Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Supporting Information for:

Anion-Induced Disproportionation of Th(III) Complexes

to Form Th(II) and Th(IV) Products

Justin C. Wedal,^a Nathalia Cajiao,^b Michael L. Neidig,^{b,*} and William J. Evans^{a,*}

^a Department of Chemistry, University of California, Irvine, California 92697, United States

^b Department of Chemistry, University of Rochester, Rochester, New York 14627, United States

Email: neidig@chem.rochester.edu, wevans@uci.edu

*To whom correspondence should be addressed.

Experimental Details

Caution! ²³²Th is radioactive and is an alpha emitter with a half-life of approximately 1.405x10¹⁰ years. Samples should be prepared and handled only in laboratories appropriately equipped to handle radioactive materials.

All syntheses and manipulations described below were conducted under argon with rigorous exclusion of air and water using standard glovebox and vacuum line techniques. Solvents were sparged with UHP argon and dried by passage through columns containing Q-5 and molecular sieves prior to use. Deuterated NMR solvents were dried over NaK alloy, degassed by three freeze-pump-thaw cycles, and vacuum transferred before use. ¹H and ¹³C NMR spectra were recorded on either a CRYO500 MHz or AVANCE600 MHz at 298 K and referenced to residual protio-solvent resonances. UV-visible spectra were collected at 298 K using a Varian Cary 60 Scan UV-visible spectrophotometer or at -80 °C using a Cary 6000i UV-Vis-NIR spectrometer fitted with a Unisoku cryostat. Infrared spectra were recorded as compressed solids on an Agilent Cary 630 ATR-FTIR. Electrochemical measurements were collected with a Princeton Applied Research PARSTAT 2273 Advanced Electrochemical System. Data were collected with 200 mM [ⁿBu₄N][PF₆] supporting electrolyte in THF and referenced with internal standard (C₅Me₅)₂Fe following previously reported procedures.⁶

2.2.2-Cryptand (crypt, Aldrich) was used as received. 18-Crown-6 (crown, Alfa) was sublimed before use. KH (Sigma) was washed extensively with hexane and toluene to remove oil and dried under vacuum. ⁿBuLi (Sigma, 2.5 M solution in hexane) was used as received. LiMe (Sigma) and LiCH₂SiMe₃ were purchased as solutions and the solvent was removed to yield both as a bright white powder which were kept at -35 °C until used. NaN₃ and KCl were

placed under vacuum at 10^{-5} Torr for 12h before use. $KC_{8,1}$ Cp"₃Th,^{2–4} and Cp^{tet}₃Th⁵ were synthesized as previously described.

Reaction of Cp"₃**Th, KH, and Crypt.** Cp"₃Th^{III} (40 mg, 0.046 mmol) and crypt (18 mg, 0.048 mmol) were dissolved in THF (2 mL). KH (2 mg, 0.050 mmol) was added and the solution was stirred for 5 hours. The solution was dried under vacuum and the products were extracted into hexane to afford a pale blue solution. The solvent was removed under vacuum to yield a blue-grey solid (21 mg). The ¹H NMR spectrum in C₆D₆ showed Cp"₃Th^{IV}H, Cp"₃Th^{III}, and free crypt. The remaining blue-green solids that did not dissolve in hexane were dissolved in Et₂O, filtered, and dried under vacuum. Crystals were grown from Et₂O/hexane solution at -35 °C and matched the unit cell of [K(crypt)][Cp"₃Th^{II}].³

Reaction of Cp"₃**Th**^{III}, **KH**, **and Crown.** Cp"₃Th^{III} (23 mg, 0.027 mmol) and crown (7 mg, 0.027 mmol) were dissolved in THF (2 mL). KH was added and the solution developed a green color as it stirred overnight. The solution was dried under vacuum and extracted into hexane. The remaining blue-green solids were extracted into Et₂O. Both solutions were dried under vacuum. The hexane fraction (16 mg) showed Cp"₃Th^{III} and Cp"₃Th^{IV}H in the ¹H NMR spectrum in a 1:1.1 ratio. [K(crown)(THF)₂][Cp"₃Th^{II}] was identified in the Et₂O fraction (22 mg) by its definitive UV-visible spectrum.³

Reaction of Cp''₃Th^{III}, KCl, and Crypt. As described for the KH reaction, Cp''₃Th^{II}, crypt, and KCl were stirred together in THF solution for 2 hours. A dark green color developed. The ¹H NMR spectrum in C₆D₆ of the hexane fraction showed only Cp''₃Th^{IV}H. [K(crypt)][Cp''₃Th^{II}] was identified from the Et₂O fraction by UV-visible spectroscopy.

Reaction of Cp"₃Th^{III}, LiMe, and Crypt. Cp"₃Th^{III} (20 mg, 0.023 mmol) and crypt (9 mg, 0.024 mmol) were dissolved in THF (2 mL). LiMe (0.5 mg, 0.023 mmol) was added and the

solution turned green after 1 hour. The solution was dried under vacuum. Hexane was added to form a blue solution. This solution was dried under vacuum. The ¹H NMR in C_6D_6 showed $Cp''_3Th^{IV}Me$,¹⁰ Cp''_3Th^{III} , and free crypt. The remaining green solids that did not dissolve in hexane were dissolved in Et₂O, filtered, and dried under vacuum to yield [Li(crypt)][Cp''_3Th^{II}], identified by UV-visible spectroscopy.

Reaction of Cp"₃Th^{III}, NaN₃, and Crypt. Cp"₃Th^{III} (35 mg, 0.041 mmol) and crypt (15 mg, 0.041 mmol) were dissolved in THF (2 mL) and added to NaN₃ (3 mg, 0.046 mmol). The solution developed a green color as it stirred overnight. The solution was dried under vacuum and extracted into hexane. The remaining blue-green solids were extracted in Et₂O. The hexane fraction was dried under vacuum to yield only Cp"₃Th^{IV}N₃ (7 mg, 39%) as a colorless oil. ¹H NMR (C₆D₆): δ 6.85 (s, 6H, C₅H₃(SiMe₃)₂), 6.81 (s, 3H, C₅H₃(SiMe₃)₂), 0.42 (s, 54H, Si*Me*₃) ppm. IR: 2952m, 2895w, 2097s, 1440w, 1374w, 1318w, 1247s, 1204w, 1080w, 921sm, 831s, 790m, 753m, 690w cm⁻¹.

Reaction of Cp''₃Th^{III}, LiCH₂SiMe₃, and Crypt. Cp''₃Th^{III} (25 mg, 0.029 mmol) and crypt (11 mg, 0.029 mmol) were dissolved in THF (2 mL). LiCH₂SiMe₃ (3 mg, 0.03 mmol) was added as a solid and the solution quickly turned dark blue-green. The solution was stirred for 2 hours then dried under vacuum. As above, hexane and Et₂O fractions were collected. The ¹H NMR spectrum in C₆D₆ of the hexane fraction showed Cp''₃Th^{IV}H and Cp''₃Th^{III} as the only Cp''-containing compounds present. The Et₂O fraction was dried to yield [Li(crypt)][Cp''₃Th^{II}] (29 mg, 81%) identified by UV-visible spectroscopy.⁶

Reaction of Cp"₃Th^{III}, **"BuLi, and Crypt.** Cp"₃Th^{III} (45 mg, 0.052 mmol) and crypt (15 mg, 0.040 mmol) were dissolved in THF (2 mL). **"BuLi** (0.2 mL of a 2.5 M solution in hexane, 0.5 mmol) was added via syringe to the stirring solution. The solution immediately

turned dark green. The solution was stirred for 5 min then dried under vacuum. The solids were washed with hexane then dissolved in Et₂O, filtered, and dried under vacuum to yield [Li(crypt)][Cp"₃Th^{II}] (41 mg, 66%). The hexane washings were dried under vacuum to yield 21 mg of grey solids. The ¹H NMR spectrum in C₆D₆ showed a single Cp" environment δ 6.84 (s, 1H, C₅H₃(SiMe₃)₂), 6.72 (s, 2H, C₅H₃(SiMe₃)₂), 0.41 ppm (s, 18H, SiMe₃) that does not match Cp"₃ThH. No resonance was observed above 8 ppm indicative of a Th^{IV}–H. The expected product, Cp"₃Th(ⁿBu), would likely undergo β –H elimination to form Cp"₃ThH as was observed with Cp"₃ThCl and ^tBuLi.⁷

Reaction of Cp^{tet}₃Th^{III}, KH, and Crypt. Cp^{tet}₃Th^{III} (75 mg, 0.13 mmol) and crypt (47 mg, 0.13 mmol) were dissolved in THF (2 mL). This solution was added to KH (7 mg, 0.2 mmol) and stirred for 1 hour. The color of the solution slowly changed from purple to yellow/orange. The solution was dried under vacuum and the products were extracted into toluene. The ¹H NMR spectrum in C₆D₆ showed Cp^{tet}₃Th^{IV}H and free crypt. The remaining solids were dissolved in THF, filtered, and dried. The ¹H NMR spectrum in THF-*d*₈ showed [K(crypt)][Cp^{tet}] and [K(crypt)][Cp^{tet}₂Th^{IV}H(η^1 : η^5 -C₅Me₃HCH₂)].⁸ Both compounds were also identified by a unit cell check of single crystals.

Reaction of $[K(crown)(THF)_2][Cp''_3Th^{II}]$ with $Cp''_3Th^{IV}Cl$. In one vial, $[K(crown)(THF)_2][Cp''_3Th^{II}]$ (10 mg, 0.008 mmol) was dissolved in THF (1 mL) to form a dark blue/green solution. This solution was added via pipet to a second vial containing a colorless solution of $Cp''_3Th^{IV}Cl$ (7 mg, 0.008 mmol) in THF (1 mL). Upon addition, the solution immediately turned deep blue. The solution was stirred for 2 min then dried under vacuum to yield white and blue solids. The solids were redissolved in C₆D₆, filtered, and a ¹H NMR spectrum was obtained. The spectrum showed only Cp''_3Th^{III} , a small amount of Cp''_3ThH , and

18-crown-6 with complete disappearance of Cp''_{3} ThCl resonances. The solution was dried under vacuum to yield 11 mg of a dark blue solid (theoretical yield of Cp''_{3} Th^{III} is 14 mg).

In situ UV-Visible Spectroscopy. -80 °C electronic absorption studies of the reaction of Cp"₃Th^{III} and LiMe were performed using a Cary 6000i UV-Vis-NIR spectrometer fitted with a Unisoku cryostat. An initial absorption spectrum was collected followed by addition of excess LiMe (10 equiv) via syringe to a septum capped 1 cm pathlength quartz cell containing a 0.15 mM solution of Cp"₃Th^{III} in THF at -80 °C. The reaction was then followed through collection of absorption spectra (300-700 nm) every 132 seconds until no further change was observed (~ 28 minutes).

Synthesis of Cp"₃**Th**^{IV}**Me from Cp"**₃**Th**^{IV}**Br.** Cp"₃ThBr (100 mg, 0.106 mmol) was dissolved in Et₂O (5 mL). MeLi was added via syringe (0.07 mL of 1.6M solution in THF, 0.112 mmol) and the colorless solution was stirred overnight. Tan precipitate had formed. The solution was dried under vacuum and hexane was added (10 mL). Solids were removed via centrifugation and solvent was removed under vacuum to yield off-white solids of Cp"₃ThMe (64 mg, 69%), identified by ¹H NMR spectroscopy.¹⁰

Figure S1: ¹H NMR spectrum of the hexane fraction of $Cp''_{3}Th + KH + crypt$ in $C_{6}D_{6}$ after separation of $[Cp''_{3}Th]^{1-}$. Peaks at 12.58, 6.32, 5.88, and 0.45 ppm are assigned to $Cp''_{3}ThH$,⁸ the broad peak at 5.42 ppm is $Cp''_{3}Th$, and 3.65, 3.57, and 2.53 ppm are free crypt.⁹

Figure S2: ¹H NMR spectrum of the hexane fraction of $Cp''_{3}Th + KH + crown in C_{6}D_{6}$ after separation of $[Cp''_{3}Th]^{1-}$. Peaks at 12.59, 6.32, 5.88, and 0.46 ppm are assigned to $Cp''_{3}ThH,^{8}$ the broad peak at 5.39 ppm is $Cp''_{3}Th$, and 3.50 ppm is free crown.⁹

Figure S3: ¹H NMR spectrum of hexane fraction of $Cp''_{3}Th + KCl + crypt$ taken in C_6D_6 after separation of $[Cp''_{3}Th]^{1-}$. The peaks at 12.59, 6.32, 5.88, and 0.46 ppm are $Cp''_{3}ThH.^{8}$ Most of the other peaks are due to residual solvent (hexane, Et₂O, THF).⁹

Figure S4: ¹H NMR spectrum of the hexane fraction of $Cp''_{3}Th + MeLi + crypt$ taken in C_6D_6 after separation of $[Cp''_{3}Th]^{1-}$. The peaks at 6.65, 6.56, 1.02, and 0.40 ppm are assigned to $Cp''_{3}ThMe$,¹⁰ the broad peak at 5.48 is $Cp''_{3}Th$, and the peaks at 3.65, 3.51, and 2.53 are free crypt.

Figure S5: ¹H NMR spectrum of $Cp''_{3}ThN_{3}$ in $C_{6}D_{6}$.

Figure S6: ¹H NMR spectrum of the hexane fraction of $Cp''_{3}Th + LiCH_{2}SiMe_{3} + crypt$ taken in $C_{6}D_{6}$ after separation of $[Cp''_{3}Th]^{1-}$. The peaks at 12.58, 6.32, 5.88, and 0.45 are $Cp''_{3}ThH^{8}$ and the broad peak at 5.39 is $Cp''_{3}Th$. Most of the other peaks are due to residual solvents (hexane, $Et_{2}O$, THF).⁹

Figure S7: ¹H NMR spectrum of the hexane fraction of $Cp''_{3}Th + {}^{n}BuLi + crypt$ taken in $C_{6}D_{6}$ after separation of $[Cp''_{3}Th]^{1-}$. The peaks at 6.84, 6.72, and 0.41 are indicative of a single Cp'' environment.

Figure S8: ¹H NMR spectrum of the toluene fraction of $Cp^{tet}_{3}Th + KH + crypt$ taken in C_6D_6 after separation of $[Cp''_{3}Th]^{1-}$. The peaks at 15.33, 5.21, 2.33, and 2.05 are assigned to $Cp^{tet}_{3}ThH^{8}$ and the peaks at 3.65, 3.51, and 2.54 are free crypt. Other resonances are due to free solvent (hexane, Et₂O, THF)⁹ or unidentified products.

Figure S9: ¹H NMR spectrum of $[K(crypt)][Cp''_3Th] + Cp''_3ThCl taken in C_6D_6$ after separation of $[Cp''_3Th]^{1-}$. The peaks at 12.58, 6.32, 5.88, and 0.45 are Cp''_3ThH and the broad peak at 5.37 is Cp''_3Th . The resonances for Cp''_3ThCl at 6.74, 6.44, and 0.38 ppm were not observed.

Figure S10: ¹H NMR spectrum of Cp''_{3} Th in $C_{6}D_{6}$. Unassigned peaks are due to solvent ($C_{6}D_{6}$, toluene, THF, Et₂O, hexane).⁹

Figure S11: Voltammogram of $Cp''_{3}Th^{IV}Me$ at v = 50 (black), 200 (red), 400 (blue), 600 (green), 800 (purple), 1000 (orange), and 2000 mV/s (yellow) in 200 mM [$^{n}Bu_{4}N$][PF₆] / THF.

References

- 1 D. E. Bergbreiter and J. M. Killough, J. Am. Chem. Soc., 1978, 100, 2126–2134.
- 2 W. K. Kot, G. V. Shalimoff, N. M. Edelstein, M. A. Edelman and M. F. Lappert, J. Am. Chem. Soc., 1988, 110, 986–987.
- 3 R. R. Langeslay, M. E. Fieser, J. W. Ziller, F. Furche and W. J. Evans, *Chem. Sci.*, 2015, 6, 517–521.
- P. C. Blake, M. F. Lappert, J. L. Atwood and H. Zhang, J. Chem. Soc., Chem. Commun., 1986, 453, 1148–1149.
- 5 N. A. Siladke, C. L. Webster, J. R. Walensky, M. K. Takase, J. W. Ziller, D. J. Grant, L. Gagliardi and W. J. Evans, *Organometallics*, 2013, **32**, 6522–6531.
- J. C. Wedal, J. M. Barlow, J. W. Ziller, J. Y. Yang and W. J. Evans, *Chem. Sci.*, 2021, 12, 8501–8511.
- M. Weydert, J. G. Brennan, R. A. Andersen and R. G. Bergman, *Organometallics*, 1995, 14, 3942–3951.
- 8 R. R. Langeslay, M. E. Fieser, J. W. Ziller, F. Furche and W. J. Evans, *J. Am. Chem. Soc.*, 2016, 138, 4036–4045.
- G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz,
 J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, 29, 2176–2179.
- J. Liu, J. A. Seed, A. Formanuik, F. Ortu, A. J. Wooles, D. P. Mills and S. T. Liddle, J. Organomet. Chem., 2018, 857, 75–79.