Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

# **Supporting Information**

# Direct Arylation of N-heterocycles Enabled by Photoredox Catalysis

Heng-Hui Li, a,b Shaoyu Li,b Jun Kee Cheng,\* Shao-Hua Xiang,b and Bin Tan\*

E-mail: tanb@sustech.edu.cn; junkee@sustech.edu.cn

<sup>&</sup>lt;sup>a</sup>School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

<sup>&</sup>lt;sup>b</sup>Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China

## Content

| General Information                                                       | 2  |
|---------------------------------------------------------------------------|----|
| Reaction Condition Optimization                                           | 3  |
| General Procedure for Photocatalytic Synthesis of N-Heterobiaryls         | 6  |
| Characterization of Products                                              | 7  |
| Crystallographic Data                                                     | 25 |
| Gram-Scale Synthesis                                                      | 26 |
| Mechanistic Investigations                                                | 27 |
| Copies of <sup>1</sup> H, <sup>13</sup> C and <sup>19</sup> F NMR Spectra | 30 |

#### **General Information**

Unless otherwise specified, chemicals were purchased from commercial suppliers and used without further purification. Analytical thin layer chromatography (TLC) was performed on Jiangyou TLC silica gel plates HSGF254 and visualized through UV light (254 nm). Preparative thin layer chromatography (PTLC) was performed using Huanghai (0.4-0.5 mm, 20\*20 cm, Yantai Jiangyou). Flash column chromatography was performed using Tsingtao Haiyang silica gel (200-300 mesh). <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on Bruker AVANCE III HD 400 MHz spectrometer. Chemical shifts are expressed in parts per million (δ) referenced to TMS (0.0 ppm), CDCl<sub>3</sub> (7.26 ppm or 77.16 ppm), Acetone- $d_6$  (2.05 ppm or 29.84 ppm) and DMSO- $d_6$  (2.50 ppm or 39.52 ppm), respectively. The NMR data are recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet; d = doublet; t = triplet; q = quartet; dd = doublet of doublet; m = multiplet; br = broad), coupling constant (Hz), integration. For reaction optimization, triphenylmethane was added as an internal standard (s, 5.55 pm, 1H) and CDCl3 was used as locking solvent. Photochemical reactions were carried out with 24 W blue LED which was purchased from Guangzhou Hongye Lighting (https://shop111029161.taobao.com/?spm=a230r.7195193.1997079397.2.438a6ac2Nn YsKB). High resolution mass spectroscopy (HRMS) analyses were performed at a Q-Exactive (Thermo Scientific) Inc. mass instrument (HESI).

# **Reaction Condition Optimization**

**Table S1.** Screening of photocatalysts

| Entry | Photocatalyst                        | Yield (%) <sup>[a]</sup> |
|-------|--------------------------------------|--------------------------|
| 1     | $Ir(ppy)_2(dtbbpy)PF_6$              | 81                       |
| 2     | $Ir[dF(Me)ppy]_2(dtbbpy)PF_6$        | 58                       |
| 3     | $Ir[dF(CF_3)ppy]_2(bpy)PF_6$         | $70^{[b]}$               |
| 4     | $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$      | 79                       |
| 5     | 4-CzIPN                              | 70                       |
| 6     | 3DPAFIPN                             | 61                       |
| 7     | 10-Phenyl-10 <i>H</i> -phenothiazine | 68                       |
| 8     | $Ru(bpy)_3Cl_2$ -6 $H_2O$            | N.R.                     |
| 9     | $Ru(phen)_3(PF_6)_2$                 | N.R.                     |
| 10    | Eosin B                              | N.R.                     |
| 11    | Rhodamine B                          | N.R.                     |
| 12    | Rhodamine 6G                         | N.R.                     |

[a] **1a** (0.1 mmol, 1 equiv), **2a** (3 equiv), photocatalyst (0.01 equiv),  $CH_2Cl_2$  (1 mL) for 12 h. Yields were determined through crude  $^1H$  NMR spectrum using triphenylmethane as internal standard. [b] The reaction was carried out for 24 h. 3DPAFIPN = 2,4,6-tris(diphenylamino)-5-fluoroisophthalonitrile. N.R. = no reaction.

Table S2. Screening of solvents

| Entry | Solvent                            | Yield (%) <sup>[a]</sup> |
|-------|------------------------------------|--------------------------|
| 1     | CH <sub>2</sub> Cl <sub>2</sub>    | 81                       |
| 2     | DCE                                | 83                       |
| 3     | CHCl <sub>3</sub>                  | 69                       |
| 4     | Hexafluoroisopropanol              | 52                       |
| 5     | CF <sub>3</sub> CH <sub>2</sub> OH | 58                       |
| 6     | Acetone                            | trace                    |
| 7     | 1,4-dioxane                        | N.R.                     |
| 8     | THF                                | N.R.                     |
| 9     | MeCN                               | 7                        |
| 10    | Toluene                            | 17                       |
| 11    | PhF                                | trace                    |
| 12    | Ethyl acetate                      | N.R.                     |
| 13    | MeOH                               | N.R.                     |

[a]  $\mathbf{1a}$  (0.1 mmol, 1 equiv),  $\mathbf{2a}$  (3 equiv),  $Ir(ppy)_2(dtbbpy)PF_6$  (0.01 equiv), solvent (1 mL) for 12 h. Yields were determined through crude  $^1H$  NMR spectrum using triphenylmethane as internal standard.

 Table S3. Control Experiments

| Entry | Variations from the above conditions            | Yield (%) <sup>[a]</sup> |
|-------|-------------------------------------------------|--------------------------|
| 1     | _                                               | 83 (83) <sup>[b]</sup>   |
| 2     | No Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub> | N.R.                     |
| 3     | No light                                        | N.R.                     |
| 4     | <b>2a</b> (0.2 mmol)                            | 71 <sup>[c]</sup>        |

[a] **1a** (0.1 mmol, 1 equiv), **2a** (3 equiv), Ir(ppy)<sub>2</sub>(dtbbpy)PF<sub>6</sub> (0.01 equiv), DCE (1 mL) for 12 h. Yields were determined through crude <sup>1</sup>H NMR spectrum using triphenylmethane as internal standard. [b] Yield in the parentheses was isolated yield. [c] Isolated by PTLC.

## General Procedure for Photocatalytic Synthesis of N-Heterobiaryls

To an oven-dried Schlenk tube equipped with magnetic bar was added phenol or arene (if it's solid, 0.6 mmol, 3 equiv), Ir(ppy)<sub>2</sub>(dtbbpy)PF<sub>6</sub> (0.01 equiv), bromoazaarenes (if it's solid, 0.2 mmol, 1 equiv). The mixture was then placed under vacuum and backfilled with argon three times, followed by the addition of DCE (2 mL) and arene or bromoazaarene (if it's liquid). Then the tube was placed approximate 4~5 cm away from 24 W blue LED and stir vigorously for corresponding time with a cooling fan to maintain the reaction at r.t. (about 25 °C). Upon completion of the reaction monitored by TLC, the mixture was concentrated and purified by silica chromatography or PTLC to afford the pure product.

#### **Characterization of Products**



#### 4-Chloro-2-(6-methylpyridin-2-yl)phenol (3a)

Following the general procedure, 3a was obtained in 83% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  14.55 (s, 1H), 8.10 – 8.05 (m, 2H), 7.94 – 7.90 (m, 1H), 7.35 – 7.30 (m, 2H), 6.93 (d, J = 8.8 Hz, 1H), 2.56 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 158.05, 155.04, 154.94, 139.04, 130.80, 126.29, 122.47, 120.16, 119.70, 117.37, 23.34.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{12}H_{11}CINO]^+$ : 220.0524, found: 220.0522.



#### 4-Bromo-2-(6-methylpyridin-2-yl)phenol (3b)

Following the general procedure, **3b** was obtained in 83% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  14.57 (s, 1H), 8.15 (d, J = 2.5 Hz, 1H), 8.07 (d, J = 8.2 Hz, 1H), 7.92 – 7.88 (m, 1H), 7.42 (dd, J = 8.8, 2.5 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 6.87 (d, J = 8.8 Hz, 1H), 2.55 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 158.46, 155.00, 154.81, 138.99, 133.61, 129.09, 122.44, 120.77, 120.14, 117.36, 109.97, 23.33.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{12}H_{11}BrNO]^+$ : 264.0019, found: 264.0017.



#### 4-Fluoro-2-(6-methylpyridin-2-yl)phenol (3c)

Following the general procedure, 3c was obtained in 72% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  14.25 (s, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.94 – 7.85 (m, 2H), 7.33 (d, J = 7.6 Hz, 1H), 7.17 – 7.12 (m, 1H), 6.93 – 6.89 (m, 1H), 2.56 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ) δ 155.52, 155.27 (d, J = 2.8 Hz), 155.13 (d, J = 233.0 Hz), 155.05, 139.02, 122.38, 119.14 (d, J = 7.4 Hz), 119.01 (d, J = 8.0 Hz), 118.04 (d, J = 23.2 Hz), 117.36, 112.68 (d, J = 24.3 Hz).

<sup>19</sup>F NMR (376 MHz, DMSO- $d_6$ ) δ -125.79.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{12}H_{11}FNO]^+$ : 204.0819, found: 204.0818.



#### Methyl 4-hydroxy-3-(6-methylpyridin-2-yl)benzoate (3d)

Following the general procedure, **3d** was obtained in 75% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 15.32 (s, 1H), 8.53 (d, J = 2.2 Hz, 1H), 8.06 (d, J = 8.2 Hz, 1H), 8.00 – 7.91 (m, 1H), 7.88 (dd, J = 8.6, 2.2 Hz, 1H), 7.36 (d, J = 7.7 Hz, 1H), 7.00 (d, J = 8.6 Hz, 1H), 3.84 (s, 3H), 2.57 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 165.88, 163.61, 155.07, 154.99, 139.30, 132.15, 128.56, 122.55, 120.15, 118.53, 118.35, 117.14, 51.90, 23.29.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{14}H_{14}NO_3]^+$ : 244.0968, found: 244.0966.

#### 2-(6-Methylpyridin-2-yl)-4-(trifluoromethyl)phenol (3e)

Following the general procedure, **3e** was obtained in 76% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  15.21 (s, 1H), 8.30 (d, J = 2.2 Hz, 1H), 8.19 – 8.16 (m, 1H), 7.95 – 7.91 (m, 1H), 7.60 (dd, J = 8.6, 2.2 Hz, 1H), 7.35 (d, J = 7.6 Hz, 1H), 7.06 (d, J = 8.6 Hz, 1H), 2.56 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ) δ 162.34, 154.98, 154.79, 139.15, 127.76 (q, J = 3.7 Hz), 124.62 (q, J = 271.0 Hz), 124.37 (q, J = 3.9 Hz), 119.44 (q, J = 32.2 Hz), 118.94, 118.75, 117.50, 23.26.

<sup>19</sup>F NMR (376 MHz, DMSO- $d_6$ ) δ -59.58.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{13}H_{11}F_3NO]^+$ : 254.0787, found: 254.0785.



#### 1-(4-Hydroxy-3-(6-methylpyridin-2-yl)phenyl)ethan-1-one (3f)

Following the general procedure, **3f** was obtained in 63% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 15.47 (s, 1H), 8.55 (d, J = 2.2 Hz, 1H), 8.17 (d, J = 8.2 Hz, 1H) 7.98 – 7.94 (m, 1H), 7.90 (dd, J = 8.6, 2.2 Hz, 1H), 7.36 (d, J = 7.6 Hz, 1H), 6.99 (d, J = 8.6 Hz, 1H), 2.59 (s, 3H), 2.57 (s, 3H)

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 196.20, 163.79, 155.39, 154.83, 139.24, 131.37, 128.28, 128.01, 122.48, 118.19, 118.05, 117.18, 26.46, 23.26.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{14}H_{14}NO_2]^+$ : 228.1019, found: 228.1016.

#### 4-Hydroxy-3-(6-methylpyridin-2-yl)benzonitrile (3g)

Following the general procedure, **3g** was obtained in 70% yield as yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 15.71 (s, 1H), 8.56 (s, 1H), 8.19 (d, J = 8.2 Hz, 1H), 7.99 – 7.95 (m, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.04 (d, J = 8.6 Hz, 1H), 2.57 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 163.42, 154.90, 154.43, 139.37, 134.65, 131.94, 122.98, 119.48, 119.33, 117.51, 101.04, 23.20.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{13}H_{11}N_2O]^+$ : 211.0866, found: 211.0864.



#### 2-(6-Methylpyridin-2-yl)-4-(methylsulfonyl)phenol (3h)

Following the general procedure, **3h** was obtained in 69% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 15.44 (s, 1H), 8.49 (d, J = 2.3 Hz, 1H), 8.18 – 8.16 (m, 1H), 8.02 – 7.98 (m, 1H), 7.81 (dd, J = 8.7, 2.3 Hz, 1H), 7.42 – 7.40 (m, 1H), 7.12 (d, J = 8.6 Hz, 1H), 3.24 (s, 3H), 2.59 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 163.40, 155.13, 154.55, 139.34, 130.94, 129.79, 126.77, 122.97, 118.99, 118.67, 117.62, 43.90, 23.29.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{13}H_{14}NO_3S]^+$ : 264.0689, found: 264.0687.



#### 3-Chloro-2-(6-methylpyridin-2-yl)phenol (3i)

Following the general procedure, 3i was obtained in 57% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 15.01 (s, 1H), 8.04 – 8.00 (m, 2H), 7.94 – 7.90 (m, 1H), 7.32 (d, J = 7.5 Hz, 1H), 6.97 – 6.82 (m, 2H), 2.55 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 160.36, 155.37, 154.87, 139.12, 135.11, 128.47, 122.24, 118.78, 117.67, 117.46, 117.00, 23.29.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{12}H_{11}CINO]^+$ : 220.0524, found: 220.0521.



#### 2-Chloro-6-(6-methylpyridin-2-yl)phenol (3j)

Following the general procedure, **3j** was obtained in 61% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  15.89 (s, 1H), 8.07 (d, J = 8.2 Hz, 1H), 8.02 – 7.94 (m, 2H), 7.47 – 7.45 (m, 1H), 7.36 (d, J = 7.6 Hz, 1H), 6.90 (t, J = 7.9 Hz, 1H), 2.58 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 155.46, 155.44, 154.67, 139.41, 131.26, 125.54, 122.55, 121.47, 119.59, 118.83, 117.07, 23.13.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{12}H_{11}CINO]^+$ : 220.0524, found: 220.0522.



#### 2-(6-Methylpyridin-2-yl)phenol (3k)

Following the general procedure, 3k was obtained in 76% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 14.80 (s, 1H), 7.78 – 7.76 (m, 1H), 7.69 – 7.58 (m, 2H), 7.31 – 7.26 (m, 1H), 7.07 – 7.00 (m, 2H), 6.90 – 6.86 (m, 1H), 2.58 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 160.23, 157.32, 155.07, 138.12, 131.38, 126.26, 121.23, 118.92, 118.74, 118.63, 116.08, 23.90.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{12}H_{12}NO]^+$ : 186.0913, found: 186.0912.



#### 3,5-Dichloro-2-(6-methylpyridin-2-yl)phenol (3l)

Following the general procedure, **31** was obtained in 73% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  13.43 (s, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.80 – 7.76 (m, 1H), 7.19 (d, J = 7.7 Hz, 1H), 7.03 (d, J = 2.2 Hz, 1H), 6.98 (d, J = 2.2 Hz, 1H), 2.64 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 160.04, 155.70, 153.64, 137.67, 135.28, 132.81, 123.07, 122.26, 121.79, 118.50, 116.92, 23.86.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{12}H_{10}Cl_2NO]^+$ : 254.0134, found: 254.0132.



#### Methyl 2-(4-hydroxy-3-(6-methylpyridin-2-yl)phenyl)acetate (3m)

Following the general procedure, **3m** was obtained in 78% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  14.39 (s, 1H), 7.98 – 7.89 (m, 3H), 7.29 (d, J = 7.5 Hz, 1H), 7.19 (dd, J = 8.3, 2.2 Hz, 1H), 6.87 (d, J = 8.3 Hz, 1H), 3.66 (s, 2H), 3.62 (s, 3H), 2.55 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 172.04, 158.21, 156.21, 154.94, 138.89, 132.32, 127.79, 124.52, 121.81, 118.34, 117.89, 116.69, 51.68, 39.31, 23.42.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{15}H_{16}NO_3]^+$ : 258.1125, found: 258.1122

#### 2-(6-Methylpyridin-2-yl)-4-pentylphenol (3n)

Following the general procedure, **3n** was obtained in 77% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 14.21 (s, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.90 – 7.86 (m, 1H), 7.77 (d, J = 2.2 Hz, 1H), 7.26 (d, J = 7.6 Hz, 1H), 7.09 (dd, J = 8.3, 2.2 Hz, 1H), 6.81 (d, J = 8.3 Hz, 1H), 2.55 – 2.50 (m, 5H), 1.60 – 1.52 (m, 2H), 1.31 – 1.14 (m, 4H), 0.85 (t, J = 6.9 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 157.29, 156.55, 154.78, 138.73, 132.38, 131.22, 126.25, 121.53, 118.22, 117.67, 116.69, 34.44, 30.96, 30.91, 23.41, 21.99, 13.93.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{17}H_{22}NO]^+$ : 256.1696, found: 256.1692.



#### 4-Methyl-2-(6-methylpyridin-2-yl)phenol (30)

Following the general procedure, **30** was obtained in 77% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 14.21 (s, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.91 – 7.87 (m, 1H), 7.79 (d, J = 2.2 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 7.10 (dd, J = 8.3, 2.2 Hz, 1H), 6.80 (d, J = 8.2 Hz, 1H), 2.54 (s, 3H), 2.28 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 157.11, 156.51, 154.87, 138.82, 132.01, 127.23, 126.91, 121.63, 118.26, 117.74, 116.69, 23.45, 20.28.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{13}H_{14}NO]^+$ : 200.1070, found: 200.1068.

#### 4-Cyclohexyl-2-(6-methylpyridin-2-yl)phenol (3p)

Following the general procedure, **3p** was obtained in 68% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 14.22 (s, 1H), 8.04 (d, J = 8.2 Hz, 1H), 7.90 – 7.86 (m, 1H), 7.78 (d, J = 2.2 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 7.13 (dd, J = 8.4, 2.2 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 2.54 (s, 3H), 2.48 – 2.44 (m, 1H), 1.80 – 1.76 (m, 4H), 1.47 – 1.20 (m, 6H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 157.39, 156.63, 154.79, 138.76, 137.88, 129.56, 124.75, 121.57, 118.24, 117.68, 116.78, 43.13, 34.18, 26.49, 25.61, 23.45.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{18}H_{22}NO]^+$ : 268.1696, found: 268.1693.



#### 3,5-Dimethoxy-2-(6-methylpyridin-2-yl)phenol (3q)

Following the general procedure, 3q was obtained in 57% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 16.12 (s, 1H), 8.21 – 8.18 (m, 1H), 7.65 – 7.61 (m, 1H), 6.97 (d, J = 7.5 Hz, 1H), 6.20 (s, 1H), 6.05 (s, 1H), 3.87 (s, 3H), 3.82 (s, 3H), 2.55 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.51, 161.65, 160.31, 155.77, 153.26, 137.65, 121.17, 119.70, 102.72, 94.70, 90.60, 55.46, 55.22, 23.51.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{14}H_{16}NO_3]^+$ : 246.1125, found: 246.1122.

#### 3,5-Di-tert-butyl-2-(6-methylpyridin-2-yl)phenol (3r)

Following the general procedure, **3r** was obtained in 72% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.69 – 7.65 (m, 1H), 7.25 – 7.17 (m, 3H), 6.88 (d, J = 1.8 Hz, 1H), 5.71 (s, 1H), 2.61 (s, 3H), 1.34 (s, 9H), 1.18 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 158.48, 157.89, 153.52, 152.05, 148.50, 136.78, 124.40, 124.34, 121.95, 116.91, 111.26, 37.03, 34.92, 32.89, 31.39, 24.54.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{20}H_{28}NO]^+$ : 298.2165, found: 298.2161.



#### 3,4,5-Trimethoxy-2-(6-methylpyridin-2-yl)phenol (3s)

Following the general procedure, 3s was obtained in 60% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  14.49 (s, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.87 – 7.83 (m, 1H), 7.23 (d, J = 7.6 Hz, 1H), 6.35 (s, 1H), 3.80 (s, 3H), 3.73 (s, 3H), 3.70 (s, 3H), 2.53 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 156.38, 154.80, 154.65, 154.30, 152.92, 138.65, 134.77, 120.95, 120.64, 106.35, 97.19, 60.66, 55.68, 23.40.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{15}H_{18}NO_4]^+$ : 276.1230, found: 276.1228.



#### 2-(tert-Butyl)-4-methyl-6-(6-methylpyridin-2-yl)phenol (3t)

Following the general procedure, 3t was obtained in 83% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  15.13 (s, 1H), 7.95 (d, J = 8.2 Hz, 1H), 7.87 – 7.83 (m, 1H), 7.63 (d, J = 2.0 Hz, 1H), 7.24 (d, J = 7.5 Hz, 1H), 7.07 (d, J = 2.0 Hz, 1H), 2.54 (s, 3H), 2.27 (s, 3H), 1.40 (s, 9H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 157.17, 156.47, 154.24, 138.81, 137.01, 129.18, 125.90, 124.81, 121.31, 117.86, 116.96, 34.54, 29.39, 23.30, 20.68.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{17}H_{22}NO]^+$ : 256.1696, found: 256.1693.



#### 2-(tert-Butyl)-4-methyl-6-(3-methylpyridin-2-yl)phenol (4a)

Following the general procedure, 4a was obtained in 58% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.35 – 8.33 (m, 1H), 7.63 – 7.61 (m, 1H), 7.11 (dd, J = 7.7, 4.8 Hz, 1H), 7.05 (s, 2H), 2.44 (s, 3H), 2.24 (s, 3H), 1.39 (s, 9H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 157.33, 153.70, 144.32, 141.27, 138.00, 132.33, 128.64, 128.12, 126.53, 121.80, 35.11, 29.83, 21.59, 21.20.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{17}H_{22}NO]^+$ : 256.1696, found: 256.1693.



#### 2-(tert-Butyl)-4-methyl-6-(4-methylpyridin-2-yl)phenol (4b)

Following the general procedure, **4b** was obtained in 79% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 14.80 (s, 1H), 8.30 (d, J = 5.7 Hz, 1H), 7.69 (s, 1H), 7.46 (d, J = 2.1 Hz, 1H), 7.14 (d, J = 2.1 Hz, 1H), 7.03 – 6.97 (m, 1H), 2.40 (s, 3H), 2.33 (s, 3H), 1.48 (s, 9H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 158.42, 157.24, 148.97, 145.07, 138.22, 129.63, 126.37, 124.55, 122.34, 120.27, 118.48, 35.10, 29.71, 21.75, 21.24.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{17}H_{22}NO]^+$ : 256.1696, found: 256.1693.



#### 2-(tert-Butyl)-4-methyl-6-(5-methylpyridin-2-yl)phenol (4c)

Following the general procedure, 4c was obtained in 66% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 14.50 (s, 1H), 8.28 (s, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.58 (dd, J = 8.4, 2.3 Hz, 1H), 7.44 (d, J = 2.1 Hz, 1H), 7.12 (d, J = 2.2 Hz, 1H), 2.34 (s, 3H), 2.32 (s, 3H), 1.48 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 156.80, 156.03, 145.40, 138.55, 138.14, 130.85, 129.33, 126.41, 124.45, 119.31, 118.57, 35.09, 29.71, 21.24, 18.27.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{17}H_{22}NO]^+$ : 256.1696, found: 256.1694.



#### 2-(tert-Butyl)-4-methyl-6-(pyridin-2-yl)phenol (4d)

Following the general procedure, 4d was obtained in 69% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 14.54 (s, 1H), 8.47 – 8.45 (m, 1H), 7.90 – 7.88 (m, 1H), 7.80 – 7.75 (m, 1H), 7.47 (d, J = 2.2 Hz, 1H), 7.20 – 7.15 (m, 2H), 2.33 (s, 3H), 1.48 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 158.75, 157.11, 145.45, 138.31, 137.76, 129.84, 126.53, 124.65, 121.17, 119.77, 118.46, 35.11, 29.70, 21.24.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{16}H_{20}NO]^+$ : 242.1539, found: 242.1537.



#### 2-(tert-Butyl)-6-(5-chloropyridin-2-yl)-4-methylphenol (4e)

Following the general procedure, 4e was obtained in 43% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 13.79 (s, 1H), 8.44 (d, J = 2.5 Hz, 1H), 7.84 (d, J = 8.9 Hz, 1H), 7.75 (dd, J = 8.9, 2.5 Hz, 1H), 7.40 (s, 1H), 7.16 (d, J = 2.1 Hz, 1H), 2.32 (s, 3H), 1.46 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 156.97, 156.64, 144.51, 138.48, 137.62, 130.27, 129.27, 126.94, 124.74, 120.94, 117.91, 35.15, 29.67, 21.21.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{16}H_{19}CINO]^+$ : 276.1150, found: 276.1146.



#### 2-(tert-Butyl)-6-(5-fluoropyridin-2-yl)-4-methylphenol (4f)

Following the general procedure, 4f was obtained in 49% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 13.78 (s, 1H), 8.35 (d, J = 3.0 Hz, 1H), 7.92 – 7.89 (m, 1H), 7.60 – 7.49 (m, 1H), 7.40 (d, J = 2.1 Hz, 1H), 7.15 (s, 1H), 2.33 (s, 3H), 1.47 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 157.80 (d, J = 254.9 Hz), 156.13, 155.31 (d, J = 3.9 Hz), 138.42, 133.63 (d, J = 25.3 Hz), 129.83, 126.91, 125.26 (d, J = 18.8 Hz), 124.76, 121.45 (d, J = 4.4 Hz), 118.23, 35.15, 29.68, 21.22.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -129.17.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{16}H_{19}FNO]^+$ : 260.1445, found: 260.1441.



#### 2-(3-Amino-4-methylpyridin-2-yl)-6-(tert-butyl)-4-methylphenol (4g)

Following the general procedure, 4g was obtained in 72% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.95 (s, 1H), 7.93 (d, J = 4.8 Hz, 1H), 7.42 (s, 1H), 7.10 (d, J = 2.2 Hz, 1H), 6.96 (d, J = 4.8 Hz, 1H), 4.00 (s, 2H), 2.30 (s, 3H), 2.23 (s, 3H), 1.45 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 153.55, 142.78, 139.54, 138.45, 137.21, 132.96, 128.35, 127.12, 125.67, 124.28, 120.95, 35.11, 29.77, 21.18, 17.89.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{17}H_{23}N_2O]^+$ : 271.1805, found: 271.1800.



#### 2-(tert-Butyl)-6-(quinolin-3-yl)-4-methylphenol (4h)

Following the general procedure, 4h was obtained in 48% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 15.63 (s, 1H), 8.55 (d, J = 8.9 Hz, 1H), 8.36 (d, J = 9.1 Hz, 1H), 8.08 – 8.02 (m, 2H), 7.88 – 7.80 (m, 2H), 7.66 – 7.62 (m, 1H), 7.16 (d, J = 2.0 Hz, 1H), 2.32 (s, 3H), 1.45 (s, 9H).

<sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ) δ 158.38, 157.41, 143.65, 138.32, 137.16, 130.91, 130.18, 127.93, 126.88, 126.79, 126.18, 125.79, 118.38, 117.92, 34.64, 29.43, 20.71. HRMS (ESI) [M+H]<sup>+</sup> calculated m/z for [C<sub>20</sub>H<sub>22</sub>NO]<sup>+</sup>: 292.1696, found: 292.1690.

#### 2-(tert-Butyl)-6-(isoquinolin-1-yl)-4-methylphenol (4i)

Following the general procedure, 4i was obtained in 44% yield as a yellow solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 10.96 (s, 1H), 8.54 (d, J = 5.7 Hz, 1H), 8.14 – 8.12 (m, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.87 – 7.79 (m, 2H), 7.69 – 7.65 (m, 1H), 7.19 – 7.16 (m, 2H), 2.29 (s, 3H), 1.43 (s, 9H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 158.49, 152.53, 140.12, 137.15, 137.09, 130.66, 129.47, 128.42, 127.86, 127.38, 127.23, 126.65, 126.07, 122.70, 120.26, 34.64, 29.53, 20.62.

HRMS (ESI) [M+H]<sup>+</sup> calculated m/z for [C<sub>20</sub>H<sub>22</sub>NO]<sup>+</sup>: 292.1696, found: 292.1690.



#### 2-(tert-Butyl)-4-methyl-6-(6-methylpyridin-3-yl)phenol (4j)

Following the general procedure, 4j was obtained in 56% yield as a white solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.70 (s, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 2.2 Hz, 1H), 6.87 (d, J = 2.2 Hz, 1H), 5.67 (s, 1H), 2.64 (s, 3H), 2.33 (s, 3H), 1.46 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 157.32, 149.50, 149.38, 139.60, 137.30, 132.39, 129.66, 128.66, 128.39, 125.12, 124.81, 34.90, 29.95, 23.91, 20.91.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{17}H_{22}NO]^+$ : 256.1696, found: 256.1691.



#### 2-(tert-Butyl)-4-methyl-6-(2-methylpyridin-3-yl)phenol (4k)

Following the general procedure, **4k** was obtained in 53% yield as a white solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.45 (s, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.18 – 7.14 (m, 1H), 7.06 (s, 1H), 6.66 (s, 1H), 5.10 (s, 1H), 2.31 (s, 3H), 2.23 (s, 3H), 1.36 (s, 9H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 158.08, 149.12, 148.88, 139.51, 136.80, 132.79, 129.18, 128.16, 128.00, 126.39, 121.77, 34.94, 29.77, 22.70, 20.91.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{17}H_{22}NO]^+$ : 256.1696, found: 256.1691.



#### 2-(tert-Butyl)-4-methyl-6-(4-methylpyridin-3-yl)phenol (4l)

Following the general procedure, 41 was obtained in 61% yield as a white solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.31 (d, J = 5.3 Hz, 1H), 8.23 (s, 1H), 7.23 (d, J = 5.3 Hz, 1H), 7.08 (d, J = 2.2 Hz, 1H), 6.62 (d, J = 2.2 Hz, 1H), 4.99(s, 1H), 2.22 (s, 3H), 2.16 (s, 3H), 1.36 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 150.38, 149.85, 149.70, 147.84, 137.37, 135.31, 129.43, 128.40, 128.32, 126.13, 124.47, 34.89, 29.83, 20.90, 19.76.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{17}H_{22}NO]^+$ : 256.1696, found: 256.1691.



#### 2-(tert-Butyl)-4-methyl-6-(pyridin-3-yl)phenol (4m)

Following the general procedure, 4m was obtained in 43% yield as a white solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 8.61 (s, 1H), 8.50 (d, J = 5.0 Hz, 1H), 8.07 (s, 1H), 7.86 – 7.83 (m, 1H), 7.45 – 7.42 (m, 1H), 7.04 (d, J = 2.2 Hz, 1H), 6.87 – 6.86 (m, 1H), 2.24 (s, 3H), 1.38 (s, 9H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 150.07, 149.79, 147.58, 138.72, 136.99, 135.12, 128.70, 127.96, 127.19, 123.48, 34.65, 29.84, 20.53.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{16}H_{20}NO]^+$ : 242.1539, found: 242.1534.



#### 2-(*tert*-Butyl)-6-(3,5-dimethylpyridin-4-yl)-4-methylphenol (4n)

Following the general procedure, 4n was obtained in 50% yield as a white solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.05 (d, J = 2.2 Hz, 1H), 6.96 (s, 2H), 6.77 (d, J = 2.2 Hz, 1H), 5.80 (s, 1H), 2.46 (s, 6H), 2.23 (s, 3H), 1.37 (s, 9H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 158.65, 149.08, 147.25, 137.11, 129.25, 128.39, 127.83, 126.79, 121.00, 35.05, 29.84, 24.47, 20.91.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{18}H_{24}NO]^+$ : 270.1852, found: 270.1847.



#### 2-(5-Chloro-2-methoxyphenyl)-6-methylpyridine (6a)

Following the general procedure, **6a** was obtained in 31% yield as a white solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  7.75 – 7.67 (m, 3H), 7.43 (dd, J = 8.8, 2.9 Hz, 1H), 7.22 – 7.16 (m, 2H), 3.83 (s, 3H), 2.52 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 157.65, 155.71, 152.63, 136.43, 129.91, 129.83, 129.27, 124.46, 121.84, 113.93, 56.04, 24.23.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{13}H_{13}CINO]^+$ : 234.0680, found: 234.0676.



#### 2-(2-Chloro-5-methoxyphenyl)-6-methylpyridine (6b)

Following the general procedure, **6b** was obtained in 24% yield as white solid.

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 7.79 – 7.75 (m, 1H), 7.46 – 7.41 (m, 2H), 7.28 (d,  $J_6$  = 7.7 Hz, 1H), 7.07 – 6.00 (m, 2H), 3.79 (s, 3H), 2.52 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 158.04, 157.71, 155.38, 139.97, 136.57, 130.69, 122.35, 122.18, 121.54, 116.51, 115.70, 55.59, 24.13.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{13}H_{13}CINO]^+$ : 234.0680, found: 234.0677.



#### 2-Mesityl-6-methylpyridine (8a)

Following the general procedure, **8** was obtained in 91% yield as white solid with HFIP as solvent (0.5 M).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.61 – 7.49 (m, 1H), 7.02 (d, J = 7.6 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.84 (s, 2H), 2.53 (s, 3H), 2.23 (s, 3H), 1.94 (s, 6H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 159.43, 158.30, 137.96, 137.38, 136.59, 135.77, 128.39, 121.67, 121.10, 24.73, 21.19, 20.27.

HRMS (ESI)  $[M+H]^+$  calculated m/z for  $[C_{15}H_{18}N]^+$ : 212.1435, found: 212.1430.



#### 2-Methyl-6-(naphthalen-1-yl)pyridine (8b-1)

Following the general procedure, **8b-1** was obtained as white solid in 40% yield.

The spectra data were matched with the reported reference.<sup>1</sup>

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, J = 7.4 Hz, 1H), 7.82 (d, J = 7.4 Hz, 2H), 7.65 – 7.61 (m, 1H), 7.52 – 7.36 (m, 4H), 7.29 (d, J = 7.7 Hz, 1H), 7.13 (d, J = 7.7 Hz, 1H), 2.60 (s, 3H).

#### 2-Methyl-6-(naphthalen-2-yl)pyridine (8b-2)

Following the general procedure, **8b-2** was obtained as white solid in 23% yield.

The spectra data were matched with the reported reference.<sup>2</sup>

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.40 (s, 1H), 8.07 (dd, J = 8.6, 1.8 Hz, 1H), 7.89 – 7.85 (m, 2H), 7.81 – 7.78 (m, 1H), 7.64 – 7.59 (m, 2H), 7.45 – 7.41 (m, 2H), 7.07 – 7.05 (m, 1H), 2.61 (s, 3H).

#### Reference

- 1. So, C. M.; Lau, C. P.; Kwong, F. Y. Org. Lett. 2007, 9, 2795.
- 2. Addla, D.; Kanteveri, S. J. Heterocyclic Chem. 2014, 51, E384.

# Crystallographic Data



| Empirical formula                           | $C_{12}H_{10}BrNO$                                 |
|---------------------------------------------|----------------------------------------------------|
| Formula weight                              | 264.12                                             |
| Temperature/K                               | 100                                                |
| Crystal system                              | triclinic                                          |
| Space group                                 | P-1                                                |
| a/Å                                         | 7.127 (2)                                          |
| b/Å                                         | 7.435 (3)                                          |
| c/Å                                         | 10.981 (4)                                         |
| $lpha/^\circ$                               | 72.738 (11)                                        |
| β/°                                         | 84.610 (12)                                        |
| γ/°                                         | 67.998 (12)                                        |
| Volume/Å <sup>3</sup>                       | 515.1 (3)                                          |
| Z                                           | 2                                                  |
| $\rho_{calc}g/cm^3$                         | 1.703                                              |
| $\mu/\text{mm}^{-1}$                        | 3.959                                              |
| F(000)                                      | 264.0                                              |
| Crystal size/mm <sup>3</sup>                | $0.38 \times 0.14 \times 0.12$                     |
| Radiation                                   | $MoK\alpha (\lambda = 0.71073)$                    |
| 2Θ range for data collection/°              | 6.162 to 56.75                                     |
| Index ranges                                | $-9 \le h \le 9, -9 \le k \le 9, -14 \le l \le 14$ |
| Reflections collected                       | 8229                                               |
| Independent reflections                     | 2560 [ $R_{int} = 0.0637$ , $R_{sigma} = 0.0590$ ] |
| Data/restraints/parameters                  | 2560/0/138                                         |
| Goodness-of-fit on F <sup>2</sup>           | 1.061                                              |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0343, wR_2 = 0.0790$                      |
| Final R indexes [all data]                  | $R_1 = 0.0436$ , $wR_2 = 0.0828$                   |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.84/-0.73                                         |

## **Gram-Scale Synthesis**

To an oven-dried 100 mL Schlenk bottle equipped with magnetic bar was added 4-chlorophenol **2a** (1.92 g, 15 mmol, 3 equiv),  $Ir(ppy)_2(dtbbpy)PF_6$  (4.6 mg, 0.1 mol%). The mixture was then placed under vacuum and backfilled with argon three times, followed by the addition of DCE (50 mL) and bromopyridine **1a** (860 mg, 5 mmol, 1 equiv). Then the tube was placed approximate 4~5 cm away from 24 W blue LED and stir vigorously for 24 h with a cooling fan to maintain the reaction at r.t. (about 25 °C). Upon completion of the reaction monitored by TLC, the mixture was concentrated and purified by silica chromatography (pre-basified with Et<sub>3</sub>N) to afford product **3a** (867 mg, yellow solid).

# **Mechanistic Investigations**

## 1. Protection of hydroxyl group

Table S4. Solvent effect

| Entry | Solvent | Yield (%)          |
|-------|---------|--------------------|
| 1     | DCE     | 0                  |
| 2     | HFIP    | 55 (6a:6b = 1.3:1) |

## 2. Radical trapping experiment

#### 3. <sup>1</sup>H NMR experiment

In order to examine the interaction between 2-bromo-6-methylpyridine (**1a**) and 4-chlorophenol (**2a**), we carried out the <sup>1</sup>H NMR experiment of the mixture of **1a** and **2a** in 1:3 ratio in CDCl<sub>3</sub> and compared the spectrum with individual <sup>1</sup>H NMR spectrum of **1a** and **2a** (CDCl<sub>3</sub> as locking solvent). As can be seen from Fig. S1, the mixing of **1a** and **2a** caused noticeable shift in the proton signals of both substrates. In particular, the hydroxyl proton of **2a** has shifted from 5.17 ppm to the region between 6.88 to 6.71 ppm, and the proton adjacent to methyl group in **1a** has shifted from 7.10 ppm to the region of 6.88-6.71 ppm. Besides, there were only three sets of proton signals observed for **2a**, indicating that the protonation process was in an equilibrium between **1a** and **2a**.



Fig.S1 <sup>1</sup>H NMR experiment of 1a and 2a in CDCl<sub>3</sub>

#### 4. Control experiment

In order to examine the possible mechanistic pathway of oxidation of phenolate to radical intermediate or the formation of EDA complex between 2-bromo-6-methylpyridine (1a) and phenolate ion, we designed and carried out the experiments using sodium phenolate as substrate using reaction conditions that include and exclude the photocatalyst. According to the results in Fig.S2, there was no product detected in both scenarios, ruling out the plausible involvement of EDA complex and phenol radical in the mechanistic pathway.

Fig.S2 Control experiment with sodium phenolate

# Copies of <sup>1</sup>H, <sup>13</sup>C and <sup>19</sup>F NMR Spectra





<sup>1</sup>H NMR spectrum of 3a



<sup>13</sup>C NMR spectrum of 3a



<sup>1</sup>H NMR spectrum of 3b



 $^{13}\mathrm{C}$  NMR spectrum of 3b









<sup>19</sup>F NMR spectrum of 3c



<sup>1</sup>H NMR spectrum of 3d



 $^{13}$ C NMR spectrum of 3d



<sup>1</sup>H NMR spectrum of 3e



 $^{13}\mathrm{C}$  NMR spectrum of 3e



<sup>19</sup>F NMR spectrum of 3e



<sup>1</sup>H NMR spectrum of 3f



 $^{13}\mathrm{C}$  NMR spectrum of 3f



<sup>1</sup>H NMR spectrum of 3g



 $^{13}\mathrm{C}$  NMR spectrum of 3g



<sup>1</sup>H NMR spectrum of 3h



 $^{13}\mathrm{C}$  NMR spectrum of 3h



<sup>1</sup>H NMR spectrum of 3i



 $^{13}\mathrm{C}$  NMR spectrum of 3i



<sup>1</sup>H NMR spectrum of 3j



<sup>13</sup>C NMR spectrum of 3j



<sup>1</sup>H NMR spectrum of 3k



 $^{13}\mathrm{C}$  NMR spectrum of 3k



<sup>1</sup>H NMR spectrum of 3l



 $^{13}\mathrm{C}$  NMR spectrum of 3l



<sup>1</sup>H NMR spectrum of 3m



 $^{13}$ C NMR spectrum of 3m



<sup>1</sup>H NMR spectrum of 3n



 $^{13}C$  NMR spectrum of 3n



<sup>1</sup>H NMR spectrum of 3o



 $^{13}\mathrm{C}$  NMR spectrum of 30







<sup>1</sup>H NMR spectrum of 3q



 $^{13}$ C NMR spectrum of 3q



<sup>1</sup>H NMR spectrum of 3r



<sup>13</sup>C NMR spectrum of 3r



<sup>1</sup>H NMR spectrum of 3s



<sup>13</sup>C NMR spectrum of 3s



<sup>1</sup>H NMR spectrum of 3t



<sup>13</sup>C NMR spectrum of 3t



<sup>1</sup>H NMR spectrum of 4a



<sup>13</sup>C NMR spectrum of 4a



<sup>1</sup>H NMR spectrum of 4b



<sup>13</sup>C NMR spectrum of 4b



<sup>1</sup>H NMR spectrum of 4c



<sup>13</sup>C NMR spectrum of 4c



<sup>1</sup>H NMR spectrum of 4d



 $^{13}$ C NMR spectrum of 4d



<sup>1</sup>H NMR spectrum of 4e



<sup>13</sup>C NMR spectrum of 4e





<sup>1</sup>H NMR spectrum of 4f



<sup>13</sup>C NMR spectrum of 4f



<sup>19</sup>F NMR spectrum of 4f











<sup>13</sup>C NMR spectrum of 4h



<sup>1</sup>H NMR spectrum of 4i



<sup>13</sup>C NMR spectrum of 4i



<sup>1</sup>H NMR spectrum of 4j



<sup>13</sup>C NMR spectrum of 4j



<sup>1</sup>H NMR spectrum of 4k



<sup>13</sup>C NMR spectrum of 4k



<sup>1</sup>H NMR spectrum of 4l



<sup>13</sup>C NMR spectrum of 4l



<sup>1</sup>H NMR spectrum of 4m



<sup>13</sup>C NMR spectrum of 4m



<sup>1</sup>H NMR spectrum of 4n



 $^{13}\mathrm{C}$  NMR spectrum of 4n







HMBC spectrum of 6a



<sup>1</sup>H NMR spectrum of 6b



 $^{13}\mathrm{C}$  NMR spectrum of 6b



HMBC spectrum of 6b







<sup>1</sup>H NMR spectrum of 8b-1



<sup>1</sup>H NMR spectrum of 8b-2