, 750 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₆H₂₁ ClN₃O₃: 458.1266, found: 458.1257.

N-(2-(4,5-Dihydrooxazol-2-yl)phenyl)-2-(5-(4-fluorophenyl)oxazol-2-yl)-4-methylbenzamide 3gk. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.52$; colorless solid; mp 116-117 °C; yield 73% (64 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.52 (s, 1H), 8.95 (d, J = 8.4 Hz, 1H), 7.96-7.95 (m, 1H), 7.74-7.72 (m, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.55-7.50 (m, 1H), 7.37-7.30 (m, 3H), 7.30 (s, 1H), 7.10-7.06 (m, 1H), 6.86 (t, J = 8.8 Hz, 2H), 4.18 (t, J = 9.6 Hz, 2H), 3.84 (t, J = 9.6 Hz, 2H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 164.4, 163.8 ($J_{C-F} = 247.2$ Hz), 160.2, 151.1, 140.4, 140.1, 134.3, 132.6, 131.2, 129.5, 129.2, 128.7, 126.0, 125.9, 124.6, 123.9 ($J_{C-F} = 3.4$ Hz), 122.7, 122.7, 122.7, 120.2, 115.9 ($J_{C-F} = 21.9$ Hz), 113.6, 66.2, 54.5, 21.4; ¹⁹F NMR (377 MHz, CDCl₃) δ -112.3; FT-IR (KBr) 2987, 1679, 1609, 1497, 1303, 1261, 1232, 1056, 750 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₆H₂₁ FN₃O₃: 442.1561, found: 442.1564.

2-(5-([1,1'-Biphenyl]-4-yl)oxazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-methylbenzamide 3gl. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.40$; thick liquid; yield 69% (69 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.55 (s, 1H), 9.00 (d, J = 8.0 Hz, 1H), 7.99 (s, 1H), 7.75-7.72 (m, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.57-7.53 (m, 3H), 7.47-7.40 (m, 7H), 7.38-7.34 (m, 2H), 7.10-7.06 (m, 1H), 4.18 (t, J = 9.6 Hz, 2H), 3.85 (t, J = 9.6 Hz, 2H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 164.4, 160.2, 151.7, 140.9, 140.4, 140.3, 140.2, 134.3, 132.5, 131.1, 129.5, 129.2, 128.9, 128.7, 127.6, 127.4, 127.0, 126.5, 124.6, 124.5, 123.2, 122.6, 120.2, 113.6, 66.2, 54.5, 21.4; FT-IR (neat) 2926, 1679, 1583, 1531, 1446, 1303, 1261, 1056, 750 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₃₂H₂₆N₃O₃: 500.1969, found: 500.1966.

N-(2-(4,5-Dihydrooxazol-2-yl)phenyl)-4-methyl-2-(5-(4-nitrophenyl)oxazol-2-yl)benzamide 3gm. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.42$; yellow solid; mp 196-197 °C; yield 76% (71 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.58 (s, 1H), 8.95 (d, J = 8.4 Hz, 1H), 8.03-7.98 (m, 3H), 7.75-7.73 (M, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.58-7.54 (m, 2H), 7.51-7.49 (m, 2H), 7.42-7.40 (m, 1H), 7.13-7.09 (m, 1H), 4.22 (t, J = 9.6 Hz, 2H), 3.87 (t, J = 9.6 Hz, 2H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 164.5, 162.0, 149.7, 147.0, 140.6, 140.0, 134.6, 133.3, 132.7, 131.8, 129.9, 129.3, 128.7, 126.4, 125.5, 124.7, 124.4, 124.3, 124.2, 123.0, 120.1, 113.6, 66.2, 54.5, 21.4; FT-IR (KBr) 2987, 1678, 1606, 1516, 1335, 1261, 1058, 750 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₆H₂₁N₄O₅: 469.1506, found: 469.1509.

2-(Benzo[d]thiazol-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-methylbenzamide 3gn. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.50$; thick liquid; yield 71% (59 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.51 (s, 1H), 8.83 (d, J = 8.8 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.84-7.68 (m, 4H), 7.50-7.32 (m, 4H), 7.08 (t, J = 7.6 Hz, 1H), 4.12 (t, J = 9.6 Hz, 2H), 3.87 (t, J = 9.2 Hz, 2H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 166.7, 164.3, 153.6, 140.7, 140.0, 136.2, 135.0, 132.5, 132.1, 131.3, 131.1, 129.0, 128.9, 126.1, 125.2, 123.5, 122.6, 121.5, 120.3, 113.7, 66.1, 54.6, 21.4; FT-IR (neat) 3006, 1680, 1636, 1534, 1447, 1305, 1275, 1261, 1057, 750 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₄H₂₀N₃O₂S: 414.1271, found: 414.1274.

N-(2-(4,5-Dihydrooxazol-2-yl)phenyl)-4-methyl-2-(1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)benzamide 3go. Analytical TLC on silica gel, 1:1 ethyl acetate/hexane R_f = 0.58; colorless solid; mp >200 °C; yield 69% (65 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.92 (s, 1H), 8.66 (d, J = 8.8 Hz, 1H), 7.92-7.86 (m, 2H), 7.47-7.41 (m, 2H), 7.35-7.34 (m, 1H), 7.12-7.08 (m, 1H), 4.40 (t, J = 9.6 Hz, 2H), 4.13 (t, J = 9.6 Hz, 2H), 3.79 (s, 3H), 3.56 (s, 3H), 3.42 (s, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 165.0, 155.7, 152.3, 151.9, 148.2, 141.9, 139.8, 134.5, 132.8, 132.6, 131.3, 129.4, 128.9, 128.2, 122.9, 119.8, 113.6, 108.1, 66.4, 54.7, 33.0, 29.9, 28.0, 21.4; FT-IR (KBr) 3005, 1702, 1659, 1541, 1275, 1260, 1063, 749 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₅H₂₅N₆O₄: 473.1932, found: 473.1948.

N-(2-(4,5-Dihydrooxazol-2-yl)phenyl)-2-(3,7-dimethyl-2,6-dioxo-1-(5-oxohexyl)-2,3,6,7tetrahydro-1H-purin-8-yl)-4-methylbenzamide 3gp. Analytical TLC on silica gel, 1:1 ethyl acetate/hexane $R_f = 0.54$; colorless solid; mp 195-196 °C; yield 67% (74 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.91 (s, 1H), 8.66 (d, *J* = 8.4 Hz, 1H), 7.92-7.86 (m, 2H), 7.46-7.41 (m, 2H), 7.33 (s, 1H), 7.09 (t, *J* = 8.0 Hz, 1H), 4.40 (t, *J* = 9.2 Hz, 2H), 4.13 (t, *J* = 9.2 Hz, 2H), 4.03-4.00 (m, 2H),

3.77 (s, 3H), 3.53 (s, 3H), 2.52-2.47 (m, 5H), 2.14 (s, 3H), 1.68-1.67 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 208.9, 165.7, 165.0, 155.5, 152.40, 151.6, 148.26, 141.9, 139.8, 134.4, 132.8, 132.6, 131.3, 129.4, 128.9, 128.1, 122.9, 119.9, 113.6, 108.1, 66.4, 54.7, 43.4, 40.9, 33.0, 30.0, 29.8, 27.6, 21.4, 21.2; FT-IR (KBr) 2955, 1700, 1656, 1541, 1308, 1062, 751 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₃₀H₃₃N₆O₅: 557.2507, found: 557.2510.

2-(7-((1,3-Dioxolan-2-yl)methyl)-1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-methylbenzamide 3gq. Analytical TLC on silica gel, 1:1 ethyl acetate/hexane $R_f = 0.42$; colorless solid; mp 189-190 °C; yield 61% (66 mg); ¹H NMR (400 MHz, CDCl₃) δ 12.85 (s, 1H), 8.63 (d, J = 8.4 Hz, 1H), 7.90-7.85 (m, 2H), 7.45-7.40 (m, 3H), 7.10-7.06 (m, 1H), 5.33 (t, J = 4.8 Hz, 1H), 4.40 (t, J = 9.6 Hz, 2H), 4.30 (d, J = 5.2 Hz, 2H), 4.13 (t, J = 9.6 Hz, 2H), 3.80 (s, 4H), 3.54 (s, 3H), 3.42 (s, 3H), 2.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 165.0, 155.5, 152.6, 151.9, 148.3, 141.4, 139.9, 134.5, 133.4, 132.7, 131.2, 129.3, 129.1, 128.0, 122.8, 120.0, 113.7, 107.8, 101.8, 66.4, 64.9, 54.8, 48.2, 29.9, 28.1, 21.4; FT-IR (KBr) 2953, 1702, 1659, 1541, 1308, 1060, 750 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₈H₂₉N₆O₆: 545.2143, found: 545.2150.

tert-Butyl (2-(benzo[d]oxazol-2-yl)-4-methylbenzoyl)(2-(4,5-dihydrooxazol-2-yl)phenyl)carbamate 4. Analytical TLC on silica gel, 1:1 ethyl acetate/hexane $R_f = 0.44$; colorless solid; mp >200 °C; yield 71% (35 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.08-8.06 (m, 2H), 7.84-7.80 (m, 2H), 7.67-7.63 (m, 1H), 7.61-7.58 (m, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.49-7.45 (m, 1H), 7.42-7.36 (m, 3H), 4.43-4.32 (m, 2H), 4.14-4.00 (m, 2H), 2.49 (s, 3H), 1.01 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 162.5, 161.9, 151.4, 150.7, 142.2, 138.8, 138.1, 136.8, 131.86, 131.81, 130.6, 129.8, 128.9, 128.2, 127.0, 125.9, 125.3, 124.7, 123.1, 120.3, 110.6, 82.8, 67.0, 55.3, 27.4, 21.4; FT-IR (KBr) 2925, 1746, 1677, 1452, 1365, 1249, 1156, 1049, 1025, 748 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₉H₂₈N₃O₅: 498.2023, found: 498.2035.

2-(Benzo[d]oxazol-2-yl)-4-methylbenzoic acid 5. Analytical TLC on silica gel, 1:1 ethyl acetate/hexane $R_f = 0.52$; colorless solid; mp 155-156 °C; yield 63% (11 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 8.4 Hz, 1H), 8.18 (s, 1H), 7.83-7.80 (m, 1H), 7.68-7.66 (m, 1H), 7.52-7.46 (m, 3H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.8, 162.6, 149.9, 143.3, 138.6, 135.7, 133.2, 131.0, 128.8, 126.9, 125.9, 123.9, 119.8, 111.2, 21.5; FT-IR (KBr) 2989, 1716, 1455, 1275, 1260, 749 cm⁻¹; HRMS (ESI) *m/z* [M-H]⁻ calcd for C₁₅H₁₀NO₃: 252.0666, found: 252.0663.

2-(*m***-Tolyl)benzo[d]oxazole 6**. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.58$; brown solid; mp 72-73 °C; yield 57% (12 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.19-8.17 (m, 1H), 7.83-7.79 (m, 1H), 7.62-7.57 (m, 1H), 7.44-7.33 (m, 5H), 2.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 150.4, 142.2, 138.9, 131.9, 131.0, 130.0, 126.3, 126.1, 125.1, 124.5, 120.2, 110.6, 22.3; FT-IR (KBr) 2923, 1615, 1549, 1452, 1241, 1029, 472 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₁₄H₁₂NO: 210.0913, found: 210.0931.

¹H ,¹³C and ¹⁹F NMR Spectra

TS-PR4-37-1H

TS-PR4-36-1H

S33

TS-PR4-11-1H

-12.472

8.8.89 8.8.87 8.8.266 8.8.266 8.8.266 8.8.246

TS-PR4-1-1H

TS-PR4-2-1H

-12.466 (88.48) (8.82)

TS-PR4-2-19F

											<u>'</u>										
()	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (ppm)	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200

TS-PR4-9-1H

TS-PR4-6-1H

---0.000

L2-536 B 8.874 B 8.874 B 8.874 B 8.874 B 8.874 B 8.874 B 8.877 C 12.536 B 8.877 C 12.536 B 8.877 C 12.536 C 12.536 C 12.537 C 12.537

3.717

----62.951

TS-PR4-8-19F

TS-PR4-14-19F

TS-PR4-15-1H

12.450 9.018 8.8397 8.8316 8.8316 8.8316 8.8330 8.8330 8.8330 8.8330 8.8330 8.8330 8.8330 8.8330 7.855 7.7395 7.739 7.739 7.733 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.734 7.744 7.744 7.744 7.744 7.744 7.744 7.744 7.744 7.

TS-PR4-25-1H

TS-PR4-32-1H

12.567 8.8287 8.8287 8.8287 8.8287 8.8287 8.8287 8.8287 8.8287 8.8048 8.8048 8.8048 8.8048 8.8048 8.8048 8.8021 8.8030 8.8030 8.8030 8.8030 8.8030 8.8030 7.7033 7.777 7.651 7.707 7.772 7.772 7.7733 7.777 7.651 7.7733 7.777 7.651 7.7733 7.7734 7.7734 7.7734 7.7734 7.7734 7.7734 7.7734 7.7734 7.7734 7.77

TS-PR4-27-1H

TS-PR4-27-19F

TS-PR4-28-1H

TS-PR4-30-19F

8,900 8,900 7,738 7,777 7,773 7,757 7,757 7,758 7,759 7,759 7,759 7,759 7,759 7,759 7,759 7,759 7,759 7,740

S73

TS-PR4-90-1H

TS-PR4-90-D-1H

2.119 2.129

8.096 8.096 9.006 9.006

TS-PR4-90-87%D-1H

TS-PR4-90-KIE-1H

8,103 8,103 1,738 1,

