Asymmetric inverse-electron-demand 1,3-dipolar cycloadditions of cyclopentadienones and thiophene-1,1-dioxide with C,N-cyclic azomethine imines

Chen Chen,^a Xing-Xing Yang,^a Zhi Zhao,^a Bo Han,^{*c} Wei Du,^{*a} and Ying-Chun Chen^{*a,b} ^a Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry and Sichuan province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. Fax: +86 28 85502609; E-mail: duweiyb@scu.edu.cn; ycchen@scu.edu.cn. ^b College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China. ^c State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Email: hanbo@cdutcm.edu.cn.

Supplementary Information

1. General methods	S2
2. Synthesis of new substrates and ligands	
3. Condition optimisation for asymmetric IED 1,3-DC of cyclopentadi	enone/thiophene-1,1-
dioxide with C,N-azomethine imine 2a	S/
4. Procedure for synthesis of cycloadducts 3	S8
5. Procedure for synthesis of cycloadducts 4	
6. Procedure for synthesis of cycloadducts 6	
7. Asymmetric reaction on a 1.0 mmol scale	S30
8. Synthetic transformations	S30
9. Control experiments	
10. Exploration of other substrates	S33
11. Crystal data and structural refinement	S34
12. NMR, HRMS spectra and HPLC chromatograms	S41

1. General methods

Unless otherwise noted, the reactions were carried out under ambient atmosphere; when the reactions required heating, the heat source was oil bath. ¹H NMR (400 or 600 MHz), ¹³C NMR (100 or 150 MHz), ¹⁹F NMR (376 MHz) and ³¹P NMR (162 MHz) were recorded on Varian INOVA-400/54, Agilent DD2-600/54 or Bruker AscendTM 400 instruments (Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution, unless otherwise noted). The following abbreviations were used to explain the multiplicities: s =singlet, d = doublet, t = triplet, q = quartet, dd = double doublet, ddd = double doublet, dt = doubletdouble triplet, m = multiplet and coupling constants (J) are reported in Hertz (Hz). High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2 or Agilent G1969-85000 or Shimadzu LCMS-IT-TOF using a time-of-flight mass spectrometer equipped with electrospray ionization (ESI) source. X-ray diffraction experiments were carried out on an Agilent Gemini or Bruker D8 VENTURE and the data obtained were deposited at the Cambridge Crystallographic Data Centre. In each case, diastereomeric ratio was determined by ¹H NMR analysis and enantiomeric excess was determined by HPLC analysis (Agilent Technologies: 1220 Infinity II, 1200 Series, 1260 Infinity) on a chiral column in comparison with authentic racemate, using a Daicel Chiralpak AD-H Column (250 \times 4.6 mm), Daicel Chiralpak IA Column (250 \times 4.6 mm). UV detection was monitored at 254 nm. Optical rotation was measured in CHCl₃ solution at 25 °C on Perkin-Elmer PL341. Column chromatography was performed on silica gel (300-400 mesh) eluting with ethyl acetate (EtOAc), acetone, dichloromethane (DCM) and petroleum ether. TLC was performed on glass-backed silica plates. UV light, I₂, and solution of potassium permanganate were used to visualise products or starting materials. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether (60-90 °C) was distilled. THF was freshly distilled from sodium/benzophenone before use. CHCl₃ was washed with water and distilled from anhydrous CaCl₂. Dichloromethane (DCM) was treated with 5% Na₂CO₃ aqueous solution followed by water. Toluene was freshly distilled from CaH₂ under an atmosphere of dry argon. Experiments involving moisture and/or air sensitive components were performed under a positive pressure of argon in oven-dried glassware equipped with a rubber septum inlet. Dried solvents and liquid reagents were transferred by oven-dried syringe. The γ -functionalised 2-cyclopentenones 1,¹ 2a-2u,² and chiral ligands L4–L9,^{1b,3} L11^{1b,3} were prepared according to the literature procedures. Compounds 1a,^{1a} 1b–1f,^{1b} 2a–2s,^{2a,2b} 2t–2u,^{2c,2d} L4–L5,^{1b} L7,^{1b} and L11^{1b} are known compounds and the spectroscopic data were consistent with the literature report.

Data	Instrument		
¹ H NMR	Varian INOVA-400/54		
and	or Agilent DD2-600/54		
¹³ C NMR	or Bruker Ascend TM 400		
	Waters SYNAPT G2		
High resolution mass spectra	or Agilent G1969-85000		
(HRMS)	(ESI source)		
XZ 1:00 4:	Agilent Gemini diffractometer		
X-ray diffraction	or Bruker APEX-II CCD		
	Agilent 1220 Infinity II, 1200 Series, 1260 Infinity		
HPLC analysis	Daicel Chiralpak columns (AD-H, IA, IE, IF)		
Optical rotation	Perkin-Elmer PL341		
	WRX-4 melting-point apparatus (Shanghai YiCe Apparatus &		
Melting point	Equiments Co., Ltd) with capillary		

Table S1.	Summary	of	data	and	instruments
-----------	---------	----	------	-----	-------------

- (a) K. Ulbrich, P. Kreitmeier, T. Vilaivan and O. Reiser, J. Org. Chem., 2013, 78, 4202; (b) X. X. Yang, R.-J. Yan, G.-Y. Ran, C. Chen, J.-F. Yue, X. Yan, Q. Ouyang, W. Du and Y.-C. Chen,
 Angew. Chem., Int. Ed., 2021, 60, 26762.
- (a) T. Hashimoto, Y. Maeda, M. Omote, H. Nakatsu and K. Maruoka, J. Am. Chem. Soc. 2010, 132, 4076; (b) L. Chen, G.-M. Yang, J. Wang, Q.-F. Jia, J. Wei and Z.-Y. Du, RSC Adv., 2015, 5, 76696; (c) T. Wang, A.-L. Shao, H.-Y. Feng, S.-W. Yang, M. Gao, J. Tian and A.-W. Lei, *Tetrahedron*, 2015, 71, 4473; (d) T. Wang, J.-H. Luo, C.-H. Gu, R. Li, X.-L. Yu, D.-H. Tang and J. Li, *Faming Zhuanli Shenqing*, CN 103172575, 2013.
- 3 G. S. Mahadik and S. R. Hitchcock, *Tetrahedron: Asymmetry*, 2010, 21, 33.

2. Synthesis of new substrates and ligands

2.1 Preparation of tert-butyl (1,1-dioxido-2,3-dihydrothiophen-3-yl) carbonate 5

To a stirred solution of 2,5-dihydrothiophene 1,1-dioxide (1.18 g, 10.0 mmol, 1.0 equiv) in H₂O (250 mL, 0.04 M) was added Br₂ (0.650 mL, 12.0 mmol, 1.2 equiv) at room temperature. The resultant mixture was sealed and stirred at 5 °C for 3 days. The reaction was quenched with aqueous Na₂S₂O₃. Then the mixture was filtered and the solid was washed by water and EtOH. The solid compound **S1** was dried and used without further purification.

To a solution of 3-bromo-4-hydroxytetrahydrothiophene 1,1-dioxide **S1** (0.779 g, 3.64 mmol, 3.6 equiv) in DCM (36 mL, 0.1 M) was added Boc₂O (0.9 mL, 1 mmol, 1.1 equiv) followed by Et₃N (1.5 mL, 3.0 mmol, 3.0 equiv) and DMAP (89.0 mg, 0.202 mmol, 0.2 equiv). The resultant mixture was stirred at room temperature for 30 min, and was concentrated under reduced pressure. The residue was directly purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford **5**: 704 mg (3.01 mmol) as a white solid, 83% yield; mp = 45–47 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 6.84–6.81 (m, 1H), 6.79–6.75 (m, 1H), 5.81–5.76 (m, 1H), 3.74 (dd, *J* = 14.1, 7.7 Hz, 1H), 3.27 (dd, *J* = 14.1, 3.8 Hz, 1H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 152.2, 136.4, 135.7, 84.3, 71.2, 54.2, 27.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₉H₁₄O₅SNa⁺ 257.0454; Found 257.0456.

2.2 Preparation of new phosphine ligands

Synthesis of C₁-symmetric monophosphine ligand (1S,2S)-L6

C₁-symmetric monophosphine ligand (1*S*,2*S*)-**L6** was synthesized from (1*S*,2*S*)-**S2** according to the reported procedure.¹

To an oven dried round-bottom flask equipped with a stir bar, (1S,2S)-**S2** (0.709 g, 3.33 mmol, 1.0 equiv) was dissolved in dry DCM (35 mL, 0.1 M), and Et₃N (0.6 mL, 4 mmol, 1.2 equiv) were added

at 0 °C. NsCl (0.811 g, 3.66 mmol, 1.1 equiv) was added via syringe and the mixture was stirred for 2 h. After completion monitored by TLC, the reaction was quenched by water and extracted with DCM. The combined organic phases were dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (MeOH/DCM = 1/200) to give (1*S*,2*S*)-**S3**: 1.20 g (3.02 mmol) as a white solid, 90 % yield.

To an oven-dried flask were added (1*S*,2*S*)-**S3** (1.2 g, 3.0 mmol, 1.0 equiv), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI, 0.69 g, 3.6 mmol, 1.2 equiv), Et₃N (0.63 mL, 4.5 mmol, 1.5 equiv) and DMAP (73 mg, 0.60 mmol, 0.2 equiv) in dry DCM (60 mL, 0.05 M) under Ar atmosphere. The solution was stirred for 15 min, and **S4** (1.0 g, 3.3 mmol, 1.1 equiv) was added, and stirred overnight. The solvent was removed in vacuo and the mixture was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give (1*S*,2*S*)-**L6**: 808 mg (1.18 mmol) as a yellow solid, 39 % yield; mp 90–92 °C; $[\alpha]_D^{25} = +30.0 (c = 0.12 \text{ in CHCl}_3)$; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.09–8.03 (m, 1H), 7.91 (d, *J* = 8.8 Hz, 2H), 7.61–7.55 (m, 2H), 7.46–7.35 (m, 8H), 7.35–7.26 (m, 4H), 7.15–7.07 (m, 2H), 7.06–6.97 (m, 7H), 6.94–6.88 (m, 1H), 6.80 (d, *J* = 7.6 Hz, 2H), 6.16 (d, *J* = 6.2 Hz, 1H), 4.81 (t, *J* = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.7 (d, *J* = 2.3 Hz), 149.2, 146.5, 136.51, 136.50 (d, *J* = 14.1 Hz), 135.9, 135.2, 134.2, 133.9 (d, *J* = 9.5 Hz), 133.7, 133.5, 132.9, 132.2 (d, *J* = 4.2 Hz), 129.2, 129.1, 128.9 (d, *J* = 7.3 Hz), 128.83, 128.76, 128.3 (d, *J* = 10.1 Hz), 128.2, 128.1, 127.9, 127.6 (d, *J* = 1.6 Hz), 127.3, 126.8, 123.5, 123.1, 79.5, 63.2; ³¹P NMR (162 MHz, CDCl₃) δ (ppm) –5.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₉H₃₂N₂O₆PS⁺ 687.1713; Found 687.1704.

Synthesis of C1-symmetric monophosphine ligand L8 and L9

In an oven dried round-bottom flask equipped with a stir bar, (1S,2S)-**S2** or (1R,2S)-**S5** (1.0 equiv) was dissolved in dry DCM (0.1 M), and **S6** (1.0 equiv) was added at room temperature. The solution was stirred at room temperature for 4 h. After completion monitored by TLC, the reaction was filtered

to give (1*S*,2*S*)-**S7** or (1*R*,2*S*)-**S8**.

(1S,2S)-S7 or (1R,2S)-S8 was condensed with S4 through a similar method for the preparation of (1S,2S)-L6, and finally monophosphine ligand (1S,2S)-L8 or (1R,2S)-L9 was obtained after purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5).

°C; $[\alpha]_D^{25} = +31.1$ (*c* = 0.05 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ ppm) 8.13-8.04 (m, 1H), 7.75 (s, 2H), 7.43-7.37 (m, 4H), 7.35-7.26 (m, 6H), 7.25–7.03 (m, 14H), 7.00–6.92 (m, 1H), 6.40 (d, J = 8.0 Hz, 1H), 6.19 (d, J = 9.6 Hz, 1H), 5.33– 5.21 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 168.0 (d, J = 1.2 Hz), 153.9, 140.7, 138.2, 136.6 (d, *J* = 7.2 Hz), 136.1, 134.7, 134.2 (d, *J* = 19.8 Hz), 133.9 (d, *J* = 19.6 Hz), 133.3 (d, *J* = 19.5 Hz), 132.7, 132.0 (q, J = 33.3 Hz), 131.0 (d, J = 3.4 Hz), 129.1 (d, J = 10.9 Hz), 128.9 (d, J = 11.8 Hz), 128.8 (d, J = 2.2 Hz), 128.7, 128.6, 128.5, 128.4, 127.9, 127.6 (d, J = 15.4 Hz), 121.8 (q, J = 272.9) Hz), 118.1 (q, J = 33.3 Hz), 115.5 (dt, J = 7.1, 3.5 Hz), 79.5, 60.5; ³¹P NMR (162 MHz, CDCl₃) δ $(ppm) - 5.1; {}^{19}F NMR (376 MHz, CDCl_3) \delta (ppm) - 63.0; HRMS (ESI-TOF) m/z: [M + H]^+ Calcd for$ C₄₂H₃₂F₆N₂O₃P⁺ 757.2049; Found 757.2054.

(1R,2S)-L9: 613 mg (0.811 mmol) as a white solid, 40% yield; mp 117–119 °C; $[\alpha]_D^{25} = -12.7$ (*c* = 0.11 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.32-8.22 (m, 1H), 7.46-7.40 (m, 1H), 7.40-7.33 (m,

3H), 7.31–7.26 (m, 5H), 7.25–7.19 (m, 3H), 7.18–7.12 (m, 2H), 7.09–6.89 (m, 11H), 6.82–6.78 (m, 2H), 6.78–6.72 (m, 1H), 6.35 (d, J = 2.4 Hz, 1H), 5.45 (dd, J = 9.1, 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.0 (d, J = 2.1 Hz), 153.8, 141.0 (d, J = 25.0 Hz), 140.4, 137.1 (d, J = 11.3 Hz), 136.7 (d, J = 3.6 Hz), 136.3 (d, J = 18.2 Hz), 135.0, 134.8 (d, J = 5.8 Hz), 133.3, 132.1 (d, J = 19.3 Hz), 131.5, 131.3 (d, J = 1.9 Hz), 131.2, 129.5, 128.9 (d, J = 7.2 Hz), 128.8 (d, J = 6.9 Hz), 128.6 Hz), 128.6 (d, J = 6.9 Hz), 128.6 (d *J* = 7.8 Hz), 128.4, 128.1, 127.8, 125.4, 123.2 (q, *J* = 272.9 Hz), 117.7 (q, *J* = 272.9 Hz), 115.0 (q, *J* = 7.7, 5.9 Hz), 81.4, 58.8; ³¹P NMR (162 MHz, CDCl₃) δ (ppm) -4.4; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -62.7; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{42}H_{32}F_6N_2O_3P^+$ 757.2049; Found 757.2055.

3. Condition optimisation for asymmetric IED 1,3-DC of cyclopentadienone/thiophene-1,1-dioxide with C,N-azomethine imine 2a

Table S1 Condition optimisation for diastereodivergent IED 1,3-DC of cyclopentadienone with C,Nazomethine imine for synthesis of 3a and $4a^a$

	O + (1 OPG PG = Boc (1a); Bz (1c); C	Pd ₂ (Pd ₂ (L Solve Ac (1b); :O ₂ Me (1d)	dba) ₃ (5 mol%) (10 mol%) ent, Ar, rt, 10 h H H Z 3a	+ HH H HZ 4a	
	NH HN-		PPh ₂ PPh ₂ L3	$Bn O=S-NH OBn Ar Ph_2PL4: Ar = C_6H_5L5: Ar = 4-FC_6L6: Ar = 4-NO_2L7: Ar = 4-CH_3$	$ \begin{array}{c} h \\ 0 \\ \hline \\ H_4 \\ C_6 H_4 \\ C_6 H_4 \end{array} $
	$\begin{array}{c} Ph \\ Ph \\ NH \\ O \\ Hn_2P \\ L8: Ar = 3,5-(CF_3)_2 \end{array}$	2C ₆ H ₃ L9:	$Ph \qquad Ph \qquad O \qquad O \qquad O \qquad Ph_2P \qquad O \qquad $	$ \begin{array}{c} Ph $	
Entry	L	Solvent	Yield ^b (3a/4a , %)	$d\mathbf{r}^{c}$	ee^d (%)
1^e	-	DCM	Trace	-	-
2	L1	DCM	14/20	1/1.5	88/-87
3	L2	DCM	37/40	1/1	-6/3
4	L3	DCM	14/-	4/1	-
5	L4	DCM	70/-	15/1	97/-
6	L5	DCM	72/-	10/1	98/-
7	L6	DCM	80/-	15/1	97/-
8	L7	DCM	45/21	2/1	92/-72
9	L6	Toluene	34/-	10/1	99/-
10	L6	THF	24/-	7/1	82/-
11	L6	EtOAc	59/-	10/1	91/-
12	L6	DCE	87/-	10/1	99/-
13	L6	1,4-Dioxane	25/10	2.5/1	24/78
14	L6	CH ₃ CN	33/28	1/1	88/-70
15	L6	CHCl ₃	95/-	15/1	98/-
16 ^f	L6	CHCl ₃	44/-	8/1	90/-
17^{g}	L6	CHCl ₃	68/-	8/1	99/-
18^{h}	L6	CHCl ₃	85/-	8/1	99/-
19 ^{<i>i</i>}	L6	CHCl ₃	73/-	6/1	98/-
20^{j}	L6	CHCl ₃	91/-	10/1	93/-
21^k	L6	CHCl ₃	91/-	10/1	95/-

22^{l}	L6	CHCl ₃	29/15	2/1	95/-12
23	L11	CHCl ₃	42/20	2/1	85/-60
24	L8	CHCl ₃	40/48	1/1.2	98/97
25	L9	CHCl ₃	-/84	1/14	-/99

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.2 mmol, 2.0 equiv), **2** (0.1 mmol, 1.0 equiv), Pd₂(dba)₃ (5 mol%) and **L** (10 mol%) in solvent (2.0 mL) at room temperature for 10 h under Ar. ^{*b*} Yield of the isolated **3a** or **4a**. ^{*c*} Determined by ¹H NMR analysis. ^{*d*} Determined by HPLC analysis on a chiral stationary phase. ^{*e*} With Pd(PPh₃)₄ (10 mol%). ^{*f*} With Pd₂(dba)₃ (2.5 mol%) and **L6** (5 mol%). ^{*g*} With Pd₂(dba)₃ (10 mol%) and **L6** (20 mol%). ^{*h*} In CHCl₃ (1.0 mL). ^{*i*} In CHCl₃ (0.5 mL). ^{*j*} With **1b**. ^{*k*} With **1c**. ^{*l*} With **1d**.

Table S2 Condition optimisation for asymmetric IED 1,3-DC between thiopene-1,1-dioxide 5 and

C,N-azomethine imine 2a for the synthesis of $6a^a$

$ \begin{array}{c} O \\ O $					
	5	2a	6	a	
	Ph Ph O=S-NH O Ph ₂ P- Ph ₂ P-	ArHN Ph Ph Ph Ph Ph Ph Ph Ph Ph O Me	eo t-Bu t-Bu OMe MeO		D t-Bu DMe
	NO ₂ L6	L9: Ar = 3,5-(CF ₃) ₂ C ₆ H ₃	L10	Ľ	12
Entry	L	Additive	$\operatorname{Yield}^{b}(\%)$	dr^c	ee ^d (%)
1	L6	-	20	10/1	0
2	L9	-	17	7/1	2
3	L10	-	<10	-	97
4	L12	-	-	-	-
5	L10	(+)-Dimethyl L-tartrate	34	6/1	99
6	L10	Salicylic acid	58	8/1	98
7^e	L10	Salicylic acid	80 (80) ^f	6/1	98

^{*a*} Unless noted otherwise, reactions were performed with **5** (0.05 mmol, 1.0 equiv), **2** (0.05 mmol, 1.0 equiv), $Pd_2(dba)_3$ (5 mol%) and **L** (10 mol%) in dry CHCl₃ (0.5 mL) under Ar at 35 °C for 15 h. ^{*b*} ¹H NMR yield of **6a** with acetanilide as the internal standard. ^{*c*} Determined by ¹H NMR analysis. ^{*d*} Determined by HPLC analysis on a chiral stationary phase. ^{*e*} For 24 h. ^{*f*} Isolated yield of **6a**.

4. Procedure for synthesis of cycloadducts 3

General procedure: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added

carbonate **1** (**1a** or **1e**) (0.20 mmol, 2.0 equiv), C,N-azomethine imine **2** (0.10 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and **L6** (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to afford the pure cycloadduct **3** (**3a–3v**).

The corresponding racemates were generally obtained under the catalysis of $Pd_2(dba)_3$ (1.2 mg, 0.0013 mmol, 5.0 mol%) and (±)-L6 (1.7 mg, 0.0025 mmol, 10 mol%) on a 0.025 mmol scale.

Synthesis of 3a: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **1a** (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine **2a** (25.0 mg, 0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and **L6** (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for

three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture

was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (15/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3a**: 31.3 mg (0.0948 mmol) as a white solid, 95% yield; mp 195–197 °C; $[\alpha]_D^{25} = +265.5$ (c = 0.15 in CHCl₃); 98% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 8.04 min (major), t_R = 12.07 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.26–8.20 (m, 1H), 8.04–7.96 (m, 2H), 7.65 (d, J = 7.8 Hz, 1H), 7.48–7.43 (m, 1H), 7.41–7.33 (m, 2H), 7.32–7.27 (m, 1H), 7.24–7.20 (m, 1H), 7.09–7.04 (m, 1H), 6.23 (d, J = 5.7 Hz, 1H), 5.54 (d, J = 7.0 Hz, 1H), 4.50 (d, J = 8.8 Hz, 1H), 3.43–3.33 (m, 1H), 3.02–2.94 (m, 1H), 2.91–2.81 (m, 2H), 2.65–2.57 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.3, 166.8, 159.0, 133.9, 133.71, 133.69, 132.4, 131.3, 129.1, 128.3, 128.2, 127.8, 127.5, 126.9, 64.2, 63.0, 55.1, 49.3, 29.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₁₈N₂O₂Na⁺ 353.1260; Found 353.1260.

Synthesis of 3b: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1a (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2b (26.5 mg, 0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and L6 (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was

added via syringe and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (15/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3b**: 30.6 mg (0.0889mmol) as a white solid, 89% yield; mp 83–85 °C; $[\alpha]_{D}^{25}$ = +364.4 (*c* = 0.14 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, λ = 254 nm), t_R = 8.62 min (major), t_R = 12.95 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.25–8.18 (m, 1H), 8.02–7.96 (m, 2H), 7.51–7.43 (m, 2H), 7.40–7.33 (m, 2H), 7.24–7.18 (m, 1H), 7.14–7.05 (m, 1H), 6.22 (dd, *J* = 5.6, 1.3 Hz, 1H), 5.57–5.51 (m, 1H), 4.47 (d, *J* = 8.8 Hz, 1H), 3.41 (dd, *J* = 8.8, 6.8 Hz, 1H), 3.03–2.87 (m, 2H), 2.65–2.58 (m, 2H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.3, 166.9, 158.9, 135.8, 133.9, 133.8, 133.5, 131.3, 131.1, 129.2, 128.8, 127.8, 126.7, 126.1, 64.1, 63.3, 55.0, 49.2, 26.5, 19.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₁N₂O₂⁺ 345.1598; Found 345.1595.

Synthesis of 3c: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1a (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2c (26.5 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%) and L6 (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and

the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (15/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3**c: 29.9 mg (0.0869 mmol) as a white solid, 87% yield; mp 200–201 °C; $[\alpha]_D^{25} = +343.5$ (c = 0.26 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 8.59 min (major), t_R = 15.03 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.25–8.19 (m, 1H), 8.03–7.96 (m, 2H), 7.52 (d, 1H), 7.48–7.41 (m, 1H), 7.40–7.33 (m, 2H), 7.14–7.08 (m, 1H), 6.90–6.87 (m,

1H), 6.22 (dd, J = 5.7, 1.2 Hz, 1H), 5.55–5.51 (m, 1H), 4.46 (d, J = 8.7 Hz, 1H), 3.35 (dd, J = 8.8, 6.8 Hz, 1H), 3.01–2.91 (m, 1H), 2.89–2.76 (m, 2H), 2.60–2.52 (m, 1H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.3, 166.8, 159.0, 137.2, 133.9, 133.8, 132.2, 131.3, 130.7, 129.2, 128.7, 128.2, 127.8, 127.7, 64.2, 63.0, 55.2, 49.4, 28.9, 21.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₂H₂₁N₂O₂⁺ 367.1417; Found 367.1411.

Synthesis of 3d: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1a (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2a (26.5 mg, 0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and (1*S*,2*S*)-L6 (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture

was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (10/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3d**: 21.1 mg (0.0613 mmol) as a white solid, 61% yield; mp 191–193 °C; $[\alpha]_D^{25} = +317.2$ (c = 0.15 in CHCl₃); 98% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 8.41 min (major), t_R = 14.42 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.25–8.20 (m, 1H), 8.02–7.96 (m, 2H), 7.48–7.42 (m, 2H), 7.40–7.33 (m, 2H), 7.06–7.01 (m, 1H), 6.98–6.94 (m, 1H), 6.22 (dd, J = 5.6, 1.2 Hz, 1H), 5.55–5.51 (m, 1H), 4.44 (d, J = 8.7 Hz, 1H), 3.37 (dd, J = 8.8, 6.8 Hz, 1H), 3.01–2.92 (m, 1H), 2.89–2.74 (m, 2H), 2.61–2.53 (m, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.3, 166.8, 159.0, 136.5, 133.9, 133.7, 133.5, 131.3, 129.3, 129.2, 128.7, 128.4, 128.0, 127.8, 64.2, 63.1, 55.0, 495, 28.6, 21.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₁N₂O₂⁺ 367.1417; Found 367.1414.

Synthesis of 3e: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1a (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2e (32.9 mg, 0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and L6 (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and

the mixture was stirred at room temperature (20-25 °C) for 10 h. After completion monitored by TLC,

the crude product (10/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3e**: 36.5 mg (0.0894 mmol) as a white solid, 89% yield; mp 199–201 °C; $[\alpha]_D^{25} = +217.3$ (c = 0.15 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 14.43 min (major), t_R = 25.20 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.32–8.12 (m, 1H), 8.02–7.91 (m, 2H), 7.24–7.22 (m, 1H), 7.50–7.34 (m, 4H), 7.24–7.22 (m, 1H), 6.22 (dd, J = 5.6, 1.2 Hz, 1H), 5.53 (m, J = 6.8, 2.3, 1.2 Hz, 1H), 4.44 (d, J = 8.7 Hz, 1H), 3.34 (dd, J = 8.8, 6.8 Hz, 1H), 2.98–2.89 (m, 1H), 2.89–2.76 (m, 2H), 2.61–2.54 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.3, 166.8, 159.2, 134.7, 133.9, 133.6, 132.7, 131.4, 131.0, 130.0, 129.1, 127.9, 121.4, 64.1, 62.6, 54.9, 48.9, 28.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₈⁷⁹BrN₂O₂⁺ 409.0546; Found 409.0544; Calcd for C₂₁H₁₈⁸¹BrN₂O₂⁺ 411.0526; Found 411.0529.

Synthesis of 3f: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1a (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2f (26.9 mg, 0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and L6 (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture

was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (15/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3f**: 30.9 mg (0.0888 mmol) as a white solid, 89% yield; mp 136–138 °C; $[\alpha]_{D}^{25}$ = +318.7 (*c* = 0.15 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, λ = 25dr4 nm), t_R = 11.93 min (major), t_R = 17.83 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.26–8.20 (m, 1H), 8.01–7.95 (m, 2H), 7.49–7.41 (m, 2H), 7.41–7.35 (m, 2H), 7.05–7.01 (m, 1H), 6.95–6.88 (m, 1H), 6.23 (dd, *J* = 5.7, 1.2 Hz, 1H), 5.55–5.51 (m, 1H), 4.45 (d, *J* = 8.7 Hz, 1H), 3.38 (dd, *J* = 8.8, 6.9 Hz, 1H), 3.00–2.91 (m, 1H), 2.90–2.74 (m, 2H), 2.63–2.53 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.2, 166.9, 161.5 (d, *J* = 245.0 Hz), 159.2, 135.6 (d, *J* = 8.1 Hz), 133.9, 133.6, 131.4, 129.7 (d, *J* = 8.1 Hz), 129.1, 128.1 (d, *J* = 3.2 Hz), 127.8, 114.9 (d, *J* = 11.3 Hz), 114.7 (d, *J* = 10.0 Hz) 64.0, 62.7, 54.9, 49.4, 28.4; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –114.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₁₇FN₂O₂Na⁺ 371.1166; Found 371.1170.

Synthesis of 3g: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1a (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2g (28.4 mg, 0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and L6 (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture

was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (>19/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3g**: 34.0 mg (0.0934 mmol) as a white solid, 93% yield; mp 181–183 °C; $[\alpha]_D^{25} = +267.8 (c = 0.18 \text{ in CHCl}_3)$; 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 13.52 min (major), t_R = 21.51 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.26–8.19 (m, 1H), 8.01–7.94 (m, 2H), 7.70–7.68 (m, 1H), 7.49–7.43 (m, 1H), 7.41–7.35 (m, 2H), 7.21–7.15 (m, 1H), 7.02–6.97 (m, 1H), 6.23 (dd, *J* = 5.6, 1.2 Hz, 1H), 5.56–5.49 (m, 1H), 4.44 (d, *J* = 8.7 Hz, 1H), 3.37 (dd, *J* = 8.8, 6.8 Hz, 1H), 2.99–2.90 (m, 1H), 2.89–2.73 (m, 2H), 2.62–2.54 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.1, 166.9, 159.1, 135.5, 134.0, 133.6, 132.6, 131.4, 131.0, 129.5, 129.1, 128.2, 127.8, 127.7, 64.0, 62.6, 54.8, 49.1, 28.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₁₇³⁵ClN₂O₂Na⁺ 387.0871; Found 387.0872; Calcd for C₂₁H₁₇³⁷ClN₂O₂Na⁺ 389.0841; Found 389.0849.

Synthesis of 3h: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **1a** (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine **2h** (30.0 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%) and **L6** (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe

and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (>19/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3h**: 35.6 mg (0.0936 mmol) as a white solid, 94% yield; mp 224–226 °C; $[\alpha]_D^{25} = +308.9$ (c = 0.18 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm), $t_R = 21.00$ min (major), $t_R = 25.19$ min (minor); ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.28–8.24 (m,

1H), 8.05–8.01 (m, 2H), 7.85–7.78 (m, 3H), 7.77–7.74 (m, 1H), 7.55–7.43 (m, 3H), 7.42–7.34 (m, 2H), 6.29–6.21 (m, 1H), 5.62–5.55 (m, 1H), 4.58 (d, J = 8.8 Hz, 1H), 3.50–3.44 (m, 1H), 3.19–3.12 (m, 1H), 3.11–2.94 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 205.4, 166.9, 159.1, 133.9, 133.7, 132.6, 131.3, 131.1, 131.0, 129.2, 128.6, 128.2, 127.8, 127.3, 126.5, 126.0, 125.7, 122.9, 64.3, 63.5, 55.0, 49.0, 25.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₅H₂₀N₂O₂Na⁺ 403.1417; Found 403.1416.

Synthesis of 3i: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1a (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2i (26.4 mg, 0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and L6 (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture

was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (6/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3i**: 14.5 mg (0.0422 mmol) as a white solid, 42% yield; mp 132–135 °C; $[\alpha]_D^{25} = +157.5$ (c = 0.08 in CHCl₃); 85% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 7.30 min (major), t_R = 9.53 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.38–8.34 (m, 1H), 7.63–7.56 (m, 1H), 7.39–7.33 (m, 1H), 7.30–7.22 (m, 2H), 7.21–7.12 (m, 3H), 7.05–6.97 (m, 1H), 6.28–6.22 (m, 1H), 5.52–5.46 (m, 1H), 4.36 (d, J = 8.8 Hz, 1H), 3.42 (dd, J = 8.9, 6.7 Hz, 1H), 3.01–2.91 (m, 1H), 2.87–2.80 (m, 1H), 2.69–2.48 (m, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.0, 168.6, 158.7, 135.6, 135.1, 133.9, 133.5, 132.5, 130.0, 129.3, 128.3, 128.1, 127.4, 127.1, 126.8, 125.3, 63.5, 63.2, 55.7, 49.5, 28.9, 19.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₂H₂₀N₂O₂Na⁺ 367.1417; Found 367.1416.

Synthesis of 3j: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **1a** (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine **2j** (28.0 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%) and **L6** (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was

added via syringe and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (8/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3j**: 23.3 mg (0.0647 mmol) as a white solid, 65% yield; mp 130–133 °C; $[\alpha]_D^{25} = +302.4$ (c = 0.13 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 13.52 min (major), t_R = 22.39 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.27–8.18 (m, 1H), 7.67–7.61 (m, 2H), 7.59–7.54 (m, 1H), 7.32–7.26 (m, 2H), 7.25–7.19 (m, 1H), 7.10–7.05 (m, 1H), 7.04–6.97 (m, 1H), 6.23 (dd, J = 5.7, 1.2 Hz, 1H), 5.57–5.50 (m, 1H), 4.49 (d, J = 8.8 Hz, 1H), 3.81 (s, 3H), 3.38 (dd, J = 8.8, 6.8 Hz, 1H), 3.03–2.94 (m, 1H), 2.94–2.83 (m, 2H), 2.67–2.57 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.3, 166.4, 159.1, 159.0, 134.9, 133.9, 133.7, 132.4, 128.9, 128.3, 128.2, 127.4, 126.9, 121.6, 117.3, 114.3, 64.3, 63.0, 55.4, 55.0, 49.4, 29.0; HRMS (ESI-TOF) m/z; [M + Na]⁺ Calcd for C₂₂H₂₀N₂O₃Na⁺ 383.1366; Found 383.1359.

O HH H N N CH₃ Synthesis of 3k: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1a (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2k (26.4 mg, 0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and L6 (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via

syringe and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (>19/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3k**: 32.6 mg (0.0947 mmol) as a white solid, 95% yield; mp 182–184 °C; $[\alpha]_D^{25}$ = +43.1 (*c* = 0.13 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, λ = 254 nm), t_R = 7.25 min (major), t_R = 29.40 min (minor); ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.26–8.18 (m, 1H), 8.00–7.90 (m, 2H), 7.71–7.64 (m, 1H), 7.32–7.27 (m, 1H), 7.24–7.20 (m, 1H), 7.19–7.14 (m, 2H), 7.13–7.07 (m, 1H), 6.21 (d, *J* = 5.7 Hz, 1H), 5.58–5.47 (m, 1H), 4.49 (d, *J* = 8.8 Hz, 1H), 3.42–3.37 (m, 1H), 3.01–2.93 (m, 1H), 2.92–2.86 (m, 2H), 2.65–2.58 (m, 1H), 2.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 205.4, 166.6, 159.2, 141.7, 133.8, 133.7, 132.4, 130.7, 129.3, 128.5, 128.4, 128.31, 128.28, 128.2, 127.4, 126.8, 64.2, 63.0, 55.0, 49.2, 29.0, 21.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₂H₂₀N₂O₂Na⁺ 367.1417; Found 367.1412.

Synthesis of 31: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **1a** (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine **2l** (31.0 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%) and **L6** (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was

added via syringe and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (>19/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **31**: 36.3 mg (0.0930 mmol) as a white solid, 93% yield; mp 193–196 °C; $[\alpha]_D^{25} = +282.1$ (c = 0.10 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 19.42 min (major), t_R = 37.17 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.22–8.19 (m, 1H), 7.90–7.84 (m, 1H), 7.74–7.71 (m, 1H), 7.68–7.64 (m, 1H), 7.34–7.28 (m, 1H), 7.26–7.20 (m, 1H), 7.12–7.08 (m, 1H), 6.84 (d, J = 8.6 Hz, 1H), 6.22 (dd, J = 5.7, 1.2 Hz, 1H), 5.57–5.53 (m, 1H), 4.52 (d, J = 8.7 Hz, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 3.36 (dd, J = 8.8, 6.8 Hz, 1H), 3.04–2.89 (m, 3H), 2.73–2.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.4, 165.8, 159.3, 151.7, 148.2, 133.8, 132.3, 128.4, 128.2, 127.4, 126.9, 125.7, 123.4, 112.5, 109.9, 64.5, 63.1, 56.1, 55.9, 54.8, 49.2, 29.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₂N₂O₄Na⁺ 413.1472; Found 413.1480.

Synthesis of 3m: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1a (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2m (28.4 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%) and L6 (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled

with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (>19/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3m**: 35.8 mg (0.0983 mmol) as a white solid, 98% yield; mp 153–157 °C; $[\alpha]_D^{25} = +299.2$ (c = 0.13 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 10.08 min (major), t_R = 14.67 min (minor); ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.22–8.18 (m, 1H),

8.03–8.01 (m, 1H), 7.91–7.88 (m, 1H), 7.67–7.63 (m, 1H), 7.45–7.42 (m, 1H), 7.34–7.29 (m, 2H), 7.25–7.21 (m, 1H), 7.11–7.06 (m, 1H), 6.24 (dd, J = 5.6, 1.2 Hz, 1H), 5.56–5.49 (m, 1H), 4.50 (d, J = 8.8 Hz, 1H), 3.39 (dd, J = 8.8, 6.8 Hz, 1H), 3.03–2.97 (m, 1H), 2.93–2.83 (m, 2H), 2.67–2.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.0, 165.2, 158.6, 135.4, 134.1, 133.9, 133.5, 132.3, 131.4, 129.21, 129.17, 128.3, 128.2, 127.5, 127.4, 126.9, 64.2, 63.1, 55.0, 49.6, 29.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₁₇³⁵ClN₂O₂Na⁺ 387.0871 Found 387.0870; Calcd for C₂₁H₁₇³⁷ClN₂O₂Na⁺ 389.0841; Found 389.0849.

Synthesis of 3n: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **1a** (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine **2n** (29.5 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%) and **L6** (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe

and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (8/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3n**: 25.9 mg (0.0690mmol) as a white solid, 69% yield; mp 207–209 °C; $[\alpha]_D^{25} = +416.4$ (c = 0.11 in CHCl₃); 98% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 18.64 min (major), t_R = 23.00 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.94–8.91 (m, 1H), 8.37–8.30 (m, 2H), 8.26–8.21 (m, 1H), 7.68–7.64 (m, 1H), 7.61–7.56 (m, 1H), 7.34–7.29 (m, 1H), 7.26–7.21 (m, 1H), 7.11–7.07 (m, 1H), 6.27 (dd, J = 5.7, 1.2 Hz, 1H), 5.58–5.54 (m, 1H), 4.54 (d, J = 8.8 Hz, 1H), 3.43 (dd, J = 8.8, 6.8 Hz, 1H), 3.11–3.01 (m, 1H), 2.94–2.82 (m, 2H), 2.69–2.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 204.7, 164.0, 158.2, 147.9, 135.3, 135.1, 134.3, 133.3, 132.0, 129.0, 128.3, 128.2, 127.6, 127.0, 125.9, 124.4, 64.3, 63.2, 55.0, 49.9, 28.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₈N₃O₄⁺ 376.1292; Found 376.1297.

Synthesis of 30: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1a (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2o (28.4 mg, 0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and L6 (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with

argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (8/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3o**: 21.4 mg (0.0588 mmol) as a white solid, 59% yield; mp 192–193 °C; $[\alpha]_D^{25} = +377.9$ (c = 0.24 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 8.18 min (major), t_R = 20.11 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.26–8.16 (m, 1H), 8.03–7.96 (m, 2H), 7.68–7.61 (m, 1H), 7.38–7.33 (m, 2H), 7.33–7.28 (m, 1H), 7.26–7.21 (m, 1H), 7.13–7.05 (m, 1H), 6.24 (dd, 1H), 5.56–5.50 (m, 1H), 4.49 (d, J = 8.8 Hz, 1H), 3.39 (dd, J = 8.8, 6.8 Hz, 1H), 3.03–2.95 (m, 1H), 2.94–2.81 (m, 2H), 2.68–2.60 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 205.1, 165.5, 158.7, 137.4, 134.0, 133.5, 132.2, 132.0, 130.7, 128.3, 128.2, 128.1, 127.5, 126.9, 64.2, 63.0, 55.0, 49.4, 28.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₈³⁵ClN₂O₂⁺ 365.1051 Found 365.1046; Calcd for C₂₁H₁₈³⁷ClN₂O₂⁺ 367.1022; Found 367.1024.

Synthesis of 3p: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1a (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2p (31.8 mg, 0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and L6 (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe

and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (10/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3p**: 29.2mg (0.0733 mmol) as a white solid, 73% yield; mp 154–156 °C; $[\alpha]_D^{25} = +273.5$ (*c* = 0.16 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, λ = 254 nm), t_R = 10.22min (major), t_R = 14.81 min (minor); ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.25–8.20 (m, 1H), 8.13–8.07 (m, 2H), 7.68–7.61 (m, 3H), 7.34–7.28 (m, 1H), 7.25–7.21 (m, 1H), 7.11–7.06 (m, 1H), 6.26 (d, *J* = 5.8 Hz, 1H), 5.54 (d, *J* = 7.0 Hz, 1H), 4.50 (d, *J* = 8.8 Hz, 1H), 3.42 (dd, *J* = 8.8, 6.8 Hz, 1H), 3.05–2.99 (m, 1H), 2.89–2.80 (m, 2H), 2.67–2.60 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 204.9, 165.4, 158.5, 137.1, 134.2, 133.4, 132.8 (q, *J* = 32.6 Hz), 132.2, 129.5, 128.3, 128.2, 127.6, 127.0, 124.8 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 272.5 Hz), 64.2, 63.1, 55.1, 49.7, 28.9; ¹⁹F NMR

(376 MHz, CDCl₃) δ (ppm) –63.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₁₈F₃N₂O₂⁺ 399.1315; Found 399.1316.

Synthesis of 3q: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1a (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2q (30.0 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%)

and **L6** (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (6/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to afford the pure cycloadduct **3**q: 21.3 mg (0.0560 mmol) as a white solid, 56% yield; mp 151–153 °C; $[\alpha]_D^{25} = +200.0 \ (c = 0.19 \ in CHCl_3)$; 94% ee, determined by HPLC analysis (Chiralpa AD, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254 \ nm$), t_R = 12.72 min (minor), t_R = 15.49 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.43–8.39 (m, 1H), 7.88–7.83 (m, 1H), 7.82–7.74 (m, 2H), 7.54–7.49 (m, 2H), 7.44–7.34 (m, 3H), 7.18–7.13 (m, 1H), 7.09–7.02 (m, 1H), 6.88–6.83 (m, 1H), 6.25 (dd, *J* = 5.8, 1.2 Hz, 1H), 5.55–5.49 (m, 1H), 4.29 (d, *J* = 8.8 Hz, 1H), 3.37 (dd, *J* = 8.8, 6.8 Hz, 1H), 2.93–2.85 (m, 1H), 2.79–2.71 (m, 1H), 2.38–2.31 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.1, 168.0, 158.7, 134.1, 133.5, 133.3, 132.4, 130.0, 129.8, 128.4, 128.2, 128.0, 127.3, 126.9, 126.7, 126.1, 125.2, 124.6, 63.7, 62.9, 55.9, 49.6, 28.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₁N₂O₂+ 381.1598; Found 381.1593.

Synthesis of 3r: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **1a** (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine **2r** (24.0 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%) and **L6** (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for

three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (15/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3r**: 18.0 mg (0.0562 mmol) as a white solid, 56% yield; mp 192–194 °C; $[\alpha]_D^{25} = +313.8$ (c = 0.13 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak

AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 12.62 min (major), t_R = 32.00 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.36–8.30 (m, 1H), 7.65–7.57 (m, 2H), 7.55–7.49 (m, 1H), 7.33–7.28 (m, 1H), 7.26–7.23 (m, 1H), 7.18–7.13 (m, 1H), 6.49 (dd, *J* = 3.5, 1.7 Hz, 1H), 6.19 (d, *J* = 5.7 Hz, 1H), 5.51 (d, *J* = 5.7 Hz, 1H), 4.39 (d, *J* = 8.8 Hz, 1H), 3.39 (dd, *J* = 8.9, 6.7 Hz, 1H), 3.27–3.14 (m, 2H), 3.12–3.03 (m, 1H), 2.89–2.80 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 204.8, 158.9, 156.1, 146.0, 145.6, 133.7, 133.5, 132.1, 128.4, 128.3, 127.6, 126.9, 117.6, 111.7, 64.4, 63.3, 54.7, 49.3, 29.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₉H₁₆N₂O₃Na⁺ 343.1053; Found 343.1054.

Synthesis of 3s: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1a (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2s (25.6 mg, 0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and L6 (6.9

mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (>19/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3s**: 32.3 mg (0.0953 mmol) as a white solid, 95% yield; mp 201–203 °C; $[\alpha]_D^{25}$ = +405.8 (*c* = 0.24 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, λ = 254 nm), t_R = 9.13 min (major), t_R = 26.95 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.39–8.33 (m, 1H), 8.13–8.08 (m, 1H), 7.66–7.61 (m, 1H), 7.53–7.48 (m, 1H), 7.34–7.29 (m, 1H), 7.28–7.25 (m, 1H), 7.20–7.15 (m, 1H), 7.11–7.07 (m, 1H), 6.19 (dd, *J* = 5.7, 1.2 Hz, 1H), 5.51–5.45 (m, 1H), 4.41 (d, *J* = 8.8 Hz, 1H), 3.42 (dd, *J* = 8.8, 6.7 Hz, 1H), 3.39–3.20 (m, 2H), 3.14–3.06 (m, 1H), 2.85–2.78 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 204.8, 159.3, 158.7, 134.8, 134.1, 133.8, 133.56, 133.2, 132.3, 128.4, 128.3, 127.5, 126.9, 126.8, 64.1, 62.9, 55.5, 49.6, 28.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₉H₁₇N₂O₂S⁺ 337.1005; Found 337.1013.

Synthesis of 3t: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1a (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2t (29.9 mg, 0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and L6 (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by

TLC, the crude product (8/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3t**: 31.5 mg (0.0831 mmol) as a white solid, 83% yield; mp 120–123 °C; $[\alpha]_D^{25} = -19.0$ (c = 0.20 in CHCl₃); 92% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 23.78 min (major), t_R = 29.37 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.91–7.85 (m, 2H), 7.52–7.48 (m, 1H), 7.40–7.35 (m, 2H), 7.26–7.22 (m, 1H), 7.21–7.16 (m, 1H), 7.11–7.04 (m, 2H), 6.69 (s, 1H), 6.15 (dd, J = 5.6, 1.4 Hz, 1H), 5.65–5.62 (m, 1H), 5.02 (d, J = 8.8 Hz, 1H), 3.32 (dd, J = 8.8, 5.9 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 202.0, 157.2, 150.2, 146.1, 138.1, 137.85, 132.4, 130.2, 129.5, 129.1, 128.1, 126.6, 126.5, 119.4, 62.9, 61.5, 56.0, 21.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₈N₃O₃S⁺ 380.1063; Found 380.1060.

Synthesis of 3u: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1a (40.0 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2u (24.9 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%) and L6 (6.9

mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (>19/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3u**: 16.7 mg (0.0508 mmol) as a white solid, 51% yield; mp 112-113 °C; $[\alpha]_D^{25} = -30.5$ (c = 0.11 in CHCl₃); 95% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 13.60 min (major), t_R = 27.97 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.71–7.65 (m, 2H), 7.64–7.60 (m, 1H), 7.53–7.46 (m, 1H), 7.45–7.37 (m, 2H), 7.32–7.27 (m, 1H), 7.24–7.18 (m, 2H), 7.18–7.11 (m, 2H), 6.29 (d, J = 5.6 Hz, 1H), 6.08 (dd, J = 6.3, 2.4 Hz, 1H), 4.79 (d, J = 8.5 Hz, 1H), 3.32 (dd, J = 8.5, 5.9 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 202.5, 172.4, 156.9, 152.0, 139.0, 138.0, 132.5, 132.0, 129.8, 128.7, 128.4, 127.5, 126.8, 126.6, 120.0, 62.9, 61.6, 54.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₆N₃O₂⁺ 330.1237; Found 330.1237.

Synthesis of 3v: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 1e (42.4 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine 2m (28.4 mg, 0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and L6 (6.9 mg, 0.010 mmol, 10 mol%). The tube

was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture was stirred at room temperature (20–25 °C) for 10 h. After completion monitored by TLC, the crude product (>19/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to afford the pure cycloadduct **3v**: 25.2 mg (0.0667 mmol) as a white solid, 67% yield; mp 177–178 °C; $[\alpha]_D^{25} = +294.8$ (c = 0.14 in CHCl₃); 97% ee, determined by HPLC analysis (Chiralpak IA, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 6.84 min (major), t_R = 8.40 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.95–7.91 (m, 1H), 7.83–7.75 (m, 2H), 7.64–7.58 (m, 1H), 7.37–7.32 (m, 1H), 7.27–7.20 (m, 2H), 7.18–7.12 (m, 1H), 7.04–6.98 (m, 1H), 5.36–5.29 (m, 1H), 4.39 (d, J = 8.8 Hz, 1H), 3.35 (dd, J = 8.8, 6.8 Hz, 1H), 2.98–2.89 (m, 1H), 2.85–2.74 (m, 2H), 2.60–2.50 (m, 1H), 1.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.0, 165.2, 152.2, 142.4, 135.6, 133.82, 133.75, 132.3, 131.2, 129.2, 129.1, 128.4, 128.2, 127.4, 127.3, 126.9, 63.0, 62.2, 55.3, 49.6, 29.0, 10.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₂H₁₉³⁵ClN₂O₂Na⁺ 401.1027; Found 401.1025.

Synthesis of 3w: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **1f** (54.8 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine **2m** (28.4 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%) and **L6** (6.9 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous toluene (2.0 mL) was

added via syringe and it was allowed to stir at 40 °C for 12 h. After completion monitored by TLC, the crude product (15/1 dr) was concentrated and purified by flash chromatography on silica gel (acetone/petroleum ether = 1/10) to afford the pure cycloadduct **3w**: 19.5 mg (0.0441 mmol) as a

white solid, 44% yield; mp 172–174 °C; $[\alpha]_D^{25} = +58.9 \ (c = 0.10 \text{ in CHCl}_3)$; 92% ee, determined by HPLC analysis (Chiralpak IA, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 9.54 min (major), t_R = 14.79 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.35–8.31 (m, 1H), 8.06–8.02 (m, 1H), 7.95–7.88 (m, 1H), 7.86–7.78 (m, 2H), 7.75–7.68 (m, 1H), 7.47–7.36 (m, 4H), 7.35–7.29 (m, 2H), 7.27–7.22 (m, 1H), 7.14–7.08 (m, 1H), 5.55 (dd, J = 6.9, 2.5 Hz, 1H), 4.61 (d, J = 8.7 Hz, 1H), 3.60 (dd, J = 8.8, 6.9 Hz, 1H), 3.10–2.98 (m, 1H), 2.97–2.85 (m, 2H), 2.71–2.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 203.0, 165.3, 151.8, 142.6, 135.5, 133.9, 133.6, 132.4, 131.4, 130.4, 129.4, 129.3, 129.2, 128.6, 128.4, 128.3, 127.7, 127.6, 127.4, 126.9, 63.3, 61.5, 56.5, 49.7, 29.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₁³⁵ClN₂O₂Na⁺ 463.1184; Found 463.1186; Calcd for C₂₇H₂₁³⁷ClN₂O₂Na⁺ 465.1154; Found 465.1161.

5. Procedure for synthesis of cycloadducts 4

General procedure: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **1a** (39.6 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine **2** (0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and **L9** (7.8 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture was stirred at room temperature (20–25 °C) for 12 h. After completion monitored by TLC, the crude product was concentrated and purified by flash chromatography on silica gel (acetone/petroleum ether) to afford the pure cycloadduct **4** (**4a–4f**).

The corresponding racemates were generally obtained under the catalysis of $Pd_2(dba)_3$ (1.4 mg, 0.0015 mmol, 5.0 mol%) and (±)-L9 (2.4 mg, 0.0030 mmol, 10 mol%) on a 0.03 mmol scale.

Synthesis of 4a: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **1a** (39.6 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine **2a** (25.0 mg, 0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and **L9** (7.8 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for

three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture was stirred at room temperature (20–25 °C) for 12 h. After completion monitored by TLC, the crude product (14/1 dr) was concentrated and purified by flash chromatography on silica gel (acetone/petroleum ether = 1/6) to afford the pure cycloadduct **4a**: 27.6 mg (0.0836 mmol) as a white solid, 84% yield; mp 153–156 °C; $[\alpha]_D^{25} = +22.1$ (c = 0.29 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 11.27 min (minor), t_R = 16.74min (major); ¹H NMR (600 MHz, CDCl) δ (ppm) 8.05–8.01 (m, 1H), 7.89–7.83 (m, 2H), 7.46–7.42 (m, 1H), 7.42–7.39 (m, 1H), 7.38–7.35 (m, 2H), 7.33–7.28 (m, 1H), 7.24–7.19 (m, 1H), 7.08–7.03 (m, 1H), 6.07 (d, J = 5.7 Hz, 1H), 5.85 (dd, J = 6.7, 2.7 Hz, 1H), 4.91 (d, J = 8.9 Hz, 1H), 3.59 (dd, J = 8.9, 6.5 Hz, 1H), 3.15–3.08 (m, 1H), 3.06–3.01 (m, 1H), 2.84–2.74 (m, 1H), 2.55–2.49 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.8, 168.5, 161.8, 136.1, 134.1, 133.1, 130.8, 130.2, 128.73, 128.66, 128.4, 127.8, 127.4, 126.0, 65.2, 64.2, 53.4, 50.4, 29.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₁₈N₂O₂Na⁺ 353.1260; Found 353.1264.

Synthesis of 4b: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **1a** (39.6 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine **2b** (26.4 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%) and **L9** (7.8 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was

added via syringe and the mixture was stirred at room temperature (20–25 °C) for 12 h. After completion monitored by TLC, the crude product (>19/1 dr) was concentrated and purified by flash chromatography on silica gel (acetone/petroleum ether = 1/6) to afford the pure cycloadduct **4b**: 30.5 mg (0.0886 mmol) as a white solid, 89% yield; mp 85–87 °C; $[\alpha]_D^{25} = +30.0$ (c = 0.10 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 7.30 min (minor), t_R = 10.15min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.05–8.02 (m, 1H), 7.89–7.83 (m, 2H), 7.46–7.40 (m, 1H), 7.40–7.33 (m, 2H), 7.26–7.18 (m, 2H), 7.10–7.05 (m, 1H), 6.06 (d, J = 5.6 Hz, 1H), 5.84 (dd, J = 6.8, 2.7 Hz, 1H), 4.88 (d, J = 8.9 Hz, 1H), 3.60 (dd, J = 8.9, 6.5 Hz, 1H), 3.11–3.03 (m, 2H), 2.56–2.48 (m, 2H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.9, 168.5, 161.8, 136.1, 135.9, 134.2, 131.8, 130.8, 130.1, 128.72,

128.68, 127.8, 126.5, 125.8, 65.5, 64.1, 53.4, 50.3, 27.0, 19.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₂H₂₀N₂O₂Na⁺ 367.1417; Found 367.1422.

Synthesis of 4c: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **1a** (39.6 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine **2e** (32.8 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%) and **L9** (7.8 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and

the mixture was stirred at room temperature (20–25 °C) for 12 h. After completion monitored by TLC, the crude product (6/1 dr) was concentrated and purified by flash chromatography on silica gel (acetone/petroleum ether = 1/6) to afford the pure cycloadduct **4c**: 25.8 mg (0.0632 mmol) as a white solid, 63% yield; mp 195–196 °C; $[\alpha]_D^{25} = +58.9$ (c = 0.10 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 8.91 min (minor), t_R = 17.34 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.06–7.99 (m, 1H), 7.87–7.79 (m, 2H), 7.49–7.32 (m, 4H), 7.29–7.26 (m, 1H), 7.26–7.19 (m, 1H), 6.07 (d, J = 5.7 Hz, 1H), 5.85 (d, J = 6.5 Hz, 1H), 4.83 (d, J = 8.9 Hz, 1H), 3.56 (dd, J = 8.6, 6.4 Hz, 1H), 3.12–2.96 (m, 2H), 2.82–2.68 (m, 1H), 2.55–2.42 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.6, 168.6, 162.0, 136.1, 135.3, 134.0, 131.3, 130.9, 130.3, 129.24, 129.19, 128.6, 127.8, 121.2, 64.8, 64.1, 53.1, 50.0, 29.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₁₇⁷⁹BrN₂O₂Na⁺ 431.0366; Found 431.0361; Calcd for C₂₁H₁₇⁸¹BrN₂O₂Na⁺ 433.0345; Found 433.0347.

Synthesis of 4d: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **1a** (39.6 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine **2f** (26.8 mg, 0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%) and **L9** (7.8 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe and the mixture

was stirred at room temperature (20–25 °C) for 12 h. After completion monitored by TLC, the crude product (>19/1 dr) was concentrated and purified by flash chromatography on silica gel (acetone/petroleum ether = 1/6) to afford the pure cycloadduct **4d**: 33.1 mg (0.0951mmol) as a white solid, 95% yield; mp 67–69 °C; $[\alpha]_{D}^{25} = +16.3$ (c = 0.16 in CHCl₃); 99% ee, determined by HPLC

analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, λ = 254 nm), t_R = 9.80 min (minor), t_R = 13.18 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.04–8.01 (m, 1H), 7.87–7.81 (m, 2H), 7.48–7.41 (m, 1H), 7.41–7.34 (m, 2H), 7.11–7.06 (m, 1H), 7.05–6.98 (m, 1H), 6.96–6.88 (m, 1H), 6.07 (d, *J* = 5.6 Hz, 1H), 5.85 (dd, *J* = 6.6, 2.7 Hz, 1H), 4.85 (d, *J* = 8.8 Hz, 1H), 3.56 (dd, *J* = 8.8, 6.5 Hz, 1H), 3.14–2.98 (m, 2H), 2.81–2.66 (m, 1H), 2.54–2.45 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.5, 168.6, 161.8, 160.9 (d, *J* = 244.3 Hz), 136.1, 134.1, 132.1 (d, *J* = 7.9 Hz), 130.9, 129.9 (d, *J* = 8.0 Hz), 128.7 (d, *J* = 3.1 Hz),128.6, 127.8, 115.1 (d, *J* = 22.1 Hz), 114.8 (d, *J* = 21.6 Hz), 64.9 (d, *J* = 2.0 Hz), 64.1, 53.1, 50.4, 28.9; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) – 116.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₁₇FN₂O₂Na⁺ 371.1166; Found 371.1163.

Synthesis of 4e: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **1a** (39.6 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine **2h** (30.0 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%) and **L9** (7.8 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was added via syringe

and the mixture was stirred at room temperature (20–25 °C) for 12 h. After completion monitored by TLC, the crude product (>19/1 dr) was concentrated and purified by flash chromatography on silica gel (acetone/petroleum ether = 1/6) to afford the pure cycloadduct **4e**: 36.8 mg (0.0968 mmol) as a white solid, 97% yield; mp 161–163 °C; $[\alpha]_D^{25} = +138.0 (c = 0.10 \text{ in CHCl}_3)$; 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 9.42 min (minor), t_R = 25.22 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.08–8.04 (m, 1H), 7.94–7.86 (m, 2H), 7.86–7.77 (m, 3H), 7.51–7.40 (m, 4H), 7.40–7.33 (m, 2H), 6.06 (d, *J* = 5.6 Hz, 1H), 5.89 (dd, *J* = 6.7, 2.6 Hz, 1H), 4.97 (d, *J* = 8.8 Hz, 1H), 3.73–3.67 (m, 1H), 3.24–3.18 (m, 2H), 3.14–3.04 (m, 1H), 2.98–2.86 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.8, 168.5, 162.0, 136.1, 134.2, 132.7, 131.5, 130.9, 129.0, 128.73, 128.71, 127.9, 127.8, 126.5, 126.3, 126.1, 125.9, 122.9, 65.7, 64.4, 53.3, 50.2, 26.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₅H₂₀N₂O₂Na⁺ 403.1417; Found 403.1416.

Synthesis of 4f: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **1a** (39.6 mg, 0.200 mmol, 2.0 equiv), C,N-azomethine imine **2l** (31.0 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%) and **L9** (7.8 mg, 0.010 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (2.0 mL) was

added via syringe and the mixture was stirred at room temperature (20–25 °C) for 12 h. After completion monitored by TLC, the crude product (10/1 dr) was concentrated and purified by flash chromatography on silica gel (acetone/petroleum ether = 1/6) to afford the pure cycloadduct **4f**: 30.2 mg (0.0774 mmol) as a white solid, 77% yield; mp 214–216 °C; $[\alpha]_D^{25}$ = +15.2 (*c* = 0.15 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, λ = 254 nm), t_R = 14.80 min (major) t_R = 18.69 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.07–8.01 (m, 1H), 7.79–7.73 (m, 1H), 7.64–7.59 (m, 1H), 7.44–7.39 (m, 1H), 7.35–7.28 (m, 1H), 7.25–7.19 (m, 1H), 7.12–7.05 (m, 1H), 6.83 (d, *J* = 8.5 Hz, 1H), 6.05 (d, *J* = 5.6 Hz, 1H), 5.88–5.81 (m, 1H), 4.95 (d, *J* = 8.9 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.57 (dd, *J* = 8.9, 6.5 Hz, 1H), 3.19–3.05 (m, 2H), 2.96–2.83 (m, 1H), 2.63–2.53 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.9, 166.8, 161.9, 151.4, 148.1, 136.0, 132.9, 130.3, 128.8, 128.4, 127.4, 126.0, 123.0, 112.6, 109.8, 65.2, 64.5, 56.0, 55.9, 53.1, 50.3, 29.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₂N₂O₄Na⁺ 413.1472; Found 413.1476.

6. Procedure for synthesis of cycloadducts 6

General procedure: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **5** (23.4 mg, 0.100 mmol, 1.0 equiv), C,N-azomethine imine **2** (0.100 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5.0 mol%), **L10** (6.6 mg, 0.010 mmol, 10 mol%) and salicylic acid (2.8 mg, 0.020 mmol, 20 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (1.0 mL) was added via syringe and the mixture was stirred at 35 °C for 24 h. After completion monitored by TLC, the crude product was concentrated and purified by flash chromatography on silica gel (EtOAc/DCM/petroleum ether = 8/60/60) to afford the pure cycloadduct

6 (6a-6c).

The corresponding racemates were generally obtained under the catalysis of Pd(PPh₃)₄ (2.9 mg, 0.0025 mmol, 10 mol%) and salicylic acid (0.7 mg, 0.005 mmol, 20 mol%) on a 0.025 mmol scale.

Synthesis of 6a: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **5** (23.4 mg, 0.100 mmol, 1.0 equiv), C,N-azomethine imine **2a** (25.0 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%), **L10** (6.6 mg, 0.010 mmol, 10 mol%) and salicylic acid (2.8 mg, 0.020 mmol, 20 mol%). The

tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (1.0 mL) was added via syringe and the mixture was stirred at 35 °C for 24 h. After completion monitored by TLC, the crude product (6/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/DCM/petroleum ether = 8/60/60) to afford the pure cycloadduct **6a**: 29.4 mg (0.0803 mmol) as a white solid, 80% yield; mp 130–132 °C; $[\alpha]_D^{25} = +185.5$ (*c* = 0.06 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, λ = 254 nm), t_R = 8.57 min (major), t_R = 9.71 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.01–7.95 (m, 2H), 7.82–7.77 (m, 1H), 7.53–7.44 (m, 2H), 7.43–7.37 (m, 2H), 7.34–7.28 (m, 1H), 7.26–7.22 (m, 1H), 7.12–7.07 (m, 1H), 6.70–6.64 (m, 1H), 5.75–5.70 (m, 1H), 5.15 (d, *J* = 8.8 Hz, 1H), 4.12–4.06 (m, 1H), 2.95–2.83 (m, 3H), 2.70–2.60 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.7, 135.6, 133.0, 132.5, 132.2, 132.1, 131.9, 129.2, 128.4, 128.0, 127.9, 127.8, 127.5, 66.9, 63.3, 63.2, 49.6, 29.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₀H₁₈N₂O₃SNa⁺ 389.0930; Found 389.0921.

Synthesis of 6b: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate 5 (23.4 mg, 0.100 mmol, 1.0 equiv), C,N-azomethine imine 2b (26.4 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%), L10 (6.6 mg, 0.010 mmol, 10 mol%) and salicylic acid (2.8 mg, 0.020 mmol, 20

mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃ (1.0 mL) was added via syringe and the mixture was stirred at 35 °C for 24 h. After completion monitored by TLC, the crude product (6/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/DCM/petroleum ether = 8/60/60) to afford the pure cycloadduct **6b**: 29.1 mg (0.0766 mmol) as a pale-yellow solid, 77% yield; mp 236–237 °C; $[\alpha]_D^{25} = +145.7$ (c = 0.07 in CHCl₃);

98% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, λ = 254 nm), t_R = 8.60 min (minor), t_R = 9.67 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.01–7.95 (m, 2H), 7.69–7.63 (m, 1H), 7.53–7.43 (m, 2H), 7.42–7.36 (m, 2H), 7.25–7.20 (m, 1H), 7.14–7.09 (m, 1H), 6.67 (dd, *J* = 6.8, 1.6 Hz, 1H), 5.75–5.69 (m, 1H), 5.13 (d, *J* = 8.7 Hz, 1H), 4.15–4.08 (m, 1H), 2.96–2.85 (m, 2H), 2.69–2.60 (m, 2H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.9, 136.0, 135.5, 133.0, 132.5, 132.0, 131.9, 130.9, 129.3, 129.2, 127.9, 127.3, 125.5, 66.9, 63.5, 63.2, 49.4, 26.5, 19.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₂₀N₂O₃SNa⁺ 403.1087; Found 403.1089.

Synthesis of 6c: To an oven-dried 10 mL Schlenk tube equipped with a stir bar were added carbonate **5** (23.4 mg, 0.100 mmol, 1.0 equiv), C,N-azomethine imine **2g** (28.4 mg, 0.100 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5.0 mol%), **L10** (6.6 mg, 0.010 mmol, 10 mol%) and salicylic acid (2.8 mg, 0.020 mmol, 20 mol%). The tube was evacuated and back-filled with argon for three times. Then anhydrous CHCl₃

(1.0 mL) was added via syringe and the mixture was stirred at 35 °C for 24 h. After completion monitored by TLC, the crude product (4/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/DCM/petroleum ether = 8/60/60) to afford the pure cycloadduct **6c**: 19.6 mg (0.0490 mmol) as a pale-yellow solid, 49% yield; mp 110–111 °C; $[\alpha]_D^{25}$ = +113.3 (*c* = 0.09 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, λ = 254 nm), t_R = 8.81 min (major), t_R = 12.20 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.99–7.94 (m, 2H), 7.83–7.80 (m, 1H), 7.53–7.47 (m, 1H), 7.47–7.43 (m, 1H), 7.43–7.37 (m, 2H), 7.25–7.20 (m, 1H), 7.05–7.01 (m, 1H), 6.71–6.67 (m, 1H), 5.75–5.70 (m, 1H), 5.08 (d, *J* = 8.8 Hz, 1H), 4.12–4.03 (m, 1H), 2.90–2.75 (m, 3H), 2.67–2.58 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.7, 135.6, 133.8, 133.2, 132.9, 132.4, 132.0, 130.7, 129.7, 129.2, 128.4, 128.0, 127.7, 66.5, 63.2, 63.0, 49.4, 28.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₀H₁₇³⁵ClN₂O₃SNa⁺ 423.0541 Found 423.0534; Calcd for C₂₀H₁₇³⁷ClN₂O₃SNa⁺ 425.0511; Found 425.0515.

7. Asymmetric reaction on a 1.0 mmol scale

To an oven dried 100 mL Schlenk tube equipped with a stir bar were added C,N-azomethine imine **2a** (250 mg, 1.00 mmol, 1.0 equiv), $Pd_2(dba)_3$ (45.7 mg, 0.0500 mmol, 5.0 mol%) and **L6** (68.6 mg, 0.100 mmol, 10 mol%). The tube was evacuated and back-filled with argon for three times. Then distilled and degassed CHCl₃ (16 mL) was added via syringe. Then carbonate **1a** (396 mg, 2.00 mmol, 2.0 equiv) in dry CHCl₃ (4.0 mL) was added in four potions for 4 h by syringe. The mixture was allowed to stir at room temperature for 12 h. After consumption of **2a** monitored by TLC, the crude product (14/1 dr) was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/4) to afford the pure cycloadduct **3a**: 272.0 mg (0.8242 mmol), as a white solid, 82% yield, 99% ee.

8. Synthetic transformations

To a solution of **3a** (33.0 mg, 0.100mmol, 1.0 equiv) and precursor **7** (95.0 mg, 0.400 mmol, 4.0 equiv) in dry CH₃CN (0.5 mL) was added LiF (11.7 mg, 0.450 mmol, 4.5 equiv) under argon. The mixture was refluxed for 17 h. After complete consumption of **3a** monitored by TLC (EtOAc/DCM/petroleum ether = 3/60/60), the solvent was evaporated under reduced pressure, and the residue was purified by flash chromatography on silica gel (EtOAc/DCM/petroleum ether = 3/60/60) to afford the desired product **8**: 44.1 mg (0.0952 mmol) as a white solid, 95% yield, >19/1 dr; mp 57–59 °C; $[\alpha]_D^{25} = +208.4$ (c = 0.10 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 7.28 min (major), t_R = 8.73 min (minor); ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.09–8.00 (m, 2H), 7.49–7.42 (m, 1H), 7.41–7.32 (m, 3H), 7.32–7.28 (m, 1H), 7.27–7.18 (m, 6H), 7.10–7.04 (m, 1H), 4.79–4.72 (m, 1H), 4.55 (d, J = 9.3 Hz, 1H), 3.64–3.52 (m, 2H), 3.44–3.39 (m, 1H), 3.37–3.29 (m, 1H), 3.27–

3.24 (m, 1H), 3.19–3.10 (m, 1H), 3.08–2.98 (m, 1H), 2.93–2.74 (m, 3H), 2.65–2.51 (m, 2H), 2.41–2.31 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 218.3, 166.5, 138.5, 134.2, 133.3, 132.5, 131.2, 129.1, 128.5, 128.3, 128.2, 127.8, 127.8, 127.5, 127.0, 126.6, 67.8, 63.9, 61.9, 60.5, 59.1, 58.5, 52.0, 48.8, 45.1, 29.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₀H₃₀N₃O₂⁺ 464.2333; Found 464.2336.

To a solution of compound **3a** (66 mg, 0.20 mmol, 1.0 equiv) in MeOH (2.0 mL) was added NaBH₄ (23 mg, 0.60 mmol, 3.0 equiv) at 0 °C. The mixture was stirred at the same temperature for 0.5 h and then was quenched with saturated aqueous NH₄Cl (2.0 mL). The resulting solution was extracted with EtOAc (5 mL \times 2), dried over Na₂SO₄ and concentrated under reduced pressure. The residue was used directly without purification.

To a solution of the crude alcohol in DCM (1.5 mL) was added Boc₂O (40 µL, 0.18 mmol, 1.2 equiv) followed by triethylamine (25 µL, 0.18 mmol, 1.2 equiv) and DMAP (0.4 mg, 0.003 mmol, 0.02 equiv) at 0 °C. The mixture was stirred at the same temperature for 2.5 h. The reaction was directly and quickly purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give product **9**: 34 mg (0.078 mmol) as a white solid, 48% yield; mp 165–166 °C; $[\alpha]_D^{25} = +72.0$ (c = 0.05 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_R = 5.40 min (major), t_R = 12.04 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.03–7.94 (m, 2H), 7.46–7.38 (m, 2H), 7.38–7.30 (m, 2H), 7.21–7.12 (m, 2H), 7.08–7.02 (m, 1H), 5.28–5.18 (m, 1H), 4.86 (d, J = 9.0 Hz, 1H), 4.79–4.71 (m, 1H), 3.31–3.19 (m, 1H), 3.05–2.93 (m, 1H), 2.88–2.70 (m, 2H), 2.65–2.55 (m, 1H), 2.32–1.99 (m, 4H), 1.54 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.2, 152.9, 135.4, 134.7, 132.9, 130.8, 129.3, 128.3, 127.9, 127.5, 126.8, 126.3, 82.5, 76.3, 62.4, 61.3, 53.0, 48.8, 31.7, 29.4, 27.9, 27.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₃₁N₂O₄⁺ 435.2278; Found 435.2279.

To a stirred solution of **9** (34 mg, 0.078 mmol, 1.0 equiv) in MeOH (0.8 mL) was added a 0.1 M THF solution of SmI_2 (3.1 mL, 0.31 mmol, 4.0 equiv) at room temperature. After stirring for 10 min at room temperature, the reaction solution was poured into saturated aqueous NaHCO₃ and extracted with EtOAc. The organic extracts were washed with brine, dried over Na₂SO₄ and evaporated in

vacuo. The residue was purified by column chromatography on silica gel (MeOH/DCM = 1/120) to give **10**: 24 mg (0.054 mmol) as a yellow solid, 69% yield; mp 127–129 °C; $[\alpha]_D^{25}$ = +17.6 (*c* = 0.13 in CHCl₃); 99% ee, determined by HPLC analysis (Chiralpak AD-H, *i*-PrOH/*n*-hexane = 40/60, flow rate = 1.0 mL/min, λ = 254 nm), t_R = 5.40 min (major), t_R = 9.04 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.16–8.10 (m, 1H), 7.84–7.77 (m, 2H), 7.54–7.47 (m, 1H), 7.46–7.37 (m, 2H), 7.16–7.06 (m, 2H), 7.02–6.92 (m, 2H), 5.12–5.03 (m, 1H), 4.84–4.73 (m, 1H), 4.33 (d, *J* = 8.3 Hz, 1H), 3.67 (s, 1H), 3.42–3.33 (m, 1H), 3.13–3.04 (m, 1H), 2.92–2.75 (m, 2H), 2.73–2.63 (m, 1H), 2.28–2.15 (m, 1H), 2.09–1.99 (m, 2H), 1.98–1.88 (m, 1H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.0, 152.4, 135.7, 134.7, 134.3, 131.5, 129.6, 128.5, 127.0, 126.9, 126.4, 125.9, 82.7, 80.8, 52.8, 51.0, 50.6, 39.7, 31.5, 31.0, 28.5, 27.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₃₃N₂O₄⁺ 437.2435; Found 437.2429.

9. Control experiments

Upon heating at 60 °C, the α -unsubstituted 4-OBoc cyclic enone **1a** could undergo 1,3-DC with C,N-cyclic azomethine imine **2a** in 21% yield, whereas the α -methyl substituted cyclic enone **1e** failed to deliver the cycloadduct under the same conditions. This non-catalysed 1,3-DC pathway is probably a NED 1,3-DC to give intermediate **I**, followed by the elimination of BocO group to give racemic **3a** and **4a**. It should be noted that this non-catalysed 1,3-DC pathway showed lower reactivity compared to that with Pd(0) as the catalyst. In addition, α -methyl carbonate **1e** exhibited very low reactivity in the possible NED 1,3-DC reaction with **2a**.

10. Exploration of other substrates

For the substrate scope investigation of the asymmetric IED 1,3-DC for the synthesis of diastereomer **3**, α -benzyl, α -allyl and β -methyl substituted cyclic enones were tested under the catalysis of Pd₂(dba)₃/L6. However, only bad conversions were observed in the assemblies with 1,3-dipole **2m**.

For the substrate scope investigation of the asymmetric IED 1,3-DC for the synthesis of diastereomer **4**, α -methyl and α -phenyl substituted cyclic enones **1e** and **1f** were tested under the catalysis of Pd₂(dba)₃/L9. Both reaction delivered the corresponding products in moderate to high yields, albeit with lower enantiocontrol.

To expand the asymmetric IED 1,3-DC reaction, a number of 1,3-dipoles were further explored. However, most reactions failed, while background reactions (no enantiocontrol) or allylation reactions were observed for some dipoles.

11. Crystal data and structural refinement

Procedure for the recrystallization of 3a: To a 10 mL tube containing **3a** (20 mg) were added EtOAc (0.5 mL) and *n*-hexane (2.0 mL). The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of **3a**. The data were collected by a New Gemini, Dual, Cu at home/near, EosS2 equipped with a Cu radiation source (K α = 1.54184 Å) at 293.2(3) K. CCDC 2154066 (**3a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%)

Identification code	3a
Empirical formula	$C_{21}H_{18}N_2O_2$
Formula weight	330.37
Temperature/K	293.2(3)
Crystal system	orthorhombic
Space group	P212121
a/Å	7.21864(13)
b/Å	10.5120(2)
c/Å	22.0152(4)
α/°	90
β/°	90
$\gamma^{/\circ}$	90
Volume/Å ³	1670.57(6)
Ζ	4
$\rho_{calc}g/cm^3$	1.314
μ/mm^{-1}	0.683
F(000)	696.0
Crystal size/mm ³	$0.5 \times 0.4 \times 0.2$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	9.322 to 142.63
Index ranges	$-5 \le h \le 8, -11 \le k \le 12, -26 \le l \le 26$
Reflections collected	9144
Independent reflections	3192 [$R_{int} = 0.0422$, $R_{sigma} = 0.0364$]
Data/restraints/parameters	3192/0/226
Goodness-of-fit on F^2	1.058
Final R indexes [I>= 2σ (I)]	$R_1 {=} 0.0654, wR_2 {=} 0.1571$
Final R indexes [all data]	$R_1 = 0.0687, wR_2 = 0.1634$

Largest diff. peak/hole / e Å $^{-3}$ 0.24/-0.38Flack parameter-0.1(2)

Procedure for the recrystallization of 4a: To a 10 mL tube containing **4a** (20 mg) were added EtOAc (0.5 mL) and *n*-hexane (2.0 mL). The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of **4a**. The data were collected by a Bruker APEX-II CCD equipped with a Cu radiation source (K α = 1.54178 Å) at 170.0 K. CCDC 2154067 (**4a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%)

Identification code	4a
Empirical formula	$C_{21}H_{18}N_2O_2$
Formula weight	330.37
Temperature/K	170.0
Crystal system	monoclinic
Space group	P21
a/Å	8.2297(3)
b/Å	9.0042(3)
c/Å	22.3918(8)
$\alpha/^{\circ}$	90
β/°	88.206(2)
$\gamma/^{\circ}$	90
Volume/Å ³	1658.46(10)
---	--
Z	4
$\rho_{calc}g/cm^3$	1.323
μ/mm^{-1}	0.688
F(000)	696.0
Crystal size/mm ³	$0.49 \times 0.29 \times 0.07$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	3.948 to 136.794
Index ranges	$-9 \le h \le 9, -10 \le k \le 10, -26 \le l \le 26$
Reflections collected	43786
Independent reflections	$6055 [R_{int} = 0.0682, R_{sigma} = 0.0342]$
Data/restraints/parameters	6055/1/451
Goodness-of-fit on F ²	1.050
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0351, wR_2 = 0.0850$
Final R indexes [all data]	$R_1 = 0.0374, wR_2 = 0.0868$
Largest diff. peak/hole / e Å ⁻³	0.17/-0.24
Flack parameter	0.05(9)

Procedure for the recrystallization of 6b: To a 10 mL tube containing **6b** (20 mg) were added EtOAc (0.4 mL) and *n*-hexane (2.0 mL). The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of **6b**. The data were collected by a Bruker APEX-II CCD equipped with a Mo radiation source (K $\alpha = 0.71073$ Å) at 297.0 K. CCDC 2154068 (**6b**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%)

Identification code	6b
Empirical formula	$C_{21}H_{20}N_2O_3S$
Formula weight	380.45
Temperature/K	297.0
Crystal system	monoclinic
Space group	P21
a/Å	10.1467(5)
b/Å	6.1824(2)
c/Å	15.3256(6)
$\alpha/^{\circ}$	90
β/°	106.402(2)
$\gamma/^{\circ}$	90
Volume/Å ³	922.26(7)
Z	2
$ ho_{calc}g/cm^3$	1.370
μ/mm^{-1}	0.200
F(000)	400.0
Crystal size/mm ³	$0.43 \times 0.29 \times 0.26$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.184 to 55.084
Index ranges	$-13 \le h \le 13, -8 \le k \le 8, -19 \le l \le 19$

Reflections collected	31963
Independent reflections	4245 [$R_{int} = 0.0714$, $R_{sigma} = 0.0463$]
Data/restraints/parameters	4245/1/245
Goodness-of-fit on F ²	1.034
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0350, wR_2 = 0.0802$
Final R indexes [all data]	$R_1 = 0.0467, wR_2 = 0.0851$
Largest diff. peak/hole / e Å ⁻³	0.14/-0.28
Flack parameter	-0.02(4)

Procedure for the recrystallization of 9: To a 10 mL tube containing **9** (20 mg) were added EtOAc (0.4 mL) and *n*-hexane (2.0 mL). The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of **9**. The data were collected by a Bruker APEX-II CCD equipped with a Cu radiation source (K α = 1.54178 Å) at 150.0 K. CCDC 2154069 (**9**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%)

Identification code	9
Empirical formula	$C_{26}H_{30}N_2O_4$
Formula weight	434.52

Temperature/K	150.0
Crystal system	monoclinic
Space group	P21
a/Å	9.2049(5)
b/Å	9.6660(5)
c/Å	12.7809(6)
α/°	90
β/°	96.970(2)
γ/°	90
Volume/Å ³	1128.77(10)
Z	2
$\rho_{calc}g/cm^3$	1.278
μ/mm^{-1}	0.694
F(000)	464.0
Crystal size/mm ³	$0.42 \times 0.35 \times 0.16$
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2Θ range for data collection/°	9.68 to 137.482
Index ranges	$-11 \le h \le 11, -11 \le k \le 11, -15 \le l \le 15$
Reflections collected	22485
Independent reflections	4155 [$R_{int} = 0.0679$, $R_{sigma} = 0.0431$]
Data/restraints/parameters	4155/1/292
Goodness-of-fit on F ²	1.089
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0401, wR_2 = 0.0981$
Final R indexes [all data]	$R_1 = 0.0403, wR_2 = 0.0983$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.46
Flack parameter	-0.10(7)

CYC-220110-6 12 (0.232)

757.2054

CYC-220110-7 12 (0.232)

757.2055

1: TOF MS ES+ 9.61e5

9.831	BB	0.22	200.9469	2904.2739	50.5438
14.569	BBA	0.35	125.6884	2841.7766	49.4562
			Totals:	5746.0505	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.039	BBA	0.19	404.8367	4976.7207	98.7290
12.073	BB	0.33	2.9987	64.0706	1.2710
			Totals:	5040.7913	100.0000

0.049	DD	0.20	20.0171	545.5507	49.7101
12.943	BB	0.31	17.4321	347.3406	50.2899
			Totals:	690.6773	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.622	BBA	0.21	658.4465	8774.6611	99.6404
12.946	BB	0.31	1.5954	31.6672	0.3596
			Totals:	8806.3283	100.0000

Totals:	36475.9805	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.591	BB	0.21	559.3552	7393.2075	99.3550
15.030	BB	0.34	2.2397	47.9936	0.6450
			Totals:	7441.2012	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.411	BBA	0.19	175.4830	2153.4695	99.0113
14.418	BB	0.34	1.0133	21.5040	0.9887
			Totals:	2174.9735	100.0000

	[]	- J P C	[]	Imrel	[mile s]	1 1 1
	14.518	BB	0.35	37.9277	848.1010	48.9653
	24.601	BB	0.58	23.5505	883.9448	51.0347
				Totals:	1732.0458	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
14.432	BB	0.32	1319.3119	26927.6270	99.4910
25.200	BB	0.74	2.5407	137.7645	0.5090
			Totals:	27065.3914	100.0000

Counts vs. Mass-to-Charge (m/z)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
11.939	BBA	0.30	232.4528	4506.3696	99.9036
17.834	BB	0.64	0.0845	4.3487	0.0964
			Totals:	4510.7184	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
13.520	BBA	0.34	402.6420	8638.4912	99.6456
21.509	BBA	0.61	0.7865	30.7267	0.3544
			Totals:	8669.2179	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
20.992	BB	0.47	60.8134	1821.4960	49.4746
25.015	BB	0.56	52.2727	1860.1803	50.5254
			Totals:	3681.6763	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
20.997	BB	0.48	659.8284	20368.0234	99.5453
25.194	MM	0.69	2.2434	93.0437	0.4547
			Totals:	20461.0671	100.0000

100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.301	BBA	0.17	829.9217	9381.7686	92.4930
9.527	BBA	0.25	47.7825	761.4489	7.5070
			Totals:	10143.2174	100.0000

Totals:

1829.6363

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
13.517	BBA	0.31	691.1122	13910.4326	99.5868
22.393	BBA	0.56	1.3938	57.7200	0.4132
			Totals:	13968.1527	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.291	BBA	0.18	212.0766	2428.7693	51.8485
29.433	BBA	0.81	43.8144	2255.5854	48.1515
			Totals:	4684.3547	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.254	BBA	0.18	1428.7936	16565.1152	99.6622
29.400	BB	0.64	1.0547	56.1430	0.3378
			Totals:	16621.2582	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
19.424	BB	0.52	2532.0527	84595.3594	99.7394
37.171	BB	0.86	3.6809	221.0669	0.2606
			Totals:	84816.4263	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
10.100	BB	0.24	71.3052	1090.1667	50.6116
14.592	BB	0.36	45.8782	1063.8171	49.3884
			Totals:	2153.9839	100.0000

Ret Time [min]	Реак Туре	(min)	Height [mAU]	Area [mAU*s]	Area [%]
10.083	BB	0.22	455.5820	6600.8755	99.7694
14.668	BB	0.32	0.7138	15.2587	0.2306
			Totals:	6616.1342	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
18.637	BB	0.43	95.5740	2650.6958	98.7585
22.998	BB	0.51	0.9398	33.3221	1.2415
			Totals:	2684.0179	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.184	BB	0.20	602.3094	7784.0024	99.5842
20.106	BB	0.48	0.8583	32.5004	0.4158
			Totals:	7816.5028	100.0000

12.051	BB	0.32	53.2048	1091.2866	50.2428
15.085	BB	0.40	42.1717	1080.7396	49.7572
			Totals:	2172.0262	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
10.221	BBA	0.25	308.1007	4973.4253	99.8406
14.805	BB	0.33	0.3221	7.9383	0.1594
			Totals:	4981.3636	100.0000

12.703	BB	0.34	77.5425	1675.9316	49.7166	
15.633	BB	0.49	54.3025	1695.0370	50.2834	
			Totals:	3370.9686	100.0000	

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
12.722	BB	0.33	25.7412	549.2831	2.8034
15.486	BB	0.49	600.6813	19043.9141	97.1966
			Totals:	19593.1971	100.0000

12.777	BB	0.31	92.1561	1870.4873	49.7903
31.671	BB	0.80	36.6021	1886.2430	50.2097
			Totals:	3756.7303	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
12.616	BB	0.30	1133.4751	22319.0469	99.2857
31.992	BB	0.81	2.7385	160.5765	0.7143
			Totals:	22479.6233	100.0000

[min]	Реак Туре	[min]	[mAU]	Area [mAU*s]	Area [%]
9.290	VB R	0.23	213.5968	3156.5396	50.5098
27.288	BBA	0.74	65.3472	3092.8223	49.4902
			Totals:	6249.3618	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.130	BBA	0.22	1595.9366	23092.2070	99.8324
26.947	BB	0.56	0.8403	38.7788	0.1676
			Totals:	23130.9858	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
23.712	BB	0.70	33.0472	1497.1547	50.4542
28.665	BBA	0.88	25.3137	1470.1998	49.5458
			Totals:	2967.3545	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
23.783	BBA	0.69	130.4875	5828.7412	95.7758
29.374	BBA	0.78	4.9307	257.0769	4.2242
			Totals:	6085.8181	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
13.893	BB	0.40	41.4287	1070.1135	50.6217
28.401	BBA	1.33	11.0022	1043.8302	49.3783
			Totals:	2113.9437	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
13.598	BB	0.43	644.5720	17791.6934	97.6304
27.968	BB	1.21	4.6154	431.8213	2.3696
			Totals:	18223.5146	100.0000

				1	
8.180	BB	0.20	53.5955	714.1675	49.4797
			Totals:	1443.3531	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.836	BB	0.18	609.0971	7277.0513	98.2528
8.400	BB	0.21	9.3161	129.4060	1.7472
			Totals:	7406.4572	100.0000

15.184	BB	0.40	67.8529	1759.7385	48.7341
			Totals:	3610.8944	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.541	BBA	0.25	505.4901	8318.6455	95.7585
14.788	BBA	0.37	15.2614	368.4615	4.2415
			Totals:	8687.1070	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
11.209	BBA	0.27	347.7797	6160.3613	46.5347
16.358	BBA	0.41	268.8688	7077.8433	53.4653
			Totals:	13238.2046	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
11.273	BB	0.30	2.0372	40.6583	0.2095
16.736	BBA	0.42	721.9362	19362.9590	99.7905
			Totals:	19403.6173	100.0000

7.351	BBA	0.19	114.7504	1393.8202	52.9748
10.273	BBA	0.28	69.7221	1237.2791	47.0252
			Totals:	2631.0992	100.0000
	7.351 10.273	7.351 BBA 10.273 BBA	7.351 BBA 0.19 10.273 BBA 0.28	7.351 BBA 0.19 114.7504 10.273 BBA 0.28 69.7221 Totals:	7.351 BBA 0.19 114.7504 1393.8202 10.273 BBA 0.28 69.7221 1237.2791 Totals: 2631.0992

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.295	BB	0.15	0.1529	1.4627	0.0329
10.148	BBA	0.27	252.4176	4445.3462	99.9671
			Totals:	4446.8089	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.910	BB	0.25	0.4039	6.7651	0.0638
17.335	BBA	0.50	329.1867	10597.3193	99.9362
			Totals:	10604.0845	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
9.804	BB	0.25	174.7984	2853.1973	46.3292
13.723	BB	0.37	139.4898	3305.3313	53.6708
			Totals:	6158.5286	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
13.184	BB	0.36	238.3766	5512.7329	100.0000
			Totals:	5512.7329	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.424	BB	0.25	223.9108	3658.7043	49.1860
27.132	BBA	0.98	57.3667	3779.8049	50.8140
			Totals:	7438.5093	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
25.223	BB	0.96	207.3128	13840.5352	100.0000
			Totals:	13840.5352	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.508	BB	0.46	119.4188	3512.2380	49.6670
18.685	BB	0.59	93.3531	3559.3328	50.3330
			Totals:	7071.5708	100.0000

[min]	Реак Туре	(min)	[mAU]	Area [mAU*s]	Area [%]
14.798	BBA	0.44	323.4599	9124.7246	100.0000
			Totals:	9124.7246	100.0000

Ket Time [min]	Реак Туре	(min)	[mAU]	Area [mAU*s]	Area [%]
8.566	BBA	0.25	377.2751	6044.0786	100.0000
			Totals:	6044.0786	100.0000

CYC-20211213-16 12 (0.232)

389.0921

1: TOF MS ES+ 5.18e3

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.602	BB	0.24	1.3860	21.3495	1.1477
9.672	BBA	0.29	99.0793	1838.9199	98.8523
			Totals:	1860.2694	100.0000

CYC-220110-4 11 (0.215)

1: TOF MS ES+ 4.61e5

404 m/z

9.087	BBA	0.27	124.4833	2143.0078	50.9027
12.204	BB	0.84	32.7395	2067.0044	49.0973
			Totals:	4210.0122	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.810	BBA	0.27	380.5880	6696.1875	100.0000
			Totals:	6696.1875	100.0000

¹H/¹H COSY spectrum of 8 (400MHz, CDCl₃)

Two-dimensional NOESY spectrum of 8 (400MHz, CDCl₃)

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
7.318	BBA	0.21	118.8829	1582.7490	50.9278
8.751	BBA	0.25	93.1644	1525.0815	49.0722
			Totals:	3107.8306	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.278	BB	0.21	481.0872	6447.4214	99.2602
8.726	BB	0.25	2.9771	48.0558	0.7398
			Totals:	6495.4772	100.0000

100.0000

Totals:

5020.2151

5.320	BB	0.16	232.2401	2379.1873	49.8109
9.040	BB	0.28	134.2615	2397.2527	50.1891
			Totals:	4776.4399	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.401	BBA	0.16	134.1970	1388.3989	100.0000
			Totals:	1388.3989	100.0000

437.205 437.21 437.215 437.22 437.225 437.23 437.235 437.24 437.245 437.25 437.25 437.26 437.265 437.27 437.275 437.28 437.28 437.28 437.29 437.295 Counts vs. Mass-to-Charge (m/z)