Electronic Supplementary Information

A New Type of $\boldsymbol{\delta}$-Vinylvalerolactones for PalladiumCatalyzed Cycloaddition: Synthesis of Nine-Membered Heterocycles

Kuan Li, ${ }^{a}$ Sen Yang, ${ }^{\text {a }}$ Bing Zheng, *a Wei Wang, ${ }^{\text {b }}$ Yongjun Wu, ${ }^{\text {b }}$ Jing Li, ${ }^{a}$ and Hongchao Guo*a
${ }^{\text {a }}$ Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China. E-mail: hchguo@cau.edu.cn, 2014026@cau.edu.cn
${ }^{\text {b }}$ College of Public Health, Zhengzhou University, Zhengzhou 450001, China

Table of Contents

General Information S2
Synthesis of δ-Vinylvalerolactones 1 S2
General Procedure A for Palladium-Catalyzed [6+3] Cycloaddition S3
General Procedure B for Palladium-Catalyzed [6+3] Cycloaddition S3
General Procedure for Scale-up Reaction S3
General Procedure for Further Transformations S4
A Plausible Mechanism S4
Characterization Data of the Compounds 1,3 and 4 S5
NMR Spectra of the Compounds $\mathbf{1 , 3}$ and 4 S25
X-Ray Crystallographic Data S65

General Information

All reactions were performed in Schlenk tubes under an atmosphere of argon using oven-dried glassware. Commercially obtained reagents were used without further purification, unless otherwise noted. Trichloromethane $\left(\mathrm{CHCl}_{3}\right)$ was distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ and stored over $3 \AA$ type molecular sieves. Tetrahydrofuran (THF) and toluene were distilled freshly before use over sodium and benzophenone. Acetonitrile (MeCN), Dichloromethane (DCM) and 1,2dichloroethane (DCE) were distilled from CaH_{2}. Reactions were checked for completion by TLC analysis and plates were visualized with short-wave UV light (254 nm). The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19}$ F NMR spectra were obtained in CDCl_{3} using a Bruker-BioSpin AVANCE III HD NMR spectrometer at 500,125 and 470 MHz , respectively. Chemical shifts are reported in parts per million (δ value) calibrated against the residual solvent peak. Signal patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants (J) are given in hertz (Hz). The infrared spectra were recorded on a Bruker VERTEX 70 IR spectrometer as KBr pellets, with absorption reported in cm^{-1}. High-resolution mass spectra were recorded on a Bruker Impact II UHR TOF LC/MS Mass Spectrometry. Melting points were determined on a Stuard SMP3 melting point apparatus. X-ray crystallographic data were collected using a MM007HF Saturn724+.

Synthesis of $\boldsymbol{\delta}$-Vinylvalerolactones 1

A solution of 3-chloropropiophenone ${ }^{1-2}$ (1.0 equiv.) and dimethyl malonate (2.5 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 equiv.), KI (0.1 equiv.) in acetone was stirred at $25^{\circ} \mathrm{C}$ for 12 h . the insoluble solid was filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Ethyl acetate/Petroleum ether $=1: 6$) to obtain the crude product $\mathbf{S} 1$ containing dimethyl malonate.

The required Grignard reagent (3.0 equiv.) was added dropwise to a solution of the crude product $\mathbf{S} 1$ (1.0 equiv.) in anhydrous THF at $0^{\circ} \mathrm{C}$ under argon atmosphere. The resulting

[^0]mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h . The reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the organic layer was separated. The aqueous layer was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine $(1 \times 100 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Ethyl acetate/Petroleum ether $=1: 6$) to obtain the product $\mathbf{S} \mathbf{2}$.
A solution of $\mathbf{S} 2$ (1.0 equiv.) and sodium methoxide (2.0 equiv.) in THF was stirred at $25^{\circ} \mathrm{C}$ for 12 h . The reaction was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Ethyl acetate/Petroleum ether $=1: 6$) to obtain the desired δ-vinylvalerolactones 1.

General Procedure A for Palladium-Catalyzed [6+3] Cycloaddition of $\boldsymbol{\delta}$ Vinylvalerolactones 1 with Azomethine Imines 2 2^{3-4}

To an oven-dried 25 mL of Schlenk tube equipped with a stir bar, $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(5 \mathrm{~mol} \%)$ and 1,10-Phen ($20 \mathrm{~mol} \%$) was added along with δ-vinylvalerolactones $\mathbf{1}(0.15 \mathrm{mmol}$), azomethine imines $2(0.1 \mathrm{mmol})$ and $\mathrm{DCM}(1.0 \mathrm{~mL})$. The reaction was stirring at $25^{\circ} \mathrm{C}$ under argon atmosphere until consumption of azomethine imines 2 as monitored by thin layer chromatography. The solution directly purified by silica gel column chromatography (Ethyl acetate/Petroleum ether $=1: 1$) to afford desired cycloadducts 3 .

General Procedure B for Palladium-Catalyzed [6+3] Cycloaddition of $\boldsymbol{\delta}$ Vinylvalerolactones 1 with Azomethine Imines 2

To an oven-dried 25 mL of Schlenk tube equipped with a stir bar, $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(5 \mathrm{~mol} \%)$ and 1,10-Phen ($20 \mathrm{~mol} \%$) was added along with δ-vinylvalerolactones $1(0.15 \mathrm{mmol})$, azomethine imines $2(0.1 \mathrm{mmol})$ and $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$. The reaction was stirring at $50{ }^{\circ} \mathrm{C}$ under argon atmosphere until consumption of azomethine imines 2 as monitored by thin layer chromatography. The solution directly purified by silica gel column chromatography (Ethyl acetate $/$ Petroleum ether $=1: 1$) to afford desired cycloadducts 3 .

General Procedure for Scale-up Reaction

To an oven-dried 50 mL of Schlenk tube equipped with a stir bar, $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(5 \mathrm{~mol} \%)$ and 1,10-Phen ($20 \mathrm{~mol} \%$) was added along with δ-vinylvalerolactones $1(1.5 \mathrm{mmol})$, azomethine imines $2(1.0 \mathrm{mmol})$ and DCM $(10.0 \mathrm{~mL})$. The reaction was stirring at $25^{\circ} \mathrm{C}$ under argon atmosphere until consumption of azomethine imines 2 as monitored by thin layer chromatography. The solution directly purified by silica gel column chromatography (Ethyl acetate/Petroleum ether $=1: 1$) to afford desired cycloadducts 3 .

[^1]
General Procedure for Further Transformation of the Product 3

Under argon atmosphere, the DIBAL (1.5 M in toluene, 10.0 equiv) was added dropwise to a solution of $3(0.1 \mathrm{mmol})$ in dry $\mathrm{DCM}(1.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and the resulting solution continued to be stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(10.0 \mathrm{~mL})$ and the organic layer was separated. The aqueous layer was extracted with DCM $(3 \times 10.0 \mathrm{~mL})$. The combined organic layers were washed with brine $(2 \times 10.0 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under reduced pressure. The resulting solid in $\mathrm{DCM}(1.5 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}$ $(0.3 \mathrm{mmol})$ and benzoyl chloride $(0.3 \mathrm{mmol})$ at room temperature for one hour. The solution directly purified by silica gel column chromatography (Ethyl acetate/Petroleum ether $=1: 5$) to afford desired cycloadduct 4.

General Procedure for Further Transformation of the Product 4

The cycloadduct $4 \mathbf{4}(0.1 \mathrm{mmol}, 59.1 \mathrm{mg})$ in dry $\mathrm{MeOH}(5 \mathrm{~mL})$ was added KOH (10equiv. 50.4 mg). Then the mixture was stirring under refluxing conditions for 3 h . The solvent was removed under reduced pressure and the resulting residue was mixed with 25 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine ($2 \times 10 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Ethyl acetate/Petroleum ether $=1: 1$) to afford the desired cycloadduct $\mathbf{5 a}$.

A Plausible Mechanism

In the presence of a Pd catalyst, δ-vinylvalerolactone 1 performs a decarboxylation ringopening reaction to afford zwitterionic the intermediate \mathbf{A}, which attacks the azomethine imine 2 to give the intermediate B. Subsequent intramolecular annulation led to a $[6+3]$ annulation product 3. In this reaction, no [4+3] cycloaddition product was observed. It is probably because there a big steric hindrance when nitrogen anion attacks the carbon linking to R^{1} group.

Characterization Data for the Compounds 1,3 and 4

Methyl 2-oxo-6-phenyl-6-vinyltetrahydro-2H-pyran-3-carboxylate

1a
1a was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.43-7.34(\mathrm{~m}$, $8 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.12-6.00(\mathrm{~m}, 2 \mathrm{H}), 5.38-5.24(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.63-$ $3.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.27(\mathrm{~m}, 4 \mathrm{H}), 2.26-1.97(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C} \mathrm{NMR}^{(}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=169.6,169.5,167.0,166.8,141.9,141.7,140.4,140.3,128.8$, $128.6,128.0,127.9,125.2,125.1,115.6,115.4,87.6,87.4,52.8,52.8,46.9,31.2,31.0,20.8$, 20.7. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2988,2954,1723,1448,1261,1028,930,764,750,701$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 283.0947$, found: 283.0943.

Methyl 2-oxo-6-(m-tolyl)-6-vinyltetrahydro-2H-pyran-3-carboxylate

1b

1b was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.28-7.24(\mathrm{~m}$, $2 H), 7.23-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.12-5.98(\mathrm{~m}, 2 \mathrm{H}), 5.39-5.21$ $(\mathrm{m}, 4 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40-2.26(\mathrm{~m}, 10 \mathrm{H}), 2.24-2.00(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.6,169.6,167.1$, $166.9,141.8,141.6,140.5,140.4,138.6,138.4,128.8,128.7,128.6,128.5,125.9,125.7,122.2$, $122.0,115.5,115.2,87.6,87.4,52.8,46.9,31.2,31.0,21.6,20.8,20.7 . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right) 2991$, 2954, 1729, 1275, 1261, 1161, 764, 750, 705. HRMS (ESI, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 297.1103, found: 297.1100.

Methyl 2-oxo-6-(p-tolyl)-6-vinyltetrahydro-2H-pyran-3-carboxylate

1c was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.32-7.24(\mathrm{~m}$, $4 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 4 \mathrm{H}), 6.11-5.94(\mathrm{~m}, 2 \mathrm{H}), 5.37-5.18(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.62-$ $3.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.23(\mathrm{~m}, 10 \mathrm{H}), 2.23-1.97(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.7,169.6,167.1,166.9,140.6,140.5,138.9,138.7,137.8$, $137.7,129.5,129.3,125.2,125.0,115.4,115.1,87.6,87.5,52.8,47.0,46.9,31.2,30.9,21.0$, 20.9, 20.7. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right)$ 2991, 2953, 1724, 1275, 1261, 1160, 930, 817, 764, 750. HRMS (ESI, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 297.1103, found: 297.1100.

Methyl 6-(4-methoxyphenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

1d was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36-7.27(\mathrm{~m}$, $4 \mathrm{H}), 6.95-6.83(\mathrm{~m}, 4 \mathrm{H}), 6.12-5.93(\mathrm{~m}, 2 \mathrm{H}), 5.39-5.18(\mathrm{~m}, 4 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 6 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.26(\mathrm{~m}$, $4 \mathrm{H}), 2.22-2.03(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.6,169.6,167.1,166.9,159.3$, $159.2,140.7,140.6,133.8,133.6,126.6,126.5,115.4,115.1,114.1,113.9,87.5,87.3,55.3$, $55.3,52.8,52.8,46.9,31.1,30.8,20.9,20.8$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2960,2845,1724,1513,1275$, 1259, 1181, 764, 750. HRMS (ESI, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 313.1052$, found: 313.1049.

Methyl 6-(3,4-dimethoxyphenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carbo- xylate

1 e

1e was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.01-6.79(\mathrm{~m}$, $6 \mathrm{H}), 6.11-5.93(\mathrm{~m}, 2 \mathrm{H}), 5.39-5.21(\mathrm{~m}, 4 \mathrm{H}), 3.95-3.83(\mathrm{~m}, 12 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $3.65-3.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.25(\mathrm{~m}, 4 \mathrm{H}), 2.25-2.01(\mathrm{~m}$, 4H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=169.6,167.1,166.9,149.2,149.0,148.8,148.7,140.6$, $140.5,134.3,134.1,117.5,117.3,115.4,115.2,111.0,110.9,109.0,108.8,87.5,87.3,56.1$, $56.0,55.9,52.9,52.8,46.9,46.9,31.2,30.8,20.9,20.8$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2955,1724,1517$, $1274,1261,1163,1025,765,750 . \operatorname{HRMS}(\mathrm{ESI}, m / z)$ calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 321.1338$, found: 321.1338 .

Methyl 6-(4-cyclohexylphenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

1f was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.35-7.28(\mathrm{~m}$, $4 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.11-5.96(\mathrm{~m}, 2 \mathrm{H}), 5.38-5.22(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.62-$ $3.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.26(\mathrm{~m}, 4 \mathrm{H})$, 2.23-1.99 (m, 4H), 1.91-179 (m, 8H), 1.79-1.67(m, 2H), $1.47-1.31(\mathrm{~m}, 8 \mathrm{H}), 1.31-1.19(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.7,169.6,167.1,166.9,1480,147.8,140.6,140.5$, $139.2,138.9,127.2,127.0,125.2,125.0,115.3,115.1,87.6,87.5,52.8,52.8,47.0,46.9,44.1$, 34.4, 31.1, 30.9, 26.9, 26.1, 20.9, 20.8. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2923,2850,1727,1193,1031,929$, 827, 764, 750. HRMS (ESI, m / z) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 343.1909$, found: 343.1911.

Methyl 6-(4-(tert-butyl)phenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

$\mathbf{1 g}$ was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.42-7.36(\mathrm{~m}$, $4 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 4 \mathrm{H}), 6.11-5.97(\mathrm{~m}, 2 \mathrm{H}), 5.40-5.21(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.63-$ $3.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.26(\mathrm{~m}, 4 \mathrm{H}), 2.26-2.01(\mathrm{~m}, 4 \mathrm{H})$, $1.31(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=169.7,169.6,167.1,166.9,151.0,150.9,140.6$, $140.5,138.8,138.6,125.7,125.5,124.9,124.8,115.3,115.1,87.6,87.4,52.8,52.8,47.0,46.9$, $34.5,31.3,31.1,30.9,20.9,20.8$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2959,2870,1727,1274,1261,1158,928$, 764, 750. HRMS (ESI, m / z) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 339.1573$, found: 339.1570.

Methyl 6-(2-fluorophenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

1h
1h was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.61-7.46(\mathrm{~m}$, $2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.29-6.17(\mathrm{~m}, 2 \mathrm{H}), 5.47-5.36$ $(\mathrm{m}, 2 \mathrm{H}), 5.36-5.24(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.46$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.94(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.5,169.4,166.6,166.5,158.8(\mathrm{~d}, J=245.1 \mathrm{~Hz})$, $158.5(\mathrm{~d}, J=245.0 \mathrm{~Hz}), 138.3(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 138.1(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 129.9$ $(\mathrm{d}, J=9.4 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 127.2(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 126.9(\mathrm{~d}, J$ $=3.4 \mathrm{~Hz}), 124.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 124.6(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 116.6,116.6(\mathrm{~d}, J=23.6 \mathrm{~Hz}), 116.4(\mathrm{~d}$, $J=23.5 \mathrm{~Hz}), 116.0,86.0(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 86.0(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 52.8,47.4,47.2,30.6(\mathrm{~d}, J=5.6$ $\mathrm{Hz}), 30.1(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 21.0 .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-112.0,-112.2$. IR (KBr): v $\left(\mathrm{cm}^{-1}\right) 2991,2954,1728,1276,1261,1159,1030,764,750$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 301.0852$, found: 301.0848 .

Methyl 6-(4-fluorophenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

$\mathbf{1 i}$ was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.47-7.34(\mathrm{~m}$, $4 \mathrm{H}), 7.13-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.12-5.91(\mathrm{~m}, 2 \mathrm{H}), 5.42-5.22(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.64-$ $3.59(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.39(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.02(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=169.5,169.5,166.7,166.6,162.3(\mathrm{~d}, J=245.9 \mathrm{~Hz}), 162.3(\mathrm{~d}, J=246.1 \mathrm{~Hz}), 140.2$, $140.1,137.7(\mathrm{~d}, J=17.6 \mathrm{~Hz}), 137.7(\mathrm{~d}, J=17.1 \mathrm{~Hz}), 127.2(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 127.0(\mathrm{~d}, J=7.9$ $\mathrm{Hz}), 115.9,115.7(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 115.4,87.2,87.0,52.9,52.9,47.0,46.8$, 31.1, 20.8, 20.8. ${ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-114.1,-114.4 . \mathrm{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right) 2993$, 2957, 1729, 1509, 1275, 1260, 1228, 1162, 764, 750. HRMS (ESI, m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FO}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 301.0852$, found: 301.0849 .

Methyl 6-(3-chlorophenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

$1 \mathbf{j}$
$\mathbf{1 j}$ was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.45-7.37(\mathrm{~m}$, $2 \mathrm{H}), 7.37-7.19(\mathrm{~m}, 6 \mathrm{H}), 6.11-5.90(\mathrm{~m}, 2 \mathrm{H}), 5.44-5.24(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.64-$ $3.59(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.01(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.4,166.5,166.4,144.1,144.0,139.7,134.8,134.7,130.1$, $130.0,128.2,128.1,125.6,125.4,123.4,123.2,116.3,116.1,86.9,86.8,53.0,52.9,47.0,46.7$, 31.2, 31.0, 20.8. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2954,2920,1725,1275,1260,1159,1118,764,750$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 317.0557$, found: 317.0553.

Methyl 6-(4-chlorophenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

1k
$\mathbf{1 k}$ was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.41-7.31(\mathrm{~m}$, $8 \mathrm{H}), 6.11-5.91(\mathrm{~m}, 2 \mathrm{H}), 5.43-5.24(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.56(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.48-3.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-1.98(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.5$, $169.4,166.6,166.5,140.5,140.4,139.9,139.9,134.0,133.9,128.9,128.8,126.7,126.6,116.1$, $115.9,87.1,87.0,52.9,52.9,47.0,46.8,31.1,20.8,20.8 . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right) 2993,2954,1728$, 1492, 1275, 1261, 1012, 764, 750. HRMS (ESI, m/z) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 317.0557, found: 317.0555 .

Methyl 6-(3,4-dichlorophenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

11
11 was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.55-7.48(\mathrm{~m}$, 2H), 7.48-7.41 (m, 2H), 7.30-7.21 (m, 2H), 6.06-5.93 (m, 2H), 5.43-5.28 (m, 4H), $3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.60(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 240-2.25(\mathrm{~m}$, 3H), 2.25-2.01 (m, 5H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=169.3,169.3,166.2,166.2,142.3$, $142.2,139.3,133.1,132.9,132.3,132.2,130.7,130.6,127.5,127.3,124.7,124.5,116.7,116.4$, 86.5, 86.3, 53.0, 52.9, 47.1, 46.6, 31.2, 30.9, 20.8, 20.8. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2991,2960,1729$, $1275,1261,1028,764,750$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 351.0167$, found: 351.0164 .

Methyl 6-(4-bromophenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

1m
$\mathbf{1 m}$ was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.55-7.43(\mathrm{~m}$, $4 \mathrm{H}), 7.36-7.20(\mathrm{~m}, 4 \mathrm{H}), 6.10-5.93(\mathrm{~m}, 2 \mathrm{H}), 5.44-5.21(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.64-$ $3.58(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.00(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=169.4,169.4,166.6,166.5,141.1,140.9,139.9,139.8,131.9,131.8,127.1,126.9$, $122.2,122.1,116.2,115.9,87.1,87.0,52.9,52.9,47.0,46.8,31.0,20.8,20.8 . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-}\right.$ $\left.{ }^{1}\right) 2988,2953,1728,1275,1261,1161,1009,764,750$ HRMS (ESI, m/z) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 361.0052$, found: 361.0048 .

Methyl 6-(naphthalen-2-yl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

1n
1n was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.93-7.73(\mathrm{~m}$, $8 \mathrm{H}), 7.53-7.39(\mathrm{~m}, 6 \mathrm{H}), 6.18-6.01(\mathrm{~m}, 2 \mathrm{H}), 5.43-5.33(\mathrm{~m}, 2 \mathrm{H}), 5.33-5.22(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.21(\mathrm{~m}$, $5 \mathrm{H}), 2.19-1.96(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.6,169.6,167.1,167.0,140.3$, $140.3,139.1,139.0,133.1,132.8,132.7,128.8,128.6,128.4,128.3,127.6,127.6,126.7,126.6$, $124.4,124.0,123.2,123.1,115.9,115.7,87.8,87.6,52.9,47.0,47.0,31.1,31.0,20.9,20.8$. IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right) 2991,2953,1725,1361,1275,1261,1160,764,750$. HRMS (ESI, $\left.m / z\right)$ calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 333.1103$, found: 333.1100 .

Methyl 2-oxo-6-(thiophen-3-yl)-6-vinyltetrahydro-2H-pyran-3-carboxylate

10

10 was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.37-7.31(\mathrm{~m}$, 2H), 7.27-7.22 (m, 2H), 7.06-6.99 (m, 2H), 6.10-5.95 (m, 2H), 5.38-5.23 (m, 4H), $3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.26(\mathrm{~m}$, $4 \mathrm{H}), 2.22-2.00(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.6,169.6,166.8,166.7,143.1$, $139.9,139.9,126.9,126.8,125.4,125.3,121.9,121.5,115.8,115.4,86.2,86.0,52.9,47.0,46.9$, 31.2, 31.1, 20.9, 20.9. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2991,2953,1725,1275,1261,1195,1162,764,750$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 289.0511, found: 289.0508.

Methyl 6-methyl-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

1p was obtained as light yellow oil, $\mathrm{dr}=1: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.93-5.73(\mathrm{~m}$, $2 H), 5.40-5.14(\mathrm{~m}, 4 \mathrm{H}), 3.85-3.70(\mathrm{~m}, 6 \mathrm{H}), 3.59-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.31-1.71$ $(\mathrm{m}, 8 \mathrm{H}), 1.56-1.43(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=169.9,169.7,167.1,167.0,140.8$, $140.4,115.5,114.7,84.9,84.6,52.8,52.7,47.5,46.1,31.9,30.5,28.4,28.1,21.1,20.7$. IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right) 2991,2959,1724,1457,1275,1261,1112,764,750$. HRMS (ESI, $\left.m / z\right)$ calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 221.0790$, found: 221.0788 .
c]quinazoline-14-carboxylate

According to the general procedure A, 3aa was obtained as white solid, $50.3 \mathrm{mg}, 98 \%$ yield, $\mathrm{dr}>20: 1$, m. p. $122-124^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.76-7.70\left(\mathrm{dd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=\right.$ $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 1 \mathrm{H})$, $6.97-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.49\left(\mathrm{dd}, J_{l}=7.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.24-6.16(\mathrm{t}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.71(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.44\left(\mathrm{dd}, J_{l}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.73-$ $3.64\left(\mathrm{dd}, J_{l}=15.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.46(\mathrm{~m}, 2 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.47(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.1$, $146.9,144.6,144.5,139.6,138.8,132.5,129.5,128.0,127.7,127.3,127.2,125.2,125.1,124.9$, 121.2, 60.8, 51.0, 47.0, 44.2, 28.1, 20.7, 20.3. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2950,1733,1618,1596,1262$, 1163, 1087, 764, 750, 682. HRMS (ESI, m / z) calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 516.1957$, found: 516.1954.

Methyl (14R,14aS,E)-11-(m-tolyl)-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazo-nino[1,9-c]quinazoline-14-carboxylate

3ba
According to the general procedure A, 3ba was obtained as white solid, $40.8 \mathrm{mg}, 77 \%$ yield, $\mathrm{dr}>20: 1$, m. p. $218-220^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.79-7.67\left(\mathrm{dd}, J_{l}=6.5 \mathrm{~Hz}, J_{2}=\right.$ $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.00(\mathrm{~m}, 6 \mathrm{H}), 6.98-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.57-6.48$ $(\mathrm{m}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.23-6.17(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.72(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.44$ $\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.72-3.64\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.63(\mathrm{~s}, 3 \mathrm{H})$, 3.29-3.21 (m, 1H), 2.63-2.45 (m, 2H), 2.38 (s, 3H), $2.27(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.46$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2,147.1,144.6,144.5,139.6,138.8,137.3$, $132.5,129.5,128.0,128.0,127.6,127.3,125.8,125.1,124.9,122.2,121.3,121.0,60.8,51.0$, 47.0, 44.2, 28.0, 20.7, 20.5, 20.3. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right)$ 2949, 1735, 1619, 1597, 1275, 1262, 1165, 765, 750, 682. HRMS (ESI, m / z) calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 530.2113$, found: 530.2114.

Methyl nino[1,9-c]quinazoline-14-carboxylate

According to the general procedure $\mathrm{A}, \mathbf{3 c a}$ was obtained as white solid, $49.3 \mathrm{mg}, 93 \%$ yield, $\mathrm{dr}>20: 1$, m. p. $225-227{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.78-7.67\left(\mathrm{dd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=\right.$ $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.88$ $(\mathrm{m}, 1 \mathrm{H}), 6.57-6.48\left(\mathrm{dd}, J_{l}=8.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.23-6.15(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.75-5.69(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.44\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.72-3.63$ $\left(\mathrm{dd}, J_{l}=15.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.37$ $(\mathrm{s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $172.1,146.7,144.6,144.5,139.6,137.1,135.7,132.5,129.5,128.4,127.9,127.3,125.1,125.0$, $124.8,121.3,120.4,60.8,51.0,47.0,44.3,27.9,20.7,20.3,20.1$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2951,1735$, $1619,1597,1261,1164,1087,822,765,750$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 530.2113, found: 530.2111 .

Methyl (14R,14aS,E)-11-(4-methoxyphenyl)-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazonino[1,9-c]quinazoline-14-carboxylate

According to the general procedure A, 3da was obtained as white solid, $46.8 \mathrm{mg}, 86 \%$ yield, $\mathrm{dr}>20: 1$, m. p. $236-238^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.84-7.76\left(\mathrm{dd}, J_{l}=6.5 \mathrm{~Hz}, J_{2}=\right.$ $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 1 \mathrm{H})$, $6.90-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.56\left(\mathrm{dd}, J_{l}=8.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.28-6.20(\mathrm{t}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.75(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.50\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 3.78-3.71\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.68-$ $2.52(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.54(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.2,159.7,147.1,145.7,145.5,140.7,133.5,131.9,130.5,129.0,128.4,127.3,126.2$, $125.9,122.3,120.6,114.1,61.8,55.3,52.0,48.1,45.3,28.8,21.7,21.4$. IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)$ 2991, 1734, 1597, 1275, 1261, 1165, 764, 750. HRMS (ESI, m / z) calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 546.2062$, found: 546.2063.

Methyl (14R,14aS,E)-11-(3,4-dimethoxyphenyl)-8-tosyl-8,9,12,13,14,14a-hexahyd- ro-[1,2]diazonino[1,9-c]quinazoline-14-carboxylate

According to the general procedure A, 3ea was obtained as colorless oil, $55.5 \mathrm{mg}, 96 \%$ yield, $\mathrm{dr}>20: 1 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.86-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.18$ $(\mathrm{m}, 1 \mathrm{H}), 7.15-7.08\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.07-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.87(\mathrm{~m}, 2 \mathrm{H})$, 6.86-6.77 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.58(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.31-6.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.86-5.78(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.52\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.93-3.84(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 6 \mathrm{H}), 3.81-3.72\left(\mathrm{dd}, J_{I}=15.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.24(\mathrm{~m}, 1 \mathrm{H})$, $2.68-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta=173.2,149.3,149.0,147.3,145.6,145.6,140.6,133.5,132.3,130.5,129.0,128.4$, $126.2,125.9,125.9,122.3,120.9,118.7,111.2,109.2,61.9,56.0,55.9,52.1,48.1,45.4,29.0$, 21.7, 21.4. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right)$ 2952, 1734, 1618, 1597, 1516, 1265, 1164, 765, 750. HRMS (ESI, m / z) calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 576.2168$, found: 576.2168.

Methyl (14R,14aS,E)-11-(4-cyclohexylphenyl)-8-tosyl-8,9,12,13,14,14a-hexahyd- ro-[1,2]diazonino[1,9-c]quinazoline-14-carboxylate

According to the general procedure A, 3fa was obtained as colorless oil, $56.1 \mathrm{mg}, 94 \%$ yield, $\mathrm{dr}>20: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.85-7.74\left(\mathrm{dd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.40-$ $7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27\left(\mathrm{dd}, J_{I}=6.5 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.18-$ $7.09(\mathrm{~m}, 3 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.57(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.31-6.24(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.83-5.77(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.51\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.79-3.72$ $\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.27\left(\mathrm{dd}, J_{I}=11.0 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 2.69-2.41 (m, 6H), 1.95-1.80(m, 5H), 1.78-1.70 (m, 1H), 1.66-1.54 (m, 1H), 1.48-1.32 (m, 4H), 1.30-1.20 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.3,148.3,147.7,145.7,145.5$, $140.7,137.1,133.6,130.5,129.0,128.4,127.2,126.2,126.0,126.0,125.9,122.3,121.5,61.9$, $52.0,48.1,45.4,44.2,34.4,34.3,28.9,26.9,26.2,21.8,21.4$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2924,1735$, $1620,1597,1261,1165,765,750,682$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 598.2739, found: 598.2740.

Methyl (14R,14aS,E)-11-(4-(tert-butyl)phenyl)-8-tosyl-8,9,12,13,14,14a-hexahyd- ro-[1,2]diazonino[1,9-c]quinazoline-14-carboxylate

According to the general procedure A, 3ga was obtained as white solid, $55.1 \mathrm{mg}, 96 \%$ yield, $\mathrm{dr}>20: 1$, m. p. 207-209 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.85-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.28$ $(\mathrm{m}, 6 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.56\left(\mathrm{dd}, J_{l}=7.5 \mathrm{~Hz}\right.$, $\left.J_{2}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.32-6.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.76(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.63-4.50\left(\mathrm{dd}, J_{l}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80-3.72\left(\mathrm{dd}, J_{l}=15.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.55$ $(\mathrm{m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.3,151.3,147.6,145.7,145.5$, $140.7,136.7,133.5,130.5,129.0,128.4,126.2,125.9,125.7,125.7,122.3,121.5,61.9,52.1$, 48.1, 45.3, 34.6, 31.3, 28.9, 21.7, 21.4. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2961,1737,1620,1597,1359,1263$, 1165, 766, 683, 558. HRMS (ESI, m / z) calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 572.2583$, found: 572.2583.

Methyl (14R,14aS,E)-11-(2-fluorophenyl)-8-tosyl-8,9,12,13,14,14a-hexahyd- ro-[1,2]diazonino[1,9-c]quinazoline-14-carboxylate

3ha
According to the general procedure A, 3ha was obtained as white solid, $49.3 \mathrm{mg}, 92 \%$ yield, $\mathrm{dr}>20: 1$, m. p. $203-205^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.85-7.78\left(\mathrm{dd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=\right.$ $1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.43-7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.09(\mathrm{~m}, 5 \mathrm{H}), 7.07-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.57$ $\left(\mathrm{dd}, J_{l}=8.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.18-6.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93-5.85(\mathrm{~d}, J$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.49\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.82-3.69(\mathrm{~m}, 4 \mathrm{H}), 3.51-3.38(\mathrm{~m}$, $1 \mathrm{H}), 2.66-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.46(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.3,159.7$ (d, $J=245.1 \mathrm{~Hz}$), 145.8, 145.6, 144.4, 140.5, 133.5, 130.5, $129.8(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 129.5(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 129.0,128.9,128.8,128.4,126.2,126.0,125.9$, 124.3 (d, $J=3.6 \mathrm{~Hz}$), 122.3, 116.0 (d, $J=22.4 \mathrm{~Hz}$), 61.7, 52.2, 47.8, 45.1, 30.4, 21.7, 21.2. ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-115.4$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2951,1733,1619,1597,1487,1213$, 1164, 764, 737, 681. HRMS (ESI, m / z) calcd for $\mathrm{C}_{29} \mathrm{H}_{2}{ }_{2} \mathrm{FN}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 534.1863$, found: 534.1864.

Methyl (14R,14aS,E)-11-(4-fluoropheny)-8-tosyl-8,9,12,13,14,14a-hexahydro-

 [1,2]diazonino[1,9-c]quinazoline-14-carboxylate

According to the general procedure A, 3ia was obtained as white solid, $44.4 \mathrm{mg}, 83 \%$ yield, $\mathrm{dr}>20: 1$, m. p. 224-226 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.87-7.75\left(\mathrm{dd}, J_{I}=6.5 \mathrm{~Hz}, J_{2}=\right.$ $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.09\left(\mathrm{dd}, J_{l}=8.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.62-6.56\left(\mathrm{dd}, J_{l}=8.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.29-6.21$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.80(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.52\left(\mathrm{dd}, J_{l}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.78-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.33-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 1 \mathrm{H})$, $1.66-1.55(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1,162.8(\mathrm{~d}, J=246.1 \mathrm{~Hz}), 146.9$, 145.6, 145.6, 140.6, 135.8 (d, $J=3.3 \mathrm{~Hz}$), 133.5, 130.5, 129.0, 128.4, 127.8 (d, $J=7.9 \mathrm{~Hz}$), 126.3, 125.9 (d, $J=10.5 \mathrm{~Hz}$), 122.3 (d, $J=11.1 \mathrm{~Hz}$), $115.7(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 61.8,52.1,48.0$, $45.2,29.2,21.7,21.3 .{ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-113.7$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right)$ 2989, 1734, $1618,1597,1508,1275,1261,1165,764,750$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{29} \mathrm{H}_{2} \mathrm{FN}_{3} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 534.1863$, found: 534.1866.

Methyl (14R,14aS,E)-11-(3-chlorophenyl)-8-tosyl-8,9,12,13,14,14a-hexahydro-

 [1,2]diazonino[1,9-c]quinazoline-14-carboxylate

According to the general procedure A, $\mathbf{3 j a}$ was obtained as colorless oil, $44.7 \mathrm{mg}, 81 \%$ yield, dr > 20:1. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87-7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 3 \mathrm{H})$, $7.27-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.32-6.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.79(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.51(\mathrm{dd}$, $\left.J_{I}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.31-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.46$ $(\mathrm{s}, 3 \mathrm{H}), 1.92-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.56(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1,146.7$, 145.6, 145.6, 141.7, 140.5, 134.7, 133.4, 130.6, 130.0, 129.1, 128.4, 128.4, 126.3, 126.3, 126.0, 125.9, 124.4, 123.4, 122.2, 61.8, 52.2, 47.9, 45.1, 29.0, 21.8, 21.3. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2950$, 1733, 1619, 1596, 1355, 1164, 1087, 762, 682. HRMS (ESI, m / z) calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 550.1567$, found: 550.1568.

According to the general procedure A, 3ka was obtained as white solid, $49.2 \mathrm{mg}, 90 \%$ yield, $\mathrm{dr}>20: 1$, m. p. $239-241{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.76-7.70\left(\mathrm{dd}, J_{l}=6.5 \mathrm{~Hz}, J_{2}=\right.$ $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.02$ $\left(\mathrm{dd}, J_{l}=8.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.98-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.55-6.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}$, $1 \mathrm{H}), 6.24-6.17(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.78-5.71(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.44\left(\mathrm{dd}, J_{l}=15.0 \mathrm{~Hz}\right.$, $\left.J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.71-3.59(\mathrm{~m}, 4 \mathrm{H}), 3.23-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.80-$ $1.70(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0,145.7,144.6,144.5$, $139.5,137.1,133.2,132.4,129.5,128.0,127.9,127.3,126.4,125.2,124.9,124.9,124.8,121.7$, $121.2,60.8,51.1,46.9,44.1,28.0,20.7,20.2$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2951,1733,1618,1597,1261$, 1164, 1087, 830, 765, 750. HRMS (ESI, m / z) calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 550.1567$, found: 550.1568.
Methyl (14R,14aS,E)-11-(3,4-dichlorophenyl)-8-tosyl-8,9,12,13,14,14a-hexahyd- ro-[1,2]diazonino[1,9-c]quinazoline-14-carboxylate

According to the general procedure A, 3la was obtained as white solid, $53.3 \mathrm{mg}, 91 \%$ yield, $\mathrm{dr}>20: 1$, m. p. 209-211 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.85-7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.48-7.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.09(\mathrm{dd}$, $\left.J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.06-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.57(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H})$, $6.34-6.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.80(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.52\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=\right.$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.29-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.90-$ $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.0,145.7,145.7,145.5$, $140.5,139.7,133.3,133.0,132.4,130.7,130.6,129.1,128.4,128.1,126.3,126.0,126.0,125.9$, $125.5,123.8,122.1,61.7,52.2,47.9,45.0,28.9,21.8,21.3$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2952,1733$, 1619, 1597, 1275, 1261, 1164, 1087, 765, 750. HRMS (ESI, m / z) calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 584.1177$, found: 584.1176.

Methyl [1,2]diazonino[1,9-c]quinazoline-14-carboxylate

According to the general procedure A, 3ma was obtained as white solid, $54.6 \mathrm{mg}, 92 \%$ yield, $\mathrm{dr}>20: 1$, m. p. $234-236{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.87-7.76\left(\mathrm{dd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=\right.$ $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.09$ $\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.06-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.55\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.33-6.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.75(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.50(\mathrm{dd}$, $\left.J_{I}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78-3.65(\mathrm{~m}, 4 \mathrm{H}), 3.31-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.45$ $(\mathrm{s}, 3 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.54(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1,146.8$, $145.6,145.5,140.6,138.7,133.4,131.9,130.6,129.1,128.4,127.8,126.3,126.0,125.9,122.8$, $122.4,122.2,61.8,52.2,47.9,45.1,29.0,21.8,21.3$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2951,1732,1618,1597$, 1275, 1261, 1163, 1087, 765, 750, 682. HRMS (ESI, m / z) calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{BrN}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 594.1062, found: 594.1065.

Methyl (14R,14aS,E)-11-(naphthalen-2-yl)-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazonino[1,9-c]quinazoline-14-carboxylate

According to the general procedure A, 3na was obtained as white solid, $54.1 \mathrm{mg}, 96 \%$ yield, $\mathrm{dr}>20: 1$, m. p. 207-209 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.80-7.67(\mathrm{~m}, 6 \mathrm{H}), 7.49-7.42$ $\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.42-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.11$ $(\mathrm{m}, 1 \mathrm{H}), 7.09-7.03\left(\mathrm{dd}, J_{I}=8.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.97-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.55-6.50\left(\mathrm{dd}, J_{l}=\right.$ $\left.7.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.41-6.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-5.72(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.59-4.48\left(\mathrm{dd}, J_{l}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.77-3.65\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.92-$ $1.79(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.50(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1,147.7,145.7,145.6$, $140.6,136.9,133.5,133.4,133.2,130.6,129.0,128.4,128.4,128.3,127.6,126.4,126.3,126.2$, $125.9,125.3,124.1,122.7,122.3,61.9,52.1,48.1,45.3,28.9,21.8,21.5 . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)$ $2989,1734,1619,1597,1275,1165,765,750,685$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 566.2113$, found: 566.2113.

According to the general procedure A, 3oa was obtained as colorless oil, $50.5 \mathrm{mg}, 97 \%$ yield, $\mathrm{dr}>20: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83-7.76\left(\mathrm{dd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.41-$ $7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.10\left(\mathrm{dd}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.07-$ $6.98(\mathrm{~m}, 1 \mathrm{H}), 6.63-6.57\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.48-6.39(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.82-5.74(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.51\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.75-$ $3.65(\mathrm{~m}, 4 \mathrm{H}), 3.30-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.75-$ $1.61(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.2,145.6,145.6,141.9,140.7,140.6,133.5$, $130.5,129.0,128.4,126.3,126.2,125.9,125.9,125.3,122.3,121.9,120.7,61.8,52.1,48.0$, 45.4, 28.9, 21.8, 21.7. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2950,1734,1618,1597,1275,1260,1165,765,750$, 685. HRMS (ESI, m / z) calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 522.1521, found: 522.1522.

Methyl (14R,14aS,Z)-11-methyl-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazon- ino[1,9$c]$ quinazoline-14-carboxylate

According to the general procedure A, 3pa was obtained as colorless oil, $36.8 \mathrm{mg}, 81 \%$ yield, $\mathrm{dr}>20: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.74-7.66\left(\mathrm{dd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.32-$ $7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.00\left(\mathrm{dd}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.99-$ $6.92(\mathrm{~m}, 1 \mathrm{H}), 6.60-6.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 5.79-5.70(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.21\left(\mathrm{dd}, J_{l}\right.$ $\left.=15.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.43\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.20-$ $3.12\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.41(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.5$, $144.8,144.4,144.3,139.6,132.6,129.4,127.9,127.3,125.1,124.8,124.8,121.4,119.9,60.6$, 51.1, 46.8, 44.3, 30.0, 21.4, 20.7, 19.7. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2951,1734,1618,1597,1275,1261$, 1164, 765, 750, 683. HRMS (ESI, m / z) calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 454.1800$, found: 454.1799.

According to the general procedure A, 3ab was obtained as white solid, $49.7 \mathrm{mg}, 91 \%$ yield, $\mathrm{dr}>20: 1$, m. p. $235-237{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.51(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 5 \mathrm{H})$, 7.14-7.06 (m, 2H), 6.90-6.79 (m, 3H), 6.26-6.18 (t, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.02\left(\mathrm{dd}, J_{l}=8.0\right.$ $\left.\mathrm{Hz}, J_{2}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.83-4.70\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.33-4.23(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.93-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.96-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 6 \mathrm{H}), 2.23$ (s, 3H), 1.78-1.66(m, 1H), 1.52-1.38(m, 1H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.6,147.4$, $146.4,143.2,140.8,139.5,138.9,131.2,129.2,128.0,127.7,127.3,125.0,124.8,124.8,124.2$, $121.2,120.5,58.8,50.7,45.4,44.1,28.1,21.8,20.1,19.9$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2948,1739,1618$, 1597, 1330, 1260, 1158, 764, 679. HRMS (ESI, m / z) calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 544.2270$, found: 544.2270.

Methyl (14R,14aS,E)-11-phenyl-8-(phenylsulfonyl)-8,9,12,13,14,14a-hexahydro-[1,2]diazonino[1,9-c]quinazoline-14-carboxylate

According to the general procedure A, 3ac was obtained as white solid, $41.3 \mathrm{mg}, 82 \%$ yield, $\mathrm{dr}>20: 1$, m. p. $256-258^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.90-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.57$ $(\mathrm{m}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.02\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}\right.$, $\left.J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.99-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.55-6.49\left(\mathrm{dd}, J_{l}=8.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.48(\mathrm{~s}, 1 \mathrm{H})$, 6.26-6.16 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73-5.69(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.44\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=\right.$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.66\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.20(\mathrm{~m}, 1 \mathrm{H})$, $2.63-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $172.1,147.1,144.6,139.5,138.8,135.6,133.3,128.9,128.0,127.7,127.4,127.3,125.2,125.1$, $124.9,124.9,121.2,121.1,60.8,51.1,47.0,44.3,28.1,20.3$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3005,1733$, 1617, 1275, 1261, 1168, 1087, 764, 750. HRMS (ESI, m / z) calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 502.1800 , found: 502.1802 .

Methyl

(14R,14aS,E)-2-chloro-11-phenyl-8-tosyl-8,9,12,13,14,14a-hexahydro-

[1,2]diazonino[1,9-c]quinazoline-14-carboxylate

3ad
According to the general procedure B, 3ad was obtained as colorless oil, $43.3 \mathrm{mg}, 79 \%$ yield, $\mathrm{dr}>20: 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83-7.75\left(\mathrm{dd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.43-$ $7.28(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.14\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.09-7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-$ $6.58(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.33-6.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71-5.64(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.64-4.51\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.82-3.71\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.96-$ $1.83(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.6,147.9,145.8,145.7$, $139.7,139.5,133.3,131.2,130.5,129.1,128.8,128.4,128.4,127.1,126.1,123.8,122.2,61.5$, 52.1, 47.7, 45.6, 29.1, 21.8, 21.3. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2989,1734,1594,1481,1275,1261,1165$, 764, 750. HRMS (ESI, m / z) calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 550.1567$, found: 550.1569.

Methyl (14R,14aS,E)-2,3-dimethoxy-11-phenyl-8-tosyl-8,9,12,13,14,14a-hexahy- dro-[1,2]diazonino[1,9-c]quinazoline-14-carboxylate

3ae
According to the general procedure A, 3ae was obtained as white solid, $49.0 \mathrm{mg}, 85 \%$ yield, $\mathrm{dr}>$ 20:1, m. p. 224-226 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.85-7.77$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41$7.36(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.34-6.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16$ $(\mathrm{s}, 1 \mathrm{H}), 5.84-5.76(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.49\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 3.79-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.25\left(\mathrm{dd}, J_{1}=11.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.71-2.53$ $(\mathrm{m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=173.6,149.0,147.9,147.0,145.5,144.3,139.8,134.6,133.6,130.5,128.7,128.4,128.3$, $126.2,122.3,113.6,109.1,108.5,61.8,55.9,52.0,47.9,45.3,29.1,21.7,21.3$. IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-}\right.$ ${ }^{1}$) 2952, 1733, 1605, 1510, 1275, 1261, 1164, 764, 750. HRMS (ESI, m/z) calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 576.2168$, found: 576.2170.

(($6 S, 7 R, 14 a R, E)-11-p h e n y l-8-t o s y l-8,9,12,13,14,14 a-h e x a h y d r o-6,14-(e p o x-$

 ymethano)[1,2]diazonino[1,9-c]quinazolin-5(6H)-yl)methanone

4 a was obtained as white solid, $39.2 \mathrm{mg}, 66 \%$ yield, $\mathrm{dr}>20: 1$, m. p. $109-111{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.90-7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.39-$ $7.28(\mathrm{~m}, 7 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.59-6.54$ $\left(\mathrm{dd}, J_{l}=7.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.14-6.09(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-6.01\left(\mathrm{dd}, J_{l}=10.5 \mathrm{~Hz}\right.$, $\left.J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.65-4.53\left(\mathrm{dd}, J_{1}=14.5 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.29-4.17\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}\right.$ $=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H}), 4.05-3.94\left(\mathrm{dd}, J_{l}=12.5 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.71-3.60\left(\mathrm{dd}, J_{l}=\right.$ $\left.12.0 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.41-3.28\left(\mathrm{dd}, J_{1}=14.5 \mathrm{~Hz}, J_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.74-2.60\left(\mathrm{dd}, J_{1}=\right.$ $\left.14.5 \mathrm{~Hz}, J_{2}=10.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.63(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.3,146.2,143.8,141.7,136.4,136.3,135.9,131.2,130.9,129.3,128.6$, $128.6,128.4,128.1,127.8,127.0,126.8,125.1,123.2,122.0,121.1,93.9,62.3,58.2,48.3,38.8$, 30.4, 25.0, 21.6. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2928,1663,1489,1330,1159,1090,1033,699,662$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 592.2270, found: 592.2270.
(($6 S, 7 R, 14 a R, E)$-11-(4-bromophenyl)-8-tosyl-8,9,12,13,14,14a-hexahydro-6,14-(epoxyme-thano)[1,2]diazonino[1,9-c]quinazolin-5(6H)-yl)(phenyl)methanone

4b was obtained as white solid, $44.6 \mathrm{mg}, 67 \%$ yield, $\mathrm{dr}>20: 1$, m. p. $220-222{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87-7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H})$, $7.36-7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-6.90(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.56\left(\mathrm{dd}, J_{l}=7.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.10-6.02(\mathrm{~m}, 2 \mathrm{H}), 4.62-4.53$ $\left(\mathrm{dd}, J_{1}=14.5 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.27-4.18\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.12(\mathrm{~s}, 1 \mathrm{H})$, $4.06-3.97\left(\mathrm{dd}, J_{1}=12.5 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.69-3.60\left(\mathrm{dd}, J_{1}=12.5 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.40-3.29\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.67-2.57\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.3$, $145.0,143.9,140.5,136.4,136.2,135.6,131.8,131.1,130.9,129.3,128.5,128.4,128.1,127.0$, $125.1,123.2,121.9,121.8,121.7,93.6,62.3,58.4,48.1,38.4,30.6,24.9,21.6 . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-}\right.$ ${ }^{1}$) 2918, 1662, 1599, 1488, 1332, 1287, 1159, 727, 665. HRMS (ESI, m/z) calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{BrN}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 670.1375$, found: 670.1368 .
((6S,7R,14aR,E)-11-(4-methoxyphenyl)-8-tosyl-8,9,12,13,14,14a-hexahydro-6,14-(epoxymethano)[1,2]diazonino[1,9-c]quinazolin-5(6H)-yl)(phenyl)methanone

$4 \mathbf{c}$ was obtained as white solid, $40.5 \mathrm{mg}, 65 \%$ yield, $\mathrm{dr}>20: 1$, m. p. $211-213{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.89-7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36-7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 3 \mathrm{H}), 6.57-6.52\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.12-6.08(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.04-5.97\left(\mathrm{dd}, J_{l}=10.5 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.63-4.53\left(\mathrm{dd}, J_{l}=15.0 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.27-4.17\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=10.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11(\mathrm{~s}, 1 \mathrm{H}), 4.02-3.93\left(\mathrm{dd}, J_{1}=12.5 \mathrm{~Hz}\right.$, $\left.J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.62\left(\mathrm{dd}, J_{1}=12.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.36-3.26\left(\mathrm{dd}, J_{1}\right.$ $\left.=14.5 \mathrm{~Hz}, J_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.69-2.58\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=10.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.00-$ $1.89(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.62(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.2,159.3,145.5,143.7$, $136.3,136.2,135.9,133.7,131.2,130.8,129.2,128.5,128.4,128.0,127.8,126.9,125.0,123.1$, $121.9,119.6,113.9,93.8,62.2,58.1,55.3,48.3,38.9,30.4,24.6,21.6$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 622.2375$, found: 622.2373.

5a was obtained as white solid, $41.6 \mathrm{mg}, 85 \%$ yield, $\mathrm{dr}>20: 1$, m. p. $213-215{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.77-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.13$ $\left(\mathrm{dd}, J_{l}=7.9 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.11-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.99\left(\mathrm{dd}, J_{l}=7.9 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.28-6.22(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.25(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.55(\mathrm{dd}$, $\left.J_{1}=14.9 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.89-3.80\left(\mathrm{dd}, J_{1}=14.9 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.42-3.33(\mathrm{t}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.08\left(\mathrm{dd}, J_{l}=10.8 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.72-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.44(\mathrm{~m}$, $1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 1 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.92(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=148.4,146.3,145.4,141.2,140.2,133.3,130.4,128.7,128.6,128.4,128.2,127.7$, $126.2,125.7,125.4,122.1,121.6,63.7,60.5,47.6,41.3,29.7,29.7,22.2,21.7$. IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-}\right.$ ${ }^{1}$) $2184,2167,2160,2139,2028,2018,1614,1597,1165,1088,762,687$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 488.2008$, found: 488.2013 .

NMR Spectra of the Compounds 1, 3 and 4

1a

1a

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{1 a}$

1b

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{1 b}$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{1 c}$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{1 d}$

1e

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{1} \mathbf{e}$

1 1060\％		\％®융융	훙	ल		
¢¢¢¢ ¢ ¢		へへへ入入	$\stackrel{\sim}{\sim}$		かomion	लoomF
ゾ	ソゾ	ゾ	V	$\stackrel{\infty}{\diamond}$	¢ ¢ ¢	

${ }^{1} \mathrm{H}$ NMR（ 500 MHz ）and ${ }^{13} \mathrm{C}$ NMR（ 125 MHz ）spectra of $\mathbf{1 f}$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{1 g}$

${ }^{1} \mathrm{H}$ NMR (500 MHz) ${ }^{13} \mathrm{C}$ NMR (125 MHz) and ${ }^{19} \mathrm{~F}$ NMR (470 MHz) spectra of $\mathbf{1 h}$

${ }^{1} \mathrm{H}$ NMR (500 MHz) ${ }^{13} \mathrm{C}$ NMR (125 MHz) and ${ }^{19} \mathrm{~F}$ NMR (470 MHz) spectra of $\mathbf{1 i}$

1j

1j

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{1} \mathbf{j}$

90	180	170	160	150	140	${ }_{130}$	120	110	100	90	80	10	60	50	${ }_{40}$	30	${ }_{20}$	10	\%

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{1 k}$

11

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{1 1}$

O్ర్ల్ర ©

- 5

$\stackrel{\text { ® }}{\text { N }}$		응
¢	NiN	¢ं
V	Y V	1

1 m
${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{1 m}$

LK-2-14D-NAI-10 orotiry
V1

守

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{1 n}$

10

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{1 o}$

1p

No

1p

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{1 p}$

3aa

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 3aa

3ba

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 3ba

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 3ca

LK-2-51-DJY. 2ゅi.1.
户

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C} \underset{\text { S4 }}{\text { NMR }}(125 \mathrm{MHz})$ spectra of 3da

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 3ea

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{3 f a}$

$$
\underbrace{\text { LK-2-100-TBU. d. } 1.1 \mathrm{lr}}_{1}
$$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 3ga

3ha

LK-2-86-F. 11. 1. 1\%
$\stackrel{\text { ஜ. }}{\stackrel{\circ}{\circ}}$

3ha
${ }^{1} \mathrm{H}$ NMR (500 MHz) ${ }^{13} \mathrm{C}$ NMR (125 MHz) and ${ }^{19} \mathrm{~F}$ NMR (470 MHz) spectra of 3ha

LK-2-54-DF. 24. 1. 1r

${ }^{1} \mathrm{H}$ NMR (500 MHz) ${ }^{13} \mathrm{C}$ NMR (125 MHz) and ${ }^{19} \mathrm{~F}$ NMR (470 MHz) spectra of 3ia

$$
\begin{aligned}
& \text { LK-2-56-JLL-1N1.1. } 1 \text { 荌 }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{3 j a}$

LK-2-53-DL. 11. Kolr

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 3ka

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 31a

$$
\begin{aligned}
& \underbrace{\text { N. }}_{1}
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 3ma

LK-2-61-NA1. 2mp
$\underbrace{\text { Nos }}_{1}$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 3na

LK-2-60-SF. 11. 1. Ir

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 3oa

3pa

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 3pa

3ab

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 3ab

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 3ac

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 3ad

3ae

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 3ae

4a

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{4 a}$

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of 4b

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{4 c}$

[^2]${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra of $\mathbf{5 a}$

X-ray Crystal data of 3aa and 4a

X-Ray Crystallography Data Crystallographic data for the compound 3aa has been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 2120713. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

Table S1. Crystal data and structure refinement for 3aa

Identification code	$\mathbf{3 a a}$
Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$
Formula weight	515.61
Temperature $/ \mathrm{K}$	281.0
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a/A	$10.4935(6)$
b / \AA	$11.0890(5)$
c / \AA	$12.2484(6)$
$\alpha /{ }^{\circ}$	$103.579(2)$
$\beta /{ }^{\circ}$	$101.602(2)$
$\gamma /{ }^{\circ}$	$97.418(2)$
$\mathrm{Volume} / \AA^{3}$	$1333.63(12)$
Z	2

$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.284
μ / mm^{-1}	0.161
$\mathrm{~F}(000)$	544.0
Crystal size $/ \mathrm{mm}^{3}$	
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	6.106 to 55.048
Index ranges	$-13 \leqslant \mathrm{~h} \leqslant 13,-14 \leqslant \mathrm{k} \leqslant 14,-15 \leqslant 1 \leqslant 15$
Reflections collected	33997
Independent reflections	$6117\left[\mathrm{R}_{\text {int }}=0.0503, \mathrm{R}\right.$ sigma $\left.=0.0331\right]$
Data/restraints/parameters	$6117 / 300 / 336$
Goodness-of-fit on F2	1.020
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0457, \mathrm{wR} 2=0.1077$
Final R indexes [all data]	$\mathrm{R} 1=0.0692, \mathrm{wR} 2=0.1208$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.33 /-0.33$

X-Ray Crystallography Data Crystallographic data for the compound 4a has been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 2145461. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

Table S2. Crystal data and structure refinement for 4a.

Identification code	4a
Empirical formula	$\mathrm{C}_{3} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$
Formula weight	591.70
Temperature	296.15 K
Wavelength	0.71073 £
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a=9.6278(17) \AA \quad \alpha=105.423(3)^{\circ}$
	$\mathrm{b}=12.640(2) \AA \quad \beta=92.048(3)^{\circ}$
	$\mathrm{c}=13.195(2) \AA \quad \gamma=103.570(4)^{\circ}$
Volume	1496.4(5) \AA^{3}
Z	2
Density (calculated)	$1.313 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.153 \mathrm{~mm}^{-1}$
F(000)	624
Crystal size	$0.07 \times 0.06 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	1.610 to 27.809°
Index ranges	$-12<=\mathrm{h}<=12,-16<=\mathrm{k}<=11,-17<=1<=16$
Reflections collected	12556
Independent reflections	$7003[\mathrm{R}(\mathrm{int})=0.0512]$
Completeness to theta $=25.242^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6465
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7003 / 0 / 389
Goodness-of-fit on F^{2}	0.927
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0565, \mathrm{wR} 2=0.1098$
R indices (all data)	$\mathrm{R} 1=0.1479, \mathrm{wR} 2=0.1415$

Extinction coefficient n/a
Largest diff. peak and hole
0.262 and -0.325 e. \AA^{-3}

[^0]: ${ }^{1}$ J. Wang, Y.-B. Pang, N. Tao, R.-S. Zeng and Y. Zhao, J. Org. Chem., 2019, 84, 15315-15322.
 ${ }^{2}$ H. Uno, T. Imai, K. Harada and N. Shibata, ACS Catal., 2020, 10, 1454-1459.

[^1]: ${ }^{3}$ T. Wang, J. Luo, C. Gu, R. Li, X. Tang, D. Yu and J. Li, CN 103172575A.
 ${ }^{4}$ T. Wang, A.-L. Shao, H.-Y. Feng, S.-W. Yang, M. Gao, J. Tian and A.-W. Lei, Tetrahedron., 2015, 71, 4473-4477.

[^2]: | 160 | 150 | 140 | 1 |
 | :--- |

