Electronic Supplementary Information

A New Type of δ-Vinylvalerolactones for Palladium-Catalyzed Cycloaddition: Synthesis of Nine-Membered Heterocycles

Kuan Li,^a Sen Yang,^a Bing Zheng,^{*a} Wei Wang,^b Yongjun Wu,^b Jing Li,^a and

Hongchao Guo*a

^a Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China. E-mail: hchguo@cau.edu.cn, 2014026@cau.edu.cn

^b College of Public Health, Zhengzhou University, Zhengzhou 450001, China

Table of Contents

General Information	S2
Synthesis of δ -Vinylvalerolactones 1	S2
General Procedure A for Palladium-Catalyzed [6+3] Cycloaddition	S3
General Procedure B for Palladium-Catalyzed [6+3] Cycloaddition	S3
General Procedure for Scale-up Reaction	S3
General Procedure for Further Transformations	S4
A Plausible Mechanism	S4
Characterization Data of the Compounds 1, 3 and 4	S5
NMR Spectra of the Compounds 1, 3 and 4	S25
X-Ray Crystallographic Data	S65

General Information

All reactions were performed in Schlenk tubes under an atmosphere of argon using oven-dried glassware. Commercially obtained reagents were used without further purification, unless otherwise noted. Trichloromethane (CHCl₃) was distilled over P_2O_5 and stored over 3Å type molecular sieves. Tetrahydrofuran (THF) and toluene were distilled freshly before use over sodium and benzophenone. Acetonitrile (MeCN), Dichloromethane (DCM) and 1,2dichloroethane (DCE) were distilled from CaH₂. Reactions were checked for completion by TLC analysis and plates were visualized with short-wave UV light (254 nm). The ¹H, ¹³C and ¹⁹F NMR spectra were obtained in CDCl₃ using a Bruker-BioSpin AVANCE III HD NMR spectrometer at 500, 125 and 470 MHz, respectively. Chemical shifts are reported in parts per million (δ value) calibrated against the residual solvent peak. Signal patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants (J) are given in hertz (Hz). The infrared spectra were recorded on a Bruker VERTEX 70 IR spectrometer as KBr pellets, with absorption reported in cm⁻¹. High-resolution mass spectra were recorded on a Bruker Impact II UHR TOF LC/MS Mass Spectrometry. Melting points were determined on a Stuard SMP3 melting point apparatus. X-ray crystallographic data were collected using a MM007HF Saturn724+.

Synthesis of δ-Vinylvalerolactones 1

A solution of 3-chloropropiophenone¹⁻² (1.0 equiv.) and dimethyl malonate (2.5 equiv.), K_2CO_3 (1.0 equiv.), KI (0.1 equiv.) in acetone was stirred at 25 °C for 12 h. the insoluble solid was filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:6) to obtain the crude product **S1** containing dimethyl malonate.

The required Grignard reagent (3.0 equiv.) was added dropwise to a solution of the crude product S1 (1.0 equiv.) in anhydrous THF at 0 $^{\circ}$ C under argon atmosphere. The resulting

¹ J. Wang, Y.-B. Pang, N. Tao, R.-S. Zeng and Y. Zhao, J. Org. Chem., 2019, 84, 15315–15322.

² H. Uno, T. Imai, K. Harada and N. Shibata, ACS Catal., 2020, **10**, 1454–1459.

mixture was stirred at 25 °C for 12 h. The reaction was quenched with aq. NH₄Cl and the organic layer was separated. The aqueous layer was extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine (1×100 mL), dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:6) to obtain the product **S2**.

A solution of **S2** (1.0 equiv.) and sodium methoxide (2.0 equiv.) in THF was stirred at 25 °C for 12 h. The reaction was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:6) to obtain the desired δ -vinylvalerolactones **1**.

General Procedure A for Palladium-Catalyzed [6+3] Cycloaddition of δ-Vinylvalerolactones 1 with Azomethine Imines 2³⁻⁴

To an oven-dried 25 mL of Schlenk tube equipped with a stir bar, $Pd_2dba_3 \cdot CHCl_3$ (5 mol%) and 1,10-Phen (20 mol%) was added along with δ -vinylvalerolactones 1 (0.15 mmol), azomethine imines 2 (0.1 mmol) and DCM (1.0 mL). The reaction was stirring at 25 °C under argon atmosphere until consumption of azomethine imines 2 as monitored by thin layer chromatography. The solution directly purified by silica gel column chromatography (Ethyl acetate/Petroleum ether = 1:1) to afford desired cycloadducts 3.

General Procedure B for Palladium-Catalyzed [6+3] Cycloaddition of δ-Vinylvalerolactones 1 with Azomethine Imines 2

To an oven-dried 25 mL of Schlenk tube equipped with a stir bar, $Pd_2dba_3 \cdot CHCl_3$ (5 mol%) and 1,10-Phen (20 mol%) was added along with δ -vinylvalerolactones 1 (0.15 mmol), azomethine imines 2 (0.1 mmol) and CHCl₃ (1.0 mL). The reaction was stirring at 50 °C under argon atmosphere until consumption of azomethine imines 2 as monitored by thin layer chromatography. The solution directly purified by silica gel column chromatography (Ethyl acetate/Petroleum ether = 1:1) to afford desired cycloadducts **3**.

General Procedure for Scale-up Reaction

To an oven-dried 50 mL of Schlenk tube equipped with a stir bar, $Pd_2dba_3 \cdot CHCl_3$ (5 mol%) and 1,10-Phen (20 mol%) was added along with δ -vinylvalerolactones 1 (1.5 mmol), azomethine imines 2 (1.0 mmol) and DCM (10.0 mL). The reaction was stirring at 25 °C under argon atmosphere until consumption of azomethine imines 2 as monitored by thin layer chromatography. The solution directly purified by silica gel column chromatography (Ethyl acetate/Petroleum ether = 1:1) to afford desired cycloadducts 3.

³ T. Wang, J. Luo, C. Gu, R. Li, X. Tang, D. Yu and J. Li, CN 103172575A.

⁴ T. Wang, A.-L. Shao, H.-Y. Feng, S.-W. Yang, M. Gao, J. Tian and A.-W. Lei, *Tetrahedron.*, 2015, **71**, 4473–4477.

General Procedure for Further Transformation of the Product 3

Under argon atmosphere, the DIBAL (1.5 M in toluene, 10.0 equiv) was added dropwise to a solution of **3** (0.1 mmol) in dry DCM (1.5 mL) at -78 °C, and the resulting solution continued to be stirred at -78 °C for 2 h. The reaction was quenched with 1 N HCl (10.0 mL) and the organic layer was separated. The aqueous layer was extracted with DCM (3×10.0 mL). The combined organic layers were washed with brine (2×10.0 mL), dried over MgSO₄, and concentrated under reduced pressure. The resulting solid in DCM (1.5 mL) was added Et₃N (0.3 mmol) and benzoyl chloride (0.3 mmol) at room temperature for one hour. The solution directly purified by silica gel column chromatography (Ethyl acetate/Petroleum ether = 1:5) to afford desired cycloadduct **4**.

General Procedure for Further Transformation of the Product 4

The cycloadduct **4a** (0.1 mmol, 59.1 mg) in dry MeOH (5 mL) was added KOH (10equiv. 50.4 mg). Then the mixture was stirring under refluxing conditions for 3 h. The solvent was removed under reduced pressure and the resulting residue was mixed with 25 mL of H₂O. The mixture was extracted with ethyl acetate (3×20 mL). The combined organic layers were washed with brine (2×10 mL), dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Ethyl acetate/Petroleum ether = 1:1) to afford the desired cycloadduct **5a**.

A Plausible Mechanism

In the presence of a Pd catalyst, δ -vinylvalerolactone **1** performs a decarboxylation ringopening reaction to afford zwitterionic the intermediate **A**, which attacks the azomethine imine **2** to give the intermediate **B**. Subsequent intramolecular annulation led to a [6+3] annulation product **3**. In this reaction, no [4+3] cycloaddition product was observed. It is probably because there a big steric hindrance when nitrogen anion attacks the carbon linking to R¹ group.

Characterization Data for the Compounds 1, 3 and 4

Methyl 2-oxo-6-phenyl-6-vinyltetrahydro-2H-pyran-3-carboxylate

1a was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃): δ = 7.43–7.34 (m, 8H), 7.34–7.28 (m, 2H), 6.12–6.00 (m, 2H), 5.38–5.24 (m, 4H), 3.78 (s, 3H), 3.73 (s, 3H), 3.63– 3.57 (t, J = 7.5 Hz, 1H), 3.45–3.38 (t, J = 7.5 Hz, 1H), 2.46–2.27 (m, 4H), 2.26–1.97 (m, 4H). ¹³C NMR (CDCl₃, 125 MHz): δ =169.6, 169.5, 167.0, 166.8, 141.9, 141.7, 140.4, 140.3, 128.8, 128.6, 128.0, 127.9, 125.2, 125.1, 115.6, 115.4, 87.6, 87.4, 52.8, 52.8, 46.9, 31.2, 31.0, 20.8, 20.7. IR (KBr): v (cm⁻¹) 2988, 2954, 1723, 1448, 1261, 1028, 930, 764, 750, 701. HRMS (ESI, m/z) calcd for C₁₅H₁₆O₄Na [M+Na]⁺: 283.0947, found: 283.0943.

Methyl 2-oxo-6-(m-tolyl)-6-vinyltetrahydro-2H-pyran-3-carboxylate

1b was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃) δ = 7.28–7.24 (m, 2H), 7.23–7.20 (m, 2H), 7.20–7.15 (m, 2H), 7.15–7.09 (m, 2H), 6.12–5.98 (m, 2H), 5.39–5.21 (m, 4H), 3.78 (s, 3H), 3.74 (s, 3H), 3.65–3.52 (t, *J* = 7.5 Hz, 1H), 3.45–3.39 (t, *J* = 7.5 Hz, 1H), 2.40–2.26 (m, 10H), 2.24–2.00 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ = 169.6, 169.6, 167.1, 166.9, 141.8, 141.6, 140.5, 140.4, 138.6, 138.4, 128.8, 128.7, 128.6, 128.5, 125.9, 125.7, 122.2, 122.0, 115.5, 115.2, 87.6, 87.4, 52.8, 46.9, 31.2, 31.0, 21.6, 20.8, 20.7. IR (KBr): *v* (cm⁻¹) 2991, 2954, 1729, 1275, 1261, 1161, 764, 750, 705. HRMS (ESI, *m/z*) calcd for C₁₆H₁₈O₄Na [M+Na]⁺: 297.1103, found: 297.1100.

Methyl 2-oxo-6-(p-tolyl)-6-vinyltetrahydro-2H-pyran-3-carboxylate

1c was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃) δ = 7.32–7.24 (m, 4H), 7.22–7.13 (m, 4H), 6.11–5.94 (m, 2H), 5.37–5.18 (m, 4H), 3.77 (s, 3H), 3.72 (s, 3H), 3.62– 3.56 (t, J = 7.5 Hz, 1H), 3.44–3.37 (t, J = 7.5 Hz, 1H), 2.42–2.23 (m, 10H), 2.23–1.97 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ = 169.7, 169.6, 167.1, 166.9, 140.6, 140.5, 138.9, 138.7, 137.8, 137.7, 129.5, 129.3, 125.2, 125.0, 115.4, 115.1, 87.6, 87.5, 52.8, 47.0, 46.9, 31.2, 30.9, 21.0, 20.9, 20.7. IR (KBr): v (cm⁻¹) 2991, 2953, 1724, 1275, 1261, 1160, 930, 817, 764, 750. HRMS (ESI, m/z) calcd for C₁₆H₁₈O₄Na [M+Na]⁺: 297.1103, found: 297.1100.

1d was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃) δ = 7.36–7.27 (m, 4H), 6.95–6.83 (m, 4H), 6.12–5.93 (m, 2H), 5.39–5.18 (m, 4H), 3.83–3.79 (m, 6H), 3.78 (s, 3H), 3.74 (s, 3H), 3.63–3.56 (t, J = 7.5 Hz, 1H), 3.44–3.38 (t, J = 7.5 Hz, 1H), 2.41–2.26 (m, 4H), 2.22–2.03 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ = 169.6, 169.6, 167.1, 166.9, 159.3, 159.2, 140.7, 140.6, 133.8, 133.6, 126.6, 126.5, 115.4, 115.1, 114.1, 113.9, 87.5, 87.3, 55.3, 52.8, 52.8, 46.9, 31.1, 30.8, 20.9, 20.8. IR (KBr): v (cm⁻¹) 2960, 2845, 1724, 1513, 1275, 1259, 1181, 764, 750. HRMS (ESI, m/z) calcd for C₁₆H₁₈O₅Na [M+Na]⁺: 313.1052, found: 313.1049.

Methyl 6-(3,4-dimethoxyphenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carbo- xylate

1e was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃) δ = 7.01–6.79 (m, 6H), 6.11–5.93 (m, 2H), 5.39–5.21 (m, 4H), 3.95–3.83 (m, 12H), 3.79 (s, 3H), 3.74 (s, 3H), 3.65–3.56 (t, *J* = 7.5 Hz, 1H), 3.48–3.37 (t, *J* = 8.0 Hz, 1H), 2.42–2.25 (m, 4H), 2.25–2.01 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ = 169.6, 167.1, 166.9, 149.2, 149.0, 148.8, 148.7, 140.6, 140.5, 134.3, 134.1, 117.5, 117.3, 115.4, 115.2, 111.0, 110.9, 109.0, 108.8, 87.5, 87.3, 56.1, 56.0, 55.9, 52.9, 52.8, 46.9, 46.9, 31.2, 30.8, 20.9, 20.8. IR (KBr): ν (cm⁻¹) 2955, 1724, 1517, 1274, 1261, 1163, 1025, 765, 750. HRMS (ESI, *m/z*) calcd for C₁₇H₂₀O₆Na [M+Na]⁺: 321.1338, found: 321.1338.

If was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃) δ = 7.35–7.28 (m, 4H), 7.24–7.16 (m, 4H), 6.11–5.96 (m, 2H), 5.38–5.22 (m, 4H), 3.77 (s, 3H), 3.72 (s, 3H), 3.62–3.55 (t, *J* = 7.5 Hz, 1H), 3.45–3.36 (t, *J* = 7.5 Hz, 1H), 2.58–2.43 (m, 2H), 2.40–2.26 (m, 4H), 2.23–1.99 (m, 4H), 1.91–179 (m, 8H), 1.79–1.67 (m, 2H), 1.47–1.31 (m, 8H), 1.31–1.19 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ = 169.7, 169.6, 167.1, 166.9, 1480, 147.8, 140.6, 140.5, 139.2, 138.9, 127.2, 127.0, 125.2, 125.0, 115.3, 115.1, 87.6, 87.5, 52.8, 52.8, 47.0, 46.9, 44.1, 34.4, 31.1, 30.9, 26.9, 26.1, 20.9, 20.8. IR (KBr): ν (cm⁻¹) 2923, 2850, 1727, 1193, 1031, 929, 827, 764, 750. HRMS (ESI, *m/z*) calcd for C₂₁H₂₆O₄Na [M+Na]⁺: 343.1909, found: 343.1911.

Methyl 6-(4-(tert-butyl)phenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

1g was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃) δ = 7.42–7.36 (m, 4H), 7.36–7.29 (m, 4H), 6.11–5.97 (m, 2H), 5.40–5.21 (m, 4H), 3.78 (s, 3H), 3.74 (s, 3H), 3.63–3.56 (t, *J* = 7.5 Hz, 1H), 3.44–3.37 (t, *J* = 7.5 Hz, 1H), 2.41–2.26 (m, 4H), 2.26–2.01 (m, 4H), 1.31 (s, 18H). ¹³C NMR (125 MHz, CDCl₃) δ = 169.7, 169.6, 167.1, 166.9, 151.0, 150.9, 140.6, 140.5, 138.8, 138.6, 125.7, 125.5, 124.9, 124.8, 115.3, 115.1, 87.6, 87.4, 52.8, 52.8, 47.0, 46.9, 34.5, 31.3, 31.1, 30.9, 20.9, 20.8. IR (KBr): *v* (cm⁻¹) 2959, 2870, 1727, 1274, 1261, 1158, 928, 764, 750. HRMS (ESI, *m/z*) calcd for C₁₉H₂₄O₄Na [M+Na]⁺: 339.1573, found: 339.1570.

Methyl 6-(2-fluorophenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

1h was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃) δ = 7.61–7.46 (m, 2H), 7.36–7.28 (m, 2H), 7.23–7.12 (m, 2H), 7.12–7.00 (m, 2H), 6.29–6.17 (m, 2H), 5.47–5.36 (m, 2H), 5.36–5.24 (m, 2H), 3.79 (s, 3H), 3.73 (s, 3H), 3.64–3.58 (t, *J* = 7.5 Hz, 1H), 3.52–3.46 (t, *J* = 8.0 Hz, 1H), 2.55–2.41 (m, 2H), 2.41–2.25 (m, 3H), 2.25–2.11 (m, 1H), 2.09–1.94 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ = 169.5, 169.4, 166.6, 166.5, 158.8 (d, *J* = 245.1 Hz), 158.5 (d, *J* = 245.0 Hz), 138.3 (d, *J* = 3.3 Hz), 138.1 (d, *J* = 3.2 Hz), 130.0 (d, *J* = 9.8 Hz), 129.9 (d, *J* = 9.4 Hz), 129.3 (d, *J* = 3.4 Hz), 129.2 (d, *J* = 3.4 Hz), 127.2 (d, *J* = 3.4 Hz), 126.9 (d, *J* = 3.4 Hz), 124.6 (d, *J* = 2.9 Hz), 124.6 (d, *J* = 3.3 Hz), 116.6, 116.6 (d, *J* = 23.6 Hz), 116.4 (d, *J* = 23.5 Hz), 116.0, 86.0 (d, *J* = 4.5 Hz), 86.0 (d, *J* = 5.5 Hz), 52.8, 47.4, 47.2, 30.6 (d, *J* = 5.6 Hz), 30.1 (d, *J* = 5.6 Hz), 21.0. ¹⁹F NMR (470 MHz, CDCl₃) δ = -112.0, -112.2. IR (KBr): *v* (cm⁻¹) 2991, 2954, 1728, 1276, 1261, 1159, 1030, 764, 750. HRMS (ESI, *m/z*) calcd for C₁₅H₁₅FO₄Na [M+Na]⁺: 301.0852, found: 301.0848.

1i was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃) δ = 7.47–7.34 (m, 4H), 7.13–6.97 (m, 4H), 6.12–5.91 (m, 2H), 5.42–5.22 (m, 4H), 3.79 (s, 3H), 3.75 (s, 3H), 3.64–3.59 (t, J = 7.0 Hz, 1H), 3.47–3.39 (t, J = 8.0 Hz, 1H), 2.39–2.02 (m, 8H). ¹³C NMR (125 MHz, CDCl₃) δ = 169.5, 169.5, 166.7, 166.6, 162.3 (d, J = 245.9 Hz), 162.3 (d, J = 246.1 Hz), 140.2, 140.1, 137.7 (d, J = 17.6 Hz), 137.7 (d, J = 17.1 Hz), 127.2 (d, J = 7.9 Hz), 127.0 (d, J = 7.9 Hz), 115.9, 115.7 (d, J = 3.5 Hz), 115.6 (d, J = 4.4Hz), 115.4, 87.2, 87.0, 52.9, 52.9, 47.0, 46.8, 31.1, 20.8, 20.8. ¹⁹F NMR (470 MHz, CDCl₃) δ = -114.1, -114.4. IR (KBr): v (cm⁻¹) 2993, 2957, 1729, 1509, 1275, 1260, 1228, 1162, 764, 750. HRMS (ESI, m/z) calcd for C₁₅H₁₅FO₄Na [M+Na]⁺: 301.0852, found: 301.0849.

Methyl 6-(3-chlorophenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

1j was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃) δ = 7.45–7.37 (m, 2H), 7.37–7.19 (m, 6H), 6.11–5.90 (m, 2H), 5.44–5.24 (m, 4H), 3.79 (s, 3H), 3.75 (s, 3H), 3.64–3.59 (t, *J* = 7.0 Hz, 1H), 3.49–3.42 (t, *J* = 8.0 Hz, 1H), 2.39–2.28 (m, 3H), 2.28–2.01 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ = 169.4, 166.5, 166.4, 144.1, 144.0, 139.7, 134.8, 134.7, 130.1, 130.0, 128.2, 128.1, 125.6, 125.4, 123.4, 123.2, 116.3, 116.1, 86.9, 86.8, 53.0, 52.9, 47.0, 46.7, 31.2, 31.0, 20.8. IR (KBr): ν (cm⁻¹) 2954, 2920, 1725, 1275, 1260, 1159, 1118, 764, 750. HRMS (ESI, *m/z*) calcd for C₁₅H₁₅ClO₄Na [M+Na]⁺: 317.0557, found: 317.0553.

Methyl 6-(4-chlorophenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

1k was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃) δ = 7.41–7.31 (m, 8H), 6.11–5.91 (m, 2H), 5.43–5.24 (m, 4H), 3.79 (s, 3H), 3.74 (s, 3H), 3.64–3.56 (t, *J* = 7.0 Hz, 1H), 3.48–3.38 (t, *J* = 8.0 Hz, 1H), 2.37–1.98 (m, 8H). ¹³C NMR (125 MHz, CDCl₃) δ = 169.5, 169.4, 166.6, 166.5, 140.5, 140.4, 139.9, 139.9, 134.0, 133.9, 128.9, 128.8, 126.7, 126.6, 116.1, 115.9, 87.1, 87.0, 52.9, 52.9, 47.0, 46.8, 31.1, 20.8, 20.8. IR (KBr): ν (cm⁻¹) 2993, 2954, 1728, 1492, 1275, 1261, 1012, 764, 750. HRMS (ESI, *m/z*) calcd for C₁₅H₁₅ClO₄Na [M+Na]⁺: 317.0557, found: 317.0555.

Methyl 6-(3,4-dichlorophenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

11 was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃) δ = 7.55–7.48 (m, 2H), 7.48–7.41 (m, 2H), 7.30–7.21 (m, 2H), 6.06–5.93 (m, 2H), 5.43–5.28 (m, 4H), 3.80 (s, 3H), 3.76 (s, 3H), 3.64–3.60 (t, *J* = 7.0 Hz, 1H), 3.49–3.44 (t, *J* = 8.0 Hz, 1H), 240–2.25 (m, 3H), 2.25–2.01 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ = 169.3, 169.3, 166.2, 166.2, 142.3, 142.2, 139.3, 133.1, 132.9, 132.3, 132.2, 130.7, 130.6, 127.5, 127.3, 124.7, 124.5, 116.7, 116.4, 86.5, 86.3, 53.0, 52.9, 47.1, 46.6, 31.2, 30.9, 20.8, 20.8. IR (KBr): *v* (cm⁻¹) 2991, 2960, 1729, 1275, 1261, 1028, 764, 750. HRMS (ESI, *m/z*) calcd for C₁₅H₁₄Cl₂O₄Na [M+Na]⁺: 351.0167, found: 351.0164.

Methyl 6-(4-bromophenyl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

1m was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃) δ = 7.55–7.43 (m, 4H), 7.36–7.20 (m, 4H), 6.10–5.93 (m, 2H), 5.44–5.21 (m, 4H), 3.78 (s, 3H), 3.74 (s, 3H), 3.64–3.58 (t, *J* = 7.0 Hz, 1H), 3.47–3.40 (t, *J* = 8.0 Hz, 1H), 2.38–2.00 (m, 8H). ¹³C NMR (125 MHz, CDCl₃) δ = 169.4, 169.4, 166.6, 166.5, 141.1, 140.9, 139.9, 139.8, 131.9, 131.8, 127.1, 126.9, 122.2, 122.1, 116.2, 115.9, 87.1, 87.0, 52.9, 52.9, 47.0, 46.8, 31.0, 20.8, 20.8. IR (KBr): *v* (cm⁻¹) 2988, 2953, 1728, 1275, 1261, 1161, 1009, 764, 750. HRMS (ESI, *m/z*) calcd for C₁₅H₁₅BrO₄Na [M+Na]⁺: 361.0052, found: 361.0048.

Methyl 6-(naphthalen-2-yl)-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

1n was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃) δ = 7.93–7.73 (m, 8H), 7.53–7.39 (m, 6H), 6.18–6.01 (m, 2H), 5.43–5.33 (m, 2H), 5.33–5.22 (m, 2H), 3.76 (s, 3H), 3.68 (s, 3H), 3.64–3.59 (t, *J* = 7.5 Hz, 1H), 3.47–3.40 (t, *J* = 8.0 Hz, 1H), 2.48–2.21 (m, 5H), 2.19–1.96 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ = 169.6, 169.6, 167.1, 167.0, 140.3, 140.3, 139.1, 139.0, 133.1, 132.8, 132.7, 128.8, 128.6, 128.4, 128.3, 127.6, 127.6, 126.7, 126.6, 124.4, 124.0, 123.2, 123.1, 115.9, 115.7, 87.8, 87.6, 52.9, 47.0, 47.0, 31.1, 31.0, 20.9, 20.8. IR (KBr): ν (cm⁻¹) 2991, 2953, 1725, 1361, 1275, 1261, 1160, 764, 750. HRMS (ESI, *m/z*) calcd for C₁₉H₁₈O₄Na [M+Na]⁺: 333.1103, found: 333.1100.

Methyl 2-oxo-6-(thiophen-3-yl)-6-vinyltetrahydro-2H-pyran-3-carboxylate

10 was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃) δ = 7.37–7.31 (m, 2H), 7.27–7.22 (m, 2H), 7.06–6.99 (m, 2H), 6.10–5.95 (m, 2H), 5.38–5.23 (m, 4H), 3.78 (s, 3H), 3.74 (s, 3H), 3.61–3.55 (t, *J* = 7.5 Hz, 1H), 3.49–3.43 (t, *J* = 8.0 Hz, 1H), 2.44–2.26 (m, 4H), 2.22–2.00 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ = 169.6, 169.6, 166.8, 166.7, 143.1, 139.9, 139.9, 126.9, 126.8, 125.4, 125.3, 121.9, 121.5, 115.8, 115.4, 86.2, 86.0, 52.9, 47.0, 46.9, 31.2, 31.1, 20.9, 20.9. IR (KBr): *v* (cm⁻¹) 2991, 2953, 1725, 1275, 1261, 1195, 1162, 764, 750. HRMS (ESI, *m/z*) calcd for C₁₃H₁₄O₄SNa [M+Na]⁺: 289.0511, found: 289.0508.

Methyl 6-methyl-2-oxo-6-vinyltetrahydro-2H-pyran-3-carboxylate

1p was obtained as light yellow oil, dr = 1:1. ¹H NMR (500 MHz, CDCl₃) δ = 5.93–5.73 (m, 2H), 5.40–5.14 (m, 4H), 3.85–3.70 (m, 6H), 3.59–3.49 (m, 1H), 3.49–3.37 (m, 1H), 2.31–1.71 (m, 8H), 1.56–1.43 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ = 169.9, 169.7, 167.1, 167.0, 140.8, 140.4, 115.5, 114.7, 84.9, 84.6, 52.8, 52.7, 47.5, 46.1, 31.9, 30.5, 28.4, 28.1, 21.1, 20.7. IR (KBr): *v* (cm⁻¹) 2991, 2959, 1724, 1457, 1275, 1261, 1112, 764, 750. HRMS (ESI, *m/z*) calcd for C₁₀H₁₄O₄Na [M+Na]⁺: 221.0790, found: 221.0788.

Methyl (14R,14aS,E)-11-phenyl-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazo- nino[1,9-

c]quinazoline-14-carboxylate

According to the general procedure A, **3aa** was obtained as white solid, 50.3 mg, 98% yield, dr > 20:1, m. p. 122–124 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.76–7.70 (dd, J_1 = 6.5 Hz, J_2 = 1.5 Hz, 2H), 7.33–7.27 (m, 4H), 7.27–7.19 (m, 3H), 7.17–7.10 (m, 1H), 7.07–7.02 (m, 1H), 6.97–6.90 (m, 1H), 6.58–6.49 (dd, J_1 = 7.5 Hz, J_2 = 1.5 Hz, 1H), 6.46 (s, 1H), 6.24–6.16 (t, J = 8.5 Hz, 1H), 5.77–5.71 (d, J = 3.0 Hz, 1H), 4.54–4.44 (dd, J_1 = 15.0 Hz, J_2 = 8.5 Hz, 1H), 3.73–3.64 (dd, J_1 = 15.0 Hz, J_2 = 7.5 Hz, 1H), 3.62 (s, 3H), 3.28–3.20 (m, 1H), 2.62–2.46 (m, 2H), 2.37 (s, 3H), 1.89–1.74 (m, 1H), 1.60–1.47 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 172.1, 146.9, 144.6, 144.5, 139.6, 138.8, 132.5, 129.5, 128.0, 127.7, 127.3, 127.2, 125.2, 125.1, 124.9, 121.2, 60.8, 51.0, 47.0, 44.2, 28.1, 20.7, 20.3. IR (KBr): v (cm⁻¹) 2950, 1733, 1618, 1596, 1262, 1163, 1087, 764, 750, 682. HRMS (ESI, m/z) calcd for C₂₉H₃₀N₃O₄S [M+H]⁺: 516.1957, found: 516.1954.

Methyl (14*R*,14a*S*,*E*)-11-(*m*-tolyl)-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **3ba** was obtained as white solid, 40.8 mg, 77% yield, dr > 20:1, m. p. 218–220 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.79–7.67 (dd, J_1 = 6.5 Hz, J_2 = 1.5 Hz, 2H), 7.37–7.23 (d, J = 8.0 Hz, 2H), 7.16–7.00 (m, 6H), 6.98–6.89 (m, 1H), 6.57–6.48 (m, 1H), 6.45 (s, 1H), 6.23–6.17 (t, J = 8.0 Hz, 1H), 5.77–5.72 (d, J = 3.0 Hz, 1H), 4.54–4.44 (dd, J_1 = 15.0 Hz, J_2 = 8.5 Hz, 1H), 3.72–3.64 (dd, J_1 = 15.0 Hz, J_2 = 7.5 Hz, 1H), 3.63 (s, 3H), 3.29–3.21 (m, 1H), 2.63–2.45 (m, 2H), 2.38 (s, 3H), 2.27 (s, 3H), 1.87–1.72 (m, 1H), 1.58–1.46 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 172.2, 147.1, 144.6, 144.5, 139.6, 138.8, 137.3, 132.5, 129.5, 128.0, 128.0, 127.6, 127.3, 125.8, 125.1, 124.9, 122.2, 121.3, 121.0, 60.8, 51.0, 47.0, 44.2, 28.0, 20.7, 20.5, 20.3. IR (KBr): v (cm⁻¹) 2949, 1735, 1619, 1597, 1275, 1262, 1165, 765, 750, 682. HRMS (ESI, *m/z*) calcd for C₃₀H₃₂N₃O₄S [M+H]⁺: 530.2113, found: 530.2114. Methyl (14*R*,14a*S*,*E*)-11-(*p*-tolyl)-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **3ca** was obtained as white solid, 49.3 mg, 93% yield, dr > 20:1, m. p. 225–227 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.78–7.67 (dd, J_1 = 6.5 Hz, J_2 = 2.0 Hz, 2H), 7.32–7.26 (d, J = 8.0 Hz, 2H), 7.22–7.12 (m, 3H), 7.10–7.01 (m, 3H), 6.98–6.88 (m, 1H), 6.57–6.48 (dd, J_1 = 8.0 Hz, J_2 = 1.5 Hz, 1H), 6.45 (s, 1H), 6.23–6.15 (t, J = 8.0 Hz, 1H), 5.75–5.69 (d, J = 3.5 Hz, 1H), 4.55–4.44 (dd, J_1 = 15.0 Hz, J_2 = 8.5 Hz, 1H), 3.72–3.63 (dd, J_1 = 15.0 Hz, J_2 = 7.5 Hz, 1H), 3.62 (s, 3H), 3.27–3.19 (m, 1H), 2.62–2.45 (m, 2H), 2.37 (s, 3H), 2.26 (s, 3H), 1.85–1.71 (m, 1H), 1.58–1.46 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 172.1, 146.7, 144.6, 144.5, 139.6, 137.1, 135.7, 132.5, 129.5, 128.4, 127.9, 127.3, 125.1, 125.0, 124.8, 121.3, 120.4, 60.8, 51.0, 47.0, 44.3, 27.9, 20.7, 20.3, 20.1. IR (KBr): ν (cm⁻¹) 2951, 1735, 1619, 1597, 1261, 1164, 1087, 822, 765, 750. HRMS (ESI, *m*/*z*) calcd for C₃₀H₃₂N₃O₄S [M+H]⁺: 530.2113, found: 530.2111.

Methyl (14*R*,14a*S*,*E*)-11-(4-methoxyphenyl)-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **3da** was obtained as white solid, 46.8 mg, 86% yield, dr > 20:1, m. p. 236–238 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.84–7.76 (dd, J_I = 6.5 Hz, J_2 = 1.5 Hz, 2H), 7.40– 7.29 (m, 4H), 7.24–7.18 (m, 1H), 7.16–7.09 (m, 1H), 7.06–6.97 (m, 1H), 6.90–6.81 (m, 2H), 6.64–6.56 (dd, J_I = 8.0 Hz, J_2 = 1.5 Hz, 1H), 6.52 (s, 1H), 6.28–6.20 (t, J = 8.5 Hz, 1H), 5.84–5.75 (d, J = 3.5 Hz, 1H), 4.61–4.50 (dd, J_I = 15.0 Hz, J_2 = 8.5 Hz, 1H), 3.80 (s, 3H), 3.78–3.71 (dd, J_I = 15.0 Hz, J_2 = 7.5 Hz, 1H), 3.70 (s, 3H), 3.33–3.25 (m, 1H), 2.68– 2.52 (m, 2H), 2.45 (s, 3H), 1.96–1.84 (m, 1H), 1.68–1.54 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.2, 159.7, 147.1, 145.7, 145.5, 140.7, 133.5, 131.9, 130.5, 129.0, 128.4, 127.3, 126.2, 125.9, 122.3, 120.6, 114.1, 61.8, 55.3, 52.0, 48.1, 45.3, 28.8, 21.7, 21.4. IR (KBr): v (cm⁻¹) 2991, 1734, 1597, 1275, 1261, 1165, 764, 750. HRMS (ESI, m/z) calcd for C₃₀H₃₂N₃O₅S [M+H]⁺: 546.2062, found: 546.2063.

Methyl (14*R*,14a*S*,*E*)-11-(3,4-dimethoxyphenyl)-8-tosyl-8,9,12,13,14,14a-hexahyd- ro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **3ea** was obtained as colorless oil, 55.5 mg, 96% yield, dr > 20:1. ¹H NMR (500 MHz, CDCl₃): δ = 7.86–7.73 (m, 2H), 7.42–7.33 (m, 2H), 7.25–7.18 (m, 1H), 7.15–7.08 (dd, J_I = 8.0 Hz, J_2 = 1.5 Hz, 1H), 7.07–6.99 (m, 1H), 6.97–6.87 (m, 2H), 6.86–6.77 (d, J = 8.5 Hz, 1H), 6.65–6.58 (m, 1H), 6.51 (s, 1H), 6.31–6.23 (t, J = 8.0 Hz, 1H), 5.86–5.78 (d, J = 3.0 Hz, 1H), 4.66–4.52 (dd, J_I = 15.0 Hz, J_2 = 8.5 Hz, 1H), 3.93–3.84 (d, J = 7.5 Hz, 6H), 3.81–3.72 (dd, J_I = 15.0 Hz, J_2 = 7.5 Hz, 1H), 3.70 (s, 3H), 3.36–3.24 (m, 1H), 2.68–2.51 (m, 2H), 2.45 (s, 3H), 1.96–1.85 (m, 1H), 1.70–1.55 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.2, 149.3, 149.0, 147.3, 145.6, 145.6, 140.6, 133.5, 132.3, 130.5, 129.0, 128.4, 126.2, 125.9, 125.9, 122.3, 120.9, 118.7, 111.2, 109.2, 61.9, 56.0, 55.9, 52.1, 48.1, 45.4, 29.0, 21.7, 21.4. IR (KBr): ν (cm⁻¹) 2952, 1734, 1618, 1597, 1516, 1265, 1164, 765, 750. HRMS (ESI, *m/z*) calcd for C₃₁H₃₄N₃O₆S [M+H]⁺: 576.2168, found: 576.2168.

Methyl (14*R*,14a*S*,*E*)-11-(4-cyclohexylphenyl)-8-tosyl-8,9,12,13,14,14a-hexahyd- ro-[1,2]diazonino[1,9-c]quinazoline-14-carboxylate

According to the general procedure A, **3fa** was obtained as colorless oil, 56.1 mg, 94% yield, dr > 20:1. ¹H NMR (500 MHz, CDCl₃): δ = 7.85–7.74 (dd, J_1 = 6.5 Hz, J_2 = 1.5 Hz, 2H), 7.40– 7.34 (d, J = 8.0 Hz, 2H), 7.33–7.27 (dd, J_1 = 6.5 Hz, J_2 = 2.0 Hz, 2H), 7.25–7.18 (m, 1H), 7.18– 7.09 (m, 3H), 7.05–6.99 (m, 1H), 6.62–6.57 (m, 1H), 6.53 (s, 1H), 6.31–6.24 (t, J = 8.0 Hz, 1H), 5.83–5.77 (d, J = 3.0 Hz, 1H), 4.60–4.51 (dd, J_1 = 15.0 Hz, J_2 = 8.5 Hz, 1H), 3.79–3.72 (dd, J_1 = 15.0 Hz, J_2 = 7.5 Hz, 1H), 3.70 (s, 3H), 3.36–3.27 (dd, J_1 = 11.0 Hz, J_2 = 6.5 Hz, 1H), 2.69–2.41 (m, 6H), 1.95–1.80 (m, 5H), 1.78–1.70 (m, 1H), 1.66–1.54 (m, 1H), 1.48–1.32 (m, 4H), 1.30–1.20 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.3, 148.3, 147.7, 145.7, 145.5, 140.7, 137.1, 133.6, 130.5, 129.0, 128.4, 127.2, 126.2, 126.0, 126.0, 125.9, 122.3, 121.5, 61.9, 52.0, 48.1, 45.4, 44.2, 34.4, 34.3, 28.9, 26.9, 26.2, 21.8, 21.4. IR (KBr): v (cm⁻¹) 2924, 1735, 1620, 1597, 1261, 1165, 765, 750, 682. HRMS (ESI, m/z) calcd for C₃₅H₄₀N₃O₄S [M+H]⁺: 598.2739, found: 598.2740.

Methyl (14*R*,14a*S*,*E*)-11-(4-(tert-butyl)phenyl)-8-tosyl-8,9,12,13,14,14a-hexahyd- ro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **3ga** was obtained as white solid, 55.1 mg, 96% yield, dr > 20:1, m. p. 207–209 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.85–7.77 (m, 2H), 7.40–7.28 (m, 6H), 7.24–7.19 (m, 1H), 7.16–7.10 (m, 1H), 7.06–6.99 (m, 1H), 6.62–6.56 (dd, J_I = 7.5 Hz, J_2 = 1.0 Hz, 1H), 6.53 (s, 1H), 6.32–6.25 (t, J = 8.0 Hz, 1H), 5.83–5.76 (d, J = 3.0 Hz, 1H), 4.63–4.50 (dd, J_I = 15.0 Hz, J_2 = 8.5 Hz, 1H), 3.80–3.72 (dd, J_I = 15.0 Hz, J_2 = 7.5 Hz, 1H), 3.71 (s, 3H), 3.36–3.29 (m, 1H), 2.72–2.51 (m, 2H), 2.45 (s, 3H), 2.01–1.86 (m, 1H), 1.68–1.55 (m, 1H), 1.31 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.3, 151.3, 147.6, 145.7, 145.5, 140.7, 136.7, 133.5, 130.5, 129.0, 128.4, 126.2, 125.9, 125.7, 125.7, 122.3, 121.5, 61.9, 52.1, 48.1, 45.3, 34.6, 31.3, 28.9, 21.7, 21.4. IR (KBr): v (cm⁻¹) 2961, 1737, 1620, 1597, 1359, 1263, 1165, 766, 683, 558. HRMS (ESI, m/z) calcd for C₃₃H₃₈N₃O₄S [M+H]⁺: 572.2583, found: 572.2583.

Methyl (14*R*,14a*S*,*E*)-11-(2-fluorophenyl)-8-tosyl-8,9,12,13,14,14a-hexahyd- ro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **3ha** was obtained as white solid, 49.3 mg, 92% yield, dr > 20:1, m. p. 203–205 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.85–7.78 (dd, J_1 = 6.5 Hz, J_2 = 1.5 Hz, 2H), 7.43–7.34 (d, J = 8.0 Hz, 2H), 7.27–7.09 (m, 5H), 7.07–6.98 (m, 2H), 6.66–6.57 (dd, J_1 = 8.0 Hz, J_2 = 1.5 Hz, 1H), 6.54 (s, 1H), 6.18– 6.06 (t, J = 8.0 Hz, 1H), 5.93–5.85 (d, J= 3.0 Hz, 1H), 4.61–4.49 (dd, J_1 = 15.0 Hz, J_2 = 8.5 Hz, 1H), 3.82–3.69 (m, 4H), 3.51–3.38 (m, 1H), 2.66–2.50 (m, 2H), 2.45 (s, 3H), 1.91–1.74 (m, 1H), 1.66–1.46 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.3, 159.7 (d, J = 245.1 Hz), 145.8, 145.6, 144.4, 140.5, 133.5, 130.5, 129.8 (d, J = 3.4 Hz), 129.5 (d, J = 8.6 Hz), 129.0, 128.9, 128.8, 128.4, 126.2, 126.0, 125.9, 124.3 (d, J = 3.6 Hz), 122.3, 116.0 (d, J = 22.4 Hz), 61.7, 52.2, 47.8, 45.1, 30.4, 21.7, 21.2. ¹⁹F NMR (470 MHz, CDCl₃): δ = –115.4. IR (KBr): v (cm⁻¹) 2951, 1733, 1619, 1597, 1487, 1213, 1164, 764, 737, 681. HRMS (ESI, m/z) calcd for C₂₉H₂₉FN₃O₄S [M+H]⁺: 534.1863, found: 534.1864.

Methyl (14*R*,14a*S*,*E*)-11-(4-fluorophenyl)-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **3ia** was obtained as white solid, 44.4 mg, 83% yield, dr > 20:1, m. p. 224–226 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.87–7.75 (dd, J_1 = 6.5 Hz, J_2 = 2.0 Hz, 2H), 7.43–7.30 (m, 4H), 7.25–7.19 (m, 1H), 7.15–7.09 (dd, J_1 = 8.0 Hz, J_2 = 1.5 Hz, 1H), 7.06–6.98 (m, 3H), 6.62– 6.56 (dd, J_1 = 8.0 Hz, J_2 = 1.5 Hz, 1H), 6.51 (s, 1H), 6.29–6.21 (t, J = 8.0 Hz, 1H), 5.87–5.80 (d, J = 3.0 Hz, 1H), 4.62–4.52 (dd, J_1 = 15.0 Hz, J_2 = 8.5 Hz, 1H), 3.78–3.68 (m, 4H), 3.33–3.25 (m, 1H), 2.65–2.57 (m, 2H), 2.45 (s, 3H), 1.92–1.81 (m, 1H), 1.66–1.55 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.1, 162.8 (d, J = 246.1 Hz), 146.9, 145.6, 145.6, 140.6, 135.8 (d, J = 3.3 Hz), 133.5, 130.5, 129.0, 128.4, 127.8 (d, J = 7.9 Hz), 126.3, 125.9 (d, J = 10.5 Hz), 122.3 (d, J = 11.1 Hz), 115.7(d, J = 21.3 Hz), 61.8, 52.1, 48.0, 45.2, 29.2, 21.7, 21.3. ¹⁹F NMR (470 MHz, CDCl₃): δ = –113.7. IR (KBr): v (cm⁻¹) 2989, 1734, 1618, 1597, 1508, 1275, 1261, 1165, 764, 750. HRMS (ESI, m/z) calcd for C₂₉H₂₉FN₃O₄S [M+H]⁺: 534.1863, found: 534.1866.

Methyl (14*R*,14a*S*,*E*)-11-(3-chlorophenyl)-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **3ja** was obtained as colorless oil, 44.7 mg, 81% yield, dr > 20:1. ¹H NMR (500 MHz, CDCl₃): δ = 7.87–7.76 (d, *J* = 8.0 Hz, 2H), 7.44–7.31 (m, 3H), 7.27–7.19 (m, 4H), 7.17–7.08 (d, *J* = 8.0 Hz, 1H), 7.07–6.98 (m, 1H), 6.66–6.58 (d, *J* = 7.5 Hz, 1H), 6.53 (s, 1H), 6.32–6.24 (t, *J* = 8.0 Hz, 1H), 5.88–5.79 (d, *J* = 3.0 Hz, 1H), 4.62–4.51 (dd, *J*₁ = 15.0 Hz, *J*₂ = 8.5 Hz, 1H), 3.78–3.67 (m, 4H), 3.31–3.22 (m, 1H), 2.64–2.53 (m, 2H), 2.46 (s, 3H), 1.92–1.77 (m, 1H), 1.71–1.56 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.1, 146.7, 145.6, 145.6, 141.7, 140.5, 134.7, 133.4, 130.6, 130.0, 129.1, 128.4, 128.4, 126.3, 126.3, 126.0, 125.9, 124.4, 123.4, 122.2, 61.8, 52.2, 47.9, 45.1, 29.0, 21.8, 21.3. IR (KBr): *v* (cm⁻¹) 2950, 1733, 1619, 1596, 1355, 1164, 1087, 762, 682. HRMS (ESI, *m/z*) calcd for C₂₉H₂₉ClN₃O₄S [M+H]⁺: 550.1567, found: 550.1568.

Methyl (14*R*,14a*S*,*E*)-11-(4-chlorophenyl)-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **3ka** was obtained as white solid, 49.2 mg, 90% yield, dr > 20:1, m. p. 239–241 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.76–7.70 (dd, J_I = 6.5 Hz, J_2 = 1.5 Hz, 2H), 7.33–7.27 (d, J = 8.0 Hz, 2H), 7.26–7.20 (m, 4H), 7.18–7.11 (m, 1H), 7.09–7.02 (dd, J_I = 8.0 Hz, J_2 = 1.5 Hz, 1H), 6.98–6.91 (m, 1H), 6.55– 6.50 (d, J = 7.5 Hz, 1H), 6.44 (s, 1H), 6.24–6.17 (t, J = 8.0 Hz, 1H), 5.78–5.71 (d, J = 3.5 Hz, 1H), 4.55–4.44 (dd, J_I = 15.0 Hz, J_2 = 8.5 Hz, 1H), 3.71–3.59 (m, 4H), 3.23–3.15 (m, 1H), 2.57–2.48 (m, 2H), 2.38 (s, 3H), 1.80– 1.70 (m, 1H), 1.59–1.46 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 172.0, 145.7, 144.6, 144.5, 139.5, 137.1, 133.2, 132.4, 129.5, 128.0, 127.9, 127.3, 126.4, 125.2, 124.9, 124.8, 121.7, 121.2, 60.8, 51.1, 46.9, 44.1, 28.0, 20.7, 20.2. IR (KBr): v (cm⁻¹) 2951, 1733, 1618, 1597, 1261, 1164, 1087, 830, 765, 750. HRMS (ESI, m/z) calcd for C₂₉H₂₉ClN₃O₄S [M+H]⁺: 550.1567, found: 550.1568.

Methyl (14*R*,14a*S*,*E*)-11-(3,4-dichlorophenyl)-8-tosyl-8,9,12,13,14,14a-hexahyd- ro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **3la** was obtained as white solid, 53.3 mg, 91% yield, dr > 20:1, m. p. 209–211 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.85–7.77 (d, *J* = 8.0 Hz, 2H), 7.48–7.44 (d, *J* = 2.0 Hz, 1H), 7.43–7.33 (t, *J* = 8.0 Hz, 3H), 7.26–7.17 (m, 2H), 7.15–7.09 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.5 Hz, 1H), 7.06–6.98 (m, 1H), 6.65–6.57 (d, *J* = 7.5 Hz, 1H), 6.52 (s, 1H), 6.34–6.25 (t, *J* = 8.0 Hz, 1H), 5.87–5.80 (d, *J* = 3.0 Hz, 1H), 4.63–4.52 (dd, *J*₁ = 15.0 Hz, *J*₂ = 8.5 Hz, 1H), 3.79– 3.67 (m, 4H), 3.29–3.15 (m, 1H), 2.62–2.53 (m, 2H), 2.46 (s, 3H), 1.90–1.77 (m, 1H), 1.69–1.56 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.0, 145.7, 145.7, 145.5, 140.5, 139.7, 133.3, 133.0, 132.4, 130.7, 130.6, 129.1, 128.4, 128.1, 126.3, 126.0, 126.0, 125.9, 125.5, 123.8, 122.1, 61.7, 52.2, 47.9, 45.0, 28.9, 21.8, 21.3. IR (KBr): *v* (cm⁻¹) 2952, 1733, 1619, 1597, 1275, 1261, 1164, 1087, 765, 750. HRMS (ESI, *m*/*z*) calcd for C₂₉H₂₈Cl₂N₃O₄S [M+H]⁺: 584.1177, found: 584.1176.

Methyl (14*R*,14a*S*,*E*)-11-(4-bromophenyl)-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **3ma** was obtained as white solid, 54.6 mg, 92% yield, dr > 20:1, m. p. 234–236 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.87–7.76 (dd, J_I = 6.5 Hz, J_2 = 2.0 Hz, 2H), 7.52–7.42 (m, 2H), 7.42–7.33 (d, J = 8.0 Hz, 2H), 7.29–7.19 (m, 3H), 7.18–7.09 (dd, J_I = 8.0 Hz, J_2 = 1.5 Hz, 1H), 7.06–6.98 (m, 1H), 6.65– 6.55 (dd, J_I = 8.0 Hz, J_2 = 1.5 Hz, 1H), 6.51 (s, 1H), 6.33–6.24 (t, J = 8.0 Hz, 1H), 5.87–5.75 (d, J = 3.0 Hz, 1H), 4.62–4.50 (dd, J_I = 15.0 Hz, J_2 = 8.5 Hz, 1H), 3.78–3.65 (m, 4H), 3.31–3.21 (m, 1H), 2.65–2.54 (m, 2H), 2.45 (s, 3H), 1.92–1.78 (m, 1H), 1.69–1.54 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.1, 146.8, 145.6, 145.5, 140.6, 138.7, 133.4, 131.9, 130.6, 129.1, 128.4, 127.8, 126.3, 126.0, 125.9, 122.8, 122.4, 122.2, 61.8, 52.2, 47.9, 45.1, 29.0, 21.8, 21.3. IR (KBr): v (cm⁻¹) 2951, 1732, 1618, 1597, 1275, 1261, 1163, 1087, 765, 750, 682. HRMS (ESI, m/z) calcd for C₂₉H₂₉BrN₃O₄S [M+H]⁺: 594.1062, found: 594.1065.

Methyl (14*R*,14a*S*,*E*)-11-(naphthalen-2-yl)-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **3na** was obtained as white solid, 54.1 mg, 96% yield, dr > 20:1, m. p. 207–209 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.80–7.67 (m, 6H), 7.49–7.42 (dd, J_I = 8.5 Hz, J_2 = 2.0 Hz, 1H), 7.42–7.33 (m, 2H), 7.32–7.25 (d, J = 8.0 Hz, 2H), 7.16–7.11 (m, 1H), 7.09–7.03 (dd, J_I = 8.0 Hz, J_2 = 1.5 Hz, 1H), 6.97–6.90 (m, 1H), 6.55–6.50 (dd, J_I = 7.5 Hz, J_2 = 1.5 Hz, 1H), 6.48 (s, 1H), 6.41–6.33 (t, J = 8.0 Hz, 1H), 5.79–5.72 (d, J = 3.5 Hz, 1H), 4.59–4.48 (dd, J_I = 15.0 Hz, J_2 = 8.5 Hz, 1H), 3.77–3.65 (dd, J_I = 15.0 Hz, J_2 = 7.5 Hz, 1H), 3.57 (s, 3H), 3.34–3.26 (m, 1H), 2.78–2.67 (m, 1H), 2.64–2.53 (m, 1H), 2.37 (s, 3H), 1.92– 1.79 (m, 1H), 1.63–1.50 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.1, 147.7, 145.7, 145.6, 140.6, 136.9, 133.5, 133.4, 133.2, 130.6, 129.0, 128.4, 128.4, 128.3, 127.6, 126.4, 126.3, 126.2, 125.9, 125.3, 124.1, 122.7, 122.3, 61.9, 52.1, 48.1, 45.3, 28.9, 21.8, 21.5. IR (KBr): ν (cm⁻¹) 2989, 1734, 1619, 1597, 1275, 1165, 765, 750, 685. HRMS (ESI, *m/z*) calcd for C₃₃H₃₂N₃O₄S [M+H]⁺: 566.2113, found: 566.2113.

Methyl (14*R*,14a*S*,*E*)-11-(thiophen-3-yl)-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **30a** was obtained as colorless oil, 50.5 mg, 97% yield, dr > 20:1. ¹H NMR (500 MHz, CDCl₃): δ = 7.83–7.76 (dd, J_I = 6.5 Hz, J_2 = 1.5 Hz, 2H), 7.41– 7.34 (d, J = 8.0 Hz, 2H), 7.30–7.20 (m, 4H), 7.17–7.10 (dd, J_I = 7.5 Hz, J_2 = 1.5 Hz, 1H), 7.07– 6.98 (m, 1H), 6.63–6.57 (dd, J_I = 8.5 Hz, J_2 = 1.0 Hz, 1H), 6.53 (s, 1H), 6.48–6.39 (t, J = 8.0 Hz, 1H), 5.82–5.74 (d, J = 3.0 Hz, 1H), 4.62–4.51 (dd, J_I = 15.0 Hz, J_2 = 8.5 Hz, 1H), 3.75– 3.65 (m, 4H), 3.30–3.21 (m, 1H), 2.65–2.50 (m, 2H), 2.45 (s, 3H), 2.14–2.02 (m, 1H), 1.75– 1.61 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.2, 145.6, 145.6, 141.9, 140.7, 140.6, 133.5, 130.5, 129.0, 128.4, 126.3, 126.2, 125.9, 125.9, 125.3, 122.3, 121.9, 120.7, 61.8, 52.1, 48.0, 45.4, 28.9, 21.8, 21.7. IR (KBr): v (cm⁻¹) 2950, 1734, 1618, 1597, 1275, 1260, 1165, 765, 750, 685. HRMS (ESI, *m/z*) calcd for C₂₇H₂₈N₃O₄S₂ [M+H]⁺: 522.1521, found: 522.1522.

Methyl (14*R*,14a*S*,*Z*)-11-methyl-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazon- ino[1,9*c*]quinazoline-14-carboxylate

According to the general procedure A, **3pa** was obtained as colorless oil, 36.8 mg, 81% yield, dr > 20:1. ¹H NMR (500 MHz, CDCl₃): δ = 7.74–7.66 (dd, J_1 = 6.5 Hz, J_2 = 1.5 Hz, 2H), 7.32– 7.24 (d, J = 8.0 Hz, 2H), 7.17–7.09 (m, 1H), 7.06–7.00 (dd, J_1 = 7.5 Hz, J_2 = 1.5 Hz, 1H), 6.99– 6.92 (m, 1H), 6.60–6.52 (d, J = 7.5 Hz, 1H), 6.39 (s, 1H), 5.79–5.70 (m, 2H), 4.31–4.21 (dd, J_1 = 15.0 Hz, J_2 = 8.0 Hz, 1H), 3.72 (s, 3H), 3.53–3.43 (dd, J_1 = 15.0 Hz, J_2 = 7.5 Hz, 1H), 3.20– 3.12 (dd, J_1 = 10.5 Hz, J_2 = 3.0 Hz, 1H), 2.37 (s, 3H), 2.32–2.21 (m, 1H), 2.07–1.94 (m, 1H), 1.92–1.83 (m, 1H), 1.67 (s, 3H), 1.55–1.41 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 172.5, 144.8, 144.4, 144.3, 139.6, 132.6, 129.4, 127.9, 127.3, 125.1, 124.8, 124.8, 121.4, 119.9, 60.6, 51.1, 46.8, 44.3, 30.0, 21.4, 20.7, 19.7. IR (KBr): v (cm⁻¹) 2951, 1734, 1618, 1597, 1275, 1261, 1164, 765, 750, 683. HRMS (ESI, m/z) calcd for C₂₄H₂₈N₃O₄S [M+H]⁺: 454.1800, found: 454.1799.

Methyl (14*R*,14a*S*,*E*)-8-(mesitylsulfonyl)-11-phenyl-8,9,12,13,14,14a-hexahydro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **3ab** was obtained as white solid, 49.7 mg, 91% yield, dr > 20:1, m. p. 235–237 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.51 (s, 1H), 7.31–7.20 (m, 5H), 7.14–7.06 (m, 2H), 6.90–6.79 (m, 3H), 6.26–6.18 (t, *J* = 8.5 Hz, 1H), 6.11–6.02 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.0 Hz, 1H), 4.83–4.70 (dd, *J*₁ = 15.0 Hz, *J*₂ = 8.5 Hz, 1H), 4.33–4.23 (d, *J* = 3.5 Hz, 1H), 3.93–3.78 (m, 1H), 3.46 (s, 3H), 2.96–2.86 (m, 1H), 2.71–2.56 (m, 2H), 2.53 (s, 6H), 2.23 (s, 3H), 1.78–1.66 (m, 1H), 1.52–1.38 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 171.6, 147.4, 146.4, 143.2, 140.8, 139.5, 138.9, 131.2, 129.2, 128.0, 127.7, 127.3, 125.0, 124.8, 124.8, 124.2, 121.2, 120.5, 58.8, 50.7, 45.4, 44.1, 28.1, 21.8, 20.1, 19.9. IR (KBr): *v* (cm⁻¹) 2948, 1739, 1618, 1597, 1330, 1260, 1158, 764, 679. HRMS (ESI, *m/z*) calcd for C₃₁H₃₄N₃O₄S [M+H]⁺: 544.2270, found: 544.2270.

Methyl (14*R*,14a*S*,*E*)-11-phenyl-8-(phenylsulfonyl)-8,9,12,13,14,14a-hexahydro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **3ac** was obtained as white solid, 41.3 mg, 82% yield, dr > 20:1, m. p. 256–258 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.90–7.84 (m, 2H), 7.65–7.57 (m, 1H), 7.56–7.48 (m, 2H), 7.32–7.20 (m, 5H), 7.18–7.12 (m, 1H), 7.09–7.02 (dd, J_I = 8.0 Hz, J_2 = 1.5 Hz, 1H), 6.99–6.91 (m, 1H), 6.55–6.49 (dd, J_I = 8.0 Hz, J_2 = 1.5 Hz, 1H), 6.48 (s, 1H), 6.26–6.16 (t, J = 8.0 Hz, 1H), 5.73–5.69 (d, J = 3.5 Hz, 1H), 4.59–4.44 (dd, J_I = 15.0 Hz, J_2 = 8.5 Hz, 1H), 3.75–3.66 (dd, J_I = 15.0 Hz, J_2 = 7.5 Hz, 1H), 3.62 (s, 3H), 3.27–3.20 (m, 1H), 2.63–2.45 (m, 2H), 1.88–1.74 (m, 1H), 1.59–1.48 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 172.1, 147.1, 144.6, 139.5, 138.8, 135.6, 133.3, 128.9, 128.0, 127.7, 127.4, 127.3, 125.2, 125.1, 124.9, 124.9, 121.2, 121.1, 60.8, 51.1, 47.0, 44.3, 28.1, 20.3. IR (KBr): ν (cm⁻¹) 3005, 1733, 1617, 1275, 1261, 1168, 1087, 764, 750. HRMS (ESI, m/z) calcd for C₂₈H₂₈N₃O₄S [M+H]⁺: 502.1800, found: 502.1802.

Methyl (14*R*,14a*S*,*E*)-2-chloro-11-phenyl-8-tosyl-8,9,12,13,14,14a-hexahydro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure B, **3ad** was obtained as colorless oil, 43.3 mg, 79% yield, dr > 20:1. ¹H NMR (500 MHz, CDCl₃): δ = 7.83–7.75 (dd, J_I = 6.5 Hz, J_2 = 2.0 Hz, 2H), 7.43– 7.28 (m, 7H), 7.22–7.14 (dd, J_I = 8.0 Hz, J_2 = 2.0 Hz, 1H), 7.09–7.03 (d, J = 8.5 Hz, 1H), 6.63– 6.58 (d, J = 2.5 Hz, 1H), 6.56 (s, 1H), 6.33–6.24 (t, J = 8.0 Hz, 1H), 5.71–5.64 (d, J = 3.5 Hz, 1H), 4.64–4.51 (dd, J_I = 15.0 Hz, J_2 = 8.5 Hz, 1H), 3.82–3.71 (dd, J_I = 15.0 Hz, J_2 = 7.5 Hz, 1H), 3.70 (s, 3H), 3.36–3.23 (m, 1H), 2.76–2.65 (m, 1H), 2.62–2.53 (m, 1H), 2.46 (s, 3H), 1.96– 1.83 (m, 1H), 1.67–1.55 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 172.6, 147.9, 145.8, 145.7, 139.7, 139.5, 133.3, 131.2, 130.5, 129.1, 128.8, 128.4, 128.4, 127.1, 126.1, 123.8, 122.2, 61.5, 52.1, 47.7, 45.6, 29.1, 21.8, 21.3. IR (KBr): ν (cm⁻¹) 2989, 1734, 1594, 1481, 1275, 1261, 1165, 764, 750. HRMS (ESI, *m/z*) calcd for C₂₉H₂₉ClN₃O₄S [M+H]⁺: 550.1567, found: 550.1569.

Methyl (14*R*,14a*S*,*E*)-2,3-dimethoxy-11-phenyl-8-tosyl-8,9,12,13,14,14a-hexahy- dro-[1,2]diazonino[1,9-*c*]quinazoline-14-carboxylate

According to the general procedure A, **3ae** was obtained as white solid, 49.0mg, 85% yield, dr > 20:1, m. p. 224–226 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.85–7.77 (d, *J* = 8.0 Hz, 2H), 7.41–7.36 (m, 4H), 7.36–7.28 (m, 3H), 6.70 (s, 1H), 6.45 (s, 1H), 6.34–6.24 (t, *J* = 8.0 Hz, 1H), 6.16 (s, 1H), 5.84–5.76 (d, *J* = 3.5 Hz, 1H), 4.61–4.49 (dd, *J*₁ = 15.0 Hz, *J*₂ = 8.5 Hz, 1H), 3.86 (s, 3H), 3.79–3.72 (m, 4H), 3.70 (s, 3H), 3.33–3.25 (dd, *J*₁ = 11.0 Hz, *J*₂ = 3.0 Hz, 1H), 2.71–2.53 (m, 2H), 2.46 (s, 3H), 1.96–1.80 (m, 1H), 1.67–1.57 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.6, 149.0, 147.9, 147.0, 145.5, 144.3, 139.8, 134.6, 133.6, 130.5, 128.7, 128.4, 128.3, 126.2, 122.3, 113.6, 109.1, 108.5, 61.8, 55.9, 52.0, 47.9, 45.3, 29.1, 21.7, 21.3. IR (KBr): *v* (cm⁻¹) 2952, 1733, 1605, 1510, 1275, 1261, 1164, 764, 750. HRMS (ESI, *m/z*) calcd for C₃₁H₃₄N₃O₆S [M+H]⁺: 576.2168, found: 576.2170.

((6S,7R,14aR,E)-11-phenyl-8-tosyl-8,9,12,13,14,14a-hexahydro-6,14-(epox-

ymethano)[1,2]diazonino[1,9-c]quinazolin-5(6H)-yl)methanone

4a was obtained as white solid, 39.2mg, 66% yield, dr > 20:1, m. p. 109–111 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.90-7.82$ (d, J = 8.5 Hz, 1H), 7.56–7.46 (m, 3H), 7.45–7.39 (m, 2H), 7.39–7.28 (m, 7H), 7.24–7.17 (m, 1H), 7.11–7.04 (d, J = 8.0 Hz, 2H), 6.96–6.90 (m, 1H), 6.59–6.54 (dd, $J_I = 7.5$ Hz, $J_2 = 1.5$ Hz, 1H), 6.14–6.09 (d, J = 1.5 Hz, 1H), 6.09–6.01 (dd, $J_I = 10.5$ Hz, $J_2 = 7.0$ Hz, 1H), 4.65–4.53 (dd, $J_I = 14.5$ Hz, $J_2 = 7.0$ Hz, 1H), 4.29–4.17 (dd, $J_I = 15.0$ Hz, $J_2 = 10.0$ Hz, 1H), 4.14 (s, 1H), 4.05–3.94 (dd, $J_I = 12.5$ Hz, $J_2 = 5.5$ Hz, 1H), 3.71–3.60 (dd, $J_I = 12.0$ Hz, $J_2 = 2.5$ Hz, 1H), 3.41–3.28 (dd, $J_I = 14.5$ Hz, $J_2 = 9.0$ Hz, 1H), 2.74–2.60 (dd, $J_I = 14.5$ Hz, $J_2 = 10.0$ Hz, 1H), 2.40 (s, 3H), 2.02–1.90 (m, 1H), 1.78–1.63 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 171.3$, 146.2, 143.8, 141.7, 136.4, 136.3, 135.9, 131.2, 130.9, 129.3, 128.6, 128.6, 128.4, 128.1, 127.8, 127.0, 126.8, 125.1, 123.2, 122.0, 121.1, 93.9, 62.3, 58.2, 48.3, 38.8, 30.4, 25.0, 21.6 IR (KBr): v (cm⁻¹) 2928, 1663, 1489, 1330, 1159, 1090, 1033, 699, 662. HRMS (ESI, m/z) calcd for C₃₅H₃₄N₃O₄S [M+H]⁺: 592.2270, found: 592.2270.

((6*S*,7*R*,14a*R*,*E*)-11-(4-bromophenyl)-8-tosyl-8,9,12,13,14,14a-hexahydro-6,14-(epoxyme-thano)[1,2]diazonino[1,9-*c*]quinazolin-5(6H)-yl)(phenyl)methanone

4b was obtained as white solid, 44.6 mg, 67% yield, dr > 20:1, m. p. 220–222 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.87-7.56$ (d, J = 8.5 Hz, 1H), 7.54–7.45 (m, 5H), 7.44–7.39 (m, 2H), 7.36–7.30 (d, J = 8.0 Hz, 2H), 7.24–7.16 (m, 3H), 7.12–7.05 (d, J = 8.0 Hz, 2H), 6.98–6.90 (t, J = 7.5 Hz, 1H), 6.63–6.56 (dd, $J_1 = 7.5$ Hz, $J_2 = 1.5$ Hz, 1H), 6.10–6.02 (m, 2H), 4.62–4.53 (dd, $J_1 = 14.5$ Hz, $J_2 = 7.0$ Hz, 1H), 4.27–4.18 (dd, $J_1 = 15.0$ Hz, $J_2 = 10.5$ Hz, 1H), 4.12 (s, 1H), 4.06–3.97 (dd, $J_1 = 12.5$ Hz, $J_2 = 5.5$ Hz, 1H), 3.69–3.60 (dd, $J_1 = 12.5$ Hz, $J_2 = 2.5$ Hz, 1H), 3.40–3.29 (dd, $J_1 = 15.0$ Hz, $J_2 = 9.5$ Hz, 1H), 2.67–2.57 (dd, $J_1 = 15.0$ Hz, $J_2 = 10.5$ Hz, 1H), 2.40 (s, 3H), 2.03–1.92 (m, 1H), 1.74–1.62 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 171.3$, 145.0, 143.9, 140.5, 136.4, 136.2, 135.6, 131.8, 131.1, 130.9, 129.3, 128.5, 128.4, 128.1, 127.0, 125.1, 123.2, 121.9, 121.8, 121.7, 93.6, 62.3, 58.4, 48.1, 38.4, 30.6, 24.9, 21.6 IR (KBr): v (cm⁻¹) 2918, 1662, 1599, 1488, 1332, 1287, 1159, 727, 665. HRMS (ESI, *m/z*) calcd for C₃₅H₃₂BrN₃O₄S [M+H]⁺: 670.1375, found: 670.1368.

((6*S*,7*R*,14a*R*,*E*)-11-(4-methoxyphenyl)-8-tosyl-8,9,12,13,14,14a-hexahydro-6,14-(epoxymethano)[1,2]diazonino[1,9-*c*]quinazolin-5(6H)-yl)(phenyl)methanone

4c was obtained as white solid, 40.5 mg, 65% yield, dr > 20:1, m. p. 211–213 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.89–7.82 (d, *J* = 8.5 Hz, 1H), 7.55–7.46 (m, 3H), 7.45–7.40 (t, *J* = 7.5 Hz, 2H), 7.36–7.32 (d, *J* = 8.0 Hz, 2H), 7.27 (s, 2H), 7.23–7.17 (m, 1H), 7.10–7.05 (d, *J* = 8.0 Hz, 2H), 6.95–6.87 (m, 3H), 6.57–6.52 (dd, *J_I* = 8.0 Hz, *J₂* = 1.5 Hz, 1H), 6.12–6.08 (d, *J* = 1.5 Hz, 1H), 6.04–5.97 (dd, *J_I* = 10.5 Hz, *J₂* = 7.0 Hz, 1H), 4.63–4.53 (dd, *J_I* = 15.0 Hz, *J₂* = 7.0 Hz, 1H), 4.27–4.17 (dd, *J_I* = 15.0 Hz, *J₂* = 10.0 Hz, 1H), 4.11 (s, 1H), 4.02–3.93 (dd, *J_I* = 12.5 Hz, *J₂* = 5.5 Hz, 1H), 3.84 (s, 3H), 3.71–3.62 (dd, *J_I* = 15.0 Hz, *J₂* = 10.0 Hz, 1H), 3.36–3.26 (dd, *J_I* = 14.5 Hz, *J₂* = 9.0 Hz, 1H), 2.69–2.58 (dd, *J_I* = 15.0 Hz, *J₂* = 10.0 Hz, 1H), 2.40 (s, 3H), 2.00–1.89 (m, 1H), 1.77–1.62 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ = 171.2, 159.3, 145.5, 143.7, 136.3, 136.2, 135.9, 133.7, 131.2, 130.8, 129.2, 128.5, 128.4, 128.0, 127.8, 126.9, 125.0, 123.1, 121.9, 119.6, 113.9, 93.8, 62.2, 58.1, 55.3, 48.3, 38.9, 30.4, 24.6, 21.6. HRMS (ESI, *m/z*) calcd for C₃₆H₃₅N₃O₅S [M+H]⁺: 622.2375, found: 622.2373.

5a was obtained as white solid, 41.6 mg, 85% yield, dr > 20:1, m. p. 213–215 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.77-7.72$ (m, 2H), 7.39–7.35 (m, 2H), 7.35–7.24 (m, 6H), 7.17–7.13 (dd, $J_I = 7.9$ Hz, $J_2 = 1.5$ Hz, 1H), 7.11–7.06 (m, 1H), 7.03–6.99 (dd, $J_I = 7.9$ Hz, $J_2 = 1.5$ Hz, 1H), 6.58 (s, 1H), 6.28–6.22 (t, J = 8.1 Hz, 1H), 5.31–5.25 (d, J = 3.7 Hz, 1H), 4.65–4.55 (dd, $J_I = 14.9$ Hz, $J_2 = 8.5$ Hz, 1H), 3.89–3.80 (dd, $J_I = 14.9$ Hz, $J_2 = 7.8$ Hz, 1H), 3.42–3.33 (t, J = 10.2 Hz, 1H), 3.17–3.08 (dd, $J_I = 10.8$ Hz, $J_2 = 7.0$ Hz, 1H), 2.72–2.58 (m, 2H), 2.55–2.44 (m, 1H), 2.41 (s, 3H), 1.98 (s, 1H), 1.40–1.28 (m, 1H), 1.03–0.92 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 148.4$, 146.3, 145.4, 141.2, 140.2, 133.3, 130.4, 128.7, 128.6, 128.4, 128.2, 127.7, 126.2, 125.7, 125.4, 122.1, 121.6, 63.7, 60.5, 47.6, 41.3, 29.7, 29.7, 22.2, 21.7. IR (KBr): v (cm⁻¹) 2184, 2167, 2160, 2139, 2028, 2018, 1614, 1597, 1165, 1088, 762, 687. HRMS (ESI, m/z) calcd for C₂₈H₃₀N₃O₃S [M+H]⁺: 488.2008, found: 488.2013.

NMR Spectra of the Compounds 1, 3 and 4

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 1a

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of 1b $_{S26}$

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 1c $_{S27}$

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of 1d $_{S28}$

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of 1e $_{S29}$

7.3.31 7.3.31 7.3.31 7.3.31 7.3.31 7.3.31 7.7.25 7.3.31 7.7.25 7.7.75 7.7

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of 1f $_{S30}$

 $^1\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of 1g $_{S31}$

 $^{1}\mathrm{H}$ NMR (500 MHz) $^{13}\mathrm{C}$ NMR (125 MHz) and $^{19}\mathrm{F}$ NMR (470 MHz) spectra of 1h $_{S32}$

 ^1H NMR (500 MHz) ^{13}C NMR (125 MHz) and ^{19}F NMR (470 MHz) spectra of 1i

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of 1j $_{S34}$

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of 1k $_{S35}$

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of 11 $_{S36}$

 1 H NMR (500 MHz) and 13 C NMR (125 MHz) spectra of 1m

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of 1n $_{S38}$

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 1o

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 1p

 $^1\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of **3aa** 541

 ^{1}H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of **3ba** $_{\text{S42}}$

 ^{1}H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of **3ca** 543

 ^{1}H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of **3da** $_{\text{S44}}$

 $^1\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of **3ea** $_{S45}$

 ^{1}H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of **3fa** $_{\text{S46}}$

 ^{1}H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of **3ga** 547

 $^{1}\mathrm{H}$ NMR (500 MHz) $^{13}\mathrm{C}$ NMR (125 MHz) and $^{19}\mathrm{F}$ NMR (470 MHz) spectra of **3ha** 548

 $^{1}\mathrm{H}$ NMR (500 MHz) $^{13}\mathrm{C}$ NMR (125 MHz) and $^{19}\mathrm{F}$ NMR (470 MHz) spectra of **3ia** 549

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of **3ja** $_{\text{S50}}$

 $\sum_{i=1}^{7/7} \sum_{i=1}^{7/7} \sum_{i=1}^{7/7}$

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra of **3**ka $_{S51}$

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of **31a** $_{\text{S52}}$

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of **3ma** 553

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of **3na** $_{S54}$

 $^1\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of **30a** $_{S55}$

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of **3pa**

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 3ab

2.2.25333 2.2.25333 2.2.25333 2.2.25333

 $^1\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of **3ac** $_{S58}$

77 17 12 2010 12

 ^{1}H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of **3ad** $_{\text{S59}}$

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of **3ae** $_{S60}$

 $^{1}\mathrm{H}$ NMR (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) spectra of 4a $_{561}$

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of **4b** $_{\text{S62}}$

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 4c

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 5a

X-ray Crystal data of 3aa and 4a

X-Ray Crystallography Data Crystallographic data for the compound **3aa** has been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 2120713. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Table S1. Crystal data and structure refinement for 3aa

Identification code	3 aa
Empirical formula	C29H29N3O4S
Formula weight	515.61
Temperature/K	281.0
Crystal system	triclinic
Space group	P-1
a/Å	10.4935(6)
b/Å	11.0890(5)
c/Å	12.2484(6)
$\alpha/^{\circ}$	103.579(2)
β/°	101.602(2)
$\gamma/^{\circ}$	97.418(2)
Volume/Å ³	1333.63(12)
Z	2

$\rho_{calc}g/cm^3$	1.284
μ/mm^{-1}	0.161
F(000)	544.0
Crystal size/mm ³	
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	6.106 to 55.048
Index ranges	$-13 \le h \le 13, -14 \le k \le 14, -15 \le l \le 15$
Reflections collected	33997
Independent reflections	6117 [$R_{int} = 0.0503$, $R_{sigma} = 0.0331$]
Data/restraints/parameters	6117/300/336
Goodness-of-fit on F2	1.020
Final R indexes [I>= 2σ (I)]	R1 = 0.0457, wR2 = 0.1077
Final R indexes [all data]	R1 = 0.0692, wR2 = 0.1208
Largest diff. peak/hole / e Å ⁻³	0.33/-0.33

X-Ray Crystallography Data Crystallographic data for the compound **4a** has been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 2145461. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Identification code	4a	
Empirical formula	C35H33N3O4S	
Formula weight	591.70	
Temperature	296.15 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	$a = 9.6278(17) \text{ Å}$ $\alpha = 105.423(3)^{\circ}$	
	$b = 12.640(2) \text{ Å} \qquad \beta = 92.048(3)^{\circ}$	
	$c = 13.195(2) \text{ Å}$ $\gamma = 103.570(4)^{\circ}$	
Volume	1496.4(5) Å ³	
Z	2	
Density (calculated)	1.313 Mg/m ³	
Absorption coefficient	0.153 mm^{-1}	
F(000)	624	
Crystal size	0.07 x 0.06 x 0.05 mm ³	
Theta range for data collection	1.610 to 27.809°	
Index ranges	-12<=h<=12, -16<=k<=11, -17<=l<=16	
Reflections collected	12556	
Independent reflections	7003 [R(int) = 0.0512]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6465	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7003 / 0 / 389	
Goodness-of-fit on F ²	0.927	
Final R indices [I>2sigma(I)]	R1 = 0.0565, wR2 = 0.1098	
R indices (all data)	R1 = 0.1479, wR2 = 0.1415	

Table S2. Crystal data and structure refinement for 4a.

Extinction coefficient n/aLargest diff. peak and hole 0.262 and -0.325 e.Å⁻³