Supporting Information

Direct Arylation of N-heterocycles Enabled by Photoredox Catalysis

Heng-Hui Li, ${ }^{\text {a,b }}$ Shaoyu Li, ${ }^{\text {b }}$ Jun Kee Cheng, ${ }^{* b}$ Shao-Hua Xiang, ${ }^{\text {b }}$ and Bin Tan* ${ }^{\text {b }}$
${ }^{a}$ School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
${ }^{b}$ Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key
Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
E-mail: tanb@sustech.edu.cn; junkee@ sustech.edu.cn

Content

General Information 2
Reaction Condition Optimization 3
General Procedure for Photocatalytic Synthesis of N-Heterobiaryls 6
Characterization of Products 7
Crystallographic Data 25
Gram-Scale Synthesis 26
Mechanistic Investigations 27
Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra 30

General Information

Unless otherwise specified, chemicals were purchased from commercial suppliers and used without further purification. Analytical thin layer chromatography (TLC) was performed on Jiangyou TLC silica gel plates HSGF254 and visualized through UV light (254 nm). Preparative thin layer chromatography (PTLC) was performed using Huanghai ($0.4-0.5 \mathrm{~mm}, 20 * 20 \mathrm{~cm}$, Yantai Jiangyou). Flash column chromatography was performed using Tsingtao Haiyang silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AVANCE III HD 400 MHz spectrometer. Chemical shifts are expressed in parts per million (δ) referenced to TMS (0.0 ppm), $\mathrm{CDCl}_{3}(7.26$ ppm or 77.16 ppm), Acetone $-d_{6}$ (2.05 ppm or 29.84 ppm) and DMSO- $d_{6}(2.50 \mathrm{ppm}$ or 39.52 ppm), respectively. The NMR data are recorded as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; $\mathrm{dd}=$ doublet of doublet; $\mathrm{m}=$ multiplet; $\mathrm{br}=$ broad $)$, coupling constant (Hz), integration. For reaction optimization, triphenylmethane was added as an internal standard (s, $5.55 \mathrm{pm}, 1 \mathrm{H}$) and CDCl_{3} was used as locking solvent. Photochemical reactions were carried out with 24 W blue LED which was purchased from Guangzhou Hongye Lighting (https://shop111029161.taobao.com/?spm=a230r.7195193.1997079397.2.438a6ac2Nn YsKB). High resolution mass spectroscopy (HRMS) analyses were performed at a Q-Exactive (Thermo Scientific) Inc. mass instrument (HESI).

Reaction Condition Optimization

Table S1. Screening of photocatalysts

 1a (0.1 mmol)		
Entry	Photocatalyst	Yield (\%) ${ }^{[\mathrm{a}]}$
1	$\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$	81
2	$\operatorname{Ir}[\mathrm{dF}(\mathrm{Me}) \mathrm{ppy}]_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$	58
3	$\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right]_{2}(\mathrm{bpy}) \mathrm{PF}_{6}$	$70^{[\mathrm{b}]}$
4	$\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right]_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$	79
5	4-CzIPN	70
6	3DPAFIPN	61
7	10-Phenyl-10H-phenothiazine	68
8	$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2}-6 \mathrm{H}_{2} \mathrm{O}$	N.R.
9	$\mathrm{Ru}(\text { phen })_{3}\left(\mathrm{PF}_{6}\right)_{2}$	N.R.
10	Eosin B	N.R.
11	Rhodamine B	N.R.
12	Rhodamine 6G	N.R.

[a] 1a ($0.1 \mathrm{mmol}, 1$ equiv), 2a (3 equiv), photocatalyst (0.01 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) for 12 h . Yields were determined through crude ${ }^{1} \mathrm{H}$ NMR spectrum using triphenylmethane as internal standard. [b] The reaction was carried out for 24 h . 3DPAFIPN $=2,4,6$-tris(diphenylamino)-5-fluoroisophthalonitrile. N.R. $=$ no reaction.

Table S2. Screening of solvents

 1 a (0.1 mmol)	$\begin{gathered} \frac{\operatorname{Ir}(\text { ppy })_{2}(\text { dtbbpy }) \mathrm{P}}{} \begin{array}{r} \text { Solvent }(0.1 \mathrm{~N} \\ 24 \mathrm{~W} \text { blue } \\ \mathrm{mol}) \end{array} \end{gathered}$	
Entry	Solvent	Yield (\%) ${ }^{[\text {a] }}$
1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	81
2	DCE	83
3	CHCl_{3}	69
4	Hexafluoroisopropanol	52
5	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	58
6	Acetone	trace
7	1,4-dioxane	N.R.
8	THF	N.R.
9	MeCN	7
10	Toluene	17
11	PhF	trace
12	Ethyl acetate	N.R.
13	MeOH	N.R.

 mL) for 12 h . Yields were determined through crude ${ }^{1} \mathrm{H}$ NMR spectrum using triphenylmethane as internal standard.

Table S3. Control Experiments

[a] 1a ($0.1 \mathrm{mmol}, 1$ equiv), 2a (3 equiv), $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$ (0.01 equiv), DCE (1 mL) for 12 h . Yields were determined through crude ${ }^{1} \mathrm{H}$ NMR spectrum using triphenylmethane as internal standard. [b] Yield in the parentheses was isolated yield. [c] Isolated by PTLC.

General Procedure for Photocatalytic Synthesis of \boldsymbol{N}-Heterobiaryls

To an oven-dried Schlenk tube equipped with magnetic bar was added phenol or arene (if it's solid, $0.6 \mathrm{mmol}, 3$ equiv), $\operatorname{Ir}(\mathrm{ppy})_{2}\left(\mathrm{dtbbpy}^{2}\right) \mathrm{PF}_{6}$ (0.01 equiv), bromoazaarenes (if it's solid, $0.2 \mathrm{mmol}, 1$ equiv). The mixture was then placed under vacuum and backfilled with argon three times, followed by the addition of DCE (2 mL) and arene or bromoazaarene (if it's liquid). Then the tube was placed approximate $4 \sim 5 \mathrm{~cm}$ away from 24 W blue LED and stir vigorously for corresponding time with a cooling fan to maintain the reaction at r.t. (about $25^{\circ} \mathrm{C}$). Upon completion of the reaction monitored by TLC, the mixture was concentrated and purified by silica chromatography or PTLC to afford the pure product.

Characterization of Products

4-Chloro-2-(6-methylpyridin-2-yl)phenol (3a)

Following the general procedure, 3a was obtained in 83% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 14.55(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.94-7.90(\mathrm{~m}$, 1H), 7.35 - 7.30 (m, 2H), 6.93 (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.56 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 158.05,155.04,154.94,139.04,130.80,126.29$, 122.47, 120.16, 119.70, 117.37, 23.34.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClNO}\right]^{+}: 220.0524$, found: 220.0522.

4-Bromo-2-(6-methylpyridin-2-yl)phenol (3b)

Following the general procedure, $\mathbf{3 b}$ was obtained in 83% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 14.57(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 158.46,155.00,154.81,138.99,133.61,129.09$, 122.44, 120.77, 120.14, 117.36, 109.97, 23.33.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrNO}\right]^{+}: 264.0019$, found: 264.0017 .

4-Fluoro-2-(6-methylpyridin-2-yl)phenol (3c)

Following the general procedure, $\mathbf{3 c}$ was obtained in 72% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 14.25(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.85$ $(\mathrm{m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 155.52,155.27(\mathrm{~d}, J=2.8 \mathrm{~Hz}$), $155.13(\mathrm{~d}, J=$ $233.0 \mathrm{~Hz}), 155.05,139.02,122.38,119.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 119.01(\mathrm{~d}, J=8.0 \mathrm{~Hz})$, $118.04(\mathrm{~d}, J=23.2 \mathrm{~Hz}), 117.36,112.68(\mathrm{~d}, J=24.3 \mathrm{~Hz})$.
${ }^{19}$ F NMR (376 MHz, DMSO- d_{6}) $\delta-125.79$.
HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FNO}\right]^{+}:$204.0819, found: 204.0818.

Methyl 4-hydroxy-3-(6-methylpyridin-2-yl)benzoate (3d)
Following the general procedure, $\mathbf{3 d}$ was obtained in 75% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 15.32(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (s, 3H), 2.57 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 165.88$, 163.61, 155.07, 154.99, 139.30, 132.15, $128.56,122.55,120.15,118.53,118.35,117.14,51.90,23.29$.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{3}\right]^{+}: 244.0968$, found: 244.0966 .

2-(6-Methylpyridin-2-yl)-4-(trifluoromethyl)phenol (3e)

Following the general procedure, $\mathbf{3 e}$ was obtained in 76% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 15.21(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.19-8.16$ $(\mathrm{m}, 1 \mathrm{H}), 7.95-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 162.34,154.98,154.79,139.15,127.76$ (q, $J=3.7$ $\mathrm{Hz}), 124.62(\mathrm{q}, J=271.0 \mathrm{~Hz}), 124.37(\mathrm{q}, J=3.9 \mathrm{~Hz}), 119.44(\mathrm{q}, J=32.2 \mathrm{~Hz}), 118.94$, $118.75,117.50,23.26$.
${ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO- d_{6}) $\delta-59.58$.
HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}\right]^{+}$: 254.0787 , found: 254.0785.

1-(4-Hydroxy-3-(6-methylpyridin-2-yl)phenyl)ethan-1-one (3f)

Following the general procedure, $\mathbf{3 f}$ was obtained in 63% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 15.47(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}) 7.98-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 196.20,163.79,155.39,154.83,139.24,131.37$, $128.28,128.01,122.48,118.19,118.05,117.18,26.46,23.26$.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{2}\right]^{+}: 228.1019$, found: 228.1016.

4-Hydroxy-3-(6-methylpyridin-2-yl)benzonitrile (3g)

Following the general procedure, $\mathbf{3 g}$ was obtained in 70% yield as yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 15.71$ ($\mathrm{s}, 1 \mathrm{H}$), 8.56 ($\mathrm{s}, 1 \mathrm{H}$), 8.19 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.99-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 163.42,154.90,154.43,139.37,134.65,131.94$, $122.98,119.48,119.33,117.51,101.04,23.20$.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 211.0866$, found: 211.0864 .

2-(6-Methylpyridin-2-yl)-4-(methylsulfonyl)phenol (3h)

Following the general procedure, $\mathbf{3 h}$ was obtained in 69% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 15.44(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.18-8.16$ $(\mathrm{m}, 1 \mathrm{H}), 8.02-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.12$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, DMSO- d_{6}) $\delta 163.40,155.13,154.55,139.34,130.94,129.79$, 126.77, 122.97, 118.99, 118.67, 117.62, 43.90, 23.29.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S}\right]^{+}: 264.0689$, found: 264.0687 .

3-Chloro-2-(6-methylpyridin-2-yl)phenol (3i)

Following the general procedure, $\mathbf{3 i}$ was obtained in 57% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 15.01(\mathrm{~s}, 1 \mathrm{H}), 8.04-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.94-7.90(\mathrm{~m}$, $1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.82(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 160.36$, 155.37, 154.87, 139.12, 135.11, 128.47, 122.24, 118.78, 117.67, 117.46, 117.00, 23.29.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClNO}\right]^{+}: 220.0524$, found: 220.0521 .

2-Chloro-6-(6-methylpyridin-2-yl)phenol (3j)
Following the general procedure, $\mathbf{3 j}$ was obtained in 61% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 15.89(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.94$ (m, 2H), $7.47-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 155.46,155.44,154.67,139.41,131.26,125.54$, 122.55, 121.47, 119.59, 118.83, 117.07, 23.13.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClNO}\right]^{+}: 220.0524$, found: 220.0522 .

2-(6-Methylpyridin-2-yl)phenol (3k)

Following the general procedure, $\mathbf{3 k}$ was obtained in 76% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.80(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.58(\mathrm{~m}, 2 \mathrm{H})$,
$7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.23,157.32,155.07,138.12,131.38,126.26$, 121.23, 118.92, 118.74, 118.63, 116.08, 23.90.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}\right]^{+}: 186.0913$, found: 186.0912.

3,5-Dichloro-2-(6-methylpyridin-2-yl)phenol (31)

Following the general procedure, $\mathbf{3 1}$ was obtained in 73% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 13.43(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.76$ $(\mathrm{m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.64 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 160.04,155.70,153.64,137.67,135.28,132.81$, 123.07, 122.26, 121.79, 118.50, 116.92, 23.86.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{NO}\right]^{+}: 254.0134$, found: 254.0132.

Methyl 2-(4-hydroxy-3-(6-methylpyridin-2-yl)phenyl)acetate (3m)
Following the general procedure, $\mathbf{3 m}$ was obtained in 78% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 14.39$ (s, 1H), $7.98-7.89$ (m, 3H), 7.29 (d, $J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}$, $3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 172.04, 158.21, 156.21, 154.94, 138.89, 132.32, 127.79, 124.52, 121.81, 118.34, 117.89, 116.69, 51.68, 39.31, 23.42.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{3}\right]^{+}: 258.1125$, found: 258.1122

2-(6-Methylpyridin-2-yl)-4-pentylphenol (3n)

Following the general procedure, $\mathbf{3 n}$ was obtained in 77% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 14.21(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.86$ $(\mathrm{m}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.50(\mathrm{~m}, 5 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.14$ $(\mathrm{m}, 4 \mathrm{H}), 0.85(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 157.29,156.55,154.78,138.73,132.38,131.22$, $126.25,121.53,118.22,117.67,116.69,34.44,30.96,30.91,23.41,21.99,13.93$

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}\right]^{+}: 256.1696$, found: 256.1692.

4-Methyl-2-(6-methylpyridin-2-yl)phenol (30)

Following the general procedure, $\mathbf{3 o}$ was obtained in 77% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 14.21(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.87$ (m, 1H), $7.79(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 157.11,156.51,154.87,138.82,132.01,127.23$, 126.91, 121.63, 118.26, 117.74, 116.69, 23.45, 20.28.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}\right]^{+}: 200.1070$, found: 200.1068.

4-Cyclohexyl-2-(6-methylpyridin-2-yl)phenol (3p)

Following the general procedure, $\mathbf{3 p}$ was obtained in 68% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta 14.22$ (s, 1H), 8.04 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.90-7.86$ (m, 1H), 7.78 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.44(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.76(\mathrm{~m}, 4 \mathrm{H})$, 1.47 - 1.20 (m, 6H).
${ }^{13}{ }^{13}$ NMR (100 MHz, DMSO- d_{6}) $\delta 157.39,156.63,154.79,138.76,137.88,129.56$, 124.75, 121.57, 118.24, 117.68, 116.78, 43.13, 34.18, 26.49, 25.61, 23.45.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}\right]^{+}: 268.1696$, found: 268.1693.

3,5-Dimethoxy-2-(6-methylpyridin-2-yl)phenol (3q)

Following the general procedure, $\mathbf{3 q}$ was obtained in 57% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 16.12(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}$, 3 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.51,161.65,160.31,155.77,153.26,137.65$, 121.17, 119.70, 102.72, 94.70, 90.60, 55.46, 55.22, 23.51.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}\right]^{+}: 246.1125$, found: 246.1122.

3,5-Di-tert-butyl-2-(6-methylpyridin-2-yl)phenol (3r)

Following the general procedure, $\mathbf{3 r}$ was obtained in 72% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (s, 1H), $2.61(\mathrm{~s}, 3 \mathrm{H}), 1.34$ (s, 9H), 1.18 ($\mathrm{s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.48,157.89,153.52,152.05,148.50,136.78$, $124.40,124.34,121.95,116.91,111.26,37.03,34.92,32.89,31.39,24.54$.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}\right]^{+}: 298.2165$, found: 298.2161.

3,4,5-Trimethoxy-2-(6-methylpyridin-2-yl)phenol (3s)
Following the general procedure, 3 s was obtained in 60% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 14.49(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.83$ $(\mathrm{m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, 2.53 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 156.38,154.80,154.65,154.30,152.92,138.65$, 134.77, 120.95, 120.64, 106.35, 97.19, 60.66, 55.68, 23.40.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4}\right]^{+}: 276.1230$, found: 276.1228.

2-(tert-Butyl)-4-methyl-6-(6-methylpyridin-2-yl)phenol (3t)

Following the general procedure, $\mathbf{3 t}$ was obtained in 83% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta 15.13$ (s, 1H), 7.95 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.87-7.83$
(m, 1H), $7.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.54(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 157.17, 156.47, 154.24, 138.81, 137.01, 129.18, $125.90,124.81,121.31,117.86,116.96,34.54,29.39,23.30,20.68$.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}\right]^{+}: 256.1696$, found: 256.1693 .

2-(tert-Butyl)-4-methyl-6-(3-methylpyridin-2-yl)phenol (4a)
Following the general procedure, $\mathbf{4 a}$ was obtained in 58% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.35-8.33(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=$ 7.7, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.05 (s, 2H), 2.44 (s, 3H), 2.24 ($\mathrm{s}, 3 \mathrm{H}$), 1.39 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.33,153.70,144.32,141.27,138.00,132.33$, $128.64,128.12,126.53,121.80,35.11,29.83,21.59,21.20$.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}\right]^{+}: 256.1696$, found: 256.1693.

2-(tert-Butyl)-4-methyl-6-(4-methylpyridin-2-yl)phenol (4b)

Following the general procedure, $\mathbf{4 b}$ was obtained in 79% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.80(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H})$, $7.46(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, 2.33 ($\mathrm{s}, 3 \mathrm{H}$), 1.48 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.42,157.24,148.97,145.07,138.22,129.63$, 126.37, 124.55, 122.34, 120.27, 118.48, 35.10, 29.71, 21.75, 21.24.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}\right]^{+}: 256.1696$, found: 256.1693 .

2-(tert-Butyl)-4-methyl-6-(5-methylpyridin-2-yl)phenol (4c)

Following the general procedure, $\mathbf{4 c}$ was obtained in 66% yield as a yellow solid
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.50(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.58(\mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (s, 3H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.80,156.03,145.40,138.55,138.14,130.85$, $129.33,126.41,124.45,119.31,118.57,35.09,29.71,21.24,18.27$.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}\right]^{+}: 256.1696$, found: 256.1694 .

2-(tert-Buty)-4-methyl-6-(pyridin-2-yl)phenol (4d)

Following the general procedure, $\mathbf{4 d}$ was obtained in 69% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.54(\mathrm{~s}, 1 \mathrm{H}), 8.47-8.45(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.88(\mathrm{~m}, 1 \mathrm{H})$, $7.80-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.48$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.75,157.11,145.45,138.31,137.76,129.84$, $126.53,124.65,121.17,119.77,118.46,35.11,29.70,21.24$.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}\right]^{+}: 242.1539$, found: 242.1537.

2-(tert-Butyl)-6-(5-chloropyridin-2-yl)-4-methylphenol (4e)

Following the general procedure, $\mathbf{4 e}$ was obtained in 43% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.79(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}), 1.46$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.97,156.64,144.51,138.48,137.62,130.27$, 129.27, 126.94, 124.74, 120.94, 117.91, 35.15, 29.67, 21.21.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{ClNO}\right]^{+}: 276.1150$, found: 276.1146 .

2-(tert-Butyl)-6-(5-fluoropyridin-2-yl)-4-methylphenol (4f)

Following the general procedure, $\mathbf{4 f}$ was obtained in 49% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.78(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.89(\mathrm{~m}$, $1 \mathrm{H}), 7.60-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}$, 9H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.80(\mathrm{~d}, J=254.9 \mathrm{~Hz}), 156.13,155.31(\mathrm{~d}, J=3.9$ $\mathrm{Hz}), 138.42,133.63(\mathrm{~d}, J=25.3 \mathrm{~Hz}), 129.83,126.91,125.26(\mathrm{~d}, J=18.8 \mathrm{~Hz}), 124.76$, $121.45(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}), 118.23,35.15,29.68$, 21.22 .
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-129.17.
HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{FNO}\right]^{+}: 260.1445$, found: 260.1441 .

2-(3-Amino-4-methylpyridin-2-yl)-6-(tert-butyl)-4-methylphenol (4g)

Following the general procedure, $\mathbf{4 g}$ was obtained in 72% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.95(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H})$, 7.10 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.23$ (s, $3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.55,142.78,139.54,138.45,137.21,132.96$, $128.35,127.12,125.67,124.28,120.95,35.11,29.77,21.18,17.89$.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 271.1805$, found: 271.1800.

2-(tert-Butyl)-6-(quinolin-3-yl)-4-methylphenol (4h)

Following the general procedure, $\mathbf{4 h}$ was obtained in 48% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 15.63(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 158.38,157.41,143.65,138.32,137.16,130.91$, $130.18,127.93,126.88,126.79,126.18,125.79,118.38,117.92,34.64,29.43,20.71$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}\right]^{+}: 292.1696$, found: 292.1690 .

2-(tert-Butyl)-6-(isoquinolin-1-yl)-4-methylphenol (4i)

Following the general procedure, $\mathbf{4 i}$ was obtained in 44% yield as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.96(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.12$ $(\mathrm{m}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.19-$ $7.16(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 158.49,152.53,140.12,137.15,137.09,130.66$, $129.47,128.42,127.86,127.38,127.23,126.65,126.07,122.70,120.26,34.64,29.53$, 20.62.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}\right]^{+}: 292.1696$, found: 292.1690.

2-(tert-Butyl)-4-methyl-6-(6-methylpyridin-3-yl)phenol (4j)

Following the general procedure, $\mathbf{4} \mathbf{j}$ was obtained in 56% yield as a white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H})$, 2.33 ($\mathrm{s}, 3 \mathrm{H}$), 1.46 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.32,149.50,149.38,139.60,137.30,132.39$, 129.66, 128.66, 128.39, 125.12, 124.81, 34.90, 29.95, 23.91, 20.91.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}\right]^{+}: 256.1696$, found: 256.1691 .

2-(tert-Butyl)-4-methyl-6-(2-methylpyridin-3-yl)phenol (4k)

Following the general procedure, $\mathbf{4 k}$ was obtained in 53% yield as a white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}$, $1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 2.31$ (s, 3H), 2.23 (s, 3H), 1.36 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.08,149.12,148.88,139.51,136.80,132.79$, 129.18, 128.16, 128.00, 126.39, 121.77, 34.94, 29.77, 22.70, 20.91.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}\right]^{+}: 256.1696$, found: 256.1691 .

2-(tert-Butyl)-4-methyl-6-(4-methylpyridin-3-yl)phenol (4l)

Following the general procedure, $\mathbf{4 I}$ was obtained in 61% yield as a white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=5.3$
$\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$, 2.16 (s, 3H), 1.36 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.38,149.85,149.70,147.84,137.37,135.31$, 129.43, 128.40, 128.32, 126.13, 124.47, 34.89, 29.83, 20.90, 19.76.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}\right]^{+}: 256.1696$, found: 256.1691 .

2-(tert-Butyl)-4-methyl-6-(pyridin-3-yl)phenol (4m)

Following the general procedure, $\mathbf{4 m}$ was obtained in 43% yield as a white solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H})$, $7.86-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.86(\mathrm{~m}$, 1 H), 2.24 ($\mathrm{s}, 3 \mathrm{H}$), 1.38 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 150.07,149.79,147.58,138.72,136.99,135.12$, 128.70, 127.96, 127.19, 123.48, 34.65, 29.84, 20.53.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}\right]^{+}: 242.1539$, found: 242.1534 .

2-(tert-Butyl)-6-(3,5-dimethylpyridin-4-yl)-4-methylphenol (4n)
Following the general procedure, $\mathbf{4} \mathbf{n}$ was obtained in 50% yield as a white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 2.46$ (s, 6H), 2.23 ($\mathrm{s}, 3 \mathrm{H}$), 1.37 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.65,149.08,147.25,137.11,129.25,128.39$, 127.83, 126.79, 121.00, 35.05, 29.84, 24.47, 20.91.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}\right]^{+}: 270.1852$, found: 270.1847.

2-(5-Chloro-2-methoxyphenyl)-6-methylpyridine (6a)

Following the general procedure, 6a was obtained in 31% yield as a white solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.75-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{dd}, J=8.8,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.22 - 7.16 (m, 2H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 157.65,155.71,152.63,136.43,129.91,129.83$, 129.27, 124.46, 121.84, 113.93, 56.04, 24.23.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClNO}\right]^{+}: 234.0680$, found: 234.0676.

2-(2-Chloro-5-methoxyphenyl)-6-methylpyridine (6b)

Following the general procedure, $\mathbf{6 b}$ was obtained in 24% yield as white solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) 8.79 - 7.75 (m, 1H), 7.46 - 7.41 (m, 2H), 7.28 (d, J
$=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.00(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 158.04,157.71,155.38,139.97,136.57,130.69$, 122.35, 122.18, 121.54, 116.51, 115.70, 55.59, 24.13.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClNO}\right]^{+}: 234.0680$, found: 234.0677.

2-Mesityl-6-methylpyridine (8a)
Following the general procedure, $\mathbf{8}$ was obtained in 91% yield as white solid with HFIP as solvent (0.5 M).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.43,158.30,137.96,137.38,136.59,135.77$, $128.39,121.67,121.10,24.73,21.19,20.27$.

HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calculated m / z for $\left[\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}\right]^{+}: 212.1435$, found: 212.1430.

2-Methyl-6-(naphthalen-1-yl)pyridine ($\mathbf{8 b} \mathbf{- 1}$)

Following the general procedure, $\mathbf{8 b} \mathbf{- 1}$ was obtained as white solid in 40% yield.
The spectra data were matched with the reported reference. ${ }^{1}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65$
$-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.60(\mathrm{~s}, 3 \mathrm{H})$.

2-Methyl-6-(naphthalen-2-yl)pyridine (8b-2)

Following the general procedure, $\mathbf{8 b} \mathbf{- 2}$ was obtained as white solid in 23% yield.
The spectra data were matched with the reported reference. ${ }^{2}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.85$ (m, 2H), $7.81-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.05$ (m, 1H), $2.61(\mathrm{~s}, 3 \mathrm{H})$.

Reference

1. So, C. M.; Lau, C. P.; Kwong, F. Y. Org. Lett. 2007, 9, 2795.
2. Addla, D.; Kanteveri, S. J. Heterocyclic Chem. 2014, 51, E384.

Crystallographic Data

Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrNO}$
Formula weight	264.12
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	7.127 (2)
b/Å	7.435 (3)
c/Å	10.981 (4)
$\alpha /{ }^{\circ}$	72.738 (11)
$\beta /{ }^{\circ}$	84.610 (12)
γ°	67.998 (12)
Volume/Å ${ }^{3}$	515.1 (3)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.703
μ / mm^{-1}	3.959
$\mathrm{F}(000)$	264.0
Crystal size/mm ${ }^{3}$	$0.38 \times 0.14 \times 0.12$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	6.162 to 56.75
Index ranges	$-9 \leq h \leq 9,-9 \leq k \leq 9,-14 \leq 1 \leq 14$
Reflections collected	8229
Independent reflections	$2560\left[\mathrm{R}_{\mathrm{int}}=0.0637, \mathrm{R}_{\text {sigma }}=0.0590\right]$
Data/restraints/parameters	2560/0/138
Goodness-of-fit on F^{2}	1.061
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0343, \mathrm{wR}_{2}=0.0790$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0436, \mathrm{wR}_{2}=0.0828$
Largest diff. peak/hole / e \AA^{-3}	0.84/-0.73

Gram-Scale Synthesis

To an oven-dried 100 mL Schlenk bottle equipped with magnetic bar was added 4-chlorophenol 2a ($1.92 \mathrm{~g}, 15 \mathrm{mmol}, 3$ equiv), $\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(4.6 \mathrm{mg}, 0.1$ $\mathrm{mol} \%)$. The mixture was then placed under vacuum and backfilled with argon three times, followed by the addition of DCE (50 mL) and bromopyridine $\mathbf{1 a}(860 \mathrm{mg}, 5$ mmol, 1 equiv). Then the tube was placed approximate $4 \sim 5 \mathrm{~cm}$ away from 24 W blue LED and stir vigorously for 24 h with a cooling fan to maintain the reaction at r.t. (about $25^{\circ} \mathrm{C}$). Upon completion of the reaction monitored by TLC, the mixture was concentrated and purified by silica chromatography (pre-basified with $\mathrm{Et}_{3} \mathrm{~N}$) to afford product $\mathbf{3 a}$ (867 mg , yellow solid).

Mechanistic Investigations

1. Protection of hydroxyl group

Table S4. Solvent effect

Entry	Solvent	Yield (\%)
1	DCE	0
2	HFIP	$55(\mathbf{6 a : 6 b}=1.3: 1)$

2. Radical trapping experiment

3. ${ }^{1} H$ NMR experiment

In order to examine the interaction between 2-bromo-6-methylpyridine (1a) and 4-chlorophenol (2a), we carried out the ${ }^{1} \mathrm{H}$ NMR experiment of the mixture of $\mathbf{1 a}$ and 2a in 1:3 ratio in CDCl_{3} and compared the spectrum with individual ${ }^{1} \mathrm{H}$ NMR spectrum of 1a and 2a $\left(\mathrm{CDCl}_{3}\right.$ as locking solvent). As can be seen from Fig. S1, the mixing of $\mathbf{1 a}$ and $\mathbf{2 a}$ caused noticeable shift in the proton signals of both substrates. In particular, the hydroxyl proton of $\mathbf{2 a}$ has shifted from 5.17 ppm to the region between 6.88 to 6.71 ppm , and the proton adjacent to methyl group in 1a has shifted from 7.10 ppm to the region of $6.88-6.71 \mathrm{ppm}$. Besides, there were only three sets of proton signals observed for 2a, indicating that the protonation process was in an equilibrium between 1a and 2a.

Fig.S1 ${ }^{1} \mathrm{H}$ NMR experiment of $\mathbf{1 a}$ and $\mathbf{2 a}$ in CDCl_{3}

4. Control experiment

In order to examine the possible mechanistic pathway of oxidation of phenolate to radical intermediate or the formation of EDA complex between 2-bromo-6-methylpyridine (1a) and phenolate ion, we designed and carried out the experiments using sodium phenolate as substrate using reaction conditions that include and exclude the photocatalyst. According to the results in Fig.S2, there was no product detected in both scenarios, ruling out the plausible involvement of EDA complex and phenol radical in the mechanistic pathway.

Fig.S2 Control experiment with sodium phenolate

Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra

HHN-10. 1. fid

HHN-10. 2. fid
$\stackrel{\text { U }}{\stackrel{\rightharpoonup}{*}}$

HHN-31.2. fid

HHN-26. 2. fid

\qquad

${ }^{19}$ F NMR spectrum of 3 c

${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{3 d}$

${ }^{13} \mathrm{C}$ NMR spectrum of 3 d

${ }^{19} \mathrm{~F}$ NMR spectrum of 3 e

HHN-74. 3. fid

HHN-95. 2. fid

нHN-70a. 2. fid

HHN-99. 2. fid

$\stackrel{\underset{\sim}{i}}{\stackrel{1}{1}}$

HHN-45. 2. fid
筑

HHN-85. 11. fid

${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{3 p}$

HHN-88. 2. fid

Coseres)

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 q}$

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 r}$

HHN-86. 2. fid

[^0]

HHN-20. 2. fid

HHN-90. 4. fid

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$

HHN-117. 2. fid
QEN

HHN-115. 2. fid

HHN-113. 2. fid

Mo

HHN-137. 2. fid

${ }^{13} \mathrm{C}$ NMR spectrum of $4 f$

HHN-137. 10. fid

${ }^{19}$ F NMR spectrum of $4 f$

HHN-132a. 1.fid

${ }^{1} H$ NMR spectrum of $\mathbf{4 g}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 g}$

1s1-20220110. 10.fid

HHN-143. 4. fid

MNN

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{4 k}$

ннК-149a. 5. fid

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 m}$

HHN-142. 2. fid

$\stackrel{\text { ¢゙ }}{1}$

HMBC spectrum of 6a

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{6 b}$

HHN-154b. 11.fid

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{8 b - 2}$

[^0]:
 ${ }^{13} \mathrm{C}$ NMR spectrum of 3 r

