Electronic Supplementary Information for:

Photochromic Carbazolyl-Imidazolyl Radical

Complex

Yasuki Kawanishi,^a Yasutomo Segawa,^{b,c} Katsuya Mutoh,^d Jiro Abe,^{d,*} and Yoichi Kobayashi^{a,*}

- ^a Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
- ^b Institute for Molecular Science, Myodaiji, Okazaki 444-8787, Japan.
- ^c Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki 444-8787, Japan
- ^d Department of Chemistry, School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.

E-mail: ykobayas@fc.ritsumei.ac.jp, jiro_abe@chem.aoyama.ac.jp

CONTENTS

1. Syntheses	S2
2. Experimental Setups	S10
3. ¹ H NMR Spectra	S12
4. ¹³ C NMR Spectra	S18
5. HR-ESI-TOF-MS Spectra	S23
6. HPLC Chromatograms	S29
7. X-ray Crystallographic Analyses	S32
8. Steady-State Absorption Spectra	S34
9. Nanosecond to Microsecond Transient Absorption Measurements	S36
10. Femtosecond to Nanosecond Transient Absorption Measurements	S41
11. DFT calculations	S49
12. References	S186

1. Syntheses

Materials and Reagents

All reactions were monitored by thin-layer chromatography carried out on 0.2 mm E. Merck silica gel plates (60F-254). Column chromatography was performed on silica gel (silica gel 60N, Kanto Chemical Co., Inc.). All reagents were purchased from Tokyo Chemical Industry Co. (TCI), FUJIFILM Wako Pure Chemical Co , Sigma-Aldrich Co., and Kanto Chemical Co. and were used without further purification.

Setups for Material Characterization

Proton and carbon nuclear magnetic resonance (¹H and ¹³C NMR) spectra were recorded at 400 MHz by JNM-ECS 400 MHz (JEOL). High resolution (HR) ESI–TOF–MS spectra were recorded on a Bruker micrOTOF II-AGA1 (Bruker). High performance liquid chromatography (HPLC) was conducted with Chromaster (Hitachi High-Technologies) equipped with a reverse phase analytical column (Mightysil RP-18GP II, 25 cm × 4.6 mm, 5 µm particle, Kanto Chemical Co.) and a linear photodiode array (PDA) detector. Gel permeation chromatography (GPC) was conducted with two GPC columns (JAIGEL-1H-A and JAIGEL-2H-A) and a UV detector. CHCl₃ was used as an eluent with the flow rate of 3.5 mL/min.

Scheme S1. Synthesis of CIC.

2-(9H-carbazol-3-yl)benzaldehyde (2-H).

A Schlenk flask was charged with 3-bromo-9H-carbazole (300 mg, 1.22 mmol), 2-formylphenylboronic acid (236 mg, 1.62 mmol), potassium carbonate (252 mg, 1.83 mmol), and tetrakis(triphenylphosphine)palladium(0) (70 mg, 0.061 mmol) in the 2-H solvent pair (3 mL of $H_2O/20$ mL of ethylene glycol dimethyl ether (DME)). The solution was stirred at 80 °C for 13 h. After Celite filtration, the filtrate was transferred to a separation funnel and extracted with ethyl acetate. The organic layer was collected, and the aqueous phase was extracted with ethyl acetate. The combined organic layers were washed with water and brine, and passed through a phase separator paper. After removal of the solvent in vacuo, the crude mixture was purified by silica gel column chromatography (ethyl acetate/hexane = 1/5) to give 2-H as a white solid (281 mg, 85%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.46 (s, 1H), 9.95 (d, *J* = 1.2 Hz, 1H), 8.23–8.19 (m, 2H), 7.94 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.77 (ddd, *J* = 7.6, 7.6, 1.6 Hz, 1H), 7.66–7.52 (m, 4H), 7.46-7.40 (m, 2H), 7.21-7.17 (m, 1H). ¹³C NMR (400 MHz, CDCl₃): δ 193.45 147.10, 140.10, 139.32, 133.97, 133.66, 131.41, 128.91, 128.15, 127.63, 127.32, 126.51, 123.53, 123.00, 122.05, 120.56, 119.91, 111.01, 110.62,; HRMS (ESI-TOF): calcd for $C_{19}H_{13}NO [M + Na]^+$, 294.0889; found, 294.0901.

3-(2-(4,5-diphenyl-1*H*-imidazol-2-yl)phenyl)-9*H*-carbazole (3-H).

A sealed tube was charged with 2-H (100 mg, 0.369 mmol), benzil (120 mg, 0.751 mmol), and ammonium acetate (300 mg, 3.90 mmol) in 5 mL of acetic acid. The solution was stirred at 110 °C for 15 h. After cooling to room temperature, the reaction mixture was neutralized with aqueous NH₃. After addition of ethyl acetate, the solution composed of the organic and water layers was transferred to a separation

funnel and extracted with ethyl acetate. The organic layer was collected, and the aqueous phase was extracted with ethyl acetate. The combined organic layers were washed with water and brine, and passed through a phase separator paper. After removal of the solvent in vacuo, the crude mixture was purified by silica gel column chromatography (ethyl acetate/hexane = 2/5) to give **3-H** as a white solid (160 mg, 94%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.80 (s, 1H), 11.21 (s, 1H), 8.13 (d, *J* = 1.2 Hz, 1H), 8.01 (d, *J* = 7.2 Hz, 1H), 7.72 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.59–7.51 (m, 2H), 7.47–7.43 (m, 2H), 7.39–7.31 (m, 4H), 7.22–7.08 (m, 10H). ¹³C NMR (400 MHz, DMSO-*d*₆): δ 146.69, 142.31, 140.60.139,35, 136.72, 135.93, 131.71, 131.40, 131.25, 131.03, 130.72, 129.53, 128.99, 128.58, 128.43,127.91, 127.71, 127.50, 127.45, 127.06, 126.77, 126.04, 123.13, 122.77, 121.47, 120.52, 119.08, 111.57, 110.58; HRMS (ESI-TOF): calcd for C₃₃H₂₃N₃ [M + H]⁺, 426.1965; found, 462.1952.

2',3'-diphenylspiro[carbazole-3,5'-imidazo[2,1-a]isoindole] (CIC).

All manipulations were carried out with the exclusion of light. Under nitrogen, a two-necked round-bottom flask was charged with **3-H** (100 mg, 0.212 mmol) and lead (IV) oxide (300 mg, 1.26 mmol) in 50 mL of benzene over 23 h while stirring. The reaction mixture was passed

through a phase filter paper. After removal of the solvent in vacuo, the crude mixture was purified by silica gel column chromatography (ethyl acetate/hexane = 1/1) and purified by GPC to give the racemic mixture of enantiomers of ClC as a yellow solid (15 mg, 15%). ¹H NMR (400 MHz, DMSO- d_6): δ 7.95 (d, J = 7.6 Hz, 1H), 7.66 (d, J = 7.2 Hz, 1H), 7.59 (ddd, J = 7.8, 7.8, 0.8 Hz, 1H), 7.51–7.36 (m, 6H), 7.31–7.12 (m, 10H), 6.88 (d, J = 10 Hz, 1H), 6.59 (dd, J = 9.6, 2.4 Hz, 1H), ¹³C NMR (400 MHz, CDCl₃): δ 161.08, 157.57, 151.95, 143.10, 141.43, 139.73, 137.84, 134.49, 133.62, 130.70, 130.26,130.16, 129.44, 129.18, 128.76, 128.43,128.33, 127.91, 127.10, 126.97, 126.62, 126.24, 125.41, 123.40, 121.37, 121.32, 121.20, 66.74; HRMS (ESI-TOF): calcd for C₃₃H₂₁N₃ [M + H]⁺, 460.1808; found, 460.1791.

Scheme S2. Synthesis of CIC-tBuPh.

3-bromo-6-(4-(tert-butyl)phenyl)-9H-carbazole (1-tBuPh).

A Schlenk flask was charged with 3,6-dibromo-9*H*-carbazole (404 mg, 1.25 mmol), 4-*tert*-butylphenylboronic acid (223 mg, 1.25 mmol), potassium carbonate (300 mg, 2.17 mmol), and tetrakis(triphenylphosphine)palladium(0) (80 mg, 0.069 1-tBuPh mmol) in the solvent pair (10 mL of H₂O and 40 mL of ethylene glycol dimethyl ether DME). The mixture was stirred at 80 °C for 20 h. After Celite filtration, the filtrate was transferred to a separation funnel and extracted with ethyl acetate. The organic layer was collected, and the aqueous phase was extracted with ethyl acetate. The combined organic layers were washed with water and brine, and passed through a phase separator paper. After removal of the solvent in vacuo, the residue was purified by silica gel column chromatography (ethyl acetate/hexane = 1/3) and purified by GPC to give 1-tBuPh as a white solid (130 mg, 28%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.49 (s, 1H), 8.47 (dd, *J* = 16.8, 1.2 Hz, 2H), 7.74–7.67 (m, 3H), 7.56 (d, *J* = 8.8 Hz, 1H), 7.52–7.45 (m, 4H), 1.34 (s, 9H). ¹³C NMR (400 MHz, CDCl₃): δ 149.80, 139.18, 138.93, 138.55, 133.35, 128.75, 127.03, 126.23, 125.96, 125.34, 123.23, 122.94, 118.82, 112.42, 112.27, 111.12, 34.67, 31.58; HRMS (ESI-TOF): calcd for C₂₂H₂₀BrN [M + K]⁺, 416.0411; found, 416.0397.

2-(6-(4-(tert-butyl)phenyl)-9H-carbazol-3-yl)benzaldehyde (2-tBuPh).

A Schlenk flask was charged with 1-tBuPh (190 mg, 0.504 mmol), 2formylphenylboronic acid (220 mg, 1.47 mmol), potassium carbonate (240 mg, 1.73 mmol), and tetrakis(triphenylphosphine)palladium(0) (28 mg, 0.024 mmol) in the solvent pair (5 mL of H₂O/20 mL of DME). The solution was stirred at

80 °C for 15 h. After Celite filtration, the filtrate was transferred to a separation funnel and extracted with ethyl acetate. The organic layer was collected, and the aqueous phase was extracted with ethyl acetate. The combined organic layers were washed with water and brine, and passed through a phase separator paper. After removal of the solvent in vacuo, the crude mixture was purified by silica gel column chromatography (ethyl acetate/hexane = 1/6) to give 2-tBuPh as a white solid (79 mg, 39%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.53 (s, 1H), 9.97 (d, *J* = 0.8 Hz, 1H), 8.53 (d, *J* = 1.6 Hz, 1H), 8.33 (d, *J* = 2.0 Hz, 1H), 7.95 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.78 (ddd, *J* = 7.6, 7.6, 1.6 Hz, 1H), 7.75–7.66 (m, 4H), 7.63–7.5 (m, 3H), 7.49–7.46 (m, 3H), 1.33 (s, 9H). ¹³C NMR (400 MHz, CDCl₃): δ 1193.32, 149.69, 147.02, 139.76, 139.41, 139.00, 134.03, 133.64, 133.36, 131.42, 129.12, 128.34, 127.68, 127.37, 127.00, 126.08, 125.89, 123.76, 123.60, 122.13, 118.87, 111.16, 110.74, 34.62, 31.53; HRMS (ESI-TOF): calcd for C₂₉H₂₅NO [M + Na]⁺, 426.1828; found, 426.1808.

3-(4-(tert-butyl)phenyl)-6-(2-(4,5-diphenyl-1H-imidazol-2-yl)phenyl)-9H-carbazole (3-tBuPh).

A sealed tube was charged with 2-tBuPh (100 mg, 0.248 mmol), benzil (78 mg, 0.37 mmol), and ammonium acetate (190 mg, 2.47 mmol) in 5 mL of acetic acid. The solution was stirred at 110 °C for 18 h. After cooling to room temperature, the reaction mixture was neutralized with aqueous NH₃. After addition of ethyl acetate, the solution composed of the organic and water layers

was transferred to a separation funnel and extracted with ethyl acetate. The organic layer was collected, and the aqueous phase was extracted with ethyl acetate. The combined organic layers were washed with water and brine, and passed through a phase separator paper. After removal of the solvent in vacuo, the crude mixture was purified by silica gel column chromatography (ethyl acetate/hexane = 1/3) to give **3-tBuPh** as an orange solid (141 mg, 96%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.96 (s, 1H), 11.31 (s, 1H), 8.26 (d, *J* = 1.6 Hz, 1H), 8.15 (d, *J* = 1.6 Hz, 1H), 7.75 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.66 (dd, *J* = 8.8, 1.2 Hz, 2H), 7.61–7.41 (m, 10H), 7.30 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.21–7.14 (m, 8H), 1.34 (s, 9H). ¹³C NMR (400 MHz, DMSO-*d*₆): δ 149.18, 146.80, 142.22, 140.03, 139.84, 138.88, 136.76, 135.95, 131.70, 131.45, 131.29, 131.20, 131.02, 130.80, 129.70, 129.00, 128.64, 128.41, 127.86, 127.72, 127.52, 127.05, 126.71, 126.15, 125.01, 123.78, 122.96, 121.47, 118.27, 111.93, 110.87, 34.69, 31.72; HRMS (ESI-TOF): calcd for C₄₃H₃₅N₃ [M + H]⁺, 594.2904; found, 594.2894.

6-(4-(*tert*-butyl)phenyl)-2',3'-diphenylspiro[carbazole-3,5'-imidazo[2,1-*a*]isoindole] tBuPh).

All manipulations were carried out with the exclusion of light. Under nitrogen, a two-necked round-bottom flask was charged with **3-tBuPh** (100 mg, 0.169 mmol) and lead (IV) oxide (300 mg, 1.26 mmol) in 50 mL of benzene over 23 h while stirring. The reaction mixture was passed through a phase filter paper. After removal of

the solvent in vacuo, the crude mixture was purified by silica gel column chromatography (ethyl acetate/hexane = 1/1) and purified by GPC to give the racemic mixture of enantiomers of CIC-tBuPh as an orange solid (21 mg, 21%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.00 (d, *J* = 1.2 Hz, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.67 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.62–7.57 (m, 3H), 7.55–7.46 (m, 6H), 7.39 (ddd, *J* = 7.8, 7.8, 0.8 Hz, 1H), 7.32–7.30 (m, 2H), 7.27–7.13 (m, 7H), 6.90 (d, *J* = 9.6 Hz, 1H), 6.61 (dd, *J* = 9.6, 2.0 Hz, 1H), 1.30 (s, 9H). ¹³C NMR (400 MHz, CDCl₃): δ 161.00, 156.49, 151.80, 150.62, 142.91, 141.33,139.47, 139.26, 137.79, 137.60, 134.43, 133.56, 130.70, 130.12, 130.01, 129.30,129.27, 129.06, 128.64, 128.29, 128.21, 127,78, 127.12, 126.95, 126.82, 126.58, 125.87, 125.25, 123.28, 121.24, 121.06, 119.12, 34.57, 31.32; HRMS (ESI-TOF): calcd for C₄₃H₃₃N₃ [M + H]⁺, 592.2747.2468; found, 592.2740.

Scheme S2. Synthesis of CIC-TPA.

(CIC-

4-(6-bromo-9*H*-carbazol-3-yl)-*N*,*N*-diphenylaniline (1-TPA).

A Schlenk flask was charged with 3,6-dibromo-9H-carbazole (1011 mg, 3.140 mmol), 4- (diphenylamino)phenylboronic acid (907 mg, 3.14 mmol), (649 4.71 potassium carbonate mmol) mg, and tetrakis(triphenylphosphine)palladium(0) (180 mg, 0.156 mmol) in the solvent pair (12.5 mL of H₂O and 50 mL of DME). The reaction was stirred at 80 °C for 20 h. After Celite filtration, the filtrate was transferred to a separation funnel and extracted with ethyl acetate. The organic layer was collected, and the aqueous phase was extracted with ethyl acetate. The combined organic layers were washed with water and brine, and passed through a phase separator paper. After removal of the solvent in vacuo, the crude mixture was purified by silica gel column chromatography (ethyl acetate/hexane = 1/6) and purified by GPC to give to give 1-TPA as a white solid (610 mg, 40%). ¹H NMR (400 MHz, DMSO- d_6): δ 11.49 (s, 1H), 8.49 (d, J = 1.2 Hz, 1H), 8.43 (d, J = 2.0 Hz, 1H),7.73–7.69 (m, 3H), 7.56–7.45 (m, 3H), 7.35–7.31 (m, 4H), 7.11–7.04 (m, 8H), ¹³C NMR (400 MHz, CDCl₃): 147.94, 146.76, 139.10, 138.57, 136.05, 133.00, 129.51, 128.78, 128.07, 125.96, 125.31, 124.56, 124.43, 123.26, 122.98, 118.51, 112.45, 112.35, 111.24; HRMS (ESI-TOF): calcd for C₃₀H₂₁BrN₂ [M]⁺, 488.0883; found, 488.0863.

2-(6-(4-(diphenylamino)phenyl)-9H-carbazol-3-yl)benzaldehyde (2-TPA).

A Schlenk flask was charged with 1-TPA (190 mg, 0.389 mmol), 2formylphenylboronic acid (174 mg, 1.17 mmol), potassium carbonate (187 mg, 1.36 mmol) and tetrakis(triphenylphosphine)palladium(0) (22 mg, 0.019 mmol) in the solvent pair (5 mL of H₂O and 20 mL of DME). The reaction

was stirred at 80 °C for 20 h. After Celite filtration, the filtrate was transferred to a separation funnel and extracted with ethyl acetate. The organic layer was collected, and the aqueous phase was extracted with ethyl acetate. The combined organic layers were washed with water and brine, and passed through a phase separator paper. After removal of the solvent in vacuo, the crude mixture was purified by silica gel column chromatography (ethyl acetate/hexane = 1/5) to give 2-TPA as a yellow solid (50 mg, 25%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.51 (s, 1H), 9.97 (s, 1H), 8.54 (d, *J* = 1.2 Hz, 1H), 8.33 (d, *J* = 1.6 Hz, 1H), 7.95 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.80–7.70 (m, 4H), 7.67–7.56 (m, 4H), 7.47 (dd, *J* = 7.2, 2.4 Hz, 1H), 7.34–7.30 (m, 4H), 7.10–7.03 (m, 8H). ¹³C NMR (400 MHz, CDCl₃):193.27, 147.88, 146.97, 14.67, 139.76, 139.30, 136.16, 134.02, 133.64, 133.40, 131.40, 129.36, 129.14, 128.35, 128.02, 127.69, 127.38, 125.80, 124.52, 124.31, 123.74, 123.64, 122.84, 122.17, 118.60, 111.20, 110.76; HRMS (ESI-TOF): calcd for C₃₇H₂₆N₂O [M]⁺, 514.2040; found, 514.2026.

4-(6-(2-(4,5-diphenyl-1H-imidazol-2-yl)phenyl)-9H-carbazol-3-yl)-N,N-diphenylaniline (3-TPA).

A sealed tube was charged with 2-TPA (50 mg, 0.097 mmol), benzil (30 mg, 0.14 mmol) and ammonium acetate (75 mg, 0.97 mmol) in 2 mL of acetic acid. The reaction was stirred at 110 °C for 20 h. After cooling to room temperature, the reaction mixture was neutralized with aqueous NH₃. After addition of ethyl acetate, the solution composed of the organic and water layers was transferred to a separation funnel and extracted with ethyl acetate.

The organic layer was collected, and the aqueous phase was extracted with ethyl acetate. The combined organic layers were washed with water and brine, and passed through a phase separator paper. After removal of the solvent in vacuo, the crude mixture was purified by silica gel column chromatography (ethyl acetate/hexane = 1/2) to give 3-TPA as a yellow solid (52 mg, 76%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.00 (s, 1H), 11.31 (s, 1H), 8.24 (s, 1H), 8.12 (s, 1H), 7.73 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.68–7.65 (m, 2H), 7.61–7.42 (m, 8H), 7.37–7.31 (m, 5H), 7.21–7.00 (m, 16H). ¹³C NMR (400 MHz, DMSO-*d*₆): 147.77, 146.81, 146.23, 141.19, 139.95, 139.85, 136.13, 131.23, 131.00, 130.93, 130.81, 130.62, 130.08, 129.71, 129. 01, 128.95, 128.84, 128.58,128.40, 127.91, 127.57, 127.00, 124.79, 124.51, 124.37, 123.83, 123.50, 122.95, 121.40, 117.94, 111.95, 110.93; HRMS (ESI-TOF): calcd for C₅₁H₃₆N₄ [M + H]⁺, 705.3013; found, 705.3011.

4-(2',3'-diphenylspiro[carbazole-3,5'-imidazo[2,1-*a*]isoindol]-6-yl)-*N*,*N*-diphenylaniline (ClC-TPA).

All manipulations were carried out with the exclusion of light. Under nitrogen, a two-necked round-bottom flask was charged with **3-TPA** (50 mg, 0.071 mmol) and lead (IV) oxide (170 mg, 0.711 mmol) in 50 mL of benzene over 23 h while stirring. The reaction mixture was passed through a

phase filter paper. After removal of the solvent in vacuo, the crude mixture was purified by silica gel column chromatography (ethyl acetate/hexane = 1/1) and purified by GPC to give the racemic mixture of enantiomers of CIC-TPA as a red solid (3 mg, 6%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.00 (d, *J* = 2.0 Hz, 1H), 7.96 (d, *J* = 7.6 Hz, 1H), 7.66 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.61–7.58 (m, 3H), 7.53–7.49 (m, 3H), 7.44 (d, *J* = 2.4 Hz, 1H), 7.39 (ddd, *J* = 7.4, 7.4, 0.8 Hz, 1H), 7.33–7.29 (m, 6H), 7.26-7.14 (m, 7H), 7.07–7.02 (m, 8H), 6.90 (d, *J* = 9.6 Hz, 1H), 6.60 (dd, *J* = 10.0, 2.4 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃): δ 160.90, 156.29, 151.79, 147.49, 147.39, 142.91, 141.33, 139.37, 138.89, 137.78, 134.43, 134,20, 133.61, 130.69, 130.11, 130.00, 129.30, 129.05, 128.81, 128.63, 128.28, 128.20, 127.77, 127.56, 127.18, 126.95, 126.82, 125.26, 124.49, 123.71, 123.26, 123.07, 121.27, 121.04, 119.55, 66.66; HRMS (ESI-TOF): calcd for C₅₁H₃₄N₄ [M + H]⁺, 703.2856; found, 703.2824.

2. Experimental Setups

X-ray crystallography

Details of the crystal data and a summary of the intensity data collection parameters for ClCtBuPh are listed in Table S1. A suitable crystal obtained by slow evaporation of the MeOH solution of ClC-tBuPh was mounted with mineral oil on a MiTeGen MicroMounts and transferred to the goniometer of the kappa goniometer of a RIGAKU XtaLAB Synergy-S system with 1.2 kW MicroMax-007HF microfocus rotating anode (Graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å)) and HyPix-6000HE hybrid photon-counting detector. Cell parameters were determined and refined, and raw frame data were integrated using CrysAlis^{Pro} (Agilent Technologies, 2010). The structures were solved by direct methods with SHELXT^{S1} and refined by full-matrix least-squares techniques against F^2 (SHELXL-2018/3)^{S2} by using Olex2 software package.^{S3} The intensities were corrected for Lorentz and polarization effects. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using AFIX instructions or refined isotropically in the difference Fourier maps. CCDC 2150990 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Steady-State Spectroscopic Measurements

Absorption spectra were measured on a UV3600 spectrophotometer (Shimazu). Fluorescence spectra were measured on a FP-6500 fluorescence spectrophotometer (Jasco). The measurements were performed in benzene and acetonitrile solutions placed in a 10-mm quartz cell at room temperature.

Nanosecond-to-Microsecond Transient Absorption Measurements

For visible transient absorption measurements shown in the main text, the experiments were conducted using a TSP–2000 time resolved spectrophotometer (Unisoku). A 10 Hz Q–switched Nd:YAG (Continuum Minilite II) laser with the third harmonic at 355 nm (ca. 1-2 mJ per 5 ns pulse) was used as the excitation light. For visible to near infrared transient absorption measurements shown in the ESI, the experiments were conducted by the randomly-interleaved-pulse-train (RIPT) method.^[38] A picosecond laser, PL2210A (EKSPLA, 1 kHz, 25 ps, 3.4 mJ/pulse for 355 nm), and a supercontinuum (SC) radiation source (SC-450, Fianium, 20 MHz, pulse width: 50–100 ps depending on the wavelength, 450–2000 nm), were employed as the pump–pulse and probe sources, respectively. The

wavelength of the excitation pulse was set to 355 nm. The measurements were performed in benzene and acetonitrile solutions placed in a 2-mm quartz cell under argon condition with stirring at room temperature.

Femtosecond to Nanosecond Transient Absorption Measurements

Transient absorption measurements on the femtosecond to nanosecond time scale were conducted by a homemade pump-probe system. An amplified femtosecond laser, Spirit One 1040-8 (Spectra-Physics, 1040 nm, the pulse width: ~270 fs), was split into two beams with a ratio of 1:9. The stronger beam was directed to a noncollinear optical parametric amplifier (NOPA), Spirit-NOPA-3H (Spectra-Physics) to generate the 390-, and ~600-nm femtosecond laser pulse for the pump beam. The pump beam was chopped prior to the sample at 500 Hz for signal differencing. The other weaker beam was focused to a deuterated water placed in a 10-mm quartz cuvette to generate the white light continuum for the probe beam. Both pump and probe beams were focused to the sample solution placed in the 2mm quartz cuvette. The polarization between the pump and probe pulses was set at magic angle. The transmitted probe beam was detected with multichannel detection system, PK120-C-RK (UNISOKU), composed of a CMOS linear image sensor and a polychromator. The obtained spectra were calibrated for group velocity dispersion using the data obtained by the optical Kerr signal of CH₂Cl₂ between the pump pulse and the white-light continuum. The instrumental response function was shorter than approximately 100 fs. The sample solutions were stirred with a stirrer during the experiments. The measurements were performed at room temperature.

3. ¹H NMR Spectra

Fig. S1. ¹H NMR spectrum of 2-H in DMSO-d6 (* solvent peaks).

Fig. S2. ¹H NMR spectrum of 3-H in DMSO-*d*₆ (* solvent peaks).

Fig. S3. ¹H NMR spectrum of CIC in DMSO-*d*₆ (* solvent peaks).

Fig. S4. ¹H NMR spectrum of 1-tBuPh in DMSO-*d*₆ (* solvent peaks).

Fig. S5. ¹H NMR spectrum of 2-tBuPh in DMSO-*d*₆ (* solvent peaks).

Fig. S6. ¹H NMR spectrum of 3-tBuPh in DMSO-*d*₆ (* solvent peaks).

Fig. S7 ¹H NMR spectrum of CIC-tBuPh in DMSO-d6 (* solvent peaks).

Fig. S8. ¹H NMR spectrum of 1-TPA in DMSO-*d*₆ (* solvent peaks).

Fig. S9 ¹H NMR spectrum of 2-TPA in DMSO-d6 (* solvent peaks).

Fig. S10. ¹H NMR spectrum of 3-TPA in DMSO-*d*₆ (* solvent peaks).

Fig. S12. ¹³C NMR spectrum of 2-H in CDCl₃ (* solvent peaks).

Fig. S13. ¹³C NMR spectrum of 3-H in DMSO-*d*₆ (* solvent peaks).

Fig. S14. ¹³C NMR spectrum of CIC in CDC₃ (* solvent peaks).

Fig. S15. ¹³C NMR spectrum of 1-tBuPh in CDCl₃ (* solvent peaks).

Fig. S16. 13 C NMR spectrum of 2-tBuPh in CDCl₃ (* solvent peaks).

Fig. S17. ¹³C NMR spectrum of 3-tBuPh in DMSO-d6 (* solvent peaks).

Fig. S18 ¹³C NMR spectrum of CIC-tBuPh in CDCl₃ (* solvent peaks).

Fig. S19. ¹³C NMR spectrum of 1-TPA in CDCl₃ (* solvent peaks).

Fig. S20 ¹³C NMR spectrum of 2-TPA in CDCl₃ (* solvent peaks).

Fig. S21. ¹³C NMR spectrum of 3-TPA in DMSO-*d*₆ (* solvent peaks).

Fig. S22 ¹³C NMR spectrum of CIC-TPA in CDCl₃ (* solvent peaks).

5. HR-ESI-TOF-MS Spectra

Fig. S24. HR-ESI-TOF-MS of 3-H.

Fig. S25. HR-ESI-TOF-MS of CIC.

Fig. S26. HR-ESI-TOF-MS of 1-tBuPh.

Fig. S27. HR-ESI-TOF-MS of 2-tBuPh.

Fig. S28. HR-ESI-TOF-MS of 3-tBuPh.

Fig. S29. HR-ESI-TOF-MS of CIC-tBuPh.

Fig. S30. HR-ESI-TOF-MS of 1-TPA.

Fig. S31. HR-ESI-TOF-MS of 2-TPA.

Fig. S33. HR-ESI-TOF-MS of CIC-TPA.

6. HPLC Chromatograms

Fig. S34. HPLC chromatogram of CIC; 98% purity. HPLC analysis was performed using a reverse phase analytical column (Mightysil RP18GP II, 25 cm \times 4.6 mm, 5 µm particle) from Kanto Chemical Industries, equipped with a photodiode array (PDA) detector; the mobile phase was CH₃CN/H₂O = 2/1 with a flow rate of 1.0 mL/min (detection wavelength; 365 nm). It is noted that peaks below 5 min are due to the injection solvent.

Fig. S35. HPLC chromatogram of CIC; 98% purity. HPLC analysis was performed using a reverse phase analytical column (Mightysil RP18GP II, 25 cm \times 4.6 mm, 5 µm particle) from Kanto Chemical Industries, equipped with a PDA detector; the mobile phase was CH₃CN/H₂O = 2/1 with a flow rate of 1.0 mL/min (detection wavelength; 254 nm). It is noted that peaks below 5 min are due to the injection solvent.

Fig. S36. HPLC chromatogram of CIC-tBuPh; 98% purity. HPLC analysis was performed using a reverse phase analytical column (Mightysil RP18GP II, 25 cm \times 4.6 mm, 5 µm particle) from Kanto Chemical Industries, equipped with a PDA detector; the mobile phase was CH₃CN/H₂O = 6/1 with a flow rate of 1.0 mL/min (detection wavelength; 365 nm). It is noted that peaks below 5 min are due to the injection solvent.

Fig. S37. HPLC chromatogram of CIC-tBuPh; 98% purity. HPLC analysis was performed using a reverse phase analytical column (Mightysil RP18GP II, 25 cm \times 4.6 mm, 5 µm particle) from Kanto Chemical Industries, equipped with a PDA detector; the mobile phase was CH₃CN/H₂O = 6/1 with a flow rate of 1.0 mL/min (detection wavelength; 254 nm). It is noted that peaks below 5 min are due to the injection solvent.

Fig. S38. HPLC chromatogram of CIC-TPA; 98% purity. HPLC analysis was performed using a reverse phase analytical column (Mightysil RP18GP II, 25 cm \times 4.6 mm, 5 µm particle) from Kanto Chemical Industries, equipped with a PDA detector; the mobile phase was CH₃CN/H₂O = 9/1 with a flow rate of 1.0 mL/min (detection wavelength; 365 nm). It is noted that peaks below 5 min are due to the injection solvent.

Fig. S39. HPLC chromatogram of CIC-TPA; 98% purity. HPLC analysis was performed using a reverse phase analytical column (Mightysil RP18GP II, 25 cm \times 4.6 mm, 5 µm particle) from Kanto Chemical Industries, equipped with a PDA detector; the mobile phase was CH₃CN/H₂O = 9/1 with a flow rate of 1.0 mL/min (detection wavelength; 254 nm). It is noted that peaks below 5 min are due to the injection solvent.

7. X-ray crystallographic Analyses

Fig. S40. ORTEP (Oak Ridge Thermal-Ellipsoid Plot) of CIC-tBuPh with 50% thermal probabilities. Solvent molecules are omitted for clarity.

	CIC-tBuPh
CCDC No.	2150990
formula	C44H37N3O
fw	623.76
$T(\mathbf{K})$	113(2)
λ (Å)	0.71073
cryst syst	triclinic
space group	<i>P</i> -1
<i>a</i> (Å)	9.8537(6)
b (Å)	11.6155(3)
<i>c</i> (Å)	15.5263(8)
α (deg)	89.445(4)
β (deg)	77.255(5)
$\gamma(\text{deg})$	70.765(4)
$V(Å^3)$	1632.70(15)
Ζ	2
$D_{ m calc} ({ m g}\cdot { m cm}^{-3})$	1.269
μ (mm ⁻¹)	0.076
F(000)	660.0
cryst size (mm ³)	$0.15 \times 0.15 \times 0.05$
2θ range (deg)	5.392-62.81
reflns collected	26911
indep reflns/R _{int}	8933/0.0590
params	441
GOF on F^2	1.038
$R_1, wR_2 [I > 2\sigma(I)]$	0.0607, 0.1498
R_1 , wR_2 (all data)	0.0954, 0.1683

Table S1. Crystallographic data and structure refinement details of CIC-tBuPh.

8. Steady-State Absorption Spectra

Fig. S41. Normalized steady-state absorption spectra of (a) CIC, (b) CIC-tBuPh and (c) CIC-TPA in different solvents.

Fig. S42. Steady-state absorption spectra of phenothiazine and carbazole in benzene.

Fig. S43. Steady-state absorption spectra of PTIC and CIC derivatives in benzene.
9. Nanosecond to Microsecond Transient Absorption Measurements

Fig. S44. Nanosecond to microsecond transient absorption spectra and dynamics of CIC in benzene $(7.6 \times 10^{-4} \text{ M})$ excited with a 355 nm picosecond laser pulse (2 µJ pulse⁻¹) under argon atmosphere at room temperature.

Fig. S45. Nanosecond to microsecond transient absorption spectra and dynamics of CIC-tBuPh in benzene (5.9×10^{-4} M) excited with a 355 nm picosecond laser pulse (5 µJ pulse⁻¹) under argon atmosphere at room temperature.

Fig. S46. Nanosecond to microsecond transient absorption spectra and dynamics of CIC-TPA in benzene (5.1×10^{-4} M) excited with a 355 nm picosecond laser pulse (5 µJ pulse⁻¹) under argon atmosphere at room temperature.

Fig. S47. Nanosecond to microsecond transient absorption spectra of (a) CIC, (b) CIC-tBuPh and (c) CIC-TPA in benzene excited with a 355 nm picosecond laser pulse under argon atmosphere at room temperature. Vertical lines indicate the theoretical spectra of singlet and triplet biradical (U)MPW1PW91/6-31+G(d,p)//UMPW1PW91/6-31G(d) level of theory. The simulation suggests that the triplet biradical of the ring-opening form does not have absorption in the near infrared light region (except CIC-TPA), suggesting that the contribution of the singlet biradical and the quinoidal forms are larger than the triplet biradical form. It is noted that the absorption band is different in different rotational isomers of the carbazole moiety (1 and 2 shown in Fig. S48).

Fig. S48. Optimized structures of the rotational isomers (1 and 2) of the singlet biradical and quinoidal forms of CIC, CIC-tBuPh, and CIC-TPA at (U)MPW1PW91/6-31+G(d,p)//UMPW1PW91/6-31G(d) level of theory.

Fig. S49. Nanosecond to microsecond transient absorption dynamics of (a) CIC, (b) CIC-tBuPh and (c) CIC-TPA in benzene excited with a 355 nm picosecond laser pulse under nitrogen or oxygen atmosphere at room temperature.

10. Femtosecond to Nanosecond Transient Absorption Measurements

Fig. S50. Time evolutions of the femtosecond to nanosecond transient absorption spectra of CIC in (a) benzene $(1.7 \times 10^{-3} \text{ M})$ and (b) acetonitrile $(2.2 \times 10^{-3} \text{ M})$ excited with a 390-nm femtosecond laser pulse (36 nJ pulse⁻¹).

Fig. S51. Time evolutions of the femtosecond to nanosecond transient absorption spectra of CICtBuPh in (a) benzene (8.7×10^{-4} M) and (b) acetonitrile (1.1×10^{-3} M) excited with a 390-nm femtosecond laser pulse (36 nJ pulse⁻¹).

Fig. S52. Time evolutions of femtosecond to nanosecond transient absorption spectra of CIC-TPA in (a) benzene (8.4×10^{-4} M) and (b) acetonitrile (5.3×10^{-4} M) excited with a 390-nm femtosecond laser pulse (36 nJ pulse⁻¹).

Fig. S53. Time evolutions of femtosecond to nanosecond transient absorption spectra of CIC in benzene $(1.7 \times 10^{-3} \text{ M})$ excited with a 390-nm femtosecond laser pulse (36 nJ pulse⁻¹). Thick red, blue and black lines show the fitting lines by SVD global analyses using a five-state sequential kinetic model.

Fig. S54. Time evolutions of femtosecond to nanosecond transient absorption spectra of CIC in acetonitrile $(2.2 \times 10^{-3} \text{ M})$ excited with a 390-nm femtosecond laser pulse (36 nJ pulse⁻¹). Thick red, blue and black lines show the fitting lines by SVD global analyses using a five-state sequential kinetic model.

Fig. S55. Time evolutions of femtosecond to nanosecond transient absorption spectra of CIC-tBuPh in benzene $(8.7 \times 10^{-4} \text{ M})$ excited with a 390-nm femtosecond laser pulse (36 nJ pulse⁻¹). Thick red, blue and black lines show the fitting lines by SVD global analyses using a five-state sequential kinetic model.

Fig. S56. Time evolutions of femtosecond to nanosecond transient absorption spectra of CIC-tBuPh in acetonitrile $(1.1 \times 10^{-3} \text{ M})$ excited with a 390-nm femtosecond laser pulse (36 nJ pulse⁻¹). Thick red, blue and black lines show the fitting lines by SVD global analyses using a five-state sequential kinetic model.

Fig. S57. Time evolutions of femtosecond to nanosecond transient absorption spectra of CIC-TPA in benzene $(8.4 \times 10^{-4} \text{ M})$ excited with a 390-nm femtosecond laser pulse (36 nJ pulse⁻¹). Thick red, blue and black lines show the fitting lines by SVD global analyses using a four-state sequential kinetic model.

Fig. S58. Time evolutions of femtosecond to nanosecond transient absorption spectra of CIC-TPA in acetonitrile $(5.3 \times 10^{-4} \text{ M})$ excited with a 390-nm femtosecond laser pulse (36 nJ pulse⁻¹). Thick red, blue and black lines show the fitting lines by SVD global analyses using a five-state sequential kinetic model.

Fig. S59. EAS of the transient absorption spectra of ClC in (a) benzene and (b) acetonitrile excited with a 390-nm femtosecond laser pulse. The first EAS (EAS1) appears to be different from the S1 state of the closed form because the band appears ~400 nm. Because it was reported that the decay of the S1 state is accelerated in polar solvent, EAS1 is not ascribable to the S1 state of the closed form. The time constant of EAS1 is decelerated with the increase in the solvent polarity. However, the maximum of the transient absorption band is different from the simulated absorption band of the cation of the carbazole substructure. The spectral shape of EAS2 is consistent with the simulated absorption spectrum of the cation of the carbazole substructure. However, the time constant of EAS2 does not depend on the solvent polarity. Moreover, the difference in the Gibbs free energy between the S1 state of the closed form and the CT state is positive. These results suggest that the photoinduced homolysis occurs in CIC.

Fig. S60. EAS of the transient absorption spectra of CIC-tBuPh in (a) benzene and (b) acetonitrile excited with a 390-nm femtosecond laser pulse.

Fig. S61. EAS of the transient absorption spectra of CIC-TPA in (a) benzene and (b) acetonitrile excited with a 390-nm femtosecond laser pulse. In CIC-TPA in benzene, sharp and broad absorption bands are observed instantaneously after the excitation (0.2 ps in Fig. **5b**). These bands decay with the time constants of 1.3 and 28 ps, and a small amount of the transient absorption bands ascribable to the ring-opening form is generated. In acetonitrile, the initial decay of the transient absorption bands is accelerated (500 fs and 19 ps), and the amplitude of the generated ring-opening form decreases relative to that in benzene (Fig. **S59**). Although the acceleration of the decay of the subpicosecond transient species in polar solvents is an opposite behaviour to the CT state of CIC, A possibility that the electron transfer to revert to the ground state is the Marcus inverted region cannot be excluded. Moreover, the substitution of the TPA group would stabilize both the S₁ and CT states. Therefore, it is difficult to assign the initial transient species from these results.

Fig. S62. (a) Absorption spectrum of CIC-TPA in benzene and an excitation pulse spectrum. (b) Picosecond transient absorption dynamics of CIC-TPA in benzene $(1.8 \times 10^{-3} \text{ M})$ excited with the pulse shown in Fig. S62a at room temperature. The excitation intensity was 40 nJ pulse⁻¹ and the probed wavelength is 750 nm.

Fig. S63. The first and second EADS (150 fs and 3.9 ps) of the transient absorption spectra of CIC in benzene excited with a 390-nm femtosecond laser pulse. Vertical lines indicate the theoretical spectra of the substructure 1 and 2 of the carbazole cation at MPW1PW91/6-31+G(d,p)//MPW1PW91/6-31+G(d) level of theory. Molecular structures of the substructure 1 and 2 of the carbazole cation are shown in Figs. S67X and S68.

11. DFT calculations

All calculations was carried out using the Gaussian 09 program (Revision D.01).^{S4} The molecular structure was fully optimized at the MPW1PW91/6-31G(d) level of theory, and analytical second derivative was computed using vibrational analysis to confirm each stationary point to be a minimum. TDDFT calculations were performed at the MPW1PW91/6-31+G(d,p) level of the theory for the optimized structures.

		1				
Т.~	Symbol	Coordinates				
Tag	Symbol	Х	Y	Ζ		
1	С	1.575133	2.033673	-0.03414		
2	С	0.725692	3.204055	-0.09879		
3	С	-0.58043	2.785036	0.190939		
4	С	-0.61297	1.272516	0.502617		
5	Ν	0.809852	0.956165	0.312912		
6	С	1.618072	-0.16007	0.259078		
7	С	2.872443	0.347883	-0.08716		
8	Ν	2.819481	1.711815	-0.2735		
9	С	0.99269	4.535524	-0.39825		
10	С	-0.06988	5.435414	-0.39967		
11	С	-1.36905	5.015211	-0.10862		
12	С	-1.63621	3.678775	0.193172		
13	С	-1.47223	0.561433	-0.5067		
14	С	-2.62572	-0.01446	-0.14147		
15	С	-3.05377	-0.04953	1.270729		
16	С	-2.20988	0.527342	2.288577		
17	С	-1.05047	1.104687	1.936658		
18	С	-3.69891	-0.70945	-0.84179		
19	С	-4.61384	-1.06431	0.175943		
20	Ν	-4.19144	-0.64901	1.454938		
21	С	-3.94961	-1.03544	-2.1657		
22	С	-5.12672	-1.72417	-2.46596		
23	С	-6.02738	-2.07425	-1.45857		
24	С	-5.78228	-1.74883	-0.1235		
25	С	4.149021	-0.36008	-0.2476		
26	С	1.124548	-1.53434	0.425495		

Table S2. Standard orientation of the optimized geometry for the closed form of CIC.

27	С	5.144996	0.211757	-1.05048
28	С	6.370019	-0.42071	-1.21927
29	С	6.626727	-1.6352	-0.58761
30	С	5.649129	-2.20475	0.22362
31	С	4.423256	-1.57284	0.397625
32	С	0.446937	-1.94186	1.580579
33	С	-0.02888	-3.24338	1.699699
34	С	0.177246	-4.1611	0.674237
35	С	0.86281	-3.77038	-0.4736
36	С	1.328901	-2.46786	-0.60009
37	Н	2.003862	4.854631	-0.62435
38	Н	0.114643	6.479446	-0.63075
39	Н	-2.18136	5.734201	-0.11694
40	Н	-2.64517	3.349994	0.421124
41	Н	-1.12369	0.590932	-1.53501
42	Н	-2.52488	0.462646	3.324506
43	Н	-0.38599	1.544187	2.673934
44	Н	-3.25356	-0.76679	-2.95448
45	Н	-5.34374	-1.99022	-3.4952
46	Н	-6.93506	-2.60932	-1.71895
47	Н	-6.47701	-2.0182	0.664169
48	Н	4.940797	1.161616	-1.53167
49	Н	7.128243	0.03676	-1.84744
50	Н	7.583889	-2.12979	-0.71983
51	Н	5.844294	-3.14258	0.734521
52	Н	3.680431	-2.01657	1.050633
53	Н	0.298183	-1.23709	2.390684
54	Н	-0.55724	-3.54124	2.599602
55	Н	-0.19341	-5.17661	0.769139
56	Н	1.028082	-4.48032	-1.27769
57	Н	1.857075	-2.16033	-1.49641
SCF Done:	E(RmPW1PW91)	=	-1434.09263582	A.U.

Zero-point correction	=	0.452743 (Hartree/Particle)
Thermal correction to Energy	=	0.478575

Thermal correction to	Thermal correction to Enthalpy				9	
Thermal correction to	Gibbs Free	Energy	=	0.39499	3	
Sum of electronic and	zero-point	Energies	=	-1433.64	41078	
Sum of electronic and	=	-1433.61	15246			
Sum of electronic and	thermal En	thalpies	=	-1433.61	14302	
Sum of electronic and thermal Free Energies			=	-1433.69	98828	
Low frequencies	-4.9763	-2.3795	-0.0000	0.0002	0.0003	2.0508
Low frequencies	17.7507	20.0138	32.9537			

The Result for the TDDFT calculation

Excited State 1: Singlet-A 2.4542 eV 505.18 nm f=0.0028 <S**2>=0.000 120 ->121 0.70301 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1434.07171106

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 119 ->121	2:	Singlet-A 0.69650	3.0690 eV	403.99 nm	f=0.0503	<s**2>=0.000</s**2>
Excited State	3:	Singlet-A	3.6725 eV	337.60 nm	f=0.0994	<s**2>=0.000</s**2>
120 ->122		0.69094				
Excited State	4:	Singlet-A	3.7456 eV	331.01 nm	f=0.1209	<s**2>=0.000</s**2>
116 ->121		0.14860				
117 ->121		0.60810				
118 ->121		-0.17178				
119 ->122		0.18200				
119 ->123		-0.11231				
Excited State	5:	Singlet-A	3.8413 eV	322.77 nm	f=0.0016	<s**2>=0.000</s**2>
112 ->121		0.35492				
113 ->121		0.17007				
116 ->121		0.42454				
118 ->121		0.39014				

Excited State	6:	Singlet-A	3.9461 eV	314.20 nm	f=0.0010	<s**2>=0.000</s**2>
112 ->121		0.53305				
113 ->121		0.16923				
116 ->121		-0.16790				
118 ->121		-0.36147				
Excited State	7:	Singlet-A	3.9871 eV	310.97 nm	f=0.0464	<s**2>=0.000</s**2>
112 ->121		-0.12914				
114 ->121		-0.17965				
115 ->121		-0.13620				
116 ->121		0.42791				
117 ->121		-0.16657				
118 ->121		-0.30910				
120 ->123		0.34080				
Excited State	8:	Singlet-A	3.9951 eV	310.34 nm	f=0.1464	<s**2>=0.000</s**2>
114 ->121		0.11707				
116 ->121		-0.20800				
117 ->121		0.15979				
118 ->121		0.22363				
120 ->123		0.58079				
Excited State	9:	Singlet-A	4.0916 eV	303.02 nm	f=0.3459	<s**2>=0.000</s**2>
115 ->121		-0.10292				
120 ->124		0.67576				
Excited State	10:	Singlet-A	4.1227 eV	300.74 nm	f=0.0103	<s**2>=0.000</s**2>
114 ->121		-0.32292				
115 ->121		0.60156				
Excited State	11:	Singlet-A	4.1977 eV	295.36 nm	f=0.0026	<s**2>=0.000</s**2>
114 ->121		0.57579				
115 ->121		0.30595				
116 ->121		0.13939				
118 ->121		-0.17724				

Excited State 12	: Singlet-A	4.3210 eV	286.93 nm	f=0.0078	<s**2>=0.000</s**2>
112 ->121	-0.21938				
113 ->121	0.63630				
114 ->121	-0.11617				
119 ->122	0.11624				
Excited State 13	: Singlet-A	4.3978 eV	281.92 nm	f=0.0111	<s**2>=0.000</s**2>
120 ->125	0.34185				
120 ->126	0.59246				
Excited State 14	: Singlet-A	4.4890 eV	276.19 nm	f=0.0048	<s**2>=0.000</s**2>
120 ->125	0.57540				
120 ->126	-0.34302				
Excited State 15	: Singlet-A	4.5213 eV	274.22 nm	f=0.3211	<s**2>=0.000</s**2>
108 ->121	0.13273				
113 ->121	-0.11302				
117 ->121	-0.15108				
119 ->122	0.63313				
Excited State 16	: Singlet-A	4.7589 eV	260.53 nm	f=0.0289	<s**2>=0.000</s**2>
110 ->121	-0.17157				
111 ->121	-0.38116				
119 ->122	0.10476				
119 ->123	0.50711				
Excited State 17	: Singlet-A	4.8004 eV	258.28 nm	f=0.1780	<s**2>=0.000</s**2>
110 ->121	0.12716				
111 ->121	0.50190				
119 ->123	0.38776				
120 ->127	0.18857				
Excited State 18	: Singlet-A	4.8564 eV	255.30 nm	f=0.0246	<s**2>=0.000</s**2>
111 ->121	-0.10061				
118 ->124	-0.16212				

119 ->123	-0.13846				
120 ->127	0.44649				
120 ->128	-0.10649				
120 ->129	-0.40226				
Excited State 19:	Singlet-A	4.8937 eV	253.35 nm	f=0.0119	<s**2>=0.000</s**2>
117 ->122	-0.14361				
118 ->122	0.15635				
118 ->124	0.22394				
120 ->127	0.42567				
120 ->128	0.11794				
120 ->129	0.36444				
Excited State 20:	Singlet-A	4.9530 eV	250.32 nm	f=0.1008	<s**2>=0.000</s**2>
110 ->121	0.16135				
111 ->121	-0.12276				
117 ->122	0.55205				
118 ->122	-0.20873				
119 ->123	0.10039				
120 ->127	0.15651				
120 ->129	0.10950				

Fig. S64. UV-vis absorption spectrum of CIC in benzene at room temperature. The calculated absorption spectrum MPW1PW91/6-31+G(d,p)//MPW1PW91/6-31G(d) level of the theory) is shown by the red vertical lines. The relevant molecular orbitals of the CIC calculated at the MPW1PW91/6-31G(d) level of the theory.

No.	Wavelength (nm)	Coefficients	Electronic Transition			f
1	505.18	0.70301	120 HOMO	\rightarrow	121 LUMO	0.0028
2	403.99	0.69650	119 HOMO-1	\rightarrow	121 LUMO	0.0503
3	337.60	0.69094	120 HOMO	\rightarrow	122 LUMO+1	0.5726
		0.14860	116 HOMO-4	\rightarrow	121 LUMO	
		0.60810	117 HOMO-3	\rightarrow	121 LUMO	
4	331.01	-0.17178	118 HOMO-2	\rightarrow	121 LUMO	0.1209
		0.18200	119 HOMO-1	\rightarrow	122 LUMO+1	
		-0.11231	119 HOMO-1	\rightarrow	123 LUMO+2	

Table S3. Selected calculated electronic transition of CIC at the MPW1PW91/6-31G(d) level.

T	a 1.1		Coordinates	
Tag	Symbol	Х	Y	Z
1	С	1.401214	1.532754	-0.154225
2	С	0.633064	2.759917	-0.195757
3	С	-0.779861	2.812429	-0.053134
4	С	-1.607196	1.688902	0.427121
5	Ν	2.761252	1.555236	-0.022446
6	С	3.115083	0.279341	-0.052868
7	С	1.896244	-0.528967	-0.275516
8	Ν	0.859066	0.294802	-0.309322
9	С	1.33628	3.944144	-0.491298
10	С	0.675086	5.138755	-0.708743
11	С	-0.717985	5.178067	-0.635632
12	С	-1.425598	4.029012	-0.308711
13	С	-2.790786	1.350008	-0.26841
14	С	-3.595145	0.346479	0.220264
15	С	-3.257185	-0.328511	1.436944
16	С	-2.094592	0.025665	2.14169
17	С	-1.283368	1.020699	1.626133
18	С	-4.838977	-0.283608	-0.213385
19	С	-5.111395	-1.258777	0.788118
20	Ν	-4.156001	-1.285079	1.784365
21	С	-5.694511	-0.125571	-1.28568
22	С	-6.832164	-0.945389	-1.360372
23	С	-7.100794	-1.899951	-0.379547
24	С	-6.242736	-2.068693	0.708172
25	С	1.720559	-1.955708	-0.515724
26	С	4.498606	-0.120668	0.175542
27	С	2.712532	-2.746727	-1.117313
28	С	2.479882	-4.092375	-1.371931
29	С	1.260098	-4.670653	-1.02912
30	С	0.262739	-3.89102	-0.443647
31	С	0.484663	-2.5448	-0.197247
32	С	5.529485	0.769721	-0.168389

 Table S4. Standard orientation of the optimized geometry for the singlet biradical form 1 of the ringopening form of CIC.

33	С	6.854759	0.440822	0.071929
34	С	7.177091	-0.773976	0.676625
35	С	6.162962	-1.654873	1.043545
36	С	4.833954	-1.335011	0.794933
37	Н	2.415073	3.879999	-0.570267
38	Н	1.237485	6.0358	-0.945604
39	Н	-1.250294	6.107786	-0.808775
40	Н	-2.503745	4.077233	-0.193497
41	Н	-3.026776	1.864004	-1.195317
42	Н	-1.854109	-0.475285	3.073004
43	Н	-0.385872	1.314628	2.158697
44	Н	-5.502119	0.610419	-2.06045
45	Н	-7.513194	-0.833077	-2.197793
46	Н	-7.988285	-2.518311	-0.464846
47	Н	-6.438437	-2.806117	1.478874
48	Н	3.655528	-2.299377	-1.409767
49	Н	3.251304	-4.689552	-1.847363
50	Н	1.083609	-5.723623	-1.224374
51	Н	-0.69218	-4.334919	-0.181629
52	Н	-0.286407	-1.924567	0.245616
53	Н	5.263936	1.715857	-0.625649
54	Н	7.64148	1.133345	-0.209658
55	Н	8.214676	-1.028767	0.867428
56	Н	6.406375	-2.592512	1.532607
57	Н	4.04967	-2.016291	1.104372

SCF Done: E(UmPW1PW91)

= -1434.06739257 A.U.

Zero-point correction	=	0.449160 (Hartree/Particle)
Thermal correction to Energy	=	0.475660
Thermal correction to Enthalpy	=	0.476605
Thermal correction to Gibbs Free Energy	=	0.389763
Sum of electronic and zero-point Energies	=	-1433.619195
Sum of electronic and thermal Energies	=	-1433.592694
Sum of electronic and thermal Enthalpies	=	-1433.591750
Sum of electronic and thermal Free Energies	=	-1433.678591

Low frequencies	-3.7164	0.0004	0.0005	0.0008	2.0884	6.7250
Low frequencies	12.7945	16.3057	33.1996			

The Result for the TDDFT calculation

Excited State 1: 3.000-A -0.6501 eV -1907.16 nm f=-0.0000 <S**2>=2.000 120A ->121A 0.74262 120B ->121B -0.74262 120A <-121A -0.23927 120B <-121B 0.23927

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1434.14219771

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	3.000-A	0.7659 eV 1618.88 nm	f=0.0000	<s**2>=2.000</s**2>
119A ->121	А	0.70724			
119B ->121	В	-0.70724			
119A <-121	А	0.10418			
119B <-121	В	-0.10418			
Evolted State	2.	1 000 4	0.0105 .37 1249 29	f_0 1790	<5**3>-0.000
Excited State	3:	1.000-A	0.9195 ev 1348.38 nm	1=0.1/89	<5***2>=0.000
119A ->121	A	-0.31816			
120A ->121	А	0.71089			
119B ->121	В	-0.31816			
120B ->121	В	0.71089			
120A <-121	А	-0.34192			
120B <-121	В	-0.34192			
Excited State	4:	1.000-A	1.2156 eV 1019.97 nm	f=0.1154	<s**2>=0.000</s**2>
119A ->121	A	0.62864			
120A ->121	А	0.37477			
119B ->121	В	0.62864			
120B ->121	В	0.37477			

Excited State	5:	3.000-A	1.6434 eV	754.43 nm	f=0.0000	<s**2>=2.000</s**2>
118A ->121	А	0.68053				
118B ->121	В	-0.68053				
Excited State	6:	3.000-A	1.7134 eV	723.61 nm	f=0.0000	<s**2>=2.000</s**2>
117A ->121	А	0.68640				
117B ->121	В	-0.68640				
Excited State	7:	3.000-A	1.9692 eV	629.61 nm	f=0.0000	<s**2>=2.000</s**2>
113A ->121	А	-0.42689				
115A ->121	А	-0.29664				
116A ->121	А	0.44133				
113B ->121	В	0.42689				
115B ->121	В	0.29664				
116B ->121	В	-0.44133				
Excited State	8:	3.000-A	1.9963 eV	621.07 nm	f=0.0000	<s**2>=2.000</s**2>
112A ->121	А	-0.14261				
113A ->121	A	0.54768				
115A ->121	A	-0.20474				
116A ->121	A	0.34445				
112B ->121	В	0.14261				
113B ->121	В	-0.54768				
115B ->121	В	0.20474				
116B ->121	В	-0.34445				
Excited State	9:	1.000-A	2.0144 eV	615.49 nm	f=0.0644	<s**2>=0.000</s**2>
118A ->121	А	0.68874				
118B ->121	В	0.68874				
Excited State	10:	3.000-A	2.1852 eV	567.38 nm	f=0.0000	<s**2>=2.000</s**2>
111A ->121	А	-0.26105				
112A ->121	А	-0.26437				
115A ->121	А	0.53121				
116A ->121A		0.23989				

111B ->121B	0.26105
112B ->121B	0.26437
115B ->121B	-0.53121
116B ->121B	-0.23989

Excited State	11:	1.000-A	2.2046 eV	562.38 nm	f=0.0900	<s**2>=0.000</s**2>
111A ->12	1A	-0.21563				
112A ->12	1A	-0.28037				
115A ->12	1A	-0.12103				
116A ->12	1A	0.57826				
111B ->12	1B	-0.21563				
112B ->12	1B	-0.28037				
115B ->12	1B	-0.12103				
116B ->12	1B	0.57826				

Excited State	12:	1.000-A	2.3056 eV	537.76 nm	f=0.0814	<s**2>=0.000</s**2>
112A ->12	1A	0.13313				
115A ->12	1A	-0.15189				
117A ->12	1A	0.65151				
112B ->12	1B	0.13313				
115B ->12	1B	-0.15189				
117B ->12	1B	0.65151				

Excited State	13:	3.000-A	2.3469 eV	528.30 nm	f=0.0000	<s**2>=2.000</s**2>
112A ->12	1A	0.56273				
114A ->12	1A	-0.16256				
115A ->12	1A	0.19832				
116A ->12	1A	0.29735				
112B ->12	1B	-0.56273				
114B ->12	1B	0.16256				
115B ->12	1B	-0.19832				
116B ->12	1B	-0.29735				

Excited State	14:	3.000-A	2.3547 eV	526.55 nm	f=0.0000	<s**2>=2.000</s**2>
111A ->12	1A	0.61960				
112A ->12	1A	-0.21710				

115A ->121A	0.14747				
116A ->121A	0.12750				
111B ->121B	-0.61960				
112B ->121B	0.21710				
115B ->121B	-0.14747				
116B ->121B	-0.12750				
Excited State 15:	1.000-A	2.3629 eV	524.72 nm	f=0.0035	<s**2>=0.000</s**2>
113A ->121A	0.69418				
115A ->121A	0.10726				
113B ->121B	0.69418				
115B ->121B	0.10726				
Excited State 16:	1.000-A	2.4145 eV	513.50 nm	f=0.0408	<s**2>=0.000</s**2>
111A ->121A	0.10791				
112A ->121A	0.12378				
114A ->121A	-0.13083				
115A ->121A	0.61428				
116A ->121A	0.21816				
117A ->121A	0.12672				
111B ->121B	0.10791				
112B ->121B	0.12378				
114B ->121B	-0.13083				
115B ->121B	0.61428				
116B ->121B	0.21816				
117B ->121B	0.12672				
Excited State 17:	3.000-A	2.5199 eV	492.02 nm	f=0.0000	<s**2>=2.000</s**2>
112A ->121A	0.10925				
114A ->121A	0.67260				
112B ->121B	-0.10925				
114B ->121B	-0.67260				
Excited State 18:	1.000-A	2.5839 eV	479.83 nm	f=0.0660	<s**2>=0.000</s**2>
112A ->121A	0.56360				
114A ->121A	-0.16139				

115A ->12	1A	-0.20723					
116A ->12	1A	0.27263					
117A ->12	1A	-0.12750					
112B ->12	1B	0.56360					
114B ->12	1B	-0.16139					
115B ->12	1B	-0.20723					
116B ->12	1B	0.27263					
117B ->12	1B	-0.12750					
Excited State	19:	1.000-A	2.6645 eV	465.32 nm	f=0.0028	<s**2>=0.000</s**2>	
112A ->12	lA	0.16931					
114A ->12	1A	0.67259					
112B ->12	1B	0.16931					
114B ->12	1B	0.67259					
Excited State	20:	3.000-A	2.7403 eV	452.46 nm	f=0.0000	<s**2>=2.000</s**2>	
109A ->12	1A	-0.17822					
110A ->12	1A	0.62572					
120A ->12	2A	-0.17538					
120A ->124	4A	0.11241					
109B ->12	1B	0.17822					
110B ->12	1B	-0.62572					
120B ->12	2B	0.17538					
120B ->124	4B	-0.11241					

Table S5. Standard orientation of the optimized geometry for the singlet biradical form 2 of the ring-

opening form of CIC.								
Τ	Samula al		Coordinates					
Tag	Symbol	Х	Y	Ζ				
1	С	1.088770	1.735856	-0.096808				
2	С	0.406184	3.008502	-0.004679				
3	С	-0.974830	3.185887	-0.294181				
4	С	-1.938672	2.080552	-0.437905				
5	Ν	2.337231	1.562851	0.431644				
6	С	2.649919	0.311022	0.133075				
7	С	1.544833	-0.259704	-0.666936				

8	Ν	0.592468	0.656395	-0.761286
9	С	1.195312	4.137546	0.292492
10	С	0.670549	5.415152	0.242689
11	С	-0.668626	5.596717	-0.108038
12	С	-1.471529	4.494622	-0.365965
13	С	-2.001098	1.055839	0.540564
14	С	-2.976461	0.095714	0.443299
15	С	-3.915087	0.110398	-0.639873
16	С	-3.853027	1.122024	-1.609705
17	С	-2.875580	2.098831	-1.487979
18	С	-3.358241	-1.066612	1.238490
19	С	-4.473774	-1.621399	0.547305
20	Ν	-4.809212	-0.910346	-0.585755
21	С	-2.886139	-1.655670	2.395286
22	С	-3.532469	-2.806840	2.869639
23	С	-4.626189	-3.352683	2.194866
24	С	-5.110284	-2.767782	1.025504
25	С	1.421644	-1.535974	-1.360496
26	С	3.879508	-0.293998	0.631369
27	С	2.534871	-2.232189	-1.858091
28	С	2.365429	-3.418637	-2.560362
29	С	1.088032	-3.930995	-2.774099
30	С	-0.025408	-3.241092	-2.295135
31	С	0.136523	-2.050399	-1.603447
32	С	4.985781	0.531056	0.894716
33	С	6.157710	-0.003536	1.407625
34	С	6.243542	-1.367756	1.684861
35	С	5.146111	-2.192145	1.449916
36	С	3.972935	-1.663391	0.926130
37	Н	2.238533	3.970441	0.533005
38	Н	1.300156	6.270346	0.464732
39	Н	-1.092605	6.594595	-0.154675
40	Н	-2.526651	4.636689	-0.575815
41	Н	-1.294089	1.065117	1.363363
42	Н	-4.559149	1.126931	-2.432715
43	Н	-2.802440	2.880629	-2.236636

44	Н	-2.036	5301	-1.246	5207	2.932833	
45	Н	-3.174	876	-3.280)784	3.778074	
46	Н	-5.104709		-4.243899		2.587470	
47	Н	-5.958	3483	-3.180884		0.490688	
48	Н	3.530	668	-1.827539		-1.718132	
49	Н	3.233	770	-3.940430		-2.949525	
50	Н	0.959	359	-4.861144 -3.3		-3.318410	
51	Н	-1.023	222	-3.632622		-2.464216	
52	Н	-0.721	299	-1.498577 -1.		-1.236565	
53	Н	4.900	840	1.591	284	0.686178	
54	Н	7.008	469	0.643	629	1.595228	
55	Н	7.160	505	-1.784	1523	2.089083	
56	Н	5.200	540	-3.250811		1.682040	
57	Н	3.116	149	-2.308	3016	0.767000	
SCF Done: E(UmPW1PW91)		=	-1434.06	570041	A.U.	
Zero-point corre	ection		=	0.449298	(Hartree/Pa	article)	
Thermal correction to Energy =				0.475780	1		
Thermal correction to Enthalpy			=	0.476724			
Thermal correct	ion to Gibbs Free	Energy	=	0.389775			
Sum of electron	ic and zero-point	Energies	=	-1433.619914			
Sum of electron	Sum of electronic and thermal Energies			-1433.593433			
Sum of electron	Sum of electronic and thermal Enthalpies			-1433.592488			
Sum of electron	ic and thermal Fr	ee Energies	=	-1433.67	9438		
		0.0005	0.000-	0.000		4.42.40	
Low frequencie	s6.2468	-0.0006	-0.0005	-0.0004	3.9208	4.4249	
Low frequencie	s 11.1209	17.8673	28.6616				

The Result for the TDDFT calculation

Excited State	1:	3.000-A	-0.6903 eV	-1795.99 nm	f=-0.0000	<s**2>=2.000</s**2>
120A ->12	21A	0.726	605			
120B ->12	21B	-0.726	05			
120A <-12	21A	-0.182	91			
120B <-12	21B	0.182	.91			

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1434.14733821

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: 3.000-A 0.9223 eV 1344.24 nm f=0.0000 <S**2>=2.000 119A ->121A 0.70451 119B ->121B -0.70451 Excited State 3: 1.000-A 1.0810 eV 1146.92 nm f=0.2352 <S**2>=0.000 119A ->121A 0.13856 120A ->121A 0.76432 119B ->121B 0.13856 120B ->121B 0.76432 120A <-121A -0.34398 120B <-121B -0.34398 Excited State 4: 1.000-A 1.2424 eV 997.96 nm f=0.0210 <S**2>=0.000 119A ->121A 0.68810 120A ->121A -0.16345 119B ->121B 0.68810 120B ->121B -0.16345 Excited State 5: 3.000-A 1.4908 eV 831.65 nm f=0.0000 <S**2>=2.000 117A ->121A -0.13267 118A ->121A 0.67671 117B ->121B 0.13267 118B ->121B -0.67671 Excited State 6: 3.000-A 1.7918 eV 691.95 nm f=0.0000 <S**2>=2.000 115A ->121A -0.10855 117A ->121A 0.66302 118A ->121A 0.12722 115B ->121B 0.10855 117B ->121B -0.66302 118B ->121B -0.12722

66

Excited State	7:	1.000-A	2.0072 eV	617.70 nm	f=0.1062	<s**2>=0.000</s**2>
117A ->121A		0.20527				
118A ->121A		0.65985				
117B ->121B		0.20527				
118B ->121	1B	0.65985				
Excited State	8:	3.000-A	2.0139 eV	615.64 nm	f=0.0000	<s**2>=2.000</s**2>
113A ->121	lA	-0.14499				
115A ->121	lA	-0.31213				
116A ->121	lA	0.59148				
113B ->121	1B	0.14499				
115B ->121	1B	0.31213				
116B ->12	1B	-0.59148				
Excited State	9:	3.000-A	2.0462 eV	605.91 nm	f=0.0000	<s**2>=2.000</s**2>
112A ->121	lA	0.61283				
113A ->121	lA	0.32605				
112B ->121	1B	-0.61283				
113B ->121	1B	-0.32605				
Excited State	10:	1.000-A	2.1618 eV	573.52 nm	f=0.0352	<s**2>=0.000</s**2>
111A ->121	IA	0.16789				
113A ->121	lA	-0.15004				
115A ->121	lA	-0.14183				
116A ->121	lA	0.41023				
117A ->121	lA	0.47814				
118A ->121	lA	-0.11692				
111B ->121	IB	0.16789				
113B ->121	1B	-0.15004				
115B ->121	1B	-0.14183				
116B ->121	1B	0.41023				
117B ->121	1B	0.47814				
118B ->12	1B	-0.11692				
Excited State	11:	3.000-A	2.2487 eV	551.37 nm	f=0.0000	<s**2>=2.000</s**2>
111A ->121	IA	0.15546				

112A ->121A	0.13546
113A ->121A	-0.21716
115A ->121A	0.57603
116A ->121A	0.24206
111B ->121B	-0.15546
112B ->121B	-0.13546
113B ->121B	0.21716
115B ->121B	-0.57603
116B ->121B	-0.24206

2.3735 eV 522.37 nm f=0.0000 <S**2>=2.000

Excited State	12:	3.000-A
112A ->12	1A	-0.29048
113A ->12	1A	0.53371
114A ->12	1A	-0.11221
115A ->12	1A	0.17010
116A ->12	1A	0.23821
112B ->12	1B	0.29048
113B ->12	1B	-0.53371
114B ->12	1B	0.11221
115B ->12	1B	-0.17010
116B ->12	1B	-0.23821

Excited State 13: 1.000-A 2.3830 eV 520.29 nm f=0.0961 <S**2>=0.000

111A ->121A	0.10930
113A ->121A	-0.23262
115A ->121A	0.11366
116A ->121A	0.44823
117A ->121A	-0.41500
118A ->121A	0.14258
120A ->122A	-0.11331
111B ->121B	0.10930
113B ->121B	-0.23262
115B ->121B	0.11366
116B ->121B	0.44823
117B ->121B	-0.41500
118B ->121B	0.14258

120B ->122B -0.11331 Excited State 14: 1.000-A 2.4298 eV 510.27 nm f=0.0203 <S**2>=0.000 112A ->121A 0.29670 113A ->121A 0.25251 114A ->121A -0.10837 115A ->121A 0.54369 116A ->121A 0.13239 117A ->121A 0.10923 112B ->121B 0.29670 113B ->121B 0.25251 114B ->121B -0.10837 115B ->121B 0.54369 116B ->121B 0.13239 117B ->121B 0.10923 Excited State 15: 1.000-A 2.4365 eV 508.86 nm f=0.0277 <S**2>=0.000 112A ->121A 0.54053 113A ->121A 0.22621 115A ->121A -0.34774 117A ->121A -0.13282 112B ->121B 0.54053 113B ->121B 0.22621 115B ->121B -0.34774 117B ->121B -0.13282 2.4440 eV 507.30 nm f=0.0000 <S**2>=2.000 Excited State 16: 3.000-A 111A ->121A 0.63201 114A ->121A 0.21412 116A ->121A -0.10151 111B ->121B -0.63201 114B ->121B -0.21412 116B ->121B 0.10151 Excited State 17: 3.000-A 2.5674 eV 482.91 nm f=0.0000 <S**2>=2.000 111A ->121A -0.19692

114A ->121A		0.65281				
111B ->121B		0.19692				
114B ->121B		-0.65281				
Excited State	18:	1.000-A	2.6163 eV	473.90 nm	f=0.0496	<s**2>=0.000</s**2>
111A ->12	1A	-0.10624				
112A ->12	1A	-0.30692				
113A ->12	1A	0.49461				
114A ->12	1A	-0.16141				
115A ->12	1A	-0.16732				
116A ->12	1A	0.28498				
111B ->12	1B	-0.10624				
112B ->12	1B	-0.30692				
113B ->12	1B	0.49461				
114B ->12	1B	-0.16141				
115B ->12	1B	-0.16732				
116B ->12	1B	0.28498				
Excited State	19:	1.000-A	2.7067 eV	458.07 nm	f=0.0023	<s**2>=0.000</s**2>
113A ->12	1A	0.16825				
114A ->12	1A	0.67048				
113B ->12	1B	0.16825				
114B ->12	1B	0.67048				
Excited State	20:	3.000-A	2.7810 eV	445.83 nm	f=0.0000	<s**2>=2.000</s**2>
109A ->12	1A	0.20213				
110A ->12	1A	0.57614				
120A ->12	120A ->122A					
120A ->124A		0.11365				
109B ->12	1B	-0.20213				
110B ->12	1B	-0.57614				
120B ->12	2B	0.26850				
120B ->124B		-0.11365				

	a 1.1		Coordinates				
Tag	Symbol	Х	Y	Z			
1	С	1.4107	1.533554	-0.149301			
2	С	0.671527	2.782699	-0.193069			
3	С	-0.731037	2.875263	-0.005117			
4	С	-1.584229	1.758202	0.468826			
5	Ν	2.774457	1.524713	-0.070225			
6	С	3.095688	0.239456	-0.080555			
7	С	1.84882	-0.542532	-0.230827			
8	Ν	0.831286	0.308314	-0.242901			
9	С	1.396923	3.945419	-0.511344			
10	С	0.764135	5.163502	-0.692613			
11	С	-0.61976	5.245196	-0.557664			
12	С	-1.348548	4.111379	-0.212799			
13	С	-2.707018	1.368168	-0.290586			
14	С	-3.535214	0.379043	0.194518			
15	С	-3.2728	-0.229946	1.458527			
16	С	-2.167788	0.169726	2.221226			
17	С	-1.335327	1.157692	1.715007			
18	С	-4.742235	-0.285643	-0.288495			
19	С	-5.072315	-1.217603	0.739394			
20	Ν	-4.189232	-1.186674	1.793125			
21	С	-5.525534	-0.190158	-1.421257			
22	С	-6.647576	-1.027566	-1.53142			
23	С	-6.973713	-1.939446	-0.526131			
24	С	-6.189926	-2.046049	0.621984			
25	С	1.625116	-1.968895	-0.422955			
26	С	4.476593	-0.188281	0.109222			
27	С	2.574939	-2.807498	-1.028799			
28	С	2.294854	-4.152162	-1.235933			
29	С	1.068894	-4.682341	-0.841052			
30	С	0.112555	-3.855493	-0.251524			
31	С	0.381401	-2.510167	-0.052506			
32	С	5.514799	0.668179	-0.294079			
33	С	6.839866	0.314192	-0.091507			
34	С	7.155787	-0.891662	0.534224			

35	С	6.135	473	-1.738	0.960047				
36	С	4.806	4.806121		518	0.749342			
37	Н	2.469	696	3.8509	942	-0.631344			
38	Н	1.344	535	6.0442	278	-0.946598			
39	Н	-1.13	128	6.191	34	-0.702442			
40	Н	-2.421	1023	4.1859	973	-0.062666			
41	Н	-2.885	5804	1.8374	427	-1.253313			
42	Н	-1.981	1565	-0.287	797	3.186745			
43	Н	-0.47	675	1.486641		2.290286			
44	Н	-5.289	9192	0.510491		-2.216274			
45	Н	-7.271	1976	-0.963	346	-2.41675			
46	Н	-7.847	7662	-2.57]	189	-0.641854			
47	Н	-6.428	3948	-2.749	184	1.41228			
48	Н	3.521	582	-2.398	-1.362049				
49	Н	3.033	602	-4.786	429	-1.715192			
50	Н	0.855	227	-5.734	457	-0.999774			
51	Н	-0.847	7406	-4.261	0.050023				
52	Н	-0.358	-0.358046		088	0.391054			
53	Н	5.254	5.254791		25	-0.766731			
54	Н	7.631	7.631654		03	-0.418926			
55	Н	8.193	8.193412		808	0.695701			
56	Н	6.374	579	-2.668	025	1.465894			
57	Н	4.017	973	-2.047	706	1.105251			
SCF Done:	E(UmPW1PW91))	=	-1434.065	60736	A.U.			
Zero-point c	correction		=	0.449118 (Hartree/Particle)					
Thermal con	rection to Energy		=	0.475651					
Thermal con	rection to Enthalpy		=	0.476595					
Thermal con	Thermal correction to Gibbs Free Energy =					0.388470			
Sum of elec	tronic and zero-poin	nt Energies	=	-1433.617924					
Sum of elec	Sum of electronic and thermal Energies =					-1433.591392			
Sum of elec	tronic and thermal I	Enthalpies	=	-1433.590448					
Sum of elec	tronic and thermal I	Free Energies	=	-1433.678	572				
Low freque	ncies2.1502	-0.0004	-0.0002	0.0005	4.2442	6.8437			
Low frequencies --- 11.9092 15.5650 32.6063

The Result for the TDDFT calculation

Excited State 1: 3.079-A 1.2749 eV 972.52 nm f=0.0116 <S**2>=2.121 118B ->121B 0.10338 119B ->120B 0.62830 119B ->121B 0.75271

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1434.08846280

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 1.7991 eV 689.16 nm f=0.0053 <S**2>=2.091 2: 3.060-A -0.15020 111B ->120B 117B ->120B -0.25326 117B ->121B 0.10997 118B ->120B -0.34390 118B ->121B 0.11121 119B ->120B 0.64723 119B ->121B -0.54226 2.0378 eV 608.42 nm f=0.0360 <S**2>=2.112 Excited State 3: 3.074-A 121A ->122A -0.10475 108B ->120B 0.16034 111B ->120B -0.19534 116B ->120B 0.10138 117B ->120B 0.56931 117B ->121B -0.22873 118B ->120B 0.49868 118B ->121B -0.19638 119B ->120B 0.33500 119B ->121B -0.26759 Excited State 4: 3.053-A 2.0599 eV 601.89 nm f=0.0004 <S**2>=2.080 112B ->120B 0.54648 112B ->121B 0.80608

Excited State	5:	3.086-A	2.2607 eV	548.44 nm	f=0.1305	<\$**2>=2.131
121A ->123	3A	-0.11671				
111B ->120	B	-0.30544				
111B ->121	В	0.10314				
114B ->120)B	0.11514				
115B ->120)B	0.18109				
116B ->120)B	0.58704				
116B ->121	В	-0.26986				
117B ->120	B	-0.36733				
117B ->121	В	-0.21083				
118B ->120	B	0.28040				
118B ->121	В	0.25883				
119B ->120)B	-0.13693				
Excited State	6:	3.059-A	2.2971 eV	539.74 nm	f=0.0546	<s**2>=2.089</s**2>
111B ->120	B	0.29824				
111B ->121	В	-0.17798				
114B ->120)B	-0.12379				
114B ->120 115B ->120)B)B	-0.12379 -0.17850				
114B ->120 115B ->120 116B ->120)B)B)B	-0.12379 -0.17850 -0.36932				
114B ->120 115B ->120 116B ->120 117B ->120)B)B)B)B	-0.12379 -0.17850 -0.36932 -0.38841				
114B ->120 115B ->120 116B ->120 117B ->120 117B ->121)B)B)B)B .B	-0.12379 -0.17850 -0.36932 -0.38841 -0.34464				
114B ->120 115B ->120 116B ->120 117B ->120 117B ->121 117B ->121)B)B)B)B .B)B	-0.12379 -0.17850 -0.36932 -0.38841 -0.34464 0.47735				
114B ->120 115B ->120 116B ->120 117B ->120 117B ->121 118B ->120 118B ->121)B)B)B)B .B)B .B	-0.12379 -0.17850 -0.36932 -0.38841 -0.34464 0.47735 0.29120				
114B ->120 115B ->120 116B ->120 117B ->120 117B ->121 118B ->120 118B ->120 118B ->120)B)B)B)B)B)B)B)B	-0.12379 -0.17850 -0.36932 -0.38841 -0.34464 0.47735 0.29120 0.14731				
114B ->120 115B ->120 116B ->120 117B ->120 117B ->121 118B ->120 118B ->120 118B ->120 119B ->121)B)B)B)B)B)B)B)B)B]B	-0.12379 -0.17850 -0.36932 -0.38841 -0.34464 0.47735 0.29120 0.14731 -0.14738				
114B ->120 115B ->120 116B ->120 117B ->120 117B ->121 118B ->121 118B ->121 119B ->120 119B ->121)B)B)B)B)B)B)B]B]B	-0.12379 -0.17850 -0.36932 -0.38841 -0.34464 0.47735 0.29120 0.14731 -0.14738				
114B ->120 115B ->120 116B ->120 117B ->120 117B ->121 118B ->121 118B ->120 118B ->120 119B ->120 119B ->121)B)B)B)B)B)B)B)B)B)B)B)B)2 7:	-0.12379 -0.17850 -0.36932 -0.38841 -0.34464 0.47735 0.29120 0.14731 -0.14738 3.109-A	2.5386 eV	488.39 nm	f=0.0823	<s**2>=2.166</s**2>

121A ->123A	0.14823
111B ->120B	-0.39585
114B ->121B	-0.15021
115B ->120B	0.46746
115B ->121B	-0.14327
116B ->120B	-0.45878
117B ->121B	-0.32450

118B ->120	В	-0.19343				
118B ->121	В	0.27339				
119B ->120	В	-0.10823				
Excited State	8:	3.074-A	2.6219 eV	472.87 nm	f=0.0087	<s**2>=2.112</s**2>
114B ->120	В	0.41006				
115B ->120	В	0.46996				
115B ->121	В	-0.15471				
116B ->120	В	-0.20524				
117B ->120	В	-0.30233				
117B ->121	В	0.38101				
118B ->120	В	0.34526				
118B ->121	В	-0.36361				
Excited State	9:	3.086-A	2.6763 eV	463.26 nm	f=0.0057	<s**2>=2.131</s**2>
111B ->120	В	0.47886				
111B ->121	В	-0.18110				
114B ->120	В	-0.43614				
114B ->121	В	0.13823				
115B ->120	В	0.60612				
115B ->121	В	-0.17772				
116B ->120	В	0.20243				
117B ->120	В	0.13452				
Excited State	10:	3.091-A	2.7965 eV	443.35 nm	f=0.0069	<s**2>=2.138</s**2>
108B ->120	В	-0.25929				
108B ->121	В	0.12097				
111B ->120	В	-0.15297				
113B ->120	В	0.62025				
113B ->121	В	-0.21759				
114B ->120	В	-0.41049				
117B ->120	В	-0.22878				
118B ->121	В	-0.40401				
Excited State	11:	3.084-A	2.8242 eV	439.01 nm	f=0.0072	<s**2>=2.127</s**2>
110B ->121	В	-0.11367				

111B ->120B	0.18555
113B ->120B	0.57692
113B ->121B	-0.19437
114B ->120B	0.27119
114B ->121B	0.11656
116B ->121B	0.11320
117B ->120B	0.20630
117B ->121B	0.29286
118B ->120B	0.11623
118B ->121B	0.50981

Excited State	12:	3.077-A	2.8655 eV	432.67 nm	f=0.0033	<s**2>=2.117</s**2>
108B ->12	0B	-0.37669				
108B ->12	1B	0.19309				
110B ->12	0B	-0.12864				
111B ->12	0B	-0.26664				
111B ->12	1B	0.15606				
113B ->12	0B	-0.32682				
113B ->12	1B	0.12055				
114B ->12	0B	-0.41213				
114B ->12	1B	0.10948				
116B ->12	1B	0.11692				
117B ->12	1B	0.43696				
118B ->12	0B	0.32233				
118B ->12	1B	0.21096				

Excited State 13: 3.090-A 3.0067 eV 412.36 nm f=0.0017 <S**2>=2.137

108B ->120B	0.53234
108B ->121B	-0.18037
110B ->120B	0.23802
110B ->121B	0.15295
111B ->120B	-0.20450
111B ->121B	-0.16952
113B ->120B	0.11362
114B ->120B	-0.25511
114B ->121B	-0.21672

115B ->121B	0.11426
116B ->120B	0.15577
116B ->121B	0.43984
117B ->121B	0.26948
118B ->121B	0.15095

Excited State	14:	3.118-A	3.0432 eV	407.42 nm	f=0.0093	<s**2>=2.181</s**2>
108B ->12	0B	-0.42660				
108B ->12	1B	0.15696				
110B ->12	0B	0.17762				
110B ->12	1B	0.22170				
111B ->12	1B	-0.13950				
114B ->12	0B	0.22049				
116B ->12	0B	0.20801				
116B ->12	1B	0.64407				
117B ->12	1B	-0.27891				

Excited State	15:	3.129-A	3.1049 eV	399.32 nm	f=0.0079	<s**2>=2.197</s**2>
120A ->12	4A	-0.11591				
108B ->12	0B	0.23195				
108B ->12	1B	-0.11698				
109B ->12	0B	0.31824				
110B ->12	0B	-0.16186				
110B ->12	1B	-0.35829				
111B ->12	1B	0.31363				
114B ->12	0B	-0.14749				
114B ->12	1B	0.40936				
115B ->12	1B	-0.23166				
116B ->12	1B	0.33778				
117B ->12	0B	-0.22762				
117B ->12	1B	-0.16376				
118B ->12	1B	-0.12551				

Excited State	16:	3.232-A	3.1431 eV	394.46 nm	f=0.0223	<s**2>=2.361</s**2>
121A ->12	2A	0.11875				
121A ->12	3A	-0.24226				

109B ->120B	0.29144				
109B ->121B	-0.27181				
110B ->120B	0.41197				
110B ->121B	0.17879				
111B ->120B	-0.13629				
114B ->121B	0.42400				
114B ->126B	0.11061				
115B ->121B	0.13314				
116B ->120B	-0.21898				
116B ->121B	-0.30485				
116B ->123B	-0.10071				
Excited State 17:	3.219-A	3.2127 eV	385.92 nm	f=0.0193	<s**2>=2.341</s**2>
121A ->123A	0.29269				
121A ->124A	0.15226				
108B ->120B	0.11555				
108B ->121B	-0.10235				
109B ->120B	-0.43714				
110B ->121B	0.23902				
114B ->121B	0.61687				
115B ->121B	0.12386				
117B ->120B	-0.11201				
Excited State 18:	3.087-A	3.2317 eV	383.65 nm	f=0.0028	<s**2>=2.132</s**2>
121A ->122A	-0.12964				
109B ->120B	0.13705				
109B ->121B	0.10164				
110B ->120B	-0.20499				
110B ->121B	-0.27496				
113B ->121B	-0.19286				
115B ->120B	0.26193				
115B ->121B	0.80682				
Excited State 19:	3.387-A	3.2710 eV	379.04 nm	f=0.0755	<s**2>=2.618</s**2>
114A ->127A	0.13143				
115A ->126A	-0.11558				

118A ->128A	0.10100
120A ->122A	-0.25690
121A ->122A	0.66038
121A ->123A	0.21946
121A ->124A	-0.10001
106B ->120B	-0.16536
107B ->120B	0.21756
107B ->121B	-0.11657
110B ->120B	-0.11789
113B ->127B	-0.13034
115B ->125B	0.12983
116B ->122B	-0.14804
118B ->121B	-0.10331

Excited	State	20.	3 766
пленеа	State	20:	3.700

6-A 3.3576 eV 369.27 nm f=0.0045 <S**2>=3.296

117A ->124A	0.14627
119A ->122A	0.23762
119A ->123A	-0.19782
119A ->124A	0.41379
120A ->128A	-0.10166
121A ->124A	0.27922
110B ->120B	0.10527
111B ->120B	0.13570
111B ->121B	0.31572
113B ->121B	-0.10214
114B ->121B	-0.24236
115B ->121B	0.19281
117B ->124B	-0.13511
118B ->124B	0.15693
119B ->122B	-0.14103
119B ->123B	0.13465
119B ->124B	0.32121

			Coordinates			
Tag	Symbol	Х	Y	Z		
1	С	-0.974244	5.575085	0.173112		
2	С	-1.70626	4.46167	0.502808		
3	С	-1.186734	3.155216	0.310908		
4	С	0.19186	3.037859	-0.078968		
5	С	0.898886	4.202498	-0.478755		
6	С	0.332074	5.442846	-0.351227		
7	С	0.922074	1.829045	0.065147		
8	С	-2.067231	2.026495	0.39731		
9	Ν	0.50527	0.773126	0.834055		
10	С	1.473245	-0.11651	0.731207		
11	С	2.514041	0.437724	-0.154031		
12	Ν	2.155883	1.660854	-0.505777		
13	С	-1.934094	0.934411	-0.524809		
14	С	-2.83754	-0.084993	-0.496317		
15	С	-3.915298	-0.095873	0.475102		
16	С	-4.046259	0.986491	1.388245		
17	С	-3.159677	2.026243	1.319543		
18	С	-3.046747	-1.301054	-1.265632		
19	С	-4.195542	-1.897515	-0.676898		
20	Ν	-4.712417	-1.148647	0.372487		
21	С	-2.401141	-1.915065	-2.326116		
22	С	-2.909973	-3.127944	-2.804596		
23	С	-4.039133	-3.7126	-2.227282		
24	С	-4.694884	-3.105593	-1.156546		
25	С	3.747447	-0.157678	-0.656528		
26	С	1.436733	-1.355693	1.505246		
27	С	4.821063	0.679984	-1.000686		
28	С	5.990598	0.148859	-1.522969		
29	С	6.106467	-1.226122	-1.725587		
30	С	5.041718	-2.065088	-1.406522		
31	С	3.871153	-1.538757	-0.874831		
32	С	2.597081	-1.94959	2.024955		

 Table S7. Standard orientation of the optimized geometry for the quinoidal forms 1 of the ringopening form of CIC.

33	С	2.512094	-3.097838	2.802397
34	С	1.272616	-3.673634	3.070573
35	С	0.113031	-3.086719	2.566648
36	С	0.191644	-1.935278	1.796747
37	Н	-1.416772	6.560472	0.275445
38	Н	-2.738872	4.573347	0.813276
39	Н	1.916895	4.074769	-0.826879
40	Н	0.892026	6.32879	-0.631894
41	Н	-1.153845	0.978214	-1.27594
42	Н	-4.8407	0.965696	2.126232
43	Н	-3.233457	2.839444	2.032634
44	Н	-1.521208	-1.473141	-2.783895
45	Н	-2.419145	-3.620415	-3.63775
46	Н	-4.411043	-4.65403	-2.618701
47	Н	-5.571317	-3.551974	-0.699616
48	Н	4.713511	1.747613	-0.847124
49	Н	6.816187	0.806718	-1.774984
50	Н	7.02174	-1.640641	-2.135979
51	Н	5.119981	-3.13372	-1.578413
52	Н	3.039495	-2.19567	-0.647233
53	Н	3.564061	-1.495197	1.840887
54	Н	3.417044	-3.539783	3.206964
55	Н	1.209853	-4.574314	3.672983
56	Н	-0.855985	-3.529571	2.772901
57	Н	-0.704016	-1.469232	1.401833

SCF Done: E(RmPW1PW91)

= -1434.05640297 A.U.

Zero-point correction	=	0.450765 (Hartree/Particle)
Thermal correction to Energy	=	0.477080
Thermal correction to Enthalpy	=	0.478024
Thermal correction to Gibbs Free Energy	=	0.391911
Sum of electronic and zero-point Energies	=	-1433.607340
Sum of electronic and thermal Energies	=	-1433.581024
Sum of electronic and thermal Enthalpies	=	-1433.580080
Sum of electronic and thermal Free Energies	=	-1433.666194

Low frequencies	-1.3753	0.0007	0.0008	0.0010	2.6122	4.9330
Low frequencies	13.5328	18.4629	31.5650			

The Result for the TDDFT calculation

Excited State	1:	Singlet-A	1.3415 eV	924.24 nm	f=0.2341	<s**2>=0.000</s**2>
119 ->121		-0.32435				
120 ->121		0.65159				
120 <-121		-0.21189				

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1434.07761777

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	Singlet-A	1.4411 eV	860.35 nm	f=0.0973	<s**2>=0.000</s**2>
119 ->121		0.62068				
120 ->121		0.34942				
120 <-121		-0.12250				
Excited State	3:	Singlet-A	2.1684 eV	571.77 nm	f=0.0951	<s**2>=0.000</s**2>
117 ->121		0.19037				
118 ->121		0.65809				
Excited State	4:	Singlet-A	2.3675 eV	523.70 nm	f=0.0188	<s**2>=0.000</s**2>
111 ->121		0.13041				
112 ->121		-0.18169				
115 ->121		-0.34397				
116 ->121		0.33308				
117 ->121		0.44880				
Excited State	5:	Singlet-A	2.5045 eV	495.04 nm	f=0.1115	<s**2>=0.000</s**2>
112 ->121		0.17733				
115 ->121		0.21044				
116 ->121		-0.33935				
117 ->121		0.47504				
118 ->121		-0.16436				

2	0.18145				
6:	Singlet-A	2.6016 eV	476.56 nm	f=0.0072	<s**2>=0.000</s**2>
	0.42226				
	-0.37611				
	-0.40291				
7:	Singlet-A	2.6084 eV	475.33 nm	f=0.0071	<s**2>=0.000</s**2>
	0.55725				
	0.31122				
	0.27180				
8:	Singlet-A	2.8445 eV	435.88 nm	f=0.0208	<s**2>=0.000</s**2>
	0.54217				
	0.31612				
	-0.25261				
	0.11984				
9:	Singlet-A	2.8958 eV	428.15 nm	f=0.0016	<s**2>=0.000</s**2>
	-0.30947				
	0.61855				
	-0.10858				
10:	Singlet-A	3.1159 eV	397.91 nm	f=0.0292	<s**2>=0.000</s**2>
	-0.15405				
	-0.20930				
	0.55498				
	0.11955				
2	0.28492				
11:	Singlet-A	3.3079 eV	374.81 nm	f=0.0924	<s**2>=0.000</s**2>
_	0.12393				
_	0.29709				
	0.54182				
	0.17063				
	0.10591				
	6: 7: 8: 9: 10:	 6: Singlet-A 0.42226 -0.37611 -0.40291 7: Singlet-A 0.55725 0.31122 0.27180 8: Singlet-A 0.54217 0.31612 -0.25261 0.11984 9: Singlet-A -0.30947 0.61855 -0.10858 10: Singlet-A -0.15405 -0.20930 0.55498 0.11955 0.28492 11: Singlet-A 0.12393 0.29709 0.54182 0.17063 0.10591 	2 0.18145 6: Singlet-A 0.42226 -0.37611 -0.40291 $2.6016 eV$ 7: Singlet-A 0.55725 0.31122 0.27180 $2.6084 eV$ 8: Singlet-A 0.54217 0.31612 -0.25261 0.11984 $2.8445 eV$ 9: Singlet-A 0.61855 -0.10858 $2.8958 eV$ 10: Singlet-A -0.20930 0.55498 0.11955 $3.1159 eV$ 11: Singlet-A 0.12393 0.29709 0.54182 0.17063 0.10591 $3.3079 eV$	2 0.18145 6: Singlet-A 2.6016 eV 476.56 nm 0.42226 -0.37611 -0.40291 7.5016 eV 475.33 nm 7: Singlet-A 2.6084 eV 475.33 nm 0.55725 0.31122 0.27180 2.8045 eV 435.88 nm 8: Singlet-A 2.8445 eV 435.88 nm 0.54217 0.31612 -0.25261 0.11984 2.8958 eV 428.15 nm 9: Singlet-A 2.8958 eV 428.15 nm -0.30947 0.61855 -0.10858 3.1159 eV 397.91 nm 10: Singlet-A 3.3079 eV 374.81 nm 0.12393 0.29709 0.54182 0.10591	2: 0.18145 6: Singlet-A 2.6016 eV 476.56 nm f=0.0072 0.42226 -0.37611 -0.40291 7: Singlet-A 2.6084 eV 475.33 nm f=0.0071 0.55725 0.31122 0.27180 2.8445 eV 435.88 nm f=0.0208 8: Singlet-A 2.8445 eV 435.88 nm f=0.0208 0.54217 0.31612 -0.25261 0.11984 9: Singlet-A 2.8958 eV 428.15 nm f=0.0016 -0.30947 0.61855 -0.10858 10: Singlet-A 3.1159 eV 397.91 nm f=0.0292 10: Singlet-A 3.3079 eV 374.81 nm f=0.0924 0.12393 0.29709 0.54182 0.17063 0.10591

117 ->121	-0.10601				
120 ->122	0.17916				
Excited State 12	: Singlet-A	3.3852 eV	366.25 nm	f=0.2530	<s**2>=0.000</s**2>
108 ->121	0 20016	0.00020	000020	1 0.2000	2 2 0.000
109 ->121	0.19613				
110 ->121	-0.23309				
111 ->121	-0.24986				
115 ->121	-0.12772				
120 ->122	0.46533				
120 ->124	-0.14438				
Excited State 13	· Singlet-A	3 5218 eV	352 04 nm	f=0.0805	<\$**2>=0.000
109 ->121	0 56544	5.5210 01	552.01111	1 0.0005	S 2 ² 0.000
110 ->121	-0 27281				
111 ->121	0.17177				
120 ->122	-0.23035				
Excited State 14	: Singlet-A	3.7092 eV	334.26 nm	f=0.0722	<s**2>=0.000</s**2>
107 ->121	-0.11315				
108 ->121	-0.11844				
120 ->123	0.67473				
Excited State 15	: Singlet-A	3.8254 eV	324.11 nm	f=0.0599	<s**2>=0.000</s**2>
107 ->121	0.29939				
108 ->121	0.44154				
110 ->121	-0.10720				
120 ->123	0.15162				
120 ->124	0.37944				
Excited State 16	: Singlet-A	3.8755 eV	319.92 nm	f=0.0704	<s**2>=0.000</s**2>
107 ->121	-0.22281				
108 ->121	-0.21698				
109 ->121	0.11290				
119 ->122	-0.26158				
120 ->122	0.11670				

120 ->124	0.52893				
Excited State 17:	Singlet-A	3.9087 eV	317.20 nm	f=0.0166	<s**2>=0.000</s**2>
107 ->121	0.46452				
108 ->121	-0.31318				
120 ->125	0.39413				
Excited State 18:	Singlet-A	3.9636 eV	312.81 nm	f=0.0937	<s**2>=0.000</s**2>
107 ->121	-0.31640				
108 ->121	0.21881				
120 ->125	0.56155				
Excited State 19:	Singlet-A	4.1370 eV	299.69 nm	f=0.3676	<s**2>=0.000</s**2>
106 ->121	-0.12579				
108 ->121	-0.12912				
119 ->122	0.62228				
120 ->122	0.11997				
120 ->124	0.15872				
Excited State 20:	Singlet-A	4.3071 eV	287.86 nm	f=0.0329	<s**2>=0.000</s**2>
120 ->126	0.68848				

Table S8. Standard orientation of the optimized geometry for the quinoidal form 2 of the ring-

openi	ng form	of CIC.

Tax	Crowsh al	Coordinates				
Tag	Symbol	Х	Y	Ζ		
1	С	0.831874	5.046325	-0.873664		
2	С	1.512722	3.877212	-0.648387		
3	С	0.844459	2.706129	-0.199891		
4	С	-0.595075	2.737880	-0.167710		
5	С	-1.263363	3.981530	-0.332372		
6	С	-0.568713	5.107734	-0.681682		
7	С	-1.379994	1.558839	-0.143787		
8	С	1.617162	1.611462	0.305739		
9	Ν	-0.886384	0.310399	-0.413960		
10	С	-1.932811	-0.486848	-0.332315		

11	С	-3.110538	0.333745	0.017901
12	Ν	-2.733807	1.597195	0.079429
13	С	2.899884	1.325017	-0.260148
14	С	3.650640	0.307757	0.248375
15	С	3.197799	-0.447216	1.413065
16	С	1.947929	-0.115318	2.013761
17	С	1.182620	0.864026	1.454997
18	С	4.929779	-0.294367	-0.087237
19	С	5.110260	-1.305869	0.892015
20	Ν	4.044982	-1.382524	1.793269
21	С	5.884923	-0.080042	-1.066994
22	С	7.032130	-0.883200	-1.068372
23	С	7.208638	-1.874578	-0.104571
24	С	6.249670	-2.098255	0.888702
25	С	-4.488395	-0.055205	0.301718
26	С	-1.817726	-1.905739	-0.659692
27	С	-5.522171	0.861090	0.048617
28	С	-6.837901	0.539864	0.346127
29	С	-7.145874	-0.695263	0.915698
30	С	-6.127320	-1.604386	1.189988
31	С	-4.808553	-1.290771	0.885292
32	С	-2.861170	-2.624670	-1.262856
33	С	-2.688007	-3.958992	-1.608608
34	С	-1.476177	-4.597630	-1.356985
35	С	-0.429602	-3.890026	-0.767237
36	С	-0.594452	-2.555469	-0.426969
37	Н	1.376616	5.940854	-1.157062
38	Н	2.595483	3.874081	-0.701310
39	Н	-2.342460	3.984940	-0.235834
40	Н	-1.092807	6.045103	-0.836042
41	Н	3.223722	1.870555	-1.140504
42	Н	1.635252	-0.637311	2.911157
43	Н	0.243005	1.143489	1.915423
44	Н	5.755302	0.688430	-1.823446
45	Н	7.790598	-0.731939	-1.829308
46	Н	8.106522	-2.484031	-0.125198

47	Н	6.382626	-2.867118	1.641810
48	Н	-5.267421	1.821177	-0.385361
49	Н	-7.628097	1.253309	0.135310
50	Н	-8.175794	-0.945130	1.149771
51	Н	-6.359078	-2.559673	1.649690
52	Н	-4.019188	-1.995649	1.120013
53	Н	-3.799329	-2.129171	-1.485105
54	Н	-3.500098	-4.499455	-2.084281
55	Н	-1.345785	-5.641784	-1.622987
56	Н	0.518094	-4.381148	-0.571475
57	Н	0.213416	-1.993597	0.028484
SCF Done: E	(RmPW1PW91)	=	-1434.04889105	A.U.
Zero-point corr	ection=		0.450724 (Hartree/	Particle)
Thermal correc	tion to Energy=		0.477054	
Thermal correc	tion to Enthalpy=	:	0.477998	
Thermal correc	tion to Gibbs Fre	e Energy=	0.391889	
Sum of electron	nic and zero-point	Energies=	-1433.605178	
Sum of electron	nic and thermal E	nergies=	-1433.578848	
Sum of electron	nic and thermal E	nthalpies=	-1433.577904	
Sum of electron	nic and thermal F	ree Energies=	-1433.664013	
Low frequencie	es4.2883	-0.0008 0.000	01 0.0010 2.21	92 4.4654
Low frequencie	es 14.7686	17.6906 34.58	331	
The Result for	the TDDFT calcu	lation		
Excited State	1: Single	t-A 1.2353 e	V 1003.65 nm f=0.20	18 <s**2>=0.000</s**2>
119 ->12	1 -0.415	572		
120 ->12	1 0.59	300		

120 <-121 -0.18605

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1434.07900713

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	Singlet-A	1.5206 eV	815.35 nm	f=0.2712	<s**2>=0.000</s**2>
119 ->121		0.56722				
120 ->121		0.44538				
120 <-121		-0.16768				
Excited State	3:	Singlet-A	2.2757 eV	544.82 nm	f=0.0963	<s**2>=0.000</s**2>
117 ->121		-0.39380				
118 ->121		0.56679				
Excited State	4:	Singlet-A	2.4226 eV	511.77 nm	f=0.0411	<s**2>=0.000</s**2>
112 ->121		0.30117				
115 ->121		0.21467				
116 ->121		-0.31226				
117 ->121		0.42697				
118 ->121		0.22153				
120 ->122		0.14562				
Excited State	5:	Singlet-A	2.4673 eV	502.52 nm	f=0.1005	<s**2>=0.000</s**2>
112 ->121		0.18813				
115 ->121		0.35335				
116 ->121		-0.31174				
117 ->121		-0.35162				
118 ->121		-0.30606				
Excited State	6:	Singlet-A	2.5705 eV	482.33 nm	f=0.0024	<s**2>=0.000</s**2>
113 ->121		0.69000				
Excited State	7:	Singlet-A	2.6257 eV	472.20 nm	f=0.0372	<s**2>=0.000</s**2>
112 ->121		0.11799				
113 ->121		0.10230				
115 ->121		0.44686				
116 ->121		0.50564				
Excited State	8:	Singlet-A	2.8206 eV	439.57 nm	f=0.0457	<s**2>=0.000</s**2>
111 ->121		0.14201				
112 ->121		0.53353				

114 ->121	0.19956				
115 ->121	-0.30182				
116 ->121	0.14905				
120 ->122	-0.15204				
Excited State 9:	Singlet-A	2.8907 eV	428.91 nm	f=0.0007	<s**2>=0.000</s**2>
112 ->121	-0.18495				
114 ->121	0.66787				
116 ->121	-0.11069				
Excited State 10:	Singlet-A	3.0591 eV	405.30 nm	f=0.0158	<s**2>=0.000</s**2>
111 ->121	0.64231				
112 ->121	-0.10621				
120 ->122	0.21832				
Excited State 11:	Singlet-A	3.2521 eV	381.25 nm	f=0.0173	<s**2>=0.000</s**2>
109 ->121	0.14896				
110 ->121	0.66689				
Excited State 12:	Singlet-A	3.4032 eV	364.32 nm	f=0.2064	<s**2>=0.000</s**2>
108 ->121	0.13011				
109 ->121	0.30232				
111 ->121	-0.11566				
112 ->121	0.11659				
117 ->121	-0.12908				
120 ->122	0.51998				
120 ->124	0.17815				
Excited State 13:	Singlet-A	3.5970 eV	344.69 nm	f=0.1105	<s**2>=0.000</s**2>
108 ->121	-0.22922				
109 ->121	0.57469				
110 ->121	-0.13111				
111 ->121	0.14088				
115 ->121	0.10150				
120 ->122	-0.21486				

Excited State	14:	Singlet-A	3.6751 eV	337.36 nm	f=0.0817	<s**2>=0.000</s**2>
108 ->121		-0.16968				
120 ->123	5	-0.44891				
120 ->124	ļ	0.48088				
Excited State	15:	Singlet-A	3.7218 eV	333.13 nm	f=0.1039	<s**2>=0.000</s**2>
120 ->123	5	0.52535				
120 ->124	ļ	0.44595				
Excited State	16:	Singlet-A	3.8695 eV	320.41 nm	f=0.1271	<s**2>=0.000</s**2>
107 ->121		0.14230				
108 ->121		0.56276				
110 ->121		-0.10743				
111 ->121		0.10136				
119 ->122		0.23522				
120 ->122	2	-0.19533				
120 ->124	ļ	0.13088				
Excited State	17:	Singlet-A	3.9365 eV	314.96 nm	f=0.0188	<s**2>=0.000</s**2>
107 ->121		0.65997				
108 ->121		-0.14581				
Excited State	18:	Singlet-A	4.0197 eV	308.44 nm	f=0.0359	<s**2>=0.000</s**2>
119 ->122		0.17284				
120 ->125	5	0.65905				
Excited State	19:	Singlet-A	4.1423 eV	299.31 nm	f=0.2463	<s**2>=0.000</s**2>
106 ->121		-0.11002				
108 ->121		-0.17717				
119 ->122		0.61244				
120 ->122	2	0.10666				
120 ->125	5	-0.18517				
Excited State	20:	Singlet-A	4.3043 eV	288.05 nm	f=0.0233	<s**2>=0.000</s**2>
120 ->126	5	0.68913				

Tag	C1 - 1		Coordinates					
Tag	Symbol	Х	Y	Ζ				
1	С	-3.923981	-2.613601	-3.408946				
2	С	-3.346658	-3.82439	-3.782724				
3	С	-2.388599	-4.443373	-2.977681				
4	С	-1.984794	-3.863085	-1.774049				
5	С	-2.556624	-2.65867	-1.405259				
6	С	-3.520545	-2.035644	-2.210314				
7	С	-2.289448	-1.829388	-0.130423				
8	Ν	-3.205225	-0.705612	-0.37697				
9	С	-3.895323	-0.801796	-1.552502				
10	С	-3.494841	0.525069	0.173377				
11	С	-4.407149	1.089173	-0.721133				
12	Ν	-4.633917	0.250439	-1.790358				
13	С	-5.107438	2.377761	-0.645748				
14	С	-2.83776	1.054829	1.376909				
15	С	-2.134452	2.264928	1.303227				
16	С	-1.49754	2.781518	2.424654				
17	С	-1.544989	2.095164	3.635794				
18	С	-2.242172	0.893852	3.720625				
19	С	-2.889532	0.379774	2.602068				
20	С	-5.583031	2.959383	-1.828637				
21	С	-6.257771	4.173064	-1.801052				
22	С	-6.474426	4.829327	-0.591837				
23	С	-6.018418	4.253142	0.590591				
24	С	-5.345772	3.036763	0.567197				
25	С	-0.857215	-1.369041	-0.111874				
26	С	-0.004462	-1.818001	0.818835				
27	С	-0.451255	-2.713069	1.903985				
28	С	-1.837569	-3.101752	1.984786				
29	С	-2.703974	-2.65533	1.061784				
30	С	1.416149	-1.631824	1.092241				
31	С	1.656987	-2.407173	2.249049				
32	Ν	0.49935	-3.051967	2.723203				
33	С	2.438093	-0.929147	0.47951				

Table S9. Standard orientation of the optimized geometry for the closed form of CIC-tBuPh.

34	С	3.732974	-0.988547	1.022867
35	С	3.952244	-1.761535	2.175121
36	С	2.92937	-2.474558	2.796322
37	С	4.846129	-0.250884	0.389092
38	С	6.130463	-0.796192	0.313336
39	С	7.176831	-0.101321	-0.284707
40	С	6.991516	1.168259	-0.836985
41	С	5.701447	1.710031	-0.759175
42	С	4.654848	1.022559	-0.16288
43	С	8.119078	1.961838	-1.500772
44	С	9.447643	1.199464	-1.492462
45	С	7.743977	2.258636	-2.962664
46	С	8.321551	3.287787	-0.747574
47	Н	-4.667836	-2.126689	-4.029445
48	Н	-3.645811	-4.293923	-4.714107
49	Н	-1.951417	-5.38586	-3.289897
50	Н	-1.240648	-4.34285	-1.146263
51	Н	-2.093965	2.795052	0.357546
52	Н	-0.956007	3.719164	2.350747
53	Н	-1.04136	2.495689	4.509629
54	Н	-2.288152	0.355895	4.661999
55	Н	-3.445921	-0.547374	2.67901
56	Н	-5.417836	2.438207	-2.764853
57	Н	-6.616194	4.609073	-2.728542
58	Н	-7.001118	5.778207	-0.570169
59	Н	-6.196161	4.747223	1.540828
60	Н	-5.016928	2.589585	1.4983
61	Н	-0.56079	-0.699812	-0.914367
62	Н	-2.154273	-3.734436	2.806943
63	Н	-3.755908	-2.921325	1.092429
64	Н	2.260047	-0.35669	-0.425751
65	Н	4.947551	-1.781019	2.607319
66	Н	3.112972	-3.060432	3.690052
67	Н	6.311933	-1.793214	0.703278
68	Н	8.150816	-0.575223	-0.323295
69	Н	5.505941	2.698612	-1.164047

70	Н	3.678081	1.492598	-0.098154
71	Н	10.221583	1.803716	-1.975812
72	Н	9.786559	0.983277	-0.474289
73	Н	9.378078	0.253888	-2.039663
74	Н	8.538381	2.834796	-3.449648
75	Н	6.819803	2.839122	-3.03558
76	Н	7.601104	1.331336	-3.526102
77	Н	8.594142	3.106465	0.296668
78	Н	9.123729	3.870597	-1.213367
79	Н	7.416766	3.902305	-0.75435

=

-1822.32025535

A.U.

Zero-point correction= 0.648339 (Hartree/Particle) 0.684446 Thermal correction to Energy= Thermal correction to Enthalpy= 0.685390 Thermal correction to Gibbs Free Energy= 0.577409 Sum of electronic and zero-point Energies= -1821.673421 -1821.637314 Sum of electronic and thermal Energies= -1821.636370 Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= -1821.744351

Low frequencies	-5.3907	-0.4374	-0.0010	-0.0007	0.0007	2.8592
Low frequencies	11.5757	11.8730	22.5747			

The Result for the TDDFT calculation

SCF Done: E(RmPW1PW91)

Excited State 1: Singlet-A 2.4540 eV 505.24 nm f=0.0020 <S**2>=0.000 156 -> 157 0.70187

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1822.32293672

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 2.7949 eV 443.60 nm f=0.1552 <S**2>=0.000 155 -> 157 0.69172

Excited State	3:	Singlet-A	3.6606 eV	338.70 nm	f=0.0474	<s**2>=0.000</s**2>
153 -> 157		0.56876				
154 -> 157		0.14156				
155 -> 158		0.16690				
156 -> 158		0.30528				
Excited State	4:	Singlet-A	3.6827 eV	336.67 nm	f=0.1352	<s**2>=0.000</s**2>
153 -> 157		-0.28126				
156 -> 158		0.62447				
Excited State	5:	Singlet-A	3.8331 eV	323.46 nm	f=0.0052	<s**2>=0.000</s**2>
146 -> 157		0.33203				
147 -> 157		0.17912				
152 -> 157		0.41932				
154 -> 157		-0.40319				
Excited State	6:	Singlet-A	3.9388 eV	314.77 nm	f=0.0032	<s**2>=0.000</s**2>
146 -> 157		0.52084				
147 -> 157		0.21704				
150 -> 157		-0.11984				
152 -> 157		-0.17067				
154 -> 157		0.30630				
Excited State	7:	Singlet-A	3.9655 eV	312.66 nm	f=0.0700	<s**2>=0.000</s**2>
150 -> 157		-0.19286				
151 -> 157		0.48883				
154 -> 157		-0.25854				
155 -> 158		0.29374				
155 -> 159		0.10569				
Excited State	8:	Singlet-A	3.9877 eV	310.92 nm	f=0.0855	<s**2>=0.000</s**2>
146 -> 157		0.11242				
149 -> 157		0.14866				
151 -> 157		-0.13342				
152 -> 157		-0.32600				
154 -> 157		-0.18803				

155 -> 158	-0.14300				
156 -> 159	0.49950				
Excited State 9:	Singlet-A	3.9957 eV	310.30 nm	f=0.0993	<s**2>=0.000</s**2>
148 -> 157	0.12410				
151 -> 157	0.12155				
152 -> 157	0.36170				
153 -> 157	-0.15446				
154 -> 157	0.28107				
156 -> 159	0.44671				
156 -> 160	0.10439				
Excited State 10:	Singlet-A	4.0912 eV	303.05 nm	f=0.4005	<s**2>=0.000</s**2>
149 -> 157	0.17689				
151 -> 157	-0.12749				
155 -> 158	0.10564				
156 -> 160	0.63228				
Excited State 11:	Singlet-A	4.1372 eV	299.68 nm	f=0.0343	<s**2>=0.000</s**2>
148 -> 157	0.33626				
149 -> 157	0.47540				
150 -> 157	0.18217				
155 -> 158	0.21679				
156 -> 160	-0.23595				
Excited State 12:	Singlet-A	4.1671 eV	297.53 nm	f=0.0226	<s**2>=0.000</s**2>
150 -> 157	0.58430				
151 -> 157	0.33286				
155 -> 158	-0.14077				
Excited State 13:	Singlet-A	4.2011 eV	295.12 nm	f=0.0359	<s**2>=0.000</s**2>
148 -> 157	0.49906				
149 -> 157	-0.40972				
152 -> 157	-0.14546				
154 -> 157	-0.17215				
155 -> 158	0.11940				

Excited State 14:	Singlet-A	4.2647 eV	290.72 nm	f=0.3910	<s**2>=0.000</s**2>
148 -> 157	-0.29459				
149 -> 157	-0.16027				
150 -> 157	0.22202				
151 -> 157	-0.22756				
153 -> 157	-0.12491				
155 -> 158	0.47683				
Excited State 15:	Singlet-A	4.3468 eV	285.23 nm	f=0.0011	<s**2>=0.000</s**2>
146 -> 157	-0.25624				
147 -> 157	0.62980				
Excited State 16:	Singlet-A	4.3925 eV	282.27 nm	f=0.0367	<s**2>=0.000</s**2>
155 -> 159	-0.13007				
156 -> 161	-0.27562				
156 -> 162	0.59652				
156 -> 163	0.13446				
Excited State 17:	Singlet-A	4.4469 eV	278.81 nm	f=0.0505	<s**2>=0.000</s**2>
155 -> 159	0.37230				
156 -> 161	0.38574				
156 -> 162	0.18971				
156 -> 163	0.36232				
Excited State 18:	Singlet-A	4.4605 eV	277.96 nm	f=0.1672	<s**2>=0.000</s**2>
155 -> 159	0.51976				
156 -> 161	-0.35744				
156 -> 163	-0.16889				
Excited State 19:	Singlet-A	4.7074 eV	263.38 nm	f=0.0271	<s**2>=0.000</s**2>
155 -> 159	-0.12718				
155 -> 160	0.65532				
155 -> 161	-0.18158				
Excited State 20:	Singlet-A	4.7508 eV	260.98 nm	f=0.0614	<s**2>=0.000</s**2>

142 -> 157	-0.16082
155 -> 160	-0.16425
155 -> 161	-0.37503
156 -> 161	-0.25515
156 -> 162	-0.20747
156 -> 163	0.38695

Fig. S65. UV-vis absorption spectrum of CIC-tBuPh in benzene at room temperature. The calculated absorption spectrum MPW1PW91/6-31+G(d,p)//MPW1PW91/6-31G(d) level of the theory) is shown by the red vertical lines. The relevant molecular orbitals of the CIC-tBuPh calculated at the MPW1PW91/6-31G(d) level of the theory.

level.							
No.	Wavelength	Coefficients	Electro	f			
	(mm)						
1	505.24	0.70187	156 HOMO	\rightarrow	157 LUMO	0.0020	
2	443.60	0.69172	155 HOMO-1	\rightarrow	157 LUMO	0.1552	
		0.56876	153 HOMO-3	\rightarrow	157 LUMO		
2	228 70	0.14156	154 HOMO-2	\rightarrow	157 LUMO	0.0474	
3 3.	558.70	0.16690	155 HOMO-1	\rightarrow	158 LUMO+1	0.0474	
		0.30528	156 HOMO	\rightarrow	158 LUMO+1		
	226.67	-0.28126	153 HOMO-3	\rightarrow	157 LUMO	0.1252	
4	550.07	0.62447	156 HOMO	\rightarrow	158 LUMO+1	0.1332	

 $\label{eq:table_state} \textbf{Table S10.} Selected calculated electronic transition of CIC-tBuPh at the MPW1PW91/6-31G(d)$

 Table S11. Standard orientation of the optimized geometry for the singlet biradical form 1 of the ring-opening form of CIC-tBuPh.

Τ	Seconda e l		Coordinates		
Tag	Symbol	Х	Y	Ζ	
1	С	1.714725	5.194753	0.22979	
2	С	1.118423	4.040013	0.718707	
3	С	1.777911	2.804047	0.710019	
4	С	3.074831	2.741798	0.131154	
5	С	3.676377	3.930465	-0.329054	
6	С	3.011219	5.141649	-0.282257	
7	С	3.800235	1.510484	-0.111954	
8	С	1.097747	1.673509	1.375441	
9	Ν	3.238284	0.273883	-0.079906	
10	С	4.227222	-0.551085	-0.396199	
11	С	5.429914	0.264227	-0.675194	
12	Ν	5.120999	1.53377	-0.468386	
13	С	6.753346	-0.111039	-1.163336	
14	С	4.028055	-1.994164	-0.371944	
15	С	-0.249983	1.393428	1.056178	
16	С	-0.907286	0.389219	1.730719	
17	С	-0.24722	-0.346268	2.762279	
18	С	1.082989	-0.054989	3.094547	
19	С	1.738954	0.944234	2.394775	

20	С	-2.24865	-0.185025	1.673661
21	С	-2.241963	-1.200886	2.675334
22	Ν	-1.042131	-1.29755	3.332705
23	С	-3.373282	0.047269	0.914912
24	С	-4.532855	-0.733952	1.132869
25	С	-4.512163	-1.732621	2.122622
26	С	-3.383012	-1.975341	2.896391
27	С	5.069134	-2.894689	-0.094164
28	С	4.819692	-4.259781	-0.028367
29	С	3.533184	-4.749044	-0.23968
30	С	2.488293	-3.862416	-0.500308
31	С	2.728906	-2.498624	-0.557018
32	С	7.853735	0.692455	-0.822342
33	С	9.120427	0.393439	-1.300973
34	С	9.310935	-0.700363	-2.144759
35	С	8.223589	-1.490065	-2.50945
36	С	6.954297	-1.202146	-2.022693
37	С	-5.746131	-0.499732	0.328568
38	С	-6.116147	0.788083	-0.072618
39	С	-7.262602	1.00919	-0.828033
40	С	-8.092742	-0.042999	-1.22296
41	С	-7.716662	-1.33209	-0.820524
42	С	-6.577134	-1.558631	-0.064758
43	С	-9.359046	0.160976	-2.057209
44	С	-9.603201	1.635796	-2.390469
45	С	-9.229283	-0.615078	-3.379223
46	С	-10.576145	-0.363041	-1.27605
47	Н	1.17772	6.137047	0.268952
48	Н	0.132503	4.095383	1.169042
49	Н	4.671038	3.856015	-0.752207
50	Н	3.492767	6.040263	-0.653374
51	Н	-0.735448	1.955295	0.263652
52	Н	1.576128	-0.607202	3.886749
53	Н	2.76631	1.187042	2.641399
54	Н	-3.375382	0.797999	0.130546
55	Н	-5.414874	-2.305712	2.305858

56	Н	-3.379689		-2.739856	3.66561	
57	Н	6.068279		-2.521726	0.098604	
58	Н	5.631842		-4.942977	0.198281	
59	Н	3.34219		-5.816317	-0.190933	
60	Н	1.481761		-4.238006	-0.653069	
61	Н	1.923819		-1.796491	-0.740052	
62	Н	7.688952		1.547395	-0.176621	
63	Н	9.963715		1.015657	-1.018838	
64	Н	10.302087		-0.93126	-2.521862	
65	Н	8.361886		-2.330354	-3.182112	
66	Н	6.109732		-1.808311	-2.330051	
67	Н	-5.516194		1.638279	0.23709	
68	Н	-7.508327		2.028871	-1.101032	
69	Н	-8.32166		-2.185773	-1.110812	
70	Н	-6.308152		-2.576398	0.200203	
71	Н	-10.51584		1.731408	-2.986907	
72	Н	-9.734564		2.240906	-1.487735	
73	Н	-8.781483		2.062526	-2.974404	
74	Н	-10.132102		-0.484219	-3.985673	
75	Н	-9.094315		-1.687164	-3.210157	
76	Н	-8.373647		-0.257952	-3.960579	
77	Н	-10.698979		0.1786	-0.333074	
78	Н	-11.490082		-0.232653	-1.86578	
79	Н	-10.481855		-1.426823	-1.040188	
SCF Done:	E(UmPW1PW91)		=	-1822.29313386	A.U.	
Zero-point c	orrection		=	0.644776 (Hartree/Particle)		
Thermal cor	rection to Energy		=	0.681555		
Thermal cor	rection to Enthalpy		=	0.682500		
Thermal correction to Gibbs Free Energy			=	0.572100		
Sum of electronic and zero-point Energies			=	-1821.651627		

Sum of electronic and thermal Energies	=	-1821.614847
Sum of electronic and thermal Enthalpies	=	-1821.613903

Sum of electronic and thermal Free Energies -1821.724302 =

Low frequencies	-2.1180	-1.5536	-0.0021	0.0008	0.0015	4.4169
Low frequencies	8.5222	10.7272	21.4269			

The Result for the TDDFT calculation

Excited State 1: 3.000-A -0.5911 eV -2097.43 nm f=-0.0000 <S**2>=2.000 156A -> 157A 0.75829 156B -> 157B -0.75829 156A <- 157A -0.29353 156B <- 157B 0.29353

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1822.38998210

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	3.000-A	0.6774 eV 1830.31 nm	f=0.0000	<s**2>=2.000</s**2>
155A -> 15'	7A	0.69843			
155B -> 15'	7B	-0.69843			
155A <- 15'	7A	0.10883			
155B <- 15′	7B	-0.10883			
Excited State	3:	1.000-A	0.7922 eV 1565.15 nm	f=0.2347	<s**2>=0.000</s**2>
155A -> 15'	7A	0.25506			
156A -> 15'	7A	0.75640			
155B -> 15'	7B	0.25506			
156B -> 15'	7B	0.75640			
156A <- 15'	7A	-0.38678			
156B <- 15′	7B	-0.38678			
Excited State	4:	1.000-A	1.1194 eV 1107.59 nm	f=0.0752	<s**2>=0.000</s**2>
154A -> 15'	7A	0.11563			

154A -> 157A	0.11563
155A -> 157A	0.64241
156A -> 157A	-0.32539
154B -> 157B	0.11563
155B -> 157B	0.64241
156B -> 157B	-0.32539
156A <- 157A	0.19256

156B <- 157B 0.19256 Excited State 5: 3.000-A 1.5875 eV 781.01 nm f=0.0000 <S**2>=2.000 149A -> 157A 0.11250 152A -> 157A 0.10769 153A -> 157A -0.10534 154A -> 157A 0.65524 149B -> 157B -0.11250 152B -> 157B -0.10769 153B -> 157B 0.10534 154B -> 157B -0.65524 Excited State 6: 3.000-A 1.6415 eV 755.31 nm f=0.0000 <S**2>=2.000 152A -> 157A 0.21043 153A -> 157A 0.64901 152B -> 157B -0.21043153B -> 157B -0.64901 Excited State 7: 3.000-A 1.8999 eV 652.58 nm f=0.0000 <S**2>=2.000 147A -> 157A -0.13207 152A -> 157A 0.63029 153A -> 157A -0.18162 154A -> 157A -0.10532 147B -> 157B 0.13207 152B -> 157B -0.63029 153B -> 157B 0.18162 154B -> 157B 0.10532 Excited State 8: 1.000-A 1.9655 eV 630.82 nm f=0.0229 <S**2>=0.000 153A -> 157A 0.50711 154A -> 157A -0.47695 153B -> 157B 0.50711 154B -> 157B -0.476951.9976 eV 620.67 nm f=0.0000 <S**2>=2.000 Excited State 9: 3.000-A 146A -> 157A 0.66799

147A -> 157A	-0.17148				
146B -> 157B	-0.66799				
147B -> 157B	0.17148				
Excited State 10:	1.000-A	2.0888 eV	593.57 nm	f=0.2083	<s**2>=0.000</s**2>
153A -> 157A	0.47089				
154A -> 157A	0.48795				
155A -> 157A	-0.13724				
153B -> 157B	0.47089				
154B -> 157B	0.48795				
155B -> 157B	-0.13724				
Excited State 11:	3.000-A	2.1361 eV	580.42 nm	f=0.0000	<s**2>=2.000</s**2>
146A -> 157A	-0.12167				
147A -> 157A	-0.24489				
149A -> 157A	0.50187				
151A -> 157A	-0.35991				
146B -> 157B	0.12167				
147B -> 157B	0.24489				
149B -> 157B	-0.50187				
151B -> 157B	0.35991				
Excited State 12:	3.000-A	2.1603 eV	573.92 nm	f=0.0000	<s**2>=2.000</s**2>
147A -> 157A	0.35055				
149A -> 157A	0.42376				
151A -> 157A	0.38563				
147B -> 157B	-0.35055				
149B -> 157B	-0.42376				
151B -> 157B	-0.38563				
Excited State 13:	1.000-A	2.1817 eV	568.30 nm	f=0.0339	<s**2>=0.000</s**2>
147A -> 157A	-0.39555				
151A -> 157A	-0.30919				
152A -> 157A	0.46493				
147B -> 157B	-0.39555				
151B -> 157B	-0.30919				

152B -> 157B 0.46493 Excited State 14: 3.000-A 2.3132 eV 535.98 nm f=0.0000 <S**2>=2.000 146A -> 157A 0.10187 147A -> 157A 0.47891 148A -> 157A 0.23606 151A -> 157A -0.42679 146B -> 157B -0.10187 147B -> 157B -0.47891 148B -> 157B -0.23606 151B -> 157B 0.42679 Excited State 15: 1.000-A 2.3820 eV 520.52 nm f=0.0144 <S**2>=0.000 146A -> 157A 0.64471 147A -> 157A -0.13099 150A -> 157A -0.11176 151A -> 157A -0.18571 152A -> 157A -0.12017 146B -> 157B 0.64471 147B -> 157B -0.13099 150B -> 157B -0.11176 151B -> 157B -0.18571 152B -> 157B -0.12017 Excited State 16: 1.000-A 2.3979 eV 517.04 nm f=0.0346 <S**2>=0.000 146A -> 157A 0.18203 147A -> 157A -0.18276 148A -> 157A -0.15288 151A -> 157A 0.58485 152A -> 157A 0.24494 146B -> 157B 0.18203 147B -> 157B -0.18276 148B -> 157B -0.15288 151B -> 157B 0.58485

152B -> 157B 0.24494

Excited State	17:	1.000-A	2.4709 eV	501.77 nm	f=0.0365	<s**2>=0.000</s**2>
145A -> 15	57A	0.17445				
149A -> 15	57A	0.65755				
145B -> 15	57B	0.17445				
149B -> 15	57B	0.65755				

Excited State	18:	3.000-A	2.4914 eV	497.65 nm	f=0.0000	<s**2>=2.000</s**2>
145A -> 15	7A	-0.17309				
147A -> 15	7A	-0.15187				
148A -> 15	7A	0.62539				
151A -> 15	7A	0.16702				
145B -> 15	7B	0.17309				
147B -> 15	7B	0.15187				
148B -> 15	7B	-0.62539				
151B -> 15	7B	-0.16702				

Excited State	19:	3.000-A	2.5174 eV	492.50 nm	f=0.0000	<s**2>=2.000</s**2>
145A -> 15	57A	0.20467				
148A -> 15	57A	0.13985				
150A -> 15	57A	0.64665				
145B -> 15	57B	-0.20467				
148B -> 15	57B	-0.13985				
150B -> 15	57B	-0.64665				

Excited State	20:	1.000-A	2.5369 eV	488.72 nm	f=0.1167	<s**2>=0.000</s**2>
146A -> 15	57A	0.14274				
147A -> 15	57A	0.46859				
148A -> 15	57A	0.21169				
150A -> 15	57A	-0.13561				
152A -> 15	57A	0.40413				
156A -> 15	58A	-0.13784				
146B -> 15	57B	0.14274				
147B -> 15	57B	0.46859				
148B -> 15	57B	0.21169				
150B -> 15	57B	-0.13561				
152B -> 15	57B	0.40413				

156B -> 158B -0.13784

		Ting-opening form of		
Тас	Symph al		Coordinates	
Tag	Symbol	Х	Y	Ζ
1	С	5.224937	-2.914064	-3.406164
2	С	4.345041	-3.303982	-2.405935
3	С	3.687718	-2.372682	-1.590508
4	С	3.983948	-0.993613	-1.778504
5	С	4.856386	-0.616693	-2.820272
6	С	5.469437	-1.557816	-3.625418
7	С	3.525244	0.065153	-0.902967
8	С	2.683496	-2.896515	-0.643451
9	Ν	2.951178	-0.140356	0.311386
10	С	2.723155	1.076736	0.786325
11	С	3.243064	2.052736	-0.196015
12	Ν	3.712191	1.379964	-1.233754
13	С	3.356661	3.507074	-0.137871
14	С	2.017539	1.260382	2.047833
15	С	1.363939	-2.381828	-0.634986
16	С	0.425655	-2.959064	0.183931
17	С	0.769673	-4.057267	1.033194
18	С	2.072806	-4.566560	1.029743
19	С	3.008893	-3.986759	0.182030
20	С	-0.988725	-2.722437	0.453631
21	С	-1.334213	-3.704490	1.429959
22	Ν	-0.280524	-4.505561	1.781099
23	С	-1.929408	-1.831771	-0.012028
24	С	-3.252298	-1.895825	0.482767
25	С	-3.581090	-2.871120	1.443313
26	С	-2.641104	-3.773541	1.923003
27	С	1.239851	2.397488	2.320277
28	С	0.542212	2.502561	3.517092
29	С	0.608388	1.479844	4.459883
30	С	1.364282	0.338342	4.192756

Table S12. Standard orientation of the optimized geometry for the singlet biradical form 2 of the ring-opening form of CIC-tBuPh.

31	С	2.054889	0.223439	2.996612
32	С	3.350705	4.235987	-1.338386
33	С	3.498918	5.614814	-1.326759
34	С	3.675350	6.290970	-0.119933
35	С	3.707701	5.576488	1.074697
36	С	3.548061	4.196062	1.069583
37	С	-4.271000	-0.948327	-0.004748
38	С	-3.941008	0.373686	-0.321620
39	С	-4.900652	1.267925	-0.783247
40	С	-6.234408	0.887809	-0.952663
41	С	-6.560696	-0.437440	-0.632419
42	С	-5.609189	-1.333372	-0.170722
43	С	-7.316189	1.842619	-1.461467
44	С	-6.761750	3.237218	-1.767253
45	С	-7.931283	1.276900	-2.753244
46	С	-8.414698	1.984288	-0.393822
47	Н	5.701356	-3.665479	-4.027629
48	Н	4.114425	-4.356127	-2.274725
49	Н	5.054684	0.440779	-2.947357
50	Н	6.144196	-1.241441	-4.413885
51	Н	1.112190	-1.554860	-1.290038
52	Н	2.334233	-5.394604	1.679450
53	Н	4.027886	-4.359775	0.174128
54	Н	-1.678322	-1.100598	-0.774079
55	Н	-4.590080	-2.893909	1.841343
56	Н	-2.900033	-4.513721	2.672210
57	Н	1.161040	3.186877	1.581847
58	Н	-0.062955	3.382557	3.709703
59	Н	0.064577	1.566073	5.395129
60	Н	1.408252	-0.466724	4.918961
61	Н	2.631010	-0.665494	2.767401
62	Н	3.226373	3.696253	-2.270183
63	Н	3.480146	6.166551	-2.261174
64	Н	3.794911	7.369652	-0.112449
65	Н	3.865678	6.094346	2.015180
66	Н	3.598325	3.645076	2.001773

67	Н	-2.922	758	0.7209	33	-0.176195		
68	Н	-4.591	135	2.282720		-1.004824		
69	Н	-7.581	602	-0.786483		-0.754722		
70	Н	-5.900	325	-2.358603		0.035378		
71	Н	-7.567	430	3.8817	'18	-2.132294		
72	Н	-6.338	183	3.711657		-0.876296		
73	Н	-5.988	371	3.205987		-2.541345		
74	Н	-8.712	949	1.947665		-3.126301		
75	Н	-8.385	342	0.2949	067	-2.592631		
76	Н	-7.172	384	1.1701	.94	-3.534454		
77	Н	-8.006	513	2.3947	58	0.534971		
78	Н	-9.202	951	2.6579	948	-0.747223		
79	Н	-8.879	305	1.0226	535	-0.158143		
SCF Done: E	(UmPW1PW9	1)	=	-1822.29	703735	A.U.		
Zero-point corr	ection=			0.644930 (H	artree/Parti	cle)		
Thermal correct	tion to Energy=	=	().681686				
Thermal correct	tion to Enthalp	y=	0	.682630				
Thermal correct	tion to Gibbs F	Free Energy=	0.5	72194				
Sum of electron	Sum of electronic and zero-point Energies= -1821.652528							
Sum of electronic and thermal Energies= -1821.615772								
Sum of electronic and thermal Enthalpies= -1821.614828								
Sum of electron	Sum of electronic and thermal Free Energies= -1821.725264							
Low frequencie	es2.516	0 -0.0008	0.0005	0.0006	2.5289	4.0293		
Low frequencie	es 7.385	50 11.7970	17.1205					

The Result for the TDDFT calculation

Excited State	1:	3.000-A	-0.6260 eV	-1980.57 nm	f=-0.0000	<s**2>=2.000</s**2>
156A ->	157A	0.73798				
156B ->	157B	-0.73798				
156A<-	157A	-0.23341				
156B <-	157B	0.23341				

This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-KS) = -1822.39533341

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: 3.000-A 0.8351 eV 1484.74 nm f=0.0000 <S**2>=2.000 155A -> 157A 0.69821 155B -> 157B -0.69821 Excited State 3: 1.000-A 0.9068 eV 1367.34 nm f=0.2087 <S**2>=0.000 155A -> 157A 0.10957 156A -> 157A 0.78068 155B -> 157B 0.10957 156B -> 157B 0.78068 156A <- 157A -0.36975 156B <- 157B -0.36975 Excited State 4: 1.000-A 1.1954 eV 1037.21 nm f=0.0314 <S**2>=0.000 154A -> 157A 0.16672 155A -> 157A 0.66902 156A -> 157A -0.14846 154B -> 157B 0.16672 0.66902 155B -> 157B 156B -> 157B -0.14846 Excited State 5: 3.000-A 1.4028 eV 883.83 nm f=0.0000 <S**2>=2.000 152A -> 157A -0.12104 154A -> 157A 0.67927 152B -> 157B 0.12104 154B -> 157B -0.67927 Excited State 6: 3.000-A 1.7169 eV 722.14 nm f=0.0000 <S**2>=2.000 153A -> 157A 0.67951 153B -> 157B -0.67951 7: 1.000-A Excited State 1.9057 eV 650.61 nm f=0.1755 <S**2>=0.000 153A -> 157A 0.12889 154A -> 157A 0.65430

155A -> 157A	-0.14964				
153B -> 157B	0.12889				
154B -> 157B	0.65430				
155B -> 157B	-0.14964				
Excited State 8:	3.000-A	1.9866 eV	624.09 nm	f=0.0000	<s**2>=2.000</s**2>
145A -> 157A	-0.12634				
152A -> 157A	0.65582				
154A -> 157A	0.10574				
145B -> 157B	0.12634				
152B -> 157B	-0.65582				
154B -> 157B	-0.10574				
Excited State 9:	1.000-A	2.0366 eV	608.77 nm	f=0.0436	<s**2>=0.000</s**2>
147A -> 157A	0.15113				
153A -> 157A	0.66005				
147B -> 157B	0.15113				
153B -> 157B	0.66005				
F 1 1 54 4 10	2 000 4	2 0720 14	507.04	6 0 0000	< <u></u>
Excited State 10 :	3.000-A	2.0/39 eV	597.84 nm	I=0.0000	<5**2>=2.000
146A -> 15/A	0.68522				
146B -> 15/B	-0.68522				
Excited State 11:	3.000-A	2.1744 eV	570.21 nm	f=0.0000	<s**2>=2.000</s**2>
147A -> 157A	-0.14318				
149A -> 157A	0.56168				
150A -> 157A	-0.14388				
151A -> 157A	-0.30089				
147B -> 157B	0.14318				
149B -> 157B	-0.56168				
150B -> 157B	0.14388				
151B -> 157B	0.30089				
Excited State 12:	3.000-A	2.1993 eV	563.75 nm	f=0.0000	<s**2>=2.000</s**2>
147A -> 157A	0.41985				
149A -> 157A	0.31341				

151A -> 157A	0.44636
147B -> 157B	-0.41985
149B -> 157B	-0.31341
151B -> 157B	-0.44636

Excited State	13:	1.000-A	2.3210 eV	534.17 nm	f=0.0322	<s**2>=0.000</s**2>
147A -> 15	57A	0.28482				
149A -> 15	57A	0.21228				
151A -> 15	57A	0.39691				
152A -> 15	57A	0.40238				
153A -> 15	57A	-0.13767				
154A -> 15	57A	0.11302				
147B -> 15	57B	0.28482				
149B -> 15	57B	0.21228				
151B -> 15	57B	0.39691				
152B -> 15	57B	0.40238				
153B -> 15	57B	-0.13767				
154B -> 15	57B	0.11302				
Excited State	14:	3.000-A	2.3493 eV	527.75 nm	f=0.0000	<s**2>=2.000</s**2>
147A -> 15	57A	0.49557				
148A -> 15	57A	0.22676				
151A -> 15	57A	-0.41853				
147B -> 15	57B	-0.49557				
148B -> 15	57B	-0.22676				

Excited State 15: 1.000-A 2.4298 eV 510.26 nm f=0.0330 <S**2>=0.000

146A -> 157A	0.13652
147A -> 157A	-0.14996
148A -> 157A	-0.15329
151A -> 157A	0.54215
152A -> 157A	-0.34942
146B -> 157B	0.13652
147B -> 157B	-0.14996
148B -> 157B	-0.15329

151B -> 157B 0.41853

151B -> 157B	0.54215				
152B -> 157B	-0.34942				
Excited State 16:	1.000-A	2.4610 eV	503.79 nm	f=0.0066	<s**2>=0.000</s**2>
146A -> 157A	0.64246				
149A -> 157A	0.24640				
151A -> 157A	-0.10394				
146B -> 157B	0.64246				
149B -> 157B	0.24640				
151B -> 157B	-0.10394				
Excited State 17:	3.000-A	2.5226 eV	491.49 nm	f=0.0000	<s**2>=2.000</s**2>
145A -> 157A	0.16726				
148A -> 157A	-0.22330				
149A -> 157A	0.14253				
150A -> 157A	0.61905				
145B -> 157B	-0.16726				
148B -> 157B	0.22330				
149B -> 157B	-0.14253				
150B -> 157B	-0.61905				
Excited State 18:	1.000-A	2.5278 eV	490.49 nm	f=0.0641	<s**2>=0.000</s**2>
145A -> 157A	0.12637				
146A -> 157A	-0.17444				
149A -> 157A	0.53355				
150A -> 157A	-0.29658				
152A -> 157A	-0.24224				
145B -> 157B	0.12637				
146B -> 157B	-0.17444				
149B -> 157B	0.53355				
150B -> 157B	-0.29658				
152B -> 157B	-0.24224				
Excited State 19:	3.000-A	2.5377 eV	488.58 nm	f=0.0000	<s**2>=2.000</s**2>
145A -> 157A	-0.16017				
147A -> 157A	-0.16687				

148A -> 157A	0.58015				
150A -> 157A	0.26272				
151A -> 157A	0.13951				
145B -> 157B	0.16017				
147B -> 157B	0.16687				
148B -> 157B	-0.58015				
150B -> 157B	-0.26272				
151B -> 157B	-0.13951				
Excited State 20:	1.000-A	2.5720 eV	482.06 nm	f=0.0732	<s**2>=0.000</s**2>
Excited State 20: 147A -> 157A	1.000-A 0.51827	2.5720 eV	482.06 nm	f=0.0732	<s**2>=0.000</s**2>
Excited State 20: 147A -> 157A 148A -> 157A	1.000-A 0.51827 0.23536	2.5720 eV	482.06 nm	f=0.0732	<s**2>=0.000</s**2>
Excited State 20: 147A -> 157A 148A -> 157A 152A -> 157A	1.000-A 0.51827 0.23536 -0.34167	2.5720 eV	482.06 nm	f=0.0732	<s**2>=0.000</s**2>
Excited State 20: 147A -> 157A 148A -> 157A 152A -> 157A 156A -> 158A	1.000-A 0.51827 0.23536 -0.34167 0.13995	2.5720 eV	482.06 nm	f=0.0732	<s**2>=0.000</s**2>
Excited State 20: 147A -> 157A 148A -> 157A 152A -> 157A 156A -> 158A 147B -> 157B	1.000-A 0.51827 0.23536 -0.34167 0.13995 0.51827	2.5720 eV	482.06 nm	f=0.0732	<s**2>=0.000</s**2>
Excited State 20: 147A -> 157A 148A -> 157A 152A -> 157A 156A -> 158A 147B -> 157B 148B -> 157B	1.000-A 0.51827 0.23536 -0.34167 0.13995 0.51827 0.23536	2.5720 eV	482.06 nm	f=0.0732	<s**2>=0.000</s**2>
Excited State 20: 147A -> 157A 148A -> 157A 152A -> 157A 156A -> 158A 147B -> 157B 148B -> 157B 152B -> 157B	1.000-A 0.51827 0.23536 -0.34167 0.13995 0.51827 0.23536 -0.34167	2.5720 eV	482.06 nm	f=0.0732	<s**2>=0.000</s**2>
Excited State 20: 147A -> 157A 148A -> 157A 152A -> 157A 156A -> 158A 147B -> 157B 148B -> 157B 152B -> 157B 156B -> 158B	1.000-A 0.51827 0.23536 -0.34167 0.13995 0.51827 0.23536 -0.34167 0.13995	2.5720 eV	482.06 nm	f=0.0732	<s**2>=0.000</s**2>

 Table S13. Standard orientation of the optimized geometry for the triplet biradical form of the ringopening form of CIC-tBuPh.

T	0 1 1		Coordinates	
Tag	Symbol	Х	Y	Ζ
1	С	1.883722	5.295867	0.453262
2	С	1.283715	4.164391	0.995932
3	С	1.866418	2.897765	0.8965
4	С	3.091194	2.774911	0.189365
5	С	3.692684	3.934306	-0.338509
6	С	3.103158	5.179577	-0.209417
7	С	3.749422	1.511784	-0.093026
8	С	1.159035	1.782709	1.577145
9	Ν	3.209713	0.293754	0.158185
10	С	4.121693	-0.572914	-0.265862
11	С	5.243575	0.1968	-0.847026
12	Ν	4.979635	1.48358	-0.694105
13	С	6.443086	-0.240478	-1.554284

14	С	3.940807	-2.00131	-0.050626
15	С	-0.163169	1.476761	1.196453
16	С	-0.846737	0.489824	1.875469
17	С	-0.233835	-0.200097	2.961304
18	С	1.071478	0.117014	3.35226
19	С	1.752852	1.103904	2.65303
20	С	-2.17876	-0.098265	1.772688
21	С	-2.213501	-1.082751	2.807288
22	Ν	-1.051736	-1.146133	3.524958
23	С	-3.266361	0.098453	0.952959
24	С	-4.429265	-0.686365	1.138982
25	С	-4.449969	-1.654945	2.160025
26	С	-3.35982	-1.86211	2.995271
27	С	5.021631	-2.889299	0.078176
28	С	4.799067	-4.23517	0.339505
29	С	3.499879	-4.718063	0.476207
30	С	2.419332	-3.842295	0.36817
31	С	2.634954	-2.496585	0.116718
32	С	7.589932	0.569055	-1.512814
33	С	8.733619	0.207318	-2.208771
34	С	8.749405	-0.958105	-2.974557
35	С	7.610439	-1.756141	-3.04305
36	С	6.465672	-1.404059	-2.338572
37	С	-5.603322	-0.486208	0.270679
38	С	-5.956142	0.78565	-0.192719
39	С	-7.066091	0.976484	-1.008154
40	С	-7.875387	-0.091483	-1.404167
41	С	-7.516388	-1.364567	-0.939823
42	С	-6.413417	-1.560972	-0.123782
43	С	-9.102842	0.080198	-2.301119
44	С	-9.333223	1.54225	-2.695137
45	С	-8.913434	-0.741116	-3.588175
46	С	-10.352978	-0.41972	-1.557051
47	Н	1.404494	6.263891	0.559048
48	Н	0.349501	4.259753	1.5403
49	Н	4.627905	3.813487	-0.871835

50	Н	3.586196	6.054833	-0.63106
51	Н	-0.613078	2.009689	0.363997
52	Н	1.53091	-0.405391	4.184029
53	Н	2.767437	1.360982	2.936193
54	Н	-3.23587	0.823983	0.145858
55	Н	-5.356345	-2.230102	2.316543
56	Н	-3.388329	-2.60196	3.787776
57	Н	6.036992	-2.518287	0.002865
58	Н	5.644146	-4.907476	0.447019
59	Н	3.329189	-5.770849	0.677387
60	Н	1.405899	-4.21112	0.488081
61	Н	1.806728	-1.800777	0.050188
62	Н	7.559585	1.478707	-0.924057
63	Н	9.616861	0.83592	-2.157504
64	Н	9.644075	-1.238421	-3.521275
65	Н	7.609672	-2.653236	-3.653708
66	Н	5.575631	-2.018217	-2.416079
67	Н	-5.372958	1.648156	0.114755
68	Н	-7.300197	1.985196	-1.327876
69	Н	-8.106186	-2.229524	-1.227875
70	Н	-6.155824	-2.56805	0.188872
71	Н	-10.219408	1.616181	-3.333013
72	Н	-9.503339	2.177398	-1.819902
73	Н	-8.487239	1.950409	-3.2573
74	Н	-9.787477	-0.632805	-4.239628
75	Н	-8.786716	-1.806602	-3.376128
76	Н	-8.03206	-0.403437	-4.142053
77	Н	-10.516408	0.151754	-0.638157
78	Н	-11.240465	-0.309153	-2.189672
79	Н	-10.269356	-1.475372	-1.283536

SCF Done:	E(UmPW1PW91)	

-1822.29303015 A.U.

Zero-point correction	=	0.644805 (Hartree/Particle)
Thermal correction to Energy	=	0.681606
Thermal correction to Enthalpy	=	0.682550

=

Thermal correction to	Energy	=	0.570814	1		
Sum of electronic and	Energies	=	-1821.65	0688		
Sum of electronic and	=	-1821.61	3886			
Sum of electronic and thermal Enthalpies			=	-1821.61	2942	
Sum of electronic and thermal Free Energies			=	-1821.72	4679	
Low frequencies	-0.0015	-0.0007	0.0002	0.9419	2.5594	5.8260
Low frequencies	19.1453					

The Result for the TDDFT calculation

Excited State 1: 3.075-A 1.2289 eV 1008.92 nm f=0.0354 <S**2>=2.114 154B -> 157B -0.15343 155B -> 156B -0.49775 155B -> 157B 0.82837

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1822.34177046

Copying the excited state density for this state as the 1-particle RhoCI density.

2: 3.051-A 1.6582 eV 747.71 nm f=0.0131 <S**2>=2.077 Excited State 145B -> 156B 0.16124 152B -> 156B 0.14130 153B -> 156B -0.17060 154B -> 156B -0.10844 155B -> 156B 0.80263 155B -> 157B 0.47924 Excited State 3: 3.085-A 1.9838 eV 624.97 nm f=0.0364 <S**2>=2.130 141B -> 156B 0.13850 142B -> 156B -0.14432 152B -> 156B 0.24069 153B -> 156B 0.82555

154B -> 156B 0.23017

0.23873

153B -> 157B

155B -> 156B 0.14950

Excited State 4: 3.055-A 2.0924 eV 592.54 nm f=0.0009 <S**2>=2.083 145B -> 157B -0.10711 146B -> 156B -0.38596 146B -> 157B 0.85857 147B -> 157B -0.19042 Excited State 5: 3.080-A 2.1920 eV 565.62 nm f=0.1945 <S**2>=2.122 151B -> 157B 0.11660 152B -> 156B -0.16457 153B -> 156B 0.17642 154B -> 156B -0.52626 154B -> 157B 0.73783 155B -> 157B 0.15337 Excited State 6: 3.067-A 2.3116 eV 536.36 nm f=0.0229 <S**2>=2.102 144B -> 156B -0.17641 145B -> 156B 0.46484 145B -> 157B 0.13706 147B -> 156B -0.23151 -0.32654 149B -> 156B 149B -> 157B -0.10027 151B -> 156B -0.20218 152B -> 156B 0.58886 153B -> 156B -0.13531 154B -> 156B -0.14943 155B -> 156B -0.24334 Excited State 7: 3.102-A 2.4640 eV 503.17 nm f=0.0597 <S**2>=2.156 156A -> 159A -0.10556 157A -> 159A -0.12199 145B -> 156B -0.29309 145B -> 157B -0.10055 147B -> 156B 0.23555 149B -> 156B 0.20445

- 151B -> 156B -0.22978
- 152B -> 156B 0.40627

153B -> 156B	-0.22414
154B -> 156B	0.46167
154B -> 157B	0.45920

```
Excited State 8: 3.085-A 2.5286 eV 490.33 nm f=0.0613 <S**2>=2.129
```

144B -> 156B	-0.15356
145B -> 156B	0.23005
147B -> 156B	-0.16457
149B -> 156B	-0.31783
151B -> 156B	0.44133
151B -> 157B	0.16997
152B -> 156B	-0.20648
153B -> 156B	-0.13759
153B -> 157B	-0.10151
154B -> 156B	0.56898
154B -> 157B	0.30867

Excited State	9:	3.096-A	2.6439 eV	468.94 nm	f=0.0326	<s**2>=2.146</s**2>
145B -> 15	6B	0.10230				
147B -> 15	6B	0.21727				
147B -> 15	7B	0.11402				
148B -> 15	6B	0.20604				
149B -> 15	6B	0.28251				
151B -> 15	6B	0.69430				
152B -> 15	6B	0.34955				
152B -> 15	7B	-0.23252				
153B -> 15	7B	0.12711				
154B -> 15	6B	-0.19103				

Excited State 10: 3.086-A 2.6850 eV 461.76 nm f=0.0017 <S**2>=2.131

144B -> 156B	-0.12371
145B -> 156B	0.34575
147B -> 156B	-0.39422
147B -> 157B	-0.10899
149B -> 156B	0.74735
149B -> 157B	0.17950

150B -> 156B	-0.10618				
152B -> 157B	0.10290				
154B -> 156B	0.12077				
Excited State 11:	3.117 - A	2.7609 eV	449.07 nm	f=0.0229	<s**2>=2.179</s**2>
156A -> 161A	0.10048				
147B -> 156B	0.29868				
148B -> 156B	0.31684				
151B -> 156B	0.11689				
151B -> 157B	0.33390				
152B -> 157B	0.64113				
153B -> 157B	-0.31857				
154B -> 157B	-0.20363				
Excited State 12:	3.086-A	2.8378 eV	436.90 nm	f=0.0005	<s**2>=2.131</s**2>
142B -> 156B	-0.21414				
144B -> 156B	-0.10601				
145B -> 156B	-0.18959				
147B -> 156B	-0.39810				
148B -> 156B	0.77350				
148B -> 157B	0.19249				
149B -> 156B	-0.11251				
152B -> 157B	-0.10873				
Excited State 13:	3.086-A	2.9269 eV	423.60 nm	f=0.0027	<s**2>=2.130</s**2>
142B -> 156B	-0.28652				
144B -> 156B	-0.16352				
144B -> 157B	-0.12687				
145B -> 156B	0.16281				
147B -> 156B	0.22459				
148B -> 157B	-0.13989				
151B -> 156B	-0.12885				
151B -> 157B	0.25706				
152B -> 156B	-0.13311				
153B -> 156B	-0.26611				
153B -> 157B	0.72205				

Excited State	14:	3.090-A	2.9640 eV	418.29 nm	f=0.0024	<s**2>=2.136</s**2>
140B -> 150	140B -> 156B -0.14399					
142B -> 150	142B -> 156B					
142B -> 15'	7B	0.20118				
144B -> 156B		0.44654				
147B -> 150	6B	-0.23925				
147B -> 15′	7B	-0.10397				
148B -> 150	6B	0.13671				
151B -> 15'	7B	0.22089				
152B -> 150	6B	0.10456				
152B -> 157	7B	0.14534				
153B -> 15'	7B	0.35195				
Excited State	15:	3.085-A	3.0489 eV	406.65 nm	f=0.0003	<s**2>=2.129</s**2>
144B -> 15'	7B	0.13042				
145B -> 157	7B	0.11165				
150B -> 150	6B	-0.63261				
150B -> 15'	7B	0.68641				
153B -> 15'	7B	0.13228				
Excited State	16:	3.121-A	3.1021 eV	399.68 nm	f=0.0022	<s**2>=2.186</s**2>
156A -> 160	0A	0.15969				
157A -> 159	9A	-0.11080				
157A -> 160	0A	-0.17974				
142B -> 15'	7B	-0.16085				
144B -> 150	6B	-0.23558				
144B -> 15′	7B	0.43475				
145B -> 150	6B	-0.30177				
145B -> 157	7B	0.45710				
147B -> 150	6B	-0.13012				
$148R \rightarrow 150$	~ D	0 12(72				
140D - 150	6B	-0.136/2				
148B -> 150	6B 7B	-0.13672 0.14020				
148B -> 150 150B -> 150	6B 7B 6B	-0.13672 0.14020 0.19603				
148B -> 150 148B -> 150 150B -> 150 150B -> 150	6B 7B 6B 7B	-0.13672 0.14020 0.19603 -0.19034				

153B -> 157B 0.24748 Excited State 17: 3.085-A 3.1279 eV 396.38 nm f=0.0006 <S**2>=2.130 144B -> 156B -0.10157 144B -> 157B 0.18919 145B -> 157B 0.10044 151B -> 156B -0.16399 151B -> 157B 0.71669 152B -> 156B 0.13271 152B -> 157B -0.52265 153B -> 157B -0.16174 Excited State 18: 3.316-A 3.1667 eV 391.53 nm f=0.0271 <S**2>=2.499 149A -> 163A -0.12668 152A -> 159A 0.12121 153A -> 158A 0.13357 156A -> 166A -0.10217 157A -> 159A -0.23030 157A -> 166A -0.10063 142B -> 156B 0.11958 143B -> 156B 0.44092 144B -> 157B 0.16608 145B -> 156B 0.12393 147B -> 156B 0.14407 147B -> 157B -0.36177 148B -> 156B 0.12382 148B -> 157B -0.29147 149B -> 157B -0.22704 151B -> 157B -0.24710 152B -> 156B -0.16049 152B -> 159B -0.11349 3.1988 eV 387.59 nm f=0.0319 <S**2>=2.505 Excited State 19: 3.319-A 152A -> 159A 0.11093

153A -> 158A 0.10674 155A -> 160A -0.12315

156A -> 159A	-0.11005
156A -> 161A	0.13225
157A -> 159A	-0.17392
157A -> 160A	0.22496
157A -> 166A	-0.10328
142B -> 156B	-0.23750
143B -> 156B	0.37469
143B -> 157B	0.11564
144B -> 157B	-0.24852
145B -> 156B	-0.25192
146B -> 156B	-0.12615
147B -> 156B	-0.26815
147B -> 157B	0.11608
148B -> 156B	-0.24300
151B -> 156B	0.15298
151B -> 157B	0.18296
152B -> 156B	0.10026
152B -> 157B	0.12968
154B -> 160B	-0.12449

Excited State 20: 3.231-A 3.2621 eV 380.08 nm f=0.0288 <S**2>=2.360

155A -> 158A	-0.11940
156A -> 158A	-0.26700
156A -> 160A	0.10108
157A -> 158A	-0.31342
157A -> 159A	-0.10680
141B -> 156B	-0.18889
143B -> 156B	0.14203
145B -> 156B	0.17016
147B -> 157B	0.21327
148B -> 157B	0.32322
149B -> 156B	-0.11396
149B -> 157B	0.55067
150B -> 156B	0.14387
152B -> 156B	-0.15429

			Coordinates	
Tag	Symbol	Х	Y	Z
1	С	-5.824043	-1.750194	-3.435888
2	С	-5.142947	-2.358373	-2.409582
3	С	-4.162402	-1.659312	-1.661647
4	С	-4.019291	-0.251095	-1.901572
5	С	-4.684151	0.332065	-3.011166
6	С	-5.570497	-0.398541	-3.758863
7	С	-3.361118	0.613084	-0.984555
8	С	-3.284654	-2.389727	-0.789902
9	Ν	-3.080295	0.273026	0.313219
10	С	-2.521275	1.352277	0.826819
11	С	-2.457069	2.380816	-0.22599
12	Ν	-3.029251	1.898186	-1.317393
13	С	-1.869958	3.716275	-0.216307
14	С	-2.174711	1.411977	2.245583
15	С	-1.893601	-2.044715	-0.717206
16	С	-1.050095	-2.808339	0.033012
17	С	-1.544957	-3.943538	0.783736
18	С	-2.920576	-4.283927	0.712105
19	С	-3.751338	-3.536659	-0.081741
20	С	0.377447	-2.796396	0.314859
21	С	0.571429	-3.901673	1.190278
22	Ν	-0.597878	-4.586383	1.459925
23	С	1.439768	-2.001704	-0.067133
24	С	2.732883	-2.296588	0.41265
25	С	2.907964	-3.391551	1.27883
26	С	1.845682	-4.196195	1.673367
27	С	-2.28404	2.593816	2.994346
28	С	-1.996629	2.595559	4.353579
29	С	-1.593575	1.422655	4.987282
30	С	-1.491556	0.240844	4.255257
31	С	-1.784946	0.232045	2.899216
32	С	-2.377113	4.691367	-1.091149

 Table S14. Standard orientation of the optimized geometry for the quinoidal form 1 of the ringopening form of CIC-tBuPh.

33	С	-1.813091	5.957021	-1.140768
34	С	-0.723623	6.271088	-0.328731
35	С	-0.199731	5.307399	0.529362
36	С	-0.766169	4.040225	0.588175
37	С	3.884721	-1.471512	0.003401
38	С	3.76291	-0.091982	-0.193409
39	С	4.850776	0.682224	-0.582681
40	С	6.111684	0.119106	-0.795312
41	С	6.229069	-1.26345	-0.596406
42	С	5.14893	-2.040251	-0.208305
43	С	7.329588	0.937379	-1.228814
44	С	7.001038	2.423991	-1.396855
45	С	8.436831	0.806099	-0.168864
46	С	7.848955	0.405565	-2.57575
47	Н	-6.529357	-2.32331	-4.02867
48	Н	-5.277568	-3.419519	-2.23243
49	Н	-4.509937	1.384114	-3.202975
50	Н	-6.095474	0.065226	-4.587457
51	Н	-1.527093	-1.22113	-1.319185
52	Н	-3.292087	-5.123382	1.289631
53	Н	-4.808974	-3.771998	-0.11865
54	Н	1.300024	-1.175407	-0.757465
55	Н	3.898835	-3.593794	1.671968
56	Н	1.992239	-5.031083	2.349913
57	Н	-2.620155	3.506233	2.514811
58	Н	-2.096224	3.515051	4.921534
59	Н	-1.363819	1.428174	6.048045
60	Н	-1.179961	-0.677124	4.743058
61	Н	-1.711909	-0.682501	2.321602
62	Н	-3.217918	4.430639	-1.723608
63	Н	-2.221676	6.703437	-1.814449
64	Н	-0.282062	7.261737	-0.369025
65	Н	0.658271	5.540825	1.151532
66	Н	-0.34059	3.289668	1.244318
67	Н	2.808675	0.392818	-0.01126
68	Н	4.701447	1.747825	-0.712316

69	Н	7.184	74	-1.7526	547	-0.758498	
70	Н	5.2779	932	-3.1123	22	-0.097356	
71	Н	7.8990)95	2.9654	03	-1.710362	
72	Н	6.2342	262	2.5878	19	-2.160727	
73	Н	6.6554	188	2.8736	19	-0.460488	
74	Н	9.3203	385	1.3799	56	-0.469271	
75	Н	8.7466	584	-0.2337	/64	-0.031101	
76	Н	8.0975	583	1.1847	83	0.800235	
77	Н	7.0819	927	0.4893	62	-3.351774	
78	Н	8.7245	587	0.979	78	-2.897695	
79	Н	8.1454	197	-0.6452	225	-2.511717	
SCF Done: E()	RmPW1PW91)		=	-1822.285	518977 Hartree/Pai	A.U.	
Thermal correcti	on to Energy		_	0.682874			
Thermal correcti	on to Enthalny		=	0.683819			
Thermal correcti	on to Gibbs Fre	e Energy	=	0 574491			
Sum of electroni	c and zero-poin	t Energies	=	-1821 640	750		
Sum of electroni	Sum of electronic and thermal Energies =				-1821.604165		
Sum of electronic and thermal Enthalpies =				-1821.603220			
Sum of electronic and thermal Free Energies =				-1821.712548			
		8					
Low frequencies	-0.0008	0.0007	0.0007	1.6425	3.4167	5.3085	
Low frequencies	9.3932	11.2260	19.7711				

The Result for the TDDFT calculation

Excited State	1:	Singlet-A	1.1847 eV 1046.56 nm	f=0.2006	<s**2>=0.000</s**2>
154 -> 1	57	0.11465			
155 -> 1	57	-0.34903			
156 -> 1	57	0.63016			
156 <- 1	57	-0.19191			

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1822.33556410

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2: Single	t-A 1.41/0 eV	8/4.96 nm	t=0.1381	<s**2>=0.000</s**2>
153 -> 157	0.1049	1			
154 -> 157	-0.1282	l			
155 -> 157	0.5825	5			
156 -> 157	0.3890	7			
156 <- 157	-0.1499	l			
Excited State	3: Single	t-A 2.0606 eV	V 601.68 nm	f=0.0972	<s**2>=0.000</s**2>
153 -> 157	0.1085	5			
154 -> 157	0.6648	4			
155 -> 157	0.1442	3			
Excited State	4: Single	t-A 2.3035 eV	V 538.24 nm	f=0.0549	<s**2>=0.000</s**2>
146 -> 157	-0.13949)			
149 -> 157	-0.2246	7			
150 -> 157	0.2083	0			
153 -> 157	0.5950	3			
Excited State	5: Single	t-A 2.4652 eV	V 502.94 nm	f=0.1079	<s**2>=0.000</s**2>
Excited State 146 -> 157	5: Single -0.23402	t-A 2.4652 eV 2	V 502.94 nm	f=0.1079	<s**2>=0.000</s**2>
Excited State 146 -> 157 149 -> 157	5: Single -0.23402 -0.24574	t-A 2.4652 eV 2 4	√ 502.94 nm	f=0.1079	<s**2>=0.000</s**2>
Excited State 146 -> 157 149 -> 157 150 -> 157	5: Single -0.23402 -0.24574 0.4493	t-A 2.4652 eV 2 4 0	√ 502.94 nm	f=0.1079	<s**2>=0.000</s**2>
Excited State 146 -> 157 149 -> 157 150 -> 157 151 -> 157	5: Single -0.23402 -0.24574 0.4493 0.1007	t-A 2.4652 eV 2 4 0 6	√ 502.94 nm	f=0.1079	<s**2>=0.000</s**2>
Excited State 146 -> 157 149 -> 157 150 -> 157 151 -> 157 152 -> 157	5: Single -0.23402 -0.24574 0.4493 0.1007 0.1964	t-A 2.4652 eV 2 4 6 6	√ 502.94 nm	f=0.1079	<s**2>=0.000</s**2>
Excited State 146 -> 157 149 -> 157 150 -> 157 151 -> 157 152 -> 157 153 -> 157	5: Single -0.23402 -0.24574 0.4493 0.1007 0.1964 -0.28104	t-A 2.4652 eV 2 4 0 6 6 4	√ 502.94 nm	f=0.1079	<s**2>=0.000</s**2>
Excited State 146 -> 157 149 -> 157 150 -> 157 151 -> 157 152 -> 157 153 -> 157 154 -> 157	5: Single -0.23402 -0.24574 0.4493 0.1007 0.1964 -0.28104 0.1166	t-A 2.4652 eV 2 4 0 6 6 4 0	√ 502.94 nm	f=0.1079	<s**2>=0.000</s**2>
Excited State 146 -> 157 149 -> 157 150 -> 157 151 -> 157 152 -> 157 153 -> 157 154 -> 157 156 -> 158	5: Single -0.23402 -0.24574 0.4493 0.1007 0.1964 -0.28104 0.1166 -0.12602	t-A 2.4652 eV 2 4 0 6 6 4 0 3	√ 502.94 nm	f=0.1079	<s**2>=0.000</s**2>
Excited State 146 -> 157 149 -> 157 150 -> 157 151 -> 157 152 -> 157 153 -> 157 154 -> 157 156 -> 158	5: Single -0.23402 -0.24574 0.4493 0.1007 0.1964 -0.28104 0.1166 -0.12602	t-A 2.4652 eV 2 4 0 6 6 4 0 3	√ 502.94 nm	f=0.1079	<s**2>=0.000</s**2>
Excited State 146 -> 157 149 -> 157 150 -> 157 151 -> 157 152 -> 157 153 -> 157 154 -> 157 156 -> 158 Excited State	 5: Single -0.23402 -0.24574 0.4493 0.1007 0.1964 -0.28104 0.1166 -0.12602 6: Single 	t-A 2.4652 eV 2 4 0 6 6 4 0 3 t-A 2.5799 eV	√ 502.94 nm √ 480.59 nm	f=0.1079 f=0.0194	<s**2>=0.000 <s**2>=0.000</s**2></s**2>
Excited State 146 -> 157 149 -> 157 150 -> 157 151 -> 157 152 -> 157 153 -> 157 154 -> 157 156 -> 158 Excited State 147 -> 157	 5: Single -0.23402 -0.24574 0.4493 0.1007 0.1964 -0.28104 0.1166 -0.12602 6: Single 0.1335 	t-A 2.4652 eV 2 4 0 6 6 4 0 3 t-A 2.5799 eV 3	√ 502.94 nm √ 480.59 nm	f=0.1079 f=0.0194	<s**2>=0.000 <s**2>=0.000</s**2></s**2>
Excited State 146 -> 157 149 -> 157 150 -> 157 151 -> 157 152 -> 157 153 -> 157 154 -> 157 156 -> 158 Excited State 147 -> 157 149 -> 157	 5: Single -0.23402 -0.24574 0.4493 0.1007 0.1964 -0.28104 0.1166 -0.12603 6: Single 0.1335 -0.25467 	t-A 2.4652 eV 2 4 0 6 6 6 4 0 3 t-A 2.5799 eV 3 7	✓ 502.94 nm✓ 480.59 nm	f=0.1079 f=0.0194	<s**2>=0.000 <s**2>=0.000</s**2></s**2>
Excited State 146 -> 157 149 -> 157 150 -> 157 151 -> 157 152 -> 157 153 -> 157 154 -> 157 156 -> 158 Excited State 147 -> 157 149 -> 157 150 -> 157	 5: Single -0.23402 -0.24574 0.4493 0.1007 0.1964 -0.28104 0.1166 -0.12603 6: Single 0.1335 -0.25466 -0.41293 	t-A 2.4652 eV 2 4 0 6 6 6 4 0 3 t-A 2.5799 eV 3 7 5	 502.94 nm 480.59 nm 	f=0.1079 f=0.0194	<s**2>=0.000 <s**2>=0.000</s**2></s**2>
Excited State $146 \rightarrow 157$ $149 \rightarrow 157$ $150 \rightarrow 157$ $151 \rightarrow 157$ $152 \rightarrow 157$ $153 \rightarrow 157$ $154 \rightarrow 157$ $156 \rightarrow 158$ Excited State $147 \rightarrow 157$ $149 \rightarrow 157$ $150 \rightarrow 157$ $151 \rightarrow 157$	 5: Single -0.23402 -0.24574 0.4493 0.1007 0.1964 -0.28104 0.1166 -0.12602 6: Single 0.1335 -0.25467 -0.41292 0.1176 	t-A 2.4652 eV 2 4 0 6 6 4 0 3 t-A 2.5799 eV 3 7 5 9	✓ 502.94 nm✓ 480.59 nm	f=0.1079 f=0.0194	<s**2>=0.000 <s**2>=0.000</s**2></s**2>
Excited State $146 \rightarrow 157$ $149 \rightarrow 157$ $150 \rightarrow 157$ $151 \rightarrow 157$ $152 \rightarrow 157$ $153 \rightarrow 157$ $154 \rightarrow 157$ $156 \rightarrow 158$ Excited State $147 \rightarrow 157$ $149 \rightarrow 157$ $150 \rightarrow 157$ $151 \rightarrow 157$ $151 \rightarrow 157$ $152 \rightarrow 157$	 5: Single -0.23402 -0.24574 0.4493 0.1007 0.1964 -0.28104 0.1166 -0.12602 6: Single 0.1335 -0.25467 -0.41292 0.1176 0.4521 	t-A 2.4652 eV 2 4 0 6 6 4 0 3 t-A 2.5799 eV 3 7 5 9 9	 ✓ 502.94 nm ✓ 480.59 nm 	f=0.1079 f=0.0194	<s**2>=0.000 <s**2>=0.000</s**2></s**2>
Excited State $146 \rightarrow 157$ $149 \rightarrow 157$ $150 \rightarrow 157$ $151 \rightarrow 157$ $152 \rightarrow 157$ $153 \rightarrow 157$ $154 \rightarrow 157$ $156 \rightarrow 158$ Excited State $147 \rightarrow 157$ $149 \rightarrow 157$ $150 \rightarrow 157$ $151 \rightarrow 157$ $152 \rightarrow 157$ $152 \rightarrow 158$	 5: Single -0.23402 -0.24574 0.4493 0.1007 0.1964 -0.28104 0.1166 -0.12602 6: Single 0.1335 -0.25462 -0.41292 0.1176 0.4521 -0.10512 	t-A 2.4652 eV 2 4 0 6 6 6 4 0 3 t-A 2.5799 eV 3 7 5 9 9 9 5	 ✓ 502.94 nm ✓ 480.59 nm 	f=0.1079 f=0.0194	<s**2>=0.000 <s**2>=0.000</s**2></s**2>

Excited State 7:	Singlet-A	2.6209 eV	473.06 nm	f=0.0014	<s**2>=0.000</s**2>
147 -> 157	0.63903				
149 -> 157	0.17960				
151 -> 157	0.18919				
Excited State 8:	Singlet-A	2.6613 eV	465.88 nm	f=0.0194	<s**2>=0.000</s**2>
149 -> 157	0.39641				
150 -> 157	0.19796				
151 -> 157	-0.21717				
152 -> 157	0.44118				
153 -> 157	0.16100				
156 -> 158	-0.11466				
Excited State 9:	Singlet-A	2.7057 eV	458.24 nm	f=0.0070	<s**2>=0.000</s**2>
147 -> 157	-0.24056				
149 -> 157	0.21366				
151 -> 157	0.61843				
Excited State 10:	Singlet-A	2.8274 eV	438.52 nm	f=0.0183	<s**2>=0.000</s**2>
146 -> 157	0.56661				
148 -> 157	0.27122				
149 -> 157	-0.25413				
150 -> 157	0.12733				
Excited State 11:	Singlet-A	2.8900 eV	429.01 nm	f=0.0016	<s**2>=0.000</s**2>
146 -> 157	-0.26796				
148 -> 157	0.63964				
Excited State 12:	Singlet-A	3.1451 eV	394.21 nm	f=0.0298	<s**2>=0.000</s**2>
144 -> 157	-0.33994				
145 -> 157	0.49322				
156 -> 158	-0.30753				
Excited State 13:	Singlet-A	3.3011 eV	375.58 nm	f=0.2291	<s**2>=0.000</s**2>
142 -> 157	0.20766				

143 -> 157	0.17945				
144 -> 157	-0.37341				
152 -> 157	0.14382				
156 -> 158	0.45972				
156 -> 159	-0.10580				
Excited State 14:	Singlet-A	3.3710 eV	367.80 nm	f=0.1278	<s**2>=0.000</s**2>
144 -> 157	0.42292				
145 -> 157	0.45022				
149 -> 157	-0.10501				
156 -> 158	0.24892				
Excited State 15:	Singlet-A	3.5277 eV	351.46 nm	f=0.0586	<s**2>=0.000</s**2>
143 -> 157	0.61932				
144 -> 157	0.17981				
156 -> 158	-0.14614				
156 -> 160	0.15417				
Excited State 16:	Singlet-A	3.6502 eV	339.66 nm	f=0.1045	<s**2>=0.000</s**2>
142 -> 157	0.11810				
156 -> 159	0.66823				
Excited State 17:	Singlet-A	3.7448 eV	331.09 nm	f=0.0548	<s**2>=0.000</s**2>
142 -> 157	-0.13780				
143 -> 157	-0.12841				
156 -> 160	0.64997				
Excited State 18:	Singlet-A	3.7935 eV	326.84 nm	f=0.0717	<s**2>=0.000</s**2>
141 -> 157	-0.26896				
142 -> 157	0.51605				
143 -> 157	-0.18279				
155 -> 158	0.23495				
156 -> 158	-0.12248				
156 -> 160	0.10009				
Excited State 19:	Singlet-A	3.8723 eV	320.19 nm	f=0.0169	<s**2>=0.000</s**2>

141 -> 157	-0.34824				
142 -> 157	-0.13998				
155 -> 158	0.11505				
156 -> 161	0.56469				
Excited State 20:	Singlet-A	3.9210 eV	316.20 nm	f=0.0551	<s**2>=0.000</s**2>
141 -> 157	0.51135				
142 -> 157	0.22978				
155 -> 158	0.17845				
156 -> 161	0.33773				

 Table S15. Standard orientation of the optimized geometry for the quinoidal form 2 of the ringopening form of CIC-tBuPh.

	a 1.1		Coordinates	
Tag	Symbol	Х	Y	Ζ
1	С	-1.575434	5.085334	-0.343121
2	С	-0.962143	3.931469	0.075433
3	С	-1.705183	2.747895	0.328245
4	С	-3.096534	2.748885	-0.040592
5	С	-3.715906	3.976499	-0.399362
6	С	-2.973909	5.116637	-0.552229
7	С	-3.838297	1.553810	-0.218837
8	С	-1.079998	1.669330	1.036651
9	Ν	-3.268615	0.314390	-0.332475
10	С	-4.284415	-0.502546	-0.530811
11	С	-5.526645	0.296652	-0.520185
12	Ν	-5.201974	1.567642	-0.371264
13	С	-6.923341	-0.116945	-0.609561
14	С	-4.059591	-1.920353	-0.800496
15	С	0.313020	1.404902	0.842898
16	С	0.913896	0.403145	1.544839
17	С	0.175363	-0.355988	2.545898
18	С	-1.194121	-0.046372	2.782322
19	С	-1.796330	0.918546	2.029070
20	С	2.248384	-0.175685	1.576573
21	С	2.168913	-1.184860	2.571908

22	Ν	0.905350	-1.278195	3.148319
23	С	3.423924	0.054804	0.889957
24	С	4.561940	-0.726277	1.182998
25	С	4.466720	-1.717872	2.171009
26	С	3.283819	-1.957620	2.870177
27	С	-4.886998	-2.664109	-1.655981
28	С	-4.602972	-3.997001	-1.925907
29	С	-3.494150	-4.609588	-1.347122
30	С	-2.659439	-3.877023	-0.504306
31	С	-2.933894	-2.543839	-0.237466
32	С	-7.869883	0.781278	-1.128911
33	С	-9.211821	0.436787	-1.185812
34	С	-9.637531	-0.804057	-0.712380
35	С	-8.711336	-1.695564	-0.177191
36	С	-7.364516	-1.358384	-0.125859
37	С	5.826199	-0.503391	0.454537
38	С	6.240821	0.781400	0.090785
39	С	7.430534	0.990053	-0.599155
40	С	8.263078	-0.072211	-0.959842
41	С	7.843957	-1.358112	-0.591848
42	С	6.659378	-1.572086	0.095792
43	С	9.574570	0.116891	-1.725198
44	С	9.863984	1.590398	-2.026621
45	С	10.740086	-0.440995	-0.890728
46	С	9.496965	-0.639916	-3.062329
47	Н	-0.990669	5.990242	-0.471351
48	Н	0.092114	3.951007	0.327439
49	Н	-4.778857	3.956708	-0.607948
50	Н	-3.452572	6.041397	-0.856982
51	Н	0.854808	1.954076	0.079672
52	Н	-1.730577	-0.572624	3.563926
53	Н	-2.831336	1.178821	2.213784
54	Н	3.476933	0.804392	0.105972
55	Н	5.351156	-2.296924	2.416477
56	Н	3.230637	-2.721345	3.638287
57	Н	-5.738081	-2.189155	-2.130606

58	Н	-5.24568	9	-4.5568	869	-2.597713	
59	Н	-3.27834	7	-5.6527	27	-1.555263	
60	Н	-1.79194	0	-4.3476	555	-0.053061	
61	Н	-2.28980	7	-1.9625	585	0.412928	
62	Н	-7.52645	7	1.7460	68	-1.484212	
63	Н	-9.93115	1	1.1365	73	-1.599075	
64	Н	-10.68842	25	-1.0718	340	-0.755714	
65	Н	-9.03937	7	-2.6550)32	0.209399	
66	Н	-6.65233	5	-2.0487	/12	0.311382	
67	Н	5.63878	3	1.6386	28	0.376907	
68	Н	7.70829	0	2.0079	75	-0.847257	
69	Н	8.44962	2	-2.2195	518	-0.857229	
70	Н	6.35763	2	-2.5875	500	0.333618	
71	Н	10.80802	20	1.6745	75	-2.574002	
72	Н	9.08213	8	2.0400	10	-2.647050	
73	Н	9.95959	7	2.1824	14	-1.110805	
74	Н	11.68562	20	-0.3214	96	-1.430935	
75	Н	10.61307	'9	-1.5055	579	-0.674644	
76	Н	10.82455	8	0.0857	14	0.064860	
77	Н	8.67825	5	-0.2586	69	-3.680412	
78	Н	10.43134	8	-0.5197	/02	-3.621496	
79	Н	9.33273	8	-1.7110	033	-2.914388	
SCF Done:	E(RmPW1PW91)		=	-1822.279	005122	A.U.	
Zero-point co	orrection=			0.646191 (Ha	artree/Parti	cle)	
Thermal corr	rection to Energy=		().682814			
Thermal corr	rection to Enthalpy=		0	.683758			
Thermal corr	rection to Gibbs Free	Energy=	0.5	74127			
Sum of elect	ronic and zero-point l	Energies=		1821.638131	l		
Sum of elect	ronic and thermal End	ergies=		-1821.60150	8		
Sum of elect	ronic and thermal Ent	thalpies=		-1821.600564	4		
Sum of elect	ronic and thermal Fre	e Energies=	-	1821.710195	;		
Low frequen	cies2.1144	-0.0015	0.0011	0.0018	1.3364	5.9211	

Low frequencies ----11.6318 21.7462 9.7779

The Result for the TDDFT calculation

Excited State 1: Singlet-A 1.0874 eV 1140.22 nm f=0.2372 <S**2>=0.000 155 -> 157 0.39221 156 -> 157 0.60053 156 <- 157 -0.17500

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1822.33603444

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	Singlet-A	1.4811 eV	837.11 nm	f=0.3117	<s**2>=0.000</s**2>
154 -> 157		-0.11308				
155 -> 157		0.56786				
156 -> 157		-0.43722				
156 <- 157		0.17905				
Excited State	3:	Singlet-A	2.2137 eV	560.06 nm	f=0.0093	<s**2>=0.000</s**2>
153 -> 157		0.23348				
154 -> 157		0.63762				
155 -> 157		0.13201				
Excited State	4:	Singlet-A	2.2750 eV	544.98 nm	f=0.1638	<s**2>=0.000</s**2>
153 -> 157		0.63741				
154 -> 157		-0.22028				
Excited State	5:	Singlet-A	2.4317 eV	509.88 nm	f=0.1102	<s**2>=0.000</s**2>
146 -> 157		-0.31891				
149 -> 157		-0.34182				
150 -> 157		0.46678				
152 -> 157		-0.16096				
Excited State	6:	Singlet-A	2.5758 eV	481.35 nm	f=0.0146	<s**2>=0.000</s**2>
147 -> 157		0.58915				
150 -> 157		-0.20217				
151 -> 157		0.19591				

152 -> 157	-0.23175				
Excited State 7:	Singlet-A	2.5971 eV	477.40 nm	f=0.0391	<s**2>=0.000</s**2>
147 -> 157	0.34605				
149 -> 157	0.14720				
150 -> 157	0.30256				
152 -> 157	0.46449				
156 -> 158	-0.14719				
Excited State 8:	Singlet-A	2.6610 eV	465.93 nm	f=0.0165	<s**2>=0.000</s**2>
146 -> 157	0.11775				
149 -> 157	0.47266				
150 -> 157	0.32001				
152 -> 157	-0.34418				
156 -> 158	0.11834				
Excited State 9:	Singlet-A	2.7263 eV	454.76 nm	f=0.0013	<s**2>=0.000</s**2>
147 -> 157	-0.13929				
151 -> 157	0.66508				
152 -> 157	0.14750				
Excited State 10:	Singlet-A	2.8219 eV	439.36 nm	f=0.0368	<s**2>=0.000</s**2>
146 -> 157	0.53214				
148 -> 157	-0.25856				
149 -> 157	-0.31065				
150 -> 157	0.12960				
Excited State 11:	Singlet-A	2.8813 eV	430.30 nm	f=0.0018	<s**2>=0.000</s**2>
146 -> 157	0.24598				
148 -> 157	0.64509				
150 -> 157	0.11875				
Excited State 12:	Singlet-A	3.1411 eV	394.72 nm	f=0.0218	<s**2>=0.000</s**2>
144 -> 157	-0.24734				
145 -> 157	0.56828				
156 -> 158	-0.26238				

Excited State	13:	Singlet-A	3.2679 eV	379.40 nm	f=0.0241	<s**2>=0.000</s**2>
144 -> 157	7	0.63260				
145 -> 157	7	0.21994				
156 -> 158	3	-0.11866				
Excited State	14:	Singlet-A	3.3519 eV	369.89 nm	f=0.1791	<s**2>=0.000</s**2>
142 -> 157	7	-0.10715				
143 -> 157	7	-0.20984				
145 -> 157	7	0.26232				
152 -> 157	7	0.13447				
156 -> 158	3	0.51375				
156 -> 160)	-0.20064				
Excited State	15:	Singlet-A	3.5616 eV	348.11 nm	f=0.1897	<s**2>=0.000</s**2>
142 -> 157	7	-0.20984				
143 -> 157	7	0.49551				
145 -> 157	7	0.12668				
155 -> 158	3	0.11025				
156 -> 158	3	0.19282				
156 -> 159)	-0.21966				
156 -> 160)	0.25381				

Table S16. Standard orientation of the optimized geometry for the closed form of CIC-TPA.

Tag	Symbol		Coordinates	
Tag	Symbol	Х	Y	Z
1	С	5.383916	-0.583191	4.207363
2	С	4.920602	-1.585047	5.056408
3	С	4.118741	-2.621888	4.575859
4	С	3.76131	-2.681324	3.227831
5	С	4.219929	-1.684325	2.385952
6	С	5.026591	-0.642246	2.864735
7	С	3.972042	-1.532278	0.869227
8	Ν	4.727497	-0.295432	0.624547
9	С	5.312155	0.227753	1.743197
10	С	4.919709	0.603964	-0.402578

11	С	5.671896	1.626423	0.179864
12	Ν	5.896076	1.375336	1.516032
13	С	6.217387	2.843336	-0.434855
14	С	4.320254	0.455579	-1.73675
15	С	3.464303	1.452342	-2.224656
16	С	2.877447	1.328297	-3.477891
17	С	3.129273	0.20464	-4.261348
18	С	3.981006	-0.789042	-3.788469
19	С	4.578094	-0.662294	-2.538721
20	С	6.505891	3.944291	0.382685
21	С	7.030226	5.111199	-0.158114
22	С	7.280227	5.201991	-1.525265
23	С	7.010289	4.108948	-2.344115
24	С	6.488708	2.938174	-1.805837
25	С	2.502636	-1.331672	0.615051
26	С	1.787574	-2.253984	-0.042908
27	С	2.425338	-3.4542	-0.617927
28	С	3.849274	-3.639406	-0.487162
29	С	4.578081	-2.723469	0.16999
30	С	0.380889	-2.411732	-0.395516
31	С	0.331715	-3.630211	-1.1102
32	Ν	1.592545	-4.243082	-1.229569
33	С	-0.763723	-1.666624	-0.176831
34	С	-1.993242	-2.133947	-0.673953
35	С	-2.021323	-3.347192	-1.382895
36	С	-0.87282	-4.101481	-1.610385
37	С	-3.234433	-1.367108	-0.448771
38	С	-4.23465	-1.293086	-1.427673
39	С	-5.403225	-0.577499	-1.219119
40	С	-5.626476	0.084647	-0.004771
41	С	-4.634909	0.016482	0.982263
42	С	-3.462853	-0.688631	0.755948
43	Ν	-6.820721	0.798062	0.216844
44	С	-6.804978	2.006186	0.951755
45	С	-8.048597	0.295131	-0.274092
46	С	-8.349647	-1.068153	-0.17452

47	С	-9.554971	-1.556236	-0.664401
48	С	-10.485276	-0.696115	-1.242214
49	С	-10.191742	0.662075	-1.332999
50	С	-8.981393	1.156877	-0.862647
51	С	-7.803377	2.273261	1.895865
52	С	-7.792692	3.466527	2.6077
53	С	-6.781832	4.402721	2.406505
54	С	-5.782947	4.135225	1.473742
55	С	-5.795249	2.9531	0.743339
56	Н	6.006004	0.22538	4.574301
57	Н	5.1867	-1.55919	6.108074
58	Н	3.768452	-3.390581	5.25652
59	Н	3.138465	-3.486305	2.850921
60	Н	3.264888	2.324009	-1.610319
61	Н	2.214731	2.107647	-3.840168
62	Н	2.664518	0.104956	-5.236914
63	Н	4.187187	-1.664433	-4.395841
64	Н	5.255496	-1.430657	-2.183791
65	Н	6.316285	3.862974	1.447061
66	Н	7.24459	5.954523	0.491262
67	Н	7.689383	6.114239	-1.947923
68	Н	7.216569	4.162135	-3.408661
69	Н	6.305677	2.087557	-2.45241
70	Н	2.064921	-0.430855	1.035447
71	Н	4.304666	-4.512374	-0.942275
72	Н	5.652438	-2.826644	0.28543
73	Н	-0.72101	-0.716899	0.34764
74	Н	-2.976161	-3.720591	-1.738823
75	Н	-0.913315	-5.03966	-2.152544
76	Н	-4.076817	-1.772297	-2.388917
77	Н	-6.150044	-0.519003	-2.003174
78	Н	-4.795944	0.508472	1.935111
79	Н	-2.727698	-0.752095	1.552354
80	Н	-7.633868	-1.738802	0.288271
81	Н	-9.772953	-2.616199	-0.578825
82	Н	-11.428229	-1.079821	-1.617113

83	Н	-10.90)41	1.344	03	-1.78669	
84	Н	-8.750)46	2.2132	233	-0.946789	
85	Н	-8.584′	793	1.5406	666	2.066117	
86	Н	-8.5740	628	3.6575	522	3.336034	
87	Н	-6.772	272	5.3301	78	2.969218	
88	Н	-4.9929	909	4.8589	984	1.299345	
89	Н	-5.0239	995	2.7550)15	0.00693	
SCF Done:	E(RmPW1PW91)		=	-2182.43	313763	A.U.	
Zero-point c	orrection		=	0.714198	0.714198 (Hartree/Particle)		
Thermal co	prrection to Energy		=	0.755386	, ,		
Thermal correction to Enthalpy			=	0.756331			
Thermal co	prrection to Gibbs Fr	ee Energy	=	0.634315	5		
Sum of electronic and zero-point Energies				-2181.72	-2181.720720		
Sum of electronic and thermal Energies				-2181.67	-2181.679532		
Sum of electronic and thermal Enthalpies = -2181.678587							
Sum of electronic and thermal Free Energies = -2181.800603							
Low frequer	ncies3.2303	-0.0016	0.0013	0.0016	2.2587	3.8755	

Low frequencies --- 8.9801 10.1762 13.9271

The Result for the TDDFT calculation

Excited State 1:	Singlet-A	2.3660 eV	524.02 nm	f=0.1682	<s**2>=0.000</s**2>
182 -> 185	0.13923				
183 -> 185	-0.14705				
184 -> 185	0.67491				

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -2182.45360025

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	Singlet-A	2.4684 eV	502.29 nm	f=0.0238	<s**2>=0.000</s**2>
183 -> 185		0.68799				
184 -> 185		0.14846				

Excited State	3:	Singlet-A	3.0920 eV	400.98 nm	f=0.0220	<s**2>=0.000</s**2>
182 -> 185		0.67577				
184 -> 185		-0.14188				
Excited State	4:	Singlet-A	3.5371 eV	350.52 nm	f=0.2600	<s**2>=0.000</s**2>
180 -> 185		-0.18052				
182 -> 186		0.11067				
183 -> 186		-0.10087				
184 -> 186		0.60156				
184 -> 187		-0.20680				
184 -> 189		-0.14807				
Excited State	5:	Singlet-A	3.6865 eV	336.32 nm	f=0.1002	<s**2>=0.000</s**2>
183 -> 186		0.68084				
Excited State	6:	Singlet-A	3.7177 eV	333.50 nm	f=0.4321	<s**2>=0.000</s**2>
179 -> 185		0.10499				
180 -> 185		0.55890				
181 -> 185		0.15911				
182 -> 186		-0.10780				
184 -> 186		0.11893				
184 -> 189		-0.27658				
Excited State	7:	Singlet-A	3.7428 eV	331.26 nm	f=0.0204	<s**2>=0.000</s**2>
184 -> 190		0.68492				
Excited State	8:	Singlet-A	3.8391 eV	322.95 nm	f=0.0029	<s**2>=0.000</s**2>
170 -> 185		0.33929				
171 -> 185		0.15538				
179 -> 185		0.41910				
181 -> 185		-0.37305				
184 -> 187		0.10714				
Excited State	9:	Singlet-A	3.8482 eV	322.19 nm	f=0.1230	<s**2>=0.000</s**2>
180 -> 185		0.12990				
181 -> 185		0.10955				

184 -> 186	0.30346				
184 -> 187	0.48321				
184 -> 188	-0.10930				
184 -> 189	0.29733				
Excited State 10:	Singlet-A	3.9419 eV	314.53 nm	f=0.0005	<s**2>=0.000</s**2>
170 -> 185	0.52294				
171 -> 185	0.16637				
179 -> 185	-0.17401				
181 -> 185	0.36092				
E	Sin alat A	2.0950 -14	211.06	£-0.0057	< <u></u>
	Singlet-A	3.9859 eV	311.06 nm	I=0.095/	<5**2>=0.000
1/5 -> 185	0.10018				
179 -> 185	-0.18275				
181 -> 185	-0.14931				
183 -> 187	-0.12540				
184 -> 187	0.16907				
184 -> 189	-0.21793				
184 -> 191	0.56670				
Excited State 12:	Singlet-A	3.9879 eV	310.90 nm	f=0.0516	<s**2>=0.000</s**2>
170 -> 185	-0.10850				
175 -> 185	-0.21120				
179 -> 185	0.42706				
180 -> 185	-0.17648				
181 -> 185	0.32370				
183 -> 187	0.19372				
184 -> 191	0.26173				
Excited State 13:	Singlet-A	4.0007 eV	309.91 nm	f=0.1931	<s**2>=0.000</s**2>
179 -> 185	-0.14345				
180 -> 185	0.13948				
181 -> 185	-0.14860				
183 -> 187	0.61007				
183 -> 189	-0.12617				

Excited State 14:	Singlet-A	4.0075 eV	309.38 nm	f=0.0836	<s**2>=0.000</s**2>
176 -> 185	-0.10386				
180 -> 185	0.13084				
183 -> 187	-0.11238				
184 -> 187	-0.38591				
184 -> 189	0.41540				
184 -> 191	0.28146				
184 -> 192	0.12518				
Excited State 15:	Singlet-A	4.1007 eV	302.35 nm	f=0.1204	<s**2>=0.000</s**2>
176 -> 185	0.58410				
178 -> 185	0.17236				
183 -> 187	-0.10020				
183 -> 188	-0.26258				
184 -> 189	0.10457				
Excited State 16:	Singlet-A	4.1019 eV	302.26 nm	f=0.2124	<s**2>=0.000</s**2>
175 -> 185	0.10353				
176 -> 185	0.24643				
178 -> 185	0.10200				
183 -> 188	0.59724				
183 -> 189	0.11543				
184 -> 188	-0.13560				
Excited State 17:	Singlet-A	4.1737 eV	297.06 nm	f=0.0063	<s**2>=0.000</s**2>
183 -> 188	0.13444				
184 -> 188	0.66529				
184 -> 189	0.13583				
Excited State 18:	Singlet-A	4.1892 eV	295.96 nm	f=0.0066	<s**2>=0.000</s**2>
175 -> 185	0.62216				
176 -> 185	-0.15132				
179 -> 185	0.13152				
181 -> 185	0.17617				
Excited State 19:	Singlet-A	4.2388 eV	292.50 nm	f=0.0026	<s**2>=0.000</s**2>

173 -> 185	0.14229
174 -> 185	0.14707
177 -> 185	0.64601
184 -> 195	-0.11242

Excited State 20:	Singlet-A
170 -> 185	-0.14475
171 -> 185	0.16876
173 -> 185	0.36934
174 -> 185	-0.30226
175 -> 185	-0.14338
176 -> 185	-0.11539
178 -> 185	0.30352
182 -> 186	-0.23481

4.2710 eV 290.29 nm f=0.0231 <S**2>=0.000

Fig. S66. UV-vis absorption spectrum of CIC-TPA in benzene at room temperature. The calculated absorption spectrum MPW1PW91/6-31+G(d,p)//MPW1PW91/6-31G(d) level of the theory) is shown by the blue vertical lines. The relevant molecular orbitals of the CIC-TPA calculated at the MPW1PW91/6-31G(d) level of the theory.

No.	Wavelength (nm)	Coefficients	Elect	f		
		0.13923	182 HOMO-2	\rightarrow	185 LUMO	
1	524.02	-0.14705	183 HOMO-1	\rightarrow	185 LUMO	0.1682
_		0.67491	184 HOMO	\rightarrow	185 LUMO	
2	502.20	0.68799	183 HOMO-1	\rightarrow	185 LUMO	0.0228
2 50	502.29	0.14846	184 HOMO	\rightarrow	185 LUMO	0.0238
2	2 400.00	0.67577	182 HOMO-2	\rightarrow	185 LUMO	0.0220
3	400.98	-0.14188	184 HOMO	\rightarrow	186 LUMO+1	0.0220
		-0.18052	180 HOMO-4	\rightarrow	185 LUMO	_
		0.11067	182 HOMO-2	\rightarrow	186 LUMO+1	
4	228.08	-0.10087	183 HOMO-1	\rightarrow	186 LUMO+1	0.2600
4	528.08	0.60156	184 HOMO	\rightarrow	186 LUMO+1	0.2000
		-0.20680	184 HOMO	\rightarrow	187 LUMO+2	
		-0.14807	184 HOMO	\rightarrow	189 LUMO+3	

Table S17. Selected calculated electronic transition of CIC-TPA at the MPW1PW91/6-31G(d) level.

TPA.					
	G 1 1	Coordinates	Coordinates		
lag	Symbol	Х	Y	Ζ	
1	С	-6.572266	0.21834	-4.125188	
2	С	-6.631623	-1.173866	-4.208449	
3	С	-5.972434	-1.951683	-3.266585	
4	С	-5.246703	-1.379665	-2.213193	
5	С	-5.245621	0.037009	-2.092518	
6	С	-5.887677	0.810116	-3.080491	
7	С	-4.707116	0.747434	-0.951867	
8	С	-4.465449	-2.284461	-1.349385	
9	С	-3.084811	-2.051225	-1.136542	
10	С	-2.355364	-2.96134	-0.410475	
11	С	-2.97883	-4.123634	0.143449	
12	С	-4.342262	-4.356896	-0.066027	
13	С	-5.064125	-3.441036	-0.820816	
14	Ν	-4.434515	0.163542	0.24676	
15	С	-4.038318	1.162309	1.021991	
16	С	-4.04855	2.39987	0.213189	
17	Ν	-4.505079	2.098995	-0.992879	
18	С	-0.95629	-3.076449	-0.010843	
19	С	-0.902786	-4.285735	0.748412	
20	Ν	-2.111775	-4.915775	0.84065	
21	С	0.174847	-2.31604	-0.203574	
22	С	1.403131	-2.738397	0.358034	
23	С	1.440315	-3.931638	1.108012	
24	С	0.308257	-4.707074	1.309508	
25	С	2.624038	-1.944879	0.155812	
26	С	2.848928	-1.239873	-1.036827	
27	С	4.008073	-0.511065	-1.244221	
28	С	4.993011	-0.438107	-0.248889	
29	С	4.772815	-1.123924	0.954639	
30	С	3.619139	-1.865749	1.142682	
31	Ν	6.170981	0.301261	-0.450328	
32	С	7.399208	-0.150511	0.089388	

Table S18. Standard orientation of the singlet biradical form 1 of the ring-opening form of CIC-

33	С	6.147965	1.493215	-1.213476				
34	С	8.27957	0.75426	0.693165				
35	С	9.49154	0.311939	1.209414				
36	С	9.837487	-1.035558	1.148676				
37	С	8.959325	-1.938297	0.554466				
38	С	7.753289	-1.502728	0.018976				
39	С	7.155446	1.750829	-2.14985				
40	С	7.139205	2.927601	-2.888592				
41	С	6.114255	3.854976	-2.720261				
42	С	5.106873	3.596743	-1.79404				
43	С	5.124388	2.431293	-1.037371				
44	С	-3.60818	3.753318	0.532037				
45	С	-3.756774	0.940653	2.434996				
46	С	-4.190506	4.836042	-0.147705				
47	С	-3.769771	6.133556	0.101346				
48	С	-2.74796	6.375108	1.019367				
49	С	-2.146743	5.308267	1.682315				
50	С	-2.571989	4.007097	1.444418				
51	С	-3.971581	1.928135	3.409749				
52	С	-3.737138	1.654548	4.751358				
53	С	-3.282908	0.397145	5.141828				
54	С	-3.079373	-0.595338	4.183378				
55	С	-3.322348	-0.331892	2.843966				
56	Н	-7.068385	0.834075	-4.86807				
57	Н	-7.16907	-1.652056	-5.02105				
58	Н	-5.968916	-3.031973	-3.369216				
59	Н	-5.850278	1.887946	-2.975986				
60	Н	-2.621812	-1.171383	-1.571193				
61	Н	-4.813904	-5.236138	0.358846				
62	Н	-6.125822	-3.597199	-0.981375				
63	Н	0.131555	-1.380828	-0.753184				
64	Н	2.391262	-4.268892	1.506482				
65	Н	0.35012	-5.630461	1.876875				
66	Н	2.123231	-1.304846	-1.841224				
67	Н	4.165596	-0.003953	-2.189491				
68	Н	5.510173	-1.060868	1.747031				
70H8.0067751.8022620.75305671H10.1634611.0262621.67471172H10.781374-1.3783351.55914173H9.219517-2.9902440.49163574H7.07879-2.205942-0.45734875H7.9476281.024006-2.29306376H7.9276553.11247-3.61135977H6.1006714.769294-3.3039978H4.305884.314238-1.64627479H4.3464732.239541-0.30626880H-4.97514.632369-0.86725181H-4.2376.961595-0.422036	69	Н	3.464	734	-2.359	543	2.096716	
--	--------------	--	--------------	---------	-----------------------------	--------------	-----------	--
71H10.1634611.0262621.67471172H10.781374-1.3783351.55914173H9.219517-2.9902440.49163574H7.07879-2.205942-0.45734875H7.9476281.024006-2.29306376H7.9276553.11247-3.61135977H6.1006714.769294-3.3039978H4.305884.314238-1.64627479H4.3464732.239541-0.30626880H-4.97514.632369-0.86725181H-4.2376.961595-0.422036	70	Н	8.006	775	1.802	262	0.753056	
72H10.781374-1.3783351.55914173H9.219517-2.9902440.49163574H7.07879-2.205942-0.45734875H7.9476281.024006-2.29306376H7.9276553.11247-3.61135977H6.1006714.769294-3.3039978H4.305884.314238-1.64627479H4.3464732.239541-0.30626880H-4.97514.632369-0.86725181H-4.2376.961595-0.422036	71	Н	10.163461		1.026	262	1.674711	
73H9.219517-2.9902440.49163574H7.07879-2.205942-0.45734875H7.9476281.024006-2.29306376H7.9276553.11247-3.61135977H6.1006714.769294-3.3039978H4.305884.314238-1.64627479H4.3464732.239541-0.30626880H-4.97514.632369-0.86725181H-4.2376.961595-0.422036	72	Н	10.781	374	-1.378	3335	1.559141	
74H7.07879-2.205942-0.45734875H7.9476281.024006-2.29306376H7.9276553.11247-3.61135977H6.1006714.769294-3.3039978H4.305884.314238-1.64627479H4.3464732.239541-0.30626880H-4.97514.632369-0.86725181H-4.2376.961595-0.422036	73	Н	9.219	517	-2.990244		0.491635	
75H7.9476281.024006-2.29306376H7.9276553.11247-3.61135977H6.1006714.769294-3.3039978H4.305884.314238-1.64627479H4.3464732.239541-0.30626880H-4.97514.632369-0.86725181H-4.2376.961595-0.422036	74	Н	7.078	379	-2.205942		-0.457348	
76H7.9276553.11247-3.61135977H6.1006714.769294-3.3039978H4.305884.314238-1.64627479H4.3464732.239541-0.30626880H-4.97514.632369-0.86725181H-4.2376.961595-0.422036	75	Н	7.947	628	1.024	006	-2.293063	
77H6.1006714.769294-3.3039978H4.305884.314238-1.64627479H4.3464732.239541-0.30626880H-4.97514.632369-0.86725181H-4.2376.961595-0.422036	76	Н	7.927	655	3.112	247	-3.611359	
78H4.305884.314238-1.64627479H4.3464732.239541-0.30626880H-4.97514.632369-0.86725181H-4.2376.961595-0.422036	77	Н	6.100	671	4.769	294	-3.30399	
79H4.3464732.239541-0.30626880H-4.97514.632369-0.86725181H-4.2376.961595-0.422036	78	Н	4.305	588	4.314	238	-1.646274	
80H-4.97514.632369-0.86725181H-4.2376.961595-0.422036	79	Н	4.346	473	2.239	541	-0.306268	
81 H -4.237 6.961595 -0.422036	80	Н	-4.97	51	4.632	369	-0.867251	
	81	Н	-4.23	37	6.961	595	-0.422036	
82 H -2.417779 7.390985 1.211624	82	Н	-2.417	779	7.390	985	1.211624	
83 H -1.338303 5.488599 2.383459	83	Н	-1.338	303	5.488	599	2.383459	
84 H -2.084557 3.180581 1.948651	84	Н	-2.084	557	3.180	581	1.948651	
85 H -4.348986 2.901272 3.117412	85	Н	-4.348	986	2.901	272	3.117412	
86 H -3.918076 2.423687 5.49532	86	Н	-3.918	076	2.423	687	5.49532	
87 H -3.095398 0.188134 6.190267	87	Н	-3.095	398	0.188	134	6.190267	
88 H -2.732321 -1.578962 4.482725	88	Н	-2.732	321	-1.578	962	4.482725	
89 H -3.180136 -1.098315 2.090701	89	Н	-3.180	136	-1.098	315	2.090701	
SCF Done: $E(UmPW1PW91) = -2182.41188001$ A.U.	SCF Done:	E(UmPW1PW91)		=	-2182.41	188001	A.U.	
Zero-point correction = 0.710727 (Hartree/Particle)	Zero-point c	orrection		=	0.710727 (Hartree/Particle)			
Thermal correction to Energy $= 0.752570$	Thermal cor	rection to Energy		=	0.75257	0		
Thermal correction to Enthalpy $= 0.753514$	Thermal cor	rection to Enthalpy		=	0.75351	4		
Thermal correction to Gibbs Free Energy $=$ 0.628971	Thermal cor	rection to Gibbs Fre	e Energy	=	0.628971			
Sum of electronic and zero-point Energies = -2181.701153	Sum of elec	tronic and zero-point	Energies	=	-2181.701153			
Sum of electronic and thermal Energies = -2181.659310	Sum of elec	Sum of electronic and thermal Energies =				-2181.659310		
Sum of electronic and thermal Enthalpies = -2181.658366	Sum of elec	tronic and thermal E	nthalpies	=	-2181.65	-2181.658366		
Sum of electronic and thermal Free Energies = -2181.782909	Sum of elec	tronic and thermal Fi	ree Energies	=	-2181.78	32909		
Low frequencies4.7927 -1.0327 -0.0011 0.0007 0.0013 3.2245	Low freque	ncies4.7927	-1.0327	-0.0011	0.0007	0.0013	3.2245	
Low frequencies 6.5450 8.0856 10.4699	Low freque	ncies 6.5450	8.0856	10.4699		0.0012		

The Result for the TDDFT calculation

Excited State 1: 3.000-A -0.6342 eV -1954.99 nm f=- $0.0000 < S^{**}2 >= 2.000$ 183A -> 185A -0.24663184A -> 185A 0.69148 183B -> 185B 0.24663 184B -> 185B -0.69148184A <- 185A -0.21103184B <- 185B 0.21103

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -2182.52613671

Excited State	2:	3.000-A	0.7132 eV 1738.48 nm	f=0.0000	<s**2>=2.000</s**2>
182A -> 185	5A	-0.30104			
183A -> 185	5A	0.60068			
184A -> 185	5A	0.23548			
182B -> 185	5B	0.30104			
183B -> 185	5B	-0.60068			
184B -> 185	5B	-0.23548			
Excited State	3:	1.000-A	0.8696 eV 1425.80 nm	f=0.2759	<s**2>=0.000</s**2>
182A -> 185	5A	-0.10449			
183A -> 185	5A	0.18225			
184A -> 185	5A	0.73708			
182B -> 185	5B	-0.10449			
183B -> 185	5B	0.18225			
184B -> 185	5B	0.73708			
184A <- 185	5A	-0.30481			
184B <- 185	5B	-0.30481			
Excited State	4:	3.000-A	1.1748 eV 1055.35 nm	f=0.0000	<s**2>=2.000</s**2>

Exclied State 4.	5.000-A	1.1/48 eV 1055.55 mm	1-0.0000	<u> </u>
182A -> 185A	0.62699			
183A -> 185A	0.26811			
184A -> 185A	0.10022			
182B -> 185B	-0.62699			

183B -> 185	5B	-0.26811				
184B -> 185	5B	-0.10022				
Excited State	5:	1.000-A	1.2056 eV	1028.36 nm	f=0.1147	<s**2>=0.000</s**2>
182A -> 185	5A	-0.35452				
183A -> 185	5A	0.57477				
184A -> 185	5A	-0.26475				
182B -> 185	5B	-0.35452				
183B -> 185	5B	0.57477				
184B -> 185	5B	-0.26475				
184A <- 185	5A	0.16537				
184B <- 185	5B	0.16537				
Excited State	6:	1.000-A	1.4409 eV	860.47 nm	f=0.0868	<s**2>=0.000</s**2>
181A -> 185	5A	0.11613				
182A -> 185	5A	0.58490				
183A -> 185	5A	0.37523				
181B -> 185	5B	0.11613				
182B -> 185	5B	0.58490				
183B -> 185	5B	0.37523				
Excited State	7:	3.000-A	1.5479 eV	800.98 nm	f=0.0000	<s**2>=2.000</s**2>
181A -> 185	5A	0.67196				
181B -> 185	5B	-0.67196				
Excited State	8:	3.000-A	1.8246 eV	679.52 nm	f=0.0000	<s**2>=2.000</s**2>
180A -> 185	5A	0.66357				
181A -> 185	5A	-0.10306				
180B -> 185	5B	-0.66357				
181B -> 185	5B	0.10306				
Excited State	9:	1.000-A	1.9981 eV	620.50 nm	f=0.0889	<s**2>=0.000</s**2>
180A -> 185	5A	-0.16921				
181A -> 185	5A	0.66724				
180B -> 185	5B	-0.16921				
181B -> 185	5B	0.66724				

Excited State 10:	3.000-A	2.0250 eV	612.27 nm	f=0.0000	<s**2>=2.000</s**2>
173A -> 185A	-0.13929				
179A -> 185A	0.66864				
173B -> 185B	0.13929				
179B -> 185B	-0.66864				
Excited State 11:	3.000-A	2.1309 eV	581.83 nm	f=0.0000	<s**2>=2.000</s**2>
171A -> 185A	-0.41639				
172A -> 185A	0.52981				
173A -> 185A	0.13970				
171B -> 185B	0.41639				
172B -> 185B	-0.52981				
173B -> 185B	-0.13970				
Excited State 12:	1.000-A	2.1533 eV	575.80 nm	f=0.0306	<s**2>=0.000</s**2>
173A -> 185A	-0.22362				
179A -> 185A	0.40311				
180A -> 185A	0.50055				
173B -> 185B	-0.22362				
179B -> 185B	0.40311				
180B -> 185B	0.50055				
Excited State 13:	3.000-A	2.2626 eV	547.98 nm	f=0.0000	<s**2>=2.000</s**2>
173A -> 185A	0.26369				
174A -> 185A	-0.10858				
178A -> 185A	0.61760				
173B -> 185B	-0.26369				
174B -> 185B	0.10858				
178B -> 185B	-0.61760				
Excited State 14:	3.000-A	2.3754 eV	521.96 nm	f=0.0000	<s**2>=2.000</s**2>
169A -> 185A	0.15002				
173A -> 185A	-0.12596				
174A -> 185A	0.56703				
177A -> 185A	-0.25853				

178A -> 185A	0.16532
169B -> 185B	-0.15002
173B -> 185B	0.12596
174B -> 185B	-0.56703
177B -> 185B	0.25853
178B -> 185B	-0.16532

Excited State 15: 3.000-A 2.4064 eV 515.23 nm f=0.0000 <S**2>=2.000 169A -> 185A 0.17759 173A -> 185A 0.49124 175A -> 185A -0.21479 177A -> 185A -0.21425 178A -> 185A -0.23428 179A -> 185A 0.14653 180A -> 185A 0.10750169B -> 185B -0.17759 173B -> 185B -0.49124 175B -> 185B 0.21479 177B -> 185B 0.21425 178B -> 185B 0.23428 179B -> 185B -0.14653 180B -> 185B -0.10750

Table S19. Standard orientation of the singlet biradical form 2 of the ring-opening form of CIC-

TPA.							
T	Served al		Coordinates				
Tag	Symbol	Х	Y	Z			
1	С	4.671311	4.990749	-1.199617			
2	С	3.437998	4.866666	-1.840149			
3	С	2.883602	3.608155	-2.034156			
4	С	3.524875	2.443042	-1.595519			
5	С	4.747474	2.578039	-0.884331			
6	С	5.312458	3.859356	-0.729854			
7	С	5.414614	1.481094	-0.213185			
8	С	2.919185	1.149424	-1.972601			
9	С	1.549058	0.922672	-1.717914			

10	С	0.973302	-0.257160	-2.134164
11	С	1.739642	-1.230433	-2.844443
12	С	3.093985	-0.997061	-3.117616
13	С	3.667334	0.183997	-2.672849
14	Ν	4.814199	0.297257	0.082867
15	С	5.734817	-0.386468	0.746568
16	С	6.959383	0.440406	0.811962
17	Ν	6.700105	1.603943	0.235097
18	С	-0.358682	-0.845683	-2.033132
19	С	-0.243990	-2.100427	-2.706004
20	Ν	1.012546	-2.334834	-3.191792
21	С	-1.554403	-0.450021	-1.480336
22	С	-2.685465	-1.296418	-1.583374
23	С	-2.558816	-2.529185	-2.253078
24	С	-1.357011	-2.940432	-2.813302
25	С	-3.970733	-0.889873	-0.997083
26	С	-4.028912	-0.127537	0.180155
27	С	-5.236154	0.246057	0.746282
28	С	-6.449244	-0.114692	0.142821
29	С	-6.405251	-0.866570	-1.040244
30	С	-5.192479	-1.249664	-1.587324
31	Ν	-7.677907	0.267309	0.708580
32	С	-8.793424	-0.601623	0.647727
33	С	-7.808809	1.521868	1.351064
34	С	-10.065549	-0.098137	0.353720
35	С	-11.161855	-0.950822	0.309439
36	С	-11.007202	-2.315617	0.538628
37	С	-9.740693	-2.819225	0.824072
38	С	-8.641309	-1.971816	0.889088
39	С	-8.503218	1.626560	2.561369
40	С	-8.643359	2.861786	3.182308
41	С	-8.081496	4.004924	2.619682
42	С	-7.383579	3.901067	1.419173
43	С	-7.253801	2.673404	0.781161
44	С	8.290556	0.138094	1.325226
45	С	5.420215	-1.687712	1.323210

46	С	9.103446	1.193957	1.770410
47	С	10.388869	0.949550	2.228897
48	С	10.895710	-0.349820	2.234852
49	С	10.108310	-1.401787	1.773928
50	С	8.815586	-1.163822	1.323825
51	С	6.025662	-2.159128	2.499058
52	С	5.655371	-3.385001	3.037554
53	С	4.681159	-4.160095	2.412996
54	С	4.063721	-3.695290	1.251956
55	С	4.420788	-2.467571	0.715800
56	Н	5.121464	5.967991	-1.059867
57	Н	2.920643	5.746312	-2.209501
58	Н	1.953100	3.510055	-2.584280
59	Н	6.257376	3.930304	-0.204302
60	Н	0.980343	1.667916	-1.169793
61	Н	3.669339	-1.730616	-3.671798
62	Н	4.712429	0.385508	-2.880476
63	Н	-1.652144	0.515445	-0.993570
64	Н	-3.417700	-3.190204	-2.299936
65	Н	-1.267631	-3.897143	-3.316297
66	Н	-3.109108	0.136761	0.692028
67	Н	-5.247723	0.809549	1.672526
68	Н	-7.331288	-1.136336	-1.535559
69	Н	-5.191779	-1.801388	-2.521828
70	Н	-10.186783	0.962449	0.162257
71	Н	-12.141995	-0.544732	0.080052
72	Н	-11.864268	-2.979337	0.496216
73	Н	-9.606210	-3.879456	1.013953
74	Н	-7.659103	-2.364604	1.128361
75	Н	-8.930903	0.735588	3.007950
76	Н	-9.184711	2.926534	4.120891
77	Н	-8.187066	4.966401	3.110905
78	Н	-6.947912	4.785098	0.964290
79	Н	-6.723707	2.598236	-0.162071
80	Н	8.701064	2.200156	1.748046
81	Н	11.001404	1.773441	2.580855

82	Н	11.903289	-0.539660	2.590798
83	Н	10.504620	-2.411900	1.757188
84	Н	8.217603	-1.985145	0.945939
85	Н	6.766938	-1.551049	3.004672
86	Н	6.123689	-3.732281	3.952903
87	Н	4.397947	-5.119838	2.833414
88	Н	3.298772	-4.291801	0.765490
89	Н	3.939435	-2.088633	-0.178668
SCF Done: H	E(UmPW1PW91)	=	-2182.03047883	A.U.
Zero-point cor	rection=		0.710584 (Hartree/Part	ticle)
Thermal corre	ction to Energy=		0.752474	
Thermal corre	ction to Enthalpy=		0.753418	
Thermal corre	ction to Gibbs Free l	Energy=	0.628385	
Sum of electro	onic and zero-point E	inergies=	-2181.700429	
Sum of electro	onic and thermal Ene	rgies=	-2181.658539	
Sum of electro	onic and thermal Ent	halpies=	-2181.657595	
Sum of electro	onic and thermal Free	e Energies=	-2181.782628	

Low frequencies	-4.7683	-1.1625	-0.0018	0.0008	0.0016	1.9052
Low frequencies	5.6064	8.8222	10.0424			

The Result for the TDDFT calculation

Excited State	1:	3.000-A	-0.5857 eV	-2116.80 nm	f=-0.0000	<s**2>=2.000</s**2>
183A ->	185A	-0.25212				
184A ->	185A	0.71923				
183B ->	185B	0.25212				
184B ->	185B	-0.71923				
184A <-	185A	-0.29229				
184B <-	185B	0.29229				

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -2182.51976530

Excited State 2:	3.000-A	0.6113 eV 2028.34 nm	f=0.0000	<s**2>=2.000</s**2>
182A -> 185A	-0.37956			
183A -> 185A	0.56110			
184A -> 185A	0.23949			
182B -> 185B	0.37956			
183B -> 185B	-0.56110			
184B -> 185B	-0.23949			
Excited State 3:	1.000-A	0.7227 eV 1715.45 nm	f=0.3161	<s**2>=0.000</s**2>
182A -> 185A	-0.17859			
183A -> 185A	0.16548			
184A -> 185A	0.74918			
182B -> 185B	-0.17859			
183B -> 185B	0.16548			
184B -> 185B	0.74918			
184A <- 185A	-0.35366			
184B <- 185B	-0.35366			
Excited State 4:	3.000-A	1.0711 eV 1157.49 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 4: 182A -> 185A	3.000-A 0.58648	1.0711 eV 1157.49 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 4: 182A -> 185A 183A -> 185A	3.000-A 0.58648 0.34713	1.0711 eV 1157.49 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 4: 182A -> 185A 183A -> 185A 184A -> 185A	3.000-A 0.58648 0.34713 0.12480	1.0711 eV 1157.49 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 4: 182A -> 185A 183A -> 185A 184A -> 185A 182B -> 185B	3.000-A 0.58648 0.34713 0.12480 -0.58648	1.0711 eV 1157.49 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 4: 182A -> 185A 183A -> 185A 184A -> 185A 182B -> 185B 183B -> 185B	3.000-A 0.58648 0.34713 0.12480 -0.58648 -0.34713	1.0711 eV 1157.49 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 4: 182A -> 185A 183A -> 185A 184A -> 185A 182B -> 185B 183B -> 185B 184B -> 185B	3.000-A 0.58648 0.34713 0.12480 -0.58648 -0.34713 -0.12480	1.0711 eV 1157.49 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 4: 182A -> 185A 183A -> 185A 184A -> 185A 182B -> 185B 183B -> 185B 184B -> 185B	3.000-A 0.58648 0.34713 0.12480 -0.58648 -0.34713 -0.12480	1.0711 eV 1157.49 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 4: 182A -> 185A 183A -> 185A 184A -> 185A 182B -> 185B 183B -> 185B 184B -> 185B 184B -> 185B	3.000-A 0.58648 0.34713 0.12480 -0.58648 -0.34713 -0.12480 1.000-A	1.0711 eV 1157.49 nm 1.1545 eV 1073.94 nm	f=0.0000 f=0.0730	<s**2>=2.000 <s**2>=0.000</s**2></s**2>
Excited State 4: 182A -> 185A 183A -> 185A 184A -> 185A 182B -> 185B 183B -> 185B 184B -> 185B Excited State 5: 182A -> 185A	3.000-A 0.58648 0.34713 0.12480 -0.58648 -0.34713 -0.12480 1.000-A -0.34098	1.0711 eV 1157.49 nm 1.1545 eV 1073.94 nm	f=0.0000 f=0.0730	<s**2>=2.000 <s**2>=0.000</s**2></s**2>
Excited State 4: 182A -> 185A 183A -> 185A 184A -> 185A 182B -> 185B 183B -> 185B 184B -> 185B Excited State 5: 182A -> 185A 183A -> 185A	3.000-A 0.58648 0.34713 0.12480 -0.58648 -0.34713 -0.12480 1.000-A -0.34098 0.57821	1.0711 eV 1157.49 nm 1.1545 eV 1073.94 nm	f=0.0000 f=0.0730	<s**2>=2.000 <s**2>=0.000</s**2></s**2>
Excited State 4: 182A -> 185A 183A -> 185A 184A -> 185A 182B -> 185B 183B -> 185B 184B -> 185B 182A -> 185A 182A -> 185A 183A -> 185A	3.000-A 0.58648 0.34713 0.12480 -0.58648 -0.34713 -0.12480 1.000-A -0.34098 0.57821 -0.31596	1.0711 eV 1157.49 nm 1.1545 eV 1073.94 nm	f=0.0000 f=0.0730	<s**2>=2.000 <s**2>=0.000</s**2></s**2>
Excited State 4: 182A -> 185A 183A -> 185A 184A -> 185A 182B -> 185B 183B -> 185B 184B -> 185B 182A -> 185A 183A -> 185A 183A -> 185A 184A -> 185A 184A -> 185A	3.000-A 0.58648 0.34713 0.12480 -0.58648 -0.34713 -0.12480 1.000-A -0.34098 0.57821 -0.31596 -0.34098	1.0711 eV 1157.49 nm 1.1545 eV 1073.94 nm	f=0.0000 f=0.0730	<s**2>=2.000 <s**2>=0.000</s**2></s**2>
Excited State 4: 182A -> 185A 183A -> 185A 184A -> 185A 182B -> 185B 183B -> 185B 184B -> 185B 182A -> 185A 183A -> 185A 184A -> 185A 184A -> 185A 184A -> 185B	3.000-A 0.58648 0.34713 0.12480 -0.58648 -0.34713 -0.12480 1.000-A -0.34098 0.57821 -0.31596 -0.34098 0.57821	1.0711 eV 1157.49 nm 1.1545 eV 1073.94 nm	f=0.0000 f=0.0730	<s**2>=2.000</s**2>
Excited State 4: 182A -> 185A 183A -> 185A 184A -> 185A 182B -> 185B 183B -> 185B 184B -> 185B 182A -> 185A 182A -> 185A 183A -> 185A 184A -> 185A 184B -> 185B 183B -> 185B	3.000-A 0.58648 0.34713 0.12480 -0.58648 -0.34713 -0.12480 1.000-A -0.34098 0.57821 -0.31596 -0.34098 0.57821 -0.31596	1.0711 eV 1157.49 nm 1.1545 eV 1073.94 nm	f=0.0000 f=0.0730	<s**2>=2.000 <s**2>=0.000</s**2></s**2>
Excited State 4: 182A -> 185A 183A -> 185A 184A -> 185A 182B -> 185B 183B -> 185B 184B -> 185B 182A -> 185A 183A -> 185A 184A -> 185A 182B -> 185B 183B -> 185B 183B -> 185B 183B -> 185B	3.000-A 0.58648 0.34713 0.12480 -0.58648 -0.34713 -0.12480 1.000-A -0.34098 0.57821 -0.31596 -0.34098 0.57821 -0.31596 -0.31596 -0.10603	1.0711 eV 1157.49 nm 1.1545 eV 1073.94 nm	f=0.0000 f=0.0730	<s**2>=2.000</s**2>
Excited State 4: 182A -> 185A 183A -> 185A 184A -> 185A 182B -> 185B 183B -> 185B 184B -> 185B 182A -> 185A 182A -> 185A 183A -> 185A 184A -> 185B 183B -> 185B 183B -> 185B 183B -> 185B 184B -> 185B	3.000-A 0.58648 0.34713 0.12480 -0.58648 -0.34713 -0.12480 1.000-A -0.34098 0.57821 -0.31596 -0.34098 0.57821 -0.31596 -0.10603 0.21441	1.0711 eV 1157.49 nm 1.1545 eV 1073.94 nm	f=0.0000 f=0.0730	<s**2>=2.000</s**2>

184B <- 185B 0.21441

Excited State	6:	1.000-A	1.3485 eV	919.41 nm	f=0.1481	<s**2>=0.000</s**2>
182A -> 185	5A	0.58386				
183A -> 185	5A	0.38617				
182B -> 185	5B	0.58386				
183B -> 185	БB	0.38617				
Excited State	7:	3.000-A	1.6475 eV	752.55 nm	f=0.0000	<s**2>=2.000</s**2>
181A -> 185	5A	0.67838				
181B -> 185	5B	-0.67838				
Excited State	8:	3.000-A	1.7649 eV	702.52 nm	f=0.0000	<s**2>=2.000</s**2>
177A -> 185	5A	0.12587				
180A -> 185	5A	0.66618				
177B -> 185	5B	-0.12587				
180B -> 185	5B	-0.66618				
Excited State	9:	3.000-A	1.9729 eV	628.43 nm	f=0.0000	<s**2>=2.000</s**2>
173A -> 185	5A	-0.17799				
179A -> 185	5A	0.64549				
173B -> 185	5B	0.17799				
179B -> 185	5B	-0.64549				
Excited State	10:	1.000-A	1.9924 eV	622.30 nm	f=0.0543	<s**2>=0.000</s**2>
181A -> 185	5A	0.69136				
181B -> 185	5B	0.69136				
Excited State	11:	3.000-A	2.0549 eV	603.37 nm	f=0.0000	<s**2>=2.000</s**2>
171A -> 185	5A	-0.23836				
172A -> 185	5A	0.64492				
171B -> 185	5B	0.23836				
172B -> 185	5B	-0.64492				
Excited State	12:	3.000-A	2.1752 eV	569.98 nm	f=0.0000	<s**2>=2.000</s**2>
169A -> 185	5A	0.11191				

173A -> 185A	-0.29920
174A -> 185A	-0.19052
178A -> 185A	0.57631
169B -> 185B	-0.11191
173B -> 185B	0.29920
174B -> 185B	0.19052
178B -> 185B	-0.57631

Excited State	13:	1.000-A	2.1835 eV	567.81 nm	f=0.0758	<s**2>=0.000</s**2>
173A -> 18	35A	-0.32954				
174A -> 18	35A	-0.12777				
178A -> 18	35A	0.14754				
179A -> 18	35A	0.56409				
173B -> 18	35B	-0.32954				
174B -> 18	35B	-0.12777				
178B -> 18	85B	0.14754				
179B -> 18	85B	0.56409				

Excited State	14:	3.000-A	2.3135 eV	535.92 nm	f=0.0000	<s**2>=2.000</s**2>
169A -> 18	35A	-0.17463				
173A -> 18	35A	-0.18336				
174A -> 18	35A	0.50061				
177A -> 18	35A	0.34539				
178A -> 18	35A	0.15830				
169B -> 18	35B	0.17463				
173B -> 18	35B	0.18336				
174B -> 18	35B	-0.50061				
177B -> 18	35B	-0.34539				
178B -> 18	85B	-0.15830				

Excited State 15:	3.000-A	2.3476 eV	528.14 nm	f=0.0000	<s**2>=2.000</s**2>
173A -> 185A	0.54878				
175A -> 185A	-0.18220				
178A -> 185A	0.32631				
179A -> 185A	0.19420				
173B -> 185B	-0.54878				

175B -> 185B	0.18220
178B -> 185B	-0.32631
179B -> 185B	-0.19420

Table S20. Standard orientation of the triplet biradical form of the ring-opening form of CIC-TPA.

Τ	C11		Coordinates				
Tag	Symbol	Х	Y	Ζ			
1	С	-6.421183	0.001287	-4.284903			
2	С	-6.333242	-1.383762	-4.403827			
3	С	-5.661238	-2.119279	-3.433033			
4	С	-5.074228	-1.510358	-2.320306			
5	С	-5.207038	-0.104671	-2.17617			
6	С	-5.863283	0.627359	-3.183605			
7	С	-4.770467	0.635274	-1.005805			
8	С	-4.29285	-2.376585	-1.40433			
9	С	-2.920061	-2.125641	-1.188685			
10	С	-2.195721	-2.993519	-0.403497			
11	С	-2.819318	-4.128911	0.195315			
12	С	-4.174432	-4.382126	-0.02055			
13	С	-4.893311	-3.504251	-0.828092			
14	Ν	-4.452791	0.058745	0.181487			
15	С	-4.179779	1.078388	0.985848			
16	С	-4.308945	2.325037	0.200497			
17	Ν	-4.709682	2.00155	-1.0192			
18	С	-0.803706	-3.074694	0.026869			
19	С	-0.752777	-4.245681	0.847899			
20	Ν	-1.952367	-4.881027	0.951211			
21	С	0.322912	-2.313595	-0.183215			
22	С	1.545035	-2.69259	0.422866			
23	С	1.580693	-3.847027	1.233529			
24	С	0.45446	-4.624176	1.451998			
25	С	2.758176	-1.892843	0.205873			
26	С	2.990516	-1.232678	-1.011159			
27	С	4.139185	-0.491634	-1.22994			
28	С	5.106202	-0.358526	-0.2227			
29	С	4.880026	-1.001926	1.003245			

30	С	3.737322	-1.757356	1.202965
31	Ν	6.268717	0.400028	-0.435921
32	С	7.495956	0.019282	0.157742
33	С	6.228281	1.555833	-1.253481
34	С	8.334047	0.986622	0.723439
35	С	9.547146	0.615661	1.290589
36	С	9.935883	-0.721142	1.319107
37	С	9.099564	-1.685874	0.763215
38	С	7.892969	-1.322755	0.177212
39	С	7.236903	1.788798	-2.194642
40	С	7.20385	2.930331	-2.986372
41	С	6.161107	3.845253	-2.86522
42	С	5.152698	3.611107	-1.933772
43	С	5.186583	2.481325	-1.125268
44	С	-4.013708	3.710424	0.548844
45	С	-3.896651	0.854358	2.396648
46	С	-4.697811	4.739838	-0.118793
47	С	-4.415573	6.068987	0.157481
48	С	-3.432837	6.397809	1.090877
49	С	-2.731041	5.386454	1.741808
50	С	-3.01758	4.052953	1.476557
51	С	-4.203459	1.800046	3.388794
52	С	-3.960848	1.518458	4.727148
53	С	-3.407444	0.295096	5.097728
54	С	-3.112131	-0.657102	4.122085
55	С	-3.362533	-0.386871	2.785763
56	Н	-6.929565	0.587431	-5.043299
57	Н	-6.769895	-1.891094	-5.258148
58	Н	-5.552828	-3.192834	-3.549889
59	Н	-5.936221	1.700933	-3.056576
60	Н	-2.458058	-1.259743	-1.652203
61	Н	-4.646576	-5.24534	0.435501
62	Н	-5.950864	-3.676658	-0.999773
63	Н	0.280057	-1.40726	-0.779193
64	Н	2.527436	-4.152227	1.666287
65	Н	0.495231	-5.51789	2.065141

66	Н	2.279428		-1.343049	-1.823537
67	Н	4.302311		-0.020406	-2.192633
68	Н	5.602566		-0.893322	1.804226
69	Н	3.577224		-2.215352	2.173775
70	Н	8.027687		2.026959	0.713317
71	Н	10.185988	;	1.378034	1.725178
72	Н	10.88053		-1.00803	1.768783
73	Н	9.393565		-2.730749	0.770028
74	Н	7.251786		-2.074892	-0.269438
75	Н	8.043102		1.070798	-2.299163
76	Н	7.993175		3.097106	-3.712535
77	Н	6.134659		4.731923	-3.48975
78	Н	4.338201		4.319992	-1.82309
79	Н	4.407744		2.308007	-0.390502
80	Н	-5.450357		4.470065	-0.850723
81	Н	-4.960752		6.853888	-0.356921
82	Н	-3.210938		7.438579	1.304243
83	Н	-1.951604		5.635985	2.454491
84	Н	-2.451135		3.271788	1.970498
85	Н	-4.658285		2.744242	3.112427
86	Н	-4.213304		2.253816	5.484291
87	Н	-3.21485		0.08018	6.144053
88	Н	-2.688615		-1.615054	4.405801
89	Н	-3.151893		-1.123343	2.018838
SCF Done:	E(UmPW1PW91)		=	-2182.41026134	A.U.
Zero-point correction			=	0.710621 (Hartree/I	Particle)
Thermal correction to Energy			=	0.752503	
Thermal correction to Enthalpy			=	0.753447	
Thermal correction to Gibbs Free Energy			=	0.627880	
Sum of electronic and zero-point Energies			=	-2181.699641	
Sum of electronic and thermal Energies			=	-2181.657758	
Sum of elect	ronic and thermal Enth	alpies	=	-2181.656814	
Sum of electronic and thermal Free Energies			=	-2181.782381	

Low frequencies	-4.0987	-0.8595	-0.0016	-0.0006	0.0012	2.9869
Low frequencies	5.6177	9.3561	12.2000			

The Result for the TDDFT calculation

Excited State 1: 3.061-A 1.1821 eV 1048.85 nm f=0.1051 <S**2>=2.093 182B -> 184B -0.39294 182B -> 185B -0.37548 183B -> 184B 0.73628 183B -> 185B 0.37432

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -2182.47275871

Excited State	2:	3.059-A	1.4360 eV	863.41 nm	f=0.0012	<s**2>=2.090</s**2>
181B -> 184	4B	-0.12236				
182B -> 184	4B	0.30040				
182B -> 185	5B	0.48816				
183B -> 184	4B	0.65893				
183B -> 185	5B	-0.45366				
Excited State	3:	3.076-A	1.6809 eV	737.60 nm	f=0.1425	<s**2>=2.115</s**2>
181B -> 185	5B	-0.14185				
182B -> 184	4B	0.54039				
182B -> 185	5B	0.26355				
183B -> 185	5B	0.76221				
Excited State	4:	3.075-A	1.9127 eV	648.20 nm	f=0.0110	<s**2>=2.114</s**2>
184A -> 186	6A	-0.10430				
166B -> 184	4B	0.13855				
180B -> 184	4B	0.57345				
180B -> 185	5B	-0.24473				
181B -> 184	4B	0.68657				
181B -> 185	5В	-0.10356				

```
Excited State 5: 3.056-A 1.9782 eV 626.77 nm f=0.0179 <S**2>=2.085
```

180B -> 184B	0.17932
181B -> 185B	-0.17358
182B -> 184B	-0.64597
182B -> 185B	0.65042
183B -> 185B	0.19383

Excited State	6:	3.056-A	2.1325 eV	581.40 nm	f=0.0018	<s**2>=2.085</s**2>
172B -> 184	4B	-0.18856				
172B -> 18	5B	-0.25681				
173B -> 184	4B	0.50685				
173B -> 183	5B	0.73868				

Excited State	7:	3.060-A	2.1667 eV	572.24 nm	f=0.0297	<s**2>=2.090</s**2>
169B -> 18	4B	-0.22321				
169B -> 18	5B	0.14335				
172B -> 18	4B	-0.30765				
172B -> 18	5B	0.12204				
173B -> 18	4B	-0.14834				
177B -> 18	4B	-0.12730				
178B -> 18	4B	0.19603				
179B -> 18	4B	0.29442				
180B -> 18	4B	0.54274				
180B -> 18	5B	-0.10780				
181B -> 18	4B	-0.44782				
181B -> 18	5B	-0.10611				
182B -> 18	4B	0.12086				
182B -> 18	5B	-0.22839				

Excited State 8: 3.080-A 2.2432 eV 552.71 nm f=0.0681 <S**2>=2.122

184A -> 187A	0.10112
169B -> 184B	-0.20138
172B -> 184B	-0.19376
177B -> 184B	-0.15593
179B -> 184B	0.55030
179B -> 185B	-0.15777
180B -> 184B	-0.15985

181B -> 184B	0.33742
181B -> 185B	0.54206
182B -> 185B	0.17392
183B -> 185B	0.10970

```
Excited State 9: 3.100-A
                            2.4658 eV 502.81 nm f=0.1025 <S**2>=2.153
183A -> 187A
                   0.10567
184A -> 187A
                  -0.14269
169B -> 184B
                  -0.13502
178B -> 184B
                   0.13614
179B -> 184B
                  -0.57282
179B -> 185B
                   0.14435
180B -> 184B
                   0.14692
180B -> 185B
                  -0.18778
181B -> 184B
                  -0.17574
181B -> 185B
                   0.62409
```

Excited State	10:	3.081-A	2.5799 eV	480.59 nm	f=0.0254	<s**2>=2.124</s**2>
169B -> 18	84B	0.15024				
172B -> 18	84B	0.31265				
175B -> 18	84B	-0.25098				
177B -> 18	84B	0.65917				
177B -> 18	85B	-0.19503				
179B -> 18	84B	0.26299				
180B -> 18	84B	0.21503				
181B -> 18	84B	-0.23649				
181B -> 18	85B	0.29550				

Excited State 11: 3.084-A

```
2.6624 eV 465.69 nm f=0.0043 <S**2>=2.127
```

169B -> 184B	-0.18988
172B -> 184B	-0.46022
172B -> 185B	0.14659
173B -> 184B	-0.12640
174B -> 184B	0.20491
175B -> 184B	0.32293
177B -> 184B	0.51621

177B -> 185B	-0.12189
178B -> 184B	-0.44035
180B -> 184B	-0.11351

Excited State 12: 3.097-A 2.7328 eV 453.70 nm f=0.0046 <S**2>=2.148

166B -> 184B	-0.21117
166B -> 185B	0.10149
169B -> 184B	-0.34121
169B -> 185B	0.11423
174B -> 184B	0.31508
175B -> 184B	-0.43911
177B -> 184B	0.28166
178B -> 184B	0.47227
180B -> 184B	-0.20906
181B -> 184B	0.17788
181B -> 185B	-0.21076

Excited State	13:	3.176-A	2.8392 eV	436.69 nm	f=0.0114	<s**2>=2.271</s**2>
185A -> 18	38A	0.14528				
185A -> 18	39A	-0.14423				
166B -> 18	84B	-0.15038				
172B -> 18	84B	0.22104				
173B -> 18	84B	0.18756				
174B -> 18	84B	0.75884				
174B -> 18	85B	-0.23196				
177B -> 18	84B	-0.15015				
178B -> 18	84B	-0.17755				
178B -> 18	85B	-0.11515				
180B -> 18	85B	0.11027				
183B -> 18	37B	0.11567				

```
Excited State 14: 3.746-A 2.8717 eV 431.75 nm f=0.0577 <S**2>=3.258
```

177A -> 190A	-0.10427
184A -> 189A	0.13564
185A -> 187A	-0.22730
185A -> 188A	0.41863

185A -> 189A	-0.35566
166B -> 184B	-0.11558
169B -> 184B	-0.19085
172B -> 185B	0.10235
174B -> 184B	-0.30745
178B -> 185B	-0.12792
180B -> 185B	0.13929
183B -> 186B	-0.10464
183B -> 187B	0.32069
183B -> 188B	0.15673
183B -> 189B	-0.11322
183B -> 190B	-0.15601

Excited State 15: 3.169-A 2.9298 eV 423.18 nm f=0.0087 <S**2>=2.261

-0.13032
0.11547
-0.45134
0.18277
-0.12932
0.11046
-0.12839
0.15180
0.32214
0.64104
0.11621
0.13933
-0.12195

Τ	C1 - 1			
Tag	Symbol	Х	Y	Ζ
1	С	6.730801	0.887266	3.807361
2	С	7.151797	-0.459965	3.781036
3	С	6.595473	-1.343034	2.886909
4	С	5.582127	-0.936463	1.984134
5	С	5.263911	0.461221	1.923412
6	С	5.804215	1.335153	2.901381
7	С	4.545881	1.035401	0.836728
8	С	4.844498	-1.934634	1.256333
9	С	3.428049	-1.794538	1.080400
10	С	2.723891	-2.793003	0.474751
11	С	3.390889	-3.978044	-0.018331
12	С	4.789662	-4.118176	0.158850
13	С	5.482248	-3.126604	0.806940
14	Ν	4.048220	2.308062	0.897010
15	С	3.466442	2.487279	-0.279000
16	С	3.696085	1.286772	-1.099121
17	Ν	4.361170	0.410909	-0.368410
18	С	1.321903	-3.021253	0.157034
19	С	1.311915	-4.288913	-0.493322
20	Ν	2.563852	-4.856959	-0.582886
21	С	0.155631	-2.304015	0.325697
22	С	-1.062723	-2.836706	-0.149391
23	С	-1.055713	-4.092447	-0.788235
24	С	0.111828	-4.822143	-0.965867
25	С	-2.317190	-2.088211	0.018021
26	С	-2.544783	-1.279273	1.142293
27	С	-3.729914	-0.582879	1.310293
28	С	-4.741387	-0.651785	0.341760
29	С	-4.522402	-1.447114	-0.792331
30	С	-3.340570	-2.152694	-0.940713
31	Ν	-5.944761	0.057438	0.501732
32	С	-7.165812	-0.502459	0.055409
33	С	-5.950372	1.329090	1.122363

Table S21. Standard orientation of the quinoidal form 1 of the ring-opening form of CIC-TPA.

34	С	-8.100579	0.289670	-0.620619
35	С	-9.303956	-0.259319	-1.046490
36	С	-9.587379	-1.604149	-0.822165
37	С	-8.655262	-2.395299	-0.155476
38	С	-7.456865	-1.851117	0.290261
39	С	-6.952779	1.662036	2.040685
40	С	-6.964783	2.916362	2.638401
41	С	-5.973142	3.849323	2.346742
42	С	-4.970651	3.516876	1.439026
43	С	-4.960626	2.272070	0.821606
44	С	3.399880	1.014568	-2.504349
45	С	2.725946	3.710589	-0.568472
46	С	3.187803	-0.313839	-2.906627
47	С	2.946831	-0.618013	-4.238610
48	С	2.924782	0.394519	-5.196392
49	С	3.151321	1.713924	-4.812127
50	С	3.386099	2.024640	-3.478509
51	С	3.081364	4.896894	0.094700
52	С	2.371803	6.067888	-0.124063
53	С	1.285207	6.076079	-0.998305
54	С	0.910637	4.902030	-1.646959
55	С	1.622859	3.727898	-1.436485
56	Н	7.157505	1.571845	4.533031
57	Н	7.887594	-0.810059	4.497572
58	Н	6.858775	-2.393600	2.937760
59	Н	5.500922	2.374724	2.865467
60	Н	2.933503	-0.923204	1.494191
61	Н	5.290016	-5.000089	-0.226018
62	Н	6.557281	-3.212081	0.918923
63	Н	0.167440	-1.321408	0.787333
64	Н	-1.997857	-4.514949	-1.121416
65	Н	0.101649	-5.791691	-1.451831
66	Н	-1.796662	-1.232583	1.927175
67	Н	-3.886424	0.010382	2.204144
68	Н	-5.282167	-1.495649	-1.564377
69	Н	-3.187189	-2.731453	-1.845816

70	Н	-7.876401	1.334193	-0.807564
71	Н	-10.018643	0.367789	-1.570108
72	Н	-10.524975	-2.030861	-1.162378
73	Н	-8.866521	-3.442914	0.034466
74	Н	-6.739290	-2.465343	0.823307
75	Н	-7.718643	0.932497	2.280219
76	Н	-7.748733	3.159018	3.348865
77	Н	-5.981305	4.824796	2.821377
78	Н	-4.195214	4.236510	1.196106
79	Н	-4.187331	2.021668	0.103605
80	Н	3.209648	-1.093892	-2.154090
81	Н	2.773181	-1.648652	-4.530850
82	Н	2.735943	0.155589	-6.238191
83	Н	3.154091	2.504833	-5.555423
84	Н	3.585421	3.051343	-3.192949
85	Н	3.922269	4.874096	0.778279
86	Н	2.664528	6.979294	0.387478
87	Н	0.730361	6.993214	-1.168871
88	Н	0.055711	4.898017	-2.315482
89	Н	1.312789	2.813714	-1.929470
SCF Done:	E(RmPW1PW91)	=	-2182.38377262	A.U.
Zero-point c	correction=		0.711998 (Hartree/Part	ticle)
Thermal cor	rection to Energy=		0.753713	
Thermal cor	rection to Enthalpy=		0.754658	
Thermal cor	rection to Gibbs Free H	Energy=	0.630459	
Sum of alast	trania and zara naint F	norgios-	2181 688742	

0.711998 (Hartree/Particle)
0.753713
0.754658
0.630459
-2181.688742
-2181.647027
-2181.646083
-2181.770281
0.0006 0.0014 1.0251 3.0275

Low frequencies ----6.4367 8.3257

9.5889

The Result for the TDDFT calculation

100 > 105 0 100(2	
182 -> 185 -0.13263	
183 -> 185 -0.23192	
184 -> 185 0.66960	
184 <- 185 -0.15195	

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -2182.47148590

Excited State	2:	Singlet-A	1.3824 eV	896.90 nm	f=0.2046	<s**2>=0.000</s**2>
182 -> 185		0.23976				
183 -> 185		0.61507				
184 -> 185		0.30179				
183 <- 185		-0.12568				
184 <- 185		-0.15395				
Excited State	3:	Singlet-A	1.5397 eV	805.23 nm	f=0.0322	<s**2>=0.000</s**2>
181 -> 185		0.13937				
182 -> 185		0.63034				
183 -> 185		-0.27640				
Excited State	4:	Singlet-A	2.1270 eV	582.91 nm	f=0.0832	<s**2>=0.000</s**2>
180 -> 185		0.15507				
181 -> 185		0.66259				
182 -> 185		-0.11065				
Excited State	5:	Singlet-A	2.3243 eV	533.43 nm	f=0.0197	<s**2>=0.000</s**2>
170 -> 185		0.19685				
176 -> 185		-0.16672				
178 -> 185		0.16236				
179 -> 185		-0.37831				
180 -> 185		0.47576				
Excited State	6:	Singlet-A	2.4829 eV	499.36 nm	f=0.0953	<s**2>=0.000</s**2>
170 -> 185		-0.16817				

178 -> 185	-0.11943				
179 -> 185	0.40570				
180 -> 185	0.45730				
181 -> 185	-0.13268				
184 -> 186	-0.15046				
Excited State 7:	Singlet-A	2.5798 eV	480.60 nm	f=0.0099	<s**2>=0.000</s**2>
176 -> 185	-0.22436				
178 -> 185	0.54261				
179 -> 185	0.34483				
Excited State 8:	Singlet-A	2.6358 eV	470.39 nm	f=0.0025	<s**2>=0.000</s**2>
170 -> 185	0.21549				
171 -> 185	0.64129				
173 -> 185	-0.15569				
Excited State 9:	Singlet-A	2.8125 eV	440.83 nm	f=0.0144	<s**2>=0.000</s**2>
170 -> 185	0.51769				
171 -> 185	-0.16255				
174 -> 185	0.18395				
175 -> 185	0.27010				
177 -> 185	-0.15788				
178 -> 185	-0.15448				
179 -> 185	0.17288				
Excited State 10:	Singlet-A	2.8375 eV	436.95 nm	f=0.0002	<s**2>=0.000</s**2>
170 -> 185	0.12123				
173 -> 185	0.14207				
176 -> 185	0.20933				
177 -> 185	0.63395				
Excited State 11:	Singlet-A	2.8701 eV	431.98 nm	f=0.0077	<s**2>=0.000</s**2>
170 -> 185	-0.17807				
174 -> 185	-0.24012				
175 -> 185	0.50996				
176 -> 185	-0.28079				

178 -> 185	-0.19888				
Excited State 12.	Simplet A	2 8020 -17	129 57	f-0.0129	~5**2>-0.000
Excited State 12: $170 > 195$	Singlet-A	2.8929 ev	428.3 / nin	1-0.0128	<52>=0.000
170 -> 185	-0.18411				
1/4 -> 185	0.19824				
1/5 -> 185	0.37917				
1/6 -> 185	0.39212				
1// -> 185	-0.12636				
178 -> 185	0.25719				
179 -> 185	-0.13015				
Excited State 13:	Singlet-A	3.0263 eV	409.69 nm	f=0.0207	<s**2>=0.000</s**2>
169 -> 185	0.20593				
170 -> 185	-0.11389				
174 -> 185	0.50802				
176 -> 185	-0.33768				
177 -> 185	0.12107				
184 -> 186	0.16098				
Excited State 14:	Singlet-A	3.1659 eV	391.62 nm	f=0.0886	<s**2>=0.000</s**2>
168 -> 185	0.35590				
169 -> 185	0.30228				
173 -> 185	0.14325				
174 -> 185	-0.25629				
184 -> 186	0.37993				
Excited State 15:	Singlet-A	3.2030 eV	387.09 nm	f=0.0152	<s**2>=0.000</s**2>
171 -> 185	0.13138				
173 -> 185	0.65389				
176 -> 185	-0.12204				
177 -> 185	-0.12631				
184 -> 186	-0.10141				

Table S22. Standard orientation of the quinoidal form 2 of the ring-opening form of CIC-TPA.

	a 1.1		Coordinates				
Tag	Symbol	Х	Y	Ζ			
1	С	-4.574072	4.996487	1.026845			
2	С	-3.194791	4.857352	1.304395			
3	С	-2.626422	3.610764	1.387782			
4	С	-3.399029	2.43209	1.217057			
5	С	-4.760613	2.590705	0.780117			
6	С	-5.338378	3.888372	0.77586			
7	С	-5.50385	1.529779	0.20143			
8	С	-2.838108	1.168014	1.600864			
9	С	-1.438306	0.929339	1.42517			
10	С	-0.899066	-0.254383	1.832574			
11	С	-1.713269	-1.253201	2.50999			
12	С	-3.092703	-0.98837	2.735693			
13	С	-3.630152	0.17716	2.270699			
14	Ν	-6.855384	1.628608	-0.011527			
15	С	-7.183743	0.474486	-0.563439			
16	С	-5.951909	-0.316159	-0.755336			
17	Ν	-4.940991	0.3705	-0.258771			
18	С	0.424934	-0.857093	1.776629			
19	С	0.267316	-2.109084	2.428878			
20	Ν	-1.033803	-2.332933	2.861495			
21	С	1.650653	-0.463444	1.280104			
22	С	2.765703	-1.318435	1.424535			
23	С	2.591924	-2.551984	2.072623			
24	С	1.357762	-2.957712	2.577447			
25	С	4.084556	-0.91688	0.906335			
26	С	4.210673	-0.173197	-0.276359			
27	С	5.449718	0.195446	-0.775196			
28	С	6.624237	-0.153537	-0.095093			
29	С	6.511597	-0.886676	1.094126			
30	С	5.268271	-1.263775	1.574439			
31	Ν	7.88626	0.221753	-0.593175			
32	С	8.988674	-0.656506	-0.470582			
33	С	8.060074	1.475715	-1.22405			
34	С	10.247472	-0.165396	-0.10567			

35	С	11.330405	-1.029217	0.003683
36	С	11.174945	-2.393225	-0.229742
37	С	9.92154	-2.884594	-0.585711
38	С	8.836653	-2.026169	-0.715919
39	С	8.834931	1.582416	-2.384809
40	С	9.01379	2.817743	-2.995348
41	С	8.412833	3.960097	-2.472959
42	С	7.635583	3.854611	-1.322356
43	С	7.465433	2.626936	-0.694143
44	С	-5.725743	-1.583953	-1.444417
45	С	-8.577195	0.146687	-0.847714
46	С	-4.636972	-2.381108	-1.054622
47	С	-4.360445	-3.568707	-1.715871
48	С	-5.155883	-3.977663	-2.785442
49	С	-6.227449	-3.18667	-3.192394
50	С	-6.513287	-1.999953	-2.529058
51	С	-9.483931	1.185762	-1.113626
52	С	-10.823664	0.911425	-1.343515
53	С	-11.287922	-0.402851	-1.298238
54	С	-10.402537	-1.439865	-1.01581
55	С	-9.057808	-1.17088	-0.793176
56	Н	-5.019585	5.985111	0.989976
57	Н	-2.591503	5.738452	1.496721
58	Н	-1.59238	3.518137	1.700329
59	Н	-6.384347	3.968211	0.504815
60	Н	-0.837721	1.665232	0.900341
61	Н	-3.689617	-1.708072	3.284634
62	Н	-4.673523	0.400664	2.456441
63	Н	1.777196	0.505369	0.806063
64	Н	3.440486	-3.223374	2.155055
65	Н	1.240321	-3.917428	3.068667
66	Н	3.321454	0.081476	-0.844629
67	Н	5.516537	0.745817	-1.70709
68	Н	7.407535	-1.147305	1.64655
69	Н	5.210914	-1.80206	2.515193
70	Н	10.368718	0.894395	0.090272

71	Н	12.299	9935	-0.632	434	0.288039	
72	Н	12.021	106	-3.06	563	-0.135974	
73	Н	9.786	853	-3.944	129	-0.779426	
74	Н	7.865	341	-2.409	723	-1.008626	
75	Н	9.293	953	0.692	665	-2.80169	
76	Н	9.617	25	2.883	607	-3.895278	
77	Н	8.549	266	4.921	594	-2.9565	
78	Н	7.168	226	4.737	736	-0.898072	
79	Н	6.872	559	2.551	252	0.210885	
80	Н	-4.022	823	-2.050	599	-0.224369	
81	Н	-3.522	206	-4.179	007	-1.395889	
82	Н	-4.938	399	-4.90′	718	-3.301914	
83	Н	-6.838	979	-3.490	156	-4.036106	
84	Н	-7.333	831	-1.378	658	-2.869446	
85	Н	-9.111616		2.203558 -1.13		-1.135933	
86	Н	-11.511131		1.723	396	-1.558088	
87	Н	-12.337021		-0.616	165	-1.476692	
88	Н	-10.761247		-2.462	609	-0.96102	
89	Н	-8.379	004	-1.981	304	-0.55346	
SCF Done: E(RmPW1PW91)		=	-2182.02	931854	A.U.	
Zero-point corre	ction		=	0.711979	9 (Hartree/P	Particle)	
Thermal correct	ion to Energy		=	0.753694	4		
Thermal correct	ion to Enthalpy		=	0.75463	8		
Thermal correct	ion to Gibbs Free	e Energy	=	0.63079	9		
Sum of electronic	ic and zero-point	Energies	=	-2181.68	35922		
Sum of electroni	ic and thermal E	nergies	=	-2181.64	-2181.644207		
Sum of electronic	ic and thermal E	nthalpies	=	-2181.643263			
Sum of electroni	ic and thermal Fi	ee Energies	=	-2181.76	57102		
Low frequencies	-2.6773	-0.0022	-0.0009	0.0020	2.4037	3.7118	
Low frequencies	8 8.5027	9.4533	11.4136				

The Result for the TDDFT calculation

Excited State 1:	Singlet-A	0.8933 eV 1387.93 nm	f=0.2802	<s**2>=0.000</s**2>
182 -> 185	-0.18260			
183 -> 185	0.20505			
184 -> 185	0.66382			
184 <- 185	-0.13256			

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -2182.47108441

Excited State	2:	Singlet-A	1.3836 eV	896.13 nm	f=0.1772	<s**2>=0.000</s**2>
182 -> 185		0.11314				
183 -> 185		0.68622				
184 -> 185		-0.21398				
183 <- 185		-0.13074				
184 <- 185		0.14830				
Excited State	3:	Singlet-A	1.5227 eV	814.24 nm	f=0.2072	<s**2>=0.000</s**2>
182 -> 185		0.66146				
184 -> 185		0.22805				
Excited State	4:	Singlet-A	2.2447 eV	552.33 nm	f=0.0844	<s**2>=0.000</s**2>
180 -> 185		-0.24019				
181 -> 185		0.64930				
Excited State	5:	Singlet-A	2.3771 eV	521.59 nm	f=0.0343	<s**2>=0.000</s**2>
170 -> 185		-0.23863				
174 -> 185		-0.10709				
176 -> 185		-0.10035				
177 -> 185		0.14555				
178 -> 185		0.22130				
180 -> 185		0.50779				
181 -> 185		0.22180				
184 -> 186		0.11025				
Excited State	6:	Singlet-A	2.4449 eV	507.12 nm	f=0.1380	<s**2>=0.000</s**2>
170 -> 185		0.20771				

174 -> 185	0.15100				
175 -> 185	0.10155				
176 -> 185	0.31105				
177 -> 185	-0.22949				
178 -> 185	-0.32531				
180 -> 185	0.36315				
Excited State 7:	Singlet-A	2.5868 eV	479.30 nm	f=0.0100	<s**2>=0.000</s**2>
171 -> 185	0.64009				
173 -> 185	0.13156				
174 -> 185	-0.10194				
176 -> 185	-0.10822				
177 -> 185	-0.14713				
179 -> 185	-0.12240				
Excited State 8:	Singlet-A	2.6078 eV	475.43 nm	f=0.0375	<s**2>=0.000</s**2>
171 -> 185	0.22354				
174 -> 185	0.13276				
176 -> 185	0.31587				
177 -> 185	0.22731				
178 -> 185	0.33506				
179 -> 185	0.38082				
Excited State 9:	Singlet-A	2.7720 eV	447.28 nm	f=0.0424	<s**2>=0.000</s**2>
170 -> 185	0.39600				
174 -> 185	0.31159				
177 -> 185	0.18080				
178 -> 185	0.18193				
179 -> 185	-0.33492				
183 -> 186	-0.10609				
184 -> 186	0.16749				
Excited State 10:	Singlet-A	2.8280 eV	438.41 nm	f=0.0001	<s**2>=0.000</s**2>
171 -> 185	0.10286				
173 -> 185	-0.13540				
177 -> 185	0.54594				

178 -> 185	-0.41256				
Excited State 11:	Singlet-A	2.8517 eV	434.77 nm	f=0.0105	<s**2>=0.000</s**2>
169 -> 185	-0.10011				
170 -> 185	-0.25799				
175 -> 185	0.52077				
176 -> 185	0.26574				
179 -> 185	-0.23100				
Excited State 12:	Singlet-A	2.8823 eV	430.15 nm	f=0.0047	<s**2>=0.000</s**2>
170 -> 185	-0.33900				
174 -> 185	0.37151				
175 -> 185	-0.35513				
176 -> 185	0.22384				
179 -> 185	-0.21967				
Excited State 13:	Singlet-A	2.9843 eV	415.46 nm	f=0.0058	<s**2>=0.000</s**2>
169 -> 185	-0.19714				
170 -> 185	-0.18696				
174 -> 185	0.35936				
175 -> 185	0.22444				
176 -> 185	-0.35619				
179 -> 185	0.29851				
Excited State 14:	Singlet-A	3.1804 eV	389.83 nm	f=0.0158	<s**2>=0.000</s**2>
168 -> 185	0.29094				
169 -> 185	-0.21243				
171 -> 185	-0.10730				
173 -> 185	0.52254				
174 -> 185	-0.11918				
184 -> 186	0.18918				
Excited State 15:	Singlet-A	3.1860 eV	389.15 nm	f=0.0386	<s**2>=0.000</s**2>
168 -> 185	-0.38381				
169 -> 185	0.24488				
173 -> 185	0.42955				

174 -> 185	0.10651
184 -> 186	-0.22685

Fig. S67 Molecular structure of the substructure 1 of the carbazole cation of CIC.

cation of CIC.						
т	G 1 1		Coordinates			
Tag Sy	Symbol	Х	Y	Z		
1	С	5.065794	0.331611	0.504981		
2	С	3.769093	0.810186	0.454940		
3	С	2.713436	-0.009857	-0.012244		
4	С	3.022743	-1.324863	-0.436362		
5	С	4.326585	-1.787105	-0.411655		
6	С	5.350669	-0.964554	0.065398		
7	С	1.354958	0.485828	-0.058954		
8	С	0.251633	-0.442824	0.007369		
9	С	-1.019539	0.034908	-0.017785		
10	С	-1.263096	1.459653	-0.130834		
11	С	-0.182862	2.377127	-0.208455		
12	С	1.097207	1.883236	-0.164301		
13	С	-2.366475	-0.549750	0.054340		
14	С	-3.238645	0.568683	-0.030657		
15	Ν	-2.551094	1.764282	-0.141220		
16	С	-2.878339	-1.817360	0.169927		
17	С	-4.291770	-1.966646	0.201439		
18	С	-5.140541	-0.874146	0.117449		
19	С	-4.620451	0.427275	-0.001856		
20	Н	5.859744	0.962063	0.889907		

Table S23. Standard orientation of the optimized geometry of the substructure of the carbazole

176

21	Н	3.560	637	1.806	286	0.827997	
22	Н	2.246	5726	-1.966	5305	-0.838089	
23	Н	4.552	2513	-2.786	6769	-0.766117	
24	Н	6.370)548	-1.333	3707	0.095960	
25	Н	0.452	261	-1.501	1017	0.126095	
26	Н	-0.384	4205	3.438	3115	-0.311146	
27	Н	1.930	0815	2.567	323	-0.259478	
28	Н	-2.243	3351	-2.694	4768	0.238575	
29	Н	-4.710	0311	-2.963	3107	0.294392	
30	Н	-6.214	4121	-1.022	2674	0.144148	
31	Н	-5.26	5993	1.296	5175	-0.070154	
SCF Done:	E(RmPW1PW	(91)	=	-747.458	643905	A.U.	
Zero-point c	orrection=			0.247870 (I	Hartree/Parti	cle)	
Thermal cor	rection to Energ	y=		0.261271			
Thermal cor	rection to Entha	lpy=	(0.262215			
Thermal cor	rection to Gibbs	Free Energy=	0.	207147			
Sum of elect	tronic and zero-	point Energies=		-747.22326	52		
Sum of elect	tronic and therm	al Energies=		-747.2098	361		
Sum of elect	tronic and therm	al Enthalpies=		-747.2089	17		
Sum of elect	tronic and therm	al Free Energies	;=	-747.26398	34		
Low frequer	ncies1.19	0.0007	0.0009	0.0011	3.0100	4.3968	
Low frequer	ncies 45.1	618 58.9585	89.2438				
The Result f	for the TDDFT of	alculation					
Excited Stat	e 1: S	inglet-A 1	.1396 eV 1	087.99 nm	f=0.0198	<s**2>=0.000</s**2>	
62 ->	> 64 -0	.32128					
63 ->	> 64 (0.63081					
This state f	for optimization	and/or second-o	rder correct	ion.			

Total Energy, E(TD-HF/TD-DFT) = -747.447117572

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 2.1376 eV 580.01 nm f=0.0021 <S**2>=0.000

61 -> 64		0.70089				
Excited State	3:	Singlet-A	2.2928 eV	540.76 nm	f=0.6130	<s**2>=0.000</s**2>
62 -> 64		0.61620				
63 -> 64		0.31928				
Excited State	4:	Singlet-A	2.3618 eV	524.96 nm	f=0.0097	<s**2>=0.000</s**2>
59 -> 64		0.69773				
Excited State	5:	Singlet-A	2.9582 eV	419.12 nm	f=0.1197	<s**2>=0.000</s**2>
58 -> 64		0.15349				
60 -> 64		0.67317				
Excited State	6:	Singlet-A	3.3428 eV	370.90 nm	f=0.0141	<s**2>=0.000</s**2>
58 -> 64		0.68500				
60 -> 64		-0.14598				
Excited State	7:	Singlet-A	4.1557 eV	298.35 nm	f=0.0050	<s**2>=0.000</s**2>
51 -> 64		-0.10064				
53 -> 64		-0.13091				
54 -> 64		0.10616				
56 -> 64		0.58069				
57 -> 64		-0.32952				
Excited State	8:	Singlet-A	4.3504 eV	285.00 nm	f=0.0226	<s**2>=0.000</s**2>
54 -> 64		0.28586				
55 -> 64		0.54648				
57 -> 64		0.21301				
63 -> 65		0.24031				
Excited State	9:	Singlet-A	4.3769 eV	283.27 nm	f=0.1750	<s**2>=0.000</s**2>
55 -> 64		-0.29385				
56 -> 64		0.23863				
57 -> 64		0.27138				
63 -> 65		0.49865				

Excited State	10:	Singlet-A	4.5466 eV	272.69 nm	f=0.2989	<s**2>=0.000</s**2>
53 -> 64		-0.14848				
56 -> 64		0.18304				
57 -> 64		0.46825				
62 -> 65		-0.11710				
63 -> 65		-0.39330				
Excited State	11:	Singlet-A	4.6195 eV	268.39 nm	f=0.0093	<s**2>=0.000</s**2>
53 -> 64		0.46870				
54 -> 64		-0.41949				
55 -> 64		0.15954				
56 -> 64		0.21454				
Excited State	12:	Singlet-A	4.6687 eV	265.57 nm	f=0.0017	<s**2>=0.000</s**2>
52 -> 64		-0.11397				
53 -> 64		0.45061				
54 -> 64		0.45190				
55 -> 64		-0.25707				
Excited State	13:	Singlet-A	4.9229 eV	251.85 nm	f=0.0191	<s**2>=0.000</s**2>
52 -> 64		0.40994				
62 -> 65		0.37688				
63 -> 66		-0.38524				
Excited State	14:	Singlet-A	4.9935 eV	248.29 nm	f=0.0571	<s**2>=0.000</s**2>
51 -> 64		0.25922				
52 -> 64		0.44500				
63 -> 66		0.43450				
Excited State	15:	Singlet-A	5.0279 eV	246.59 nm	f=0.0135	<s**2>=0.000</s**2>
51 -> 64		0.63244				
52 -> 64		-0.19293				
53 -> 64		-0.10700				
63 -> 66		-0.16110				
Excited State	16:	Singlet-A	5.1578 eV	240.38 nm	f=0.0047	<s**2>=0.000</s**2>

61 -> 65	0.53399				
61 -> 66	0.21269				
62 -> 65	-0.15094				
62 -> 66	-0.20290				
62 -> 67	0.13771				
63 -> 67	0.24652				
Excited State 17:	Singlet-A	5.3086 eV	233.55 nm	f=0.3518	<s**2>=0.000</s**2>
50 -> 64	-0.13975				
52 -> 64	-0.20334				
61 -> 66	0.17205				
61 -> 67	-0.11616				
62 -> 65	0.50067				
62 -> 66	-0.12547				
63 -> 66	0.30228				
Excited State 18:	Singlet-A	5.3519 eV	231.66 nm	f=0.0887	<s**2>=0.000</s**2>
61 -> 65	0.18843				
61 -> 66	0.10421				
62 -> 66	0.62497				
63 -> 69	-0.11831				
Excited State 19:	Singlet-A	5.5353 eV	223.99 nm	f=0.0077	<s**2>=0.000</s**2>
61 -> 65	-0.38089				
61 -> 66	0.48812				
61 -> 68	0.10695				
63 -> 67	0.25164				
Excited State 20:	Singlet-A	5.6394 eV	219.86 nm	f=0.0221	<s**2>=0.000</s**2>
49 -> 64	0.54060				
50 -> 64	-0.37749				
60 -> 65	0.13009				

Fig. S68 Molecular structure of the substructure 2 of the carbazole cation of CIC.

 Table S24. Standard orientation of the optimized geometry for the substructure 2 of the carbazole cation of CIC.

			Coordinates	
Tag	Symbol	Х	Y	Ζ
1	С	1.101232	4.094967	-0.791542
2	С	-0.917178	2.842546	-0.259124
3	С	-1.678242	3.975052	-0.614303
4	С	-1.063183	5.153334	-0.994486
5	С	0.332870	5.214646	-1.072863
6	С	-1.601584	1.704720	0.330127
7	С	-2.868632	1.300856	-0.209178
8	С	-3.528846	0.259115	0.366257
9	С	-2.988521	-0.390005	1.551497
10	С	-1.760612	0.052921	2.119754
11	С	-1.085612	1.068028	1.500497
12	С	-4.771114	-0.467230	0.097755
13	С	-4.841804	-1.437872	1.129550
14	Ν	-3.751898	-1.369686	1.995526
15	С	-5.763057	-0.384541	-0.852535
16	С	-6.846135	-1.292490	-0.767760
17	С	-6.912568	-2.239842	0.242677
18	С	-5.900577	-2.327105	1.217654
19	Н	2.171863	4.137803	-0.952167
20	Н	-2.757757	3.945242	-0.509031

21	Н	-1.661292	6.028898	-1.222238
22	Н	0.817698	6.130921	-1.392994
23	Н	-3.241065	1.789848	-1.103176
24	Н	-1.393545	-0.411298	3.028471
25	Н	-0.157411	1.435995	1.921115
26	Н	-5.732481	0.347810	-1.653271
27	Н	-7.635753	-1.242691	-1.509789
28	Н	-7.754087	-2.922657	0.284415
29	Н	-5.941780	-3.061163	2.014948
30	С	1.244310	1.644768	-0.325992
31	С	2.833015	0.151570	0.023049
32	С	1.700503	-0.449070	-0.557996
33	С	0.499767	2.889962	-0.401546
34	Ν	0.749545	0.492135	-0.760032
35	Ν	2.523874	1.480973	0.154199
36	С	3.403174	2.496449	0.713403
37	Н	4.070043	2.033456	1.438437
38	Н	4.011133	2.956032	-0.070150
39	Н	2.808649	3.260865	1.213166
40	С	1.491069	-1.842448	-0.957228
41	С	0.528081	-2.129283	-1.937574
42	С	2.204073	-2.902797	-0.377477
43	С	0.294153	-3.439276	-2.334386
44	Н	-0.025069	-1.310911	-2.385588
45	С	1.962417	-4.213397	-0.774655
46	Н	2.937565	-2.708355	0.396730
47	С	1.010974	-4.487120	-1.755281
48	Н	-0.445847	-3.645954	-3.101207
49	Н	2.516907	-5.024092	-0.312935
50	Н	0.827967	-5.510646	-2.066365
51	С	4.146882	-0.401557	0.391114
52	С	4.524346	-0.532294	1.734362
53	С	5.029593	-0.818343	-0.613031
54	С	5.766865	-1.065100	2.065577
55	Н	3.834195	-0.239462	2.521047
56	С	6.271178	-1.349661	-0.276858

57	Н	4.737615	-0.729799	-1.654837
58	С	6.642379	-1.472258	1.060659
59	Н	6.047459	-1.169144	3.108738
60	Н	6.948870	-1.669216	-1.061826
61	Н	7.610191	-1.888913	1.319938

SCF Done:	E(RmPW1PW91)	=	-1473.79252215	A.U.
Zero-point co	prrection=		0.491263 (Hartree/Par	ticle)
Thermal corr	rection to Energy=		0.519757	
Thermal corr	ection to Enthalpy=		0.520701	
Thermal corr	ection to Gibbs Free Energy=	(0.429179	
Sum of electr	ronic and zero-point Energies=		-1473.301359	
Sum of electr	ronic and thermal Energies=		-1473.272865	
Sum of electr	ronic and thermal Enthalpies=		-1473.271921	
Sum of electr	ronic and thermal Free Energies=		-1473.363443	

Low frequencies --- -7.9299 -2.6237 -0.0060 -0.0034 -0.0030 2.7652 Low frequencies --- 13.8798 16.7175 25.2331

The Result for the TDDFT calculation

Excited State	1:	Singlet-A	0.8465 eV 1464.60 nm	f=0.1246	<s**2>=0.000</s**2>
124 ->12	5	0.73238			
124 <-12	5	-0.21533			

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1473.79682878

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	Singlet-A	1.1082 eV 1118.82 nm	f=0.0111	<s**2>=0.000</s**2>
119 ->125		-0.18068			
121 ->125		-0.17753			
122 ->125		0.57750			
123 ->125		0.30915			

Excited State	3:	Singlet-A	1.3787 eV	899.27 nm	f=0.0034	<s**2>=0.000</s**2>
122 ->125		-0.32176				
123 ->125		0.62704				
Excited State	4:	Singlet-A	1.7325 eV	715.64 nm	f=0.0419	<s**2>=0.000</s**2>
121 ->125		0.66735				
122 ->125		0.17710				
Excited State	5:	Singlet-A	1.9531 eV	634.79 nm	f=0.0103	<s**2>=0.000</s**2>
120 ->125		0.69454				
Excited State	6:	Singlet-A	2.0159 eV	615.02 nm	f=0.0669	<s**2>=0.000</s**2>
118 ->125		0.19025				
119 ->125		0.64509				
120 ->125		0.10326				
121 ->125		-0.12282				
122 ->125		0.10858				
Excited State	7:	Singlet-A	2.3175 eV	534.99 nm	f=0.3154	<s**2>=0.000</s**2>
118 ->125		0.65704				
119 ->125		-0.17531				
122 ->125		-0.11556				
Excited State	8:	Singlet-A	2.3621 eV	524.89 nm	f=0.0017	<s**2>=0.000</s**2>
114 ->125		0.68973				
115 ->125		-0.11220				
Excited State	9:	Singlet-A	2.6240 eV	472.50 nm	f=0.0357	<s**2>=0.000</s**2>
113 ->125		0.13438				
116 ->125		-0.25421				
117 ->125		0.62647				
Excited State	10:	Singlet-A	2.8616 eV	433.27 nm	f=0.0324	<s**2>=0.000</s**2>
112 ->125		0.11257				
113 ->125		0.10941				
116 ->125		0.63700				

117 ->125	0.23409				
Excited State 11:	Singlet-A	2.9690 eV	417.60 nm	f=0.0044	<s**2>=0.000</s**2>
113 ->125	0.16641				
115 ->125	0.67057				
Excited State 12:	Singlet-A	3.1208 eV	397.28 nm	f=0.0197	<s**2>=0.000</s**2>
113 ->125	0.64613				
115 ->125	-0.15551				
117 ->125	-0.15362				
124 ->126	0.13433				
Excited State 13:	Singlet-A	3.4053 eV	364.09 nm	f=0.0214	<s**2>=0.000</s**2>
112 ->125	0.67687				
124 ->126	0.10524				
Excited State 14:	Singlet-A	3.5507 eV	349.18 nm	f=0.1512	<s**2>=0.000</s**2>
113 ->125	-0.11321				
124 ->126	0.66763				
Excited State 15:	Singlet-A	3.8231 eV	324.30 nm	f=0.0829	<s**2>=0.000</s**2>
124 ->127	0.69102				
Excited State 16:	Singlet-A	3.8276 eV	323.92 nm	f=0.0009	<s**2>=0.000</s**2>
111 ->125	0.70391				
Excited State 17:	Singlet-A	4.0508 eV	306.07 nm	f=0.0021	<s**2>=0.000</s**2>
110 ->125	0.70301				
Excited State 18:	Singlet-A	4.0936 eV	302.88 nm	f=0.0517	<s**2>=0.000</s**2>
124 ->128	0.69502				
Excited State 19:	Singlet-A	4.2832 eV	289.46 nm	f=0.0910	<s**2>=0.000</s**2>
107 ->125	0.17471				
108 ->125	-0.19133				
122 ->126	0.50911				

122 ->127	-0.13750				
123 ->126	0.33902				
Excited State 20:	Singlet-A	4.4081 eV	281.26 nm	f=0.0140	<s**2>=0.000</s**2>
104 ->125	-0.16819				
105 ->125	0.56657				
108 ->125	0.23159				
109 ->125	0.13194				
123 ->126	0.20028				

Table S25. Energy difference between closed form and singlet biradical of CIC and PTIC derivatives. The energy level of the CIC and PTIC derivatives calculated at the MPW1PW91/6-31G(d) and UMPW1PW91/6-31G(d) level of the theory.

	CIC	CIC-tBuPh	CIC-TPA	PTIC	PTIC-tBuPh	PTIC-TPA
Time constant /	2.9	5.2	6.2	0.58	0.70	0.51
μs	2.9	0.2	0.2	0.00	0.70	0.01
$\Delta E \ / \ kJ \ mol^{-1}$	53.1	52.6	46.5	66.6	65.8	64.5

11. References

- S1 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr., 2015, 71, 3-8.
- S2 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3-8.
- S3 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- S4 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. *Gaussian 09*, 2009.