Supporting Information

$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$-Promoted cross-coupling of thiols/diselenides and sulfoxides for the synthesis of unsymmetrical disulfides/selenosulfides

Yang-Tong Ma, Chao Lin, Xiao-Bo Huang, Miao-Chang Liu, * Yun-Bing Zhou, * and Hua-Yue Wu
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.

CONTENTS:

1. General Information 2
2. Substrate Preparation 3
2.1 Synthesis of Diselenides 3
2.2 Characterization of Diselenides in Details. 3
3. Reaction Optimization 8
Table S1 Reaction Optimization 8
Table S2 The Influence of the amount of DMSO on the Yield of 2a 8
Table S3 Reaction Optimization for the Synthesis of 2w 9
Table S4 Reaction Optimization for the Synthesis of 5a 9
4. General Procedure for the Synthetic of Unsymmetrical Disulfides and Selenosulfides. 10
4.1 Synthesis of Unsymmetrical Disulfides 10
4.2 Synthesis of Unsymmetrical Selenosulfides 10
4.3 The reaction between diselenide $\mathbf{4 s}$ and selenoxide $\mathbf{6 a}$. 10
4.4 Gram-Scale Synthesis of 1a 11
5. Preliminary Mechanistic Studies. 12
5.1 GC-MS 12
5.2 Kinetic Isotope Effect Experiments. 17
5.3 Competitive Reaction between $\mathbf{2 a}$ and $\mathbf{2 a}-\boldsymbol{d}_{\mathbf{3}}$ 17
6. Characterization of Products in Details. 19
7. Reference: 33
8. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra of Products. 35

1. General Information

All reactions were conducted under an inert N_{2} atmosphere with oven-dried glassware fitted with a magnetic stirrer bar, unless otherwise stated.

All reagents and solvents were purchased from TCI, Sigma-Aldrich, Alfa Aesar, Acros and Meryer. All commercial reagents were used as supplied unless otherwise stated. Organic solutions were concentrated by rotary evaporation below $45^{\circ} \mathrm{C}$. All reactions were monitored by TLC, GC-MS. Analytical thin-layer chromatography was performed using Merck Kieselgel 60 F254 0.20 mm precoated glass-backed silica gel plates. Visualization of the chromatogram was performed by UV absorbance ($\lambda_{\max }$ $=254 \mathrm{~nm}$) and/or by staining with aqueous potassium permanganate. Flash column chromatography was performed using silica gel (EM 60 F254 300-400 mesh) with the appropriate solvent system.

Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded on a Bruker DPX $400(400 \mathrm{MHz})$ or Avance $500(500 \mathrm{MHz})$ spectrometer. Chemical shifts (δ) are recorded in parts per million (ppm) and are quoted to the nearest 0.01 ppm relative to the residual solvent protons $\left(\mathrm{CDCl}_{3}=7.26 \mathrm{ppm}\right.$, DMSO- $\left.d_{6}=2.50 \mathrm{ppm}\right)$. Coupling constants (J) are quoted in Hertz (Hz), and data reported as follows: Chemical shift (multiplicity, coupling constant, number of protons). Coupling constants were reported to the nearest 0.1 Hz and multiplicity reported according to the following: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, qui $=$ quintet $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, with associated combinations e.g. $\mathrm{dd}=$ doublet of doublets.

Carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a Bruker AVANCE $500(125 \mathrm{MHz})$ spectrometer. Chemical shifts (δ) are recorded in parts per million (ppm) and are quoted to the nearest 0.1 ppm relative to the residual solvent protons $\left(\mathrm{CDCl}_{3}=77.2 \mathrm{ppm}\right.$, DMSO- $\left.d_{6}=29.8 \mathrm{ppm}\right)$.High-resolution mass spectra were recorded on a micrOTOF-Q II 10410 mass spectrometer.

Unless otherwise noted, all reagents and solvents were obtained commercially and used without further purification.

2. Substrate Preparation

2.1 Synthesis of Diselenides

Scheme S1
General Procedure A: ${ }^{[1]}$ To a Schlenk tube were added arylboronic acid (0.4 mmol), selenium (1.2 mmol), $\mathrm{AgNO}_{3}(0.04 \mathrm{mmol})$, and DMSO $(2.0 \mathrm{~mL})$. The mixture was stirred in a heating mantle preheated to $120{ }^{\circ} \mathrm{C}$ for 2 h . After cooled to room temperature, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic phase was washed with water and brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated under reduced pressure. The residue was purified by column chromatography to give the desired diselenides (4a-4v).

2.2 Characterization of Diselenides in Details

1,2-diphenyldiselane (4a) ${ }^{[1]}$

The General Procedure A was followed, and hexane was used as the eluant to afford 4a as yellow oil (60 mg , 96%). M.p.: $62.8-64.2{ }^{\circ} \mathrm{C}$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.61 (d, $J=6.9 \mathrm{~Hz}, 4 \mathrm{H}$), 7.26 (d, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 131.5, 130.9, 129.2, 127.7.

1,2-bis(2-chlorophenyl)diselane (4b) ${ }^{[2]}$

The General Procedure A was followed, and hexane was used as the eluant to afford 4b as yellow solid ($69 \mathrm{mg}, 90 \%$). M.p.: $73.1-74.8^{\circ}{ }^{\circ} \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.62-7.56(m, 2H), 7.31-7.15 (m, 6H); ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.3,130.7$, 129.3, 129.2, 128.4, 127.9 .

1,2-bis(4-bromophenyl)diselane (4c) ${ }^{[2]}$

The General Procedure A was followed, and hexane was used as the eluant to afford 4c as red solid ($86 \mathrm{mg}, 92 \%$). M.p.: $72.8-74.2{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 133.4, 132.3, 129.5, 122.4.

1,2-bis(2-bromophenyl)diselane (4d) ${ }^{\text {[3] }}$

The General Procedure A was followed, and hexane was used as the eluant to afford 4d as yellow solid ($69 \mathrm{mg}, 73 \%$). M.p.: $75.8-77.4^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 132.5,131.4,130.5,128.6,128.4,122.9$.
1,2-bis(4-iodophenyl)diselane (4e) ${ }^{[4]}$

The General Procedure A was followed, and hexane was used as the eluant to afford 4e as red solid ($96 \mathrm{mg}, 85 \%$). M.p.: $72.8-74.2{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 138.2, 133.4, 130.4, 93.7.

4,4'-diselanediyldibenzonitrile (4f) ${ }^{\text {[5] }}$

The General Procedure A was followed, and hexane was used as the eluant to afford 4f as red solid ($62 \mathrm{mg}, 85 \%$). M.p.: $70.4-72.2{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.68\left(\mathrm{dd}, J_{1}=8.2 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.58-7.53(\mathrm{~m}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 136.4,132.7,130.5,118.2,111.4$.
1,2-bis(3-nitrophenyl)diselane (4g) ${ }^{\text {[6] }}$

The General Procedure A was followed, and hexane was used as the eluant to afford $\mathbf{4 g}$ as yellow solid ($64 \mathrm{mg}, 80 \%$). M.p.: $75.2-80.4^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.46(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 148.5,136.8,131.8,130.2,125.9,123.0$. 1,2-bis(4-(trifluoromethyl)phenyl)diselane (4h) ${ }^{[5]}$

The General Procedure A was followed, and hexane was used as the eluant to afford 4h as yellow solid (76 mg , 85\%). M.p.: 69.2-71.4 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $134.8,130.7,129.94(\mathrm{q}, ~ J=32.6 \mathrm{~Hz}), 126.13(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.85(\mathrm{q}, J=272.1 \mathrm{~Hz})$. ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.6$.

1,2-bis(3-(trifluoromethyl)phenyl)diselane (4i) ${ }^{[7]}$

The General Procedure A was followed, and hexane was used as the eluant to afford $\mathbf{4 i}$ as yellow soild ($75 \mathrm{mg}, 84 \%$). M.p.: $70.1-71.8^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.85(\mathrm{~s}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 134.9,131.6(\mathrm{q}, ~ J=32.5 \mathrm{~Hz}), 131.3(\mathrm{~m}), 129.7$, $128.3(\mathrm{q}, J=4.1 \mathrm{~Hz}), 124.9(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.5(\mathrm{q}, J=272.8 \mathrm{~Hz}) .{ }^{19}$ F NMR (470 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.8$.

1,2-di-p-tolyldiselane (4j) ${ }^{[5]}$

The General Procedure A was followed, and hexane was used as the eluant to afford $\mathbf{4 j}$ as yellow soild ($56 \mathrm{mg}, 83 \%$). M.p.: $45.1-47.5^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 137.9,133.0,132.3,129.9,21.1$.

1,2-bis(4-(tert-butyl)phenyl)diselane (4k) ${ }^{[8]}$

The General Procedure A was followed, and hexane was used as the eluant to afford 4k as yellow soild ($55 \mathrm{mg}, 65 \%$). M.p.: 74.1-76.2 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.30(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 133.0,131.6,127.7,126.3,34.6,31.3$.
1,2-dimesityldiselane (4I) ${ }^{[8]}$

The General Procedure A was followed, and hexane was used as the eluant to afford 41 as yellow soild ($67 \mathrm{mg}, 84 \%$). M.p.: $114.0-116.8^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 6.82(\mathrm{~s}, 4 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 2.22(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.7$, 139.1, 128.8, 128.3, 24.2, 21.1.

1,2-di([1,1'-biphenyl]-4-yl)diselane (4m) ${ }^{[5]}$

The General Procedure A was followed, and hexane was used as the eluant to afford $\mathbf{4 m}$ as yellow soild ($78 \mathrm{mg}, 84 \%$). M.p.: $183.5-185.8^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.72-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.9,140.2,132.2$, 129.9, 128.9, 127.9, 127.6, 127.0.

1,2-bis(4-methoxyphenyl)diselane (4n) ${ }^{[6]}$

The General Procedure A was followed, and hexane was used as the eluant to afford 4n as yellow soild ($49 \mathrm{mg}, 66 \%$). M.p.: $52.5-55.0^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 160.1,135.5,121.9,114.7,55.4$.
1,2-bis(3-methoxyphenyl)diselane (40) ${ }^{\text {[2] }}$

The General Procedure A was followed, and hexane was used as the eluant to afford 40 as white solid ($41 \mathrm{mg}, 55 \%$). M.p.: 193.8-195.2 ${ }^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.23-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.9,131.9,129.9,123.5,116.6,113.8,55.3$.
1,2-bis(benzo[d][1,3]dioxol-5-yl)diselane (4p) ${ }^{[9]}$

The General Procedure A was followed, and hexane was used as the eluant to afford $\mathbf{4 p}$ as yellow solid ($50 \mathrm{mg}, 63 \%$). M.p.: $99.3-111.5^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.00\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.93(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), $5.94(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 148.3, 147.5, 126.9, 123.0, 113.7, 109.1, 101.2.

1,2-di(naphthalen-2-yl)diselane (4q) ${ }^{[5]}$

The General Procedure A was followed, and hexane was used as the eluant to afford $\mathbf{4 q}$ as yellow solid ($62 \mathrm{mg}, 75 \%$). M.p.: $126.2-127.8^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.79-7.70(\mathrm{~m}, 6 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.1,134.1$, 134.0, 130.1, 129.9, 128.6, 128.0, 126.7, 126.4, 125.7.

1,2-di(pyridin-3-yl)diselane (4r) ${ }^{\text {[2] }}$

The General Procedure A was followed, and hexane was used as the eluant to afford $\mathbf{4 r}$ as yellow oil ($47 \mathrm{mg}, 75 \%$). 1H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76(\mathrm{~s}, 2 \mathrm{H}), 8.51(\mathrm{~d}, J$ $=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.90\left(\mathrm{dt}, J_{1}=7.9 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.24(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.5,149.3,140.2,127.8,124.3$.
1,2-bis(4-chlorophenyl)diselane (4v) ${ }^{[2]}$

The General Procedure A was followed, and hexane was used as the eluant to afford 4v as yellow soild ($71 \mathrm{mg}, 93 \%$). 1H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.48(\mathrm{~m}, 4 \mathrm{H})$, 7.23-7.21 (m, 4H); ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 134.4, 133.3, 129.4, 128.8 .

3. Reaction Optimization

Table S1 Reaction optimization ${ }^{a}$

entry	Additive (x equiv)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	atmosphere	yield (\%)
1	$\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(2)$	140	$\mathrm{~N}_{2}$	31
2	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(2)$	140	$\mathrm{~N}_{2}$	93
3	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(2)$	140	$\mathrm{~N}_{2}$	trace
4	$\mathrm{PhI}(\mathrm{OAc})_{2}(2)$	140	$\mathrm{~N}_{2}$	trace
5	$\mathrm{TBHP}(2)$	140	$\mathrm{~N}_{2}$	22
6	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(2)$	140	$\mathrm{~N}_{2}$	62
7	$\mathrm{NH}_{4} \mathrm{Cl}(2)$	140	$\mathrm{~N}_{2}$	86
8	$\mathrm{CH}_{3} \mathrm{COOH}(2)$	140	$\mathrm{~N}_{2}$	85
9	$\mathrm{CF}_{3} \mathrm{COOH}_{2}(2)$	140	$\mathrm{~N}_{2}$	58
10	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(2)$	150	$\mathrm{~N}_{2}$	82
11	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(2)$	130	$\mathrm{~N}_{2}$	78
12	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(2)$	120	$\mathrm{~N}_{2}$	66
13	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(1.5)$	140	$\mathrm{~N}_{2}$	66
14	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(2)$	140	$\mathrm{~N}_{2}$	25
15	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(2)$	140	air	70
16	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(2)$	140	O_{2}	73

${ }^{a}$ Reactions conditions: 1a (0.2 mmol), DMSO (2.0 mL), additive (2 equiv), $28 \mathrm{~h}, \mathrm{~N}_{2}$ atmosphere, isolated yields.

Table S2 The Influence of the amount of DMSO on the Yield of 2a

entry	DMSO (equiv.)	Yield of 2a/\%	Yield of 7e/\%
1	3	25	67
2	5	34	59
3	7	46	50
4	9	58	35

Table S3 Reaction Optimization for the Synthesis of $\mathbf{2} \mathbf{w}^{a}$

entry	solvent	temp/ ${ }^{\circ} \mathrm{C}$	time/h	yields/\%
1	toluene	130	12	<5
2	xylene	130	12	N.R.
3	PhCl	130	12	N.R.
4	DMF	130	12	trace
5	NMP	130	12	trace
6	PhCF_{3}	130	12	N.R.
7	toluene	140	12	3
8	toluene	150	12	14
9	toluene	160	12	13
$10^{\text {b }}$	toluene	150	12	29
11^{c}	toluene	150	12	25
14^{b}	toluene	150	24	39
$15^{\text {c }}$	toluene	150	24	63

${ }^{a}$ Reactions conditions: $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathbf{3 w}(0.6 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.4 \mathrm{mmol}), \mathrm{N}_{2}$, isolated yields. ${ }^{b} \mathbf{3} \mathbf{w}(1.0 \mathrm{mmol}) .{ }^{c} \mathbf{3 w}(1.8 \mathrm{mmol})$.

Table S4 Reaction Optimization for the Synthesis of 5a ${ }^{a}$

entry	oxidant	base	temp $/{ }^{\circ} \mathrm{C}$	time $/ \mathrm{h}$	yields $/ \%$
1^{b}	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	140	24	47
2^{c}	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	140	24	41
3	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	140	24	62
4	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	t-BuOK	140	24	64
5	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	KOH	140	24	64
6	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	$\mathrm{CH}_{3} \mathrm{ONa}$	140	24	50
7	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	t-BuOK	150	24	NR
8	$\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	t-BuOK	150	24	trace
9	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	-	140	24	4
10^{d}	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	t-BuOK	140	24	71
11	-	t-BuOK	150	24	trace
12^{e}	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	t-BuOK	150	24	68
13^{f}	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	t-BuOK	150	12	72

${ }^{a}$ Reactions conditions: $\mathbf{4 a}(0.2 \mathrm{mmol})$, oxidant (1.0 mmol), base (0.6 mmol), DMSO (2.0 mL), 140 ${ }^{\circ} \mathrm{C}, \mathrm{N}_{2}, 12 \mathrm{~h}$, isolated yields. ${ }^{b}$ Air atmosphere. ${ }^{c} \mathrm{O}_{2}$ atmosphere. ${ }^{d}$ Base (0.8 mmol). ${ }^{e}$ Oxidant (0.6 $\mathrm{mmol}) .{ }^{f}$ Oxidant $(0.6 \mathrm{mmol})$, base $(0.8 \mathrm{mmol})$.

4. General Procedure for the Synthetic of Unsymmetrical Disulfides and Selenosulfides

4.1 Synthesis of Unsymmetrical Disulfides

Scheme $\mathbf{S 2}$
General Procedure B: To a Schlenk tube were added thiols (0.2 mmol), sulfoxide (2 $\mathrm{mL}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(91 \mathrm{mg}, 0.4 \mathrm{mmol})$. The mixture was stirred in a heating mantle preheated to $140{ }^{\circ} \mathrm{C}$ for 28 h under N_{2} atmosphere. After cooled to room temperature, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and extracted with EtOAc $(3 \times 10$ $\mathrm{mL})$. The combined organic phase was washed with water and brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated under reduced pressure. The residue was purified by column chromatography to give the desired unsymmetrical disulfides.
4.2 Synthesis of Unsymmetrical Selenosulfides

Scheme S3
General Procedure C: To a Schlenk tube were added diselenide (0.2 mmol), $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137 \mathrm{mg}, 0.6 \mathrm{mmol}), t$-BuOK ($\left.90 \mathrm{mg}, 0.8 \mathrm{mmol}\right)$ and DMSO (2 mL). The mixture was stirred in a heating mantle preheated to $140{ }^{\circ} \mathrm{C}$ for 12 h under N_{2} atmosphere. After cooled to room temperature, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic phase was washed with water and brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated under reduced pressure. The residue was purified by column chromatography to give the desired unsymmetrical selenosulfides.
4.3 The reaction between diselenide $\mathbf{4 s}$ and selenoxide $\mathbf{6 a}$.

Scheme S4
To a Schlenk tube were added diselenide $4 \mathbf{s}(0.2 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right){ }_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137 \mathrm{mg}, 0.6$ mmol), t - BuOK ($90 \mathrm{mg}, 0.8 \mathrm{mmol}$), $\mathbf{6 a}(337 \mathrm{mg}, 1.8 \mathrm{mmol}$) and toluene $(1 \mathrm{~mL})$. The mixture was stirred in a heating mantle preheated to $140{ }^{\circ} \mathrm{C}$ for 12 h under N_{2} atmosphere. After cooled to room temperature, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic phase was washed with water and brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated under reduced pressure. The residue was purified by column chromatography to give the desired products.

4.4 Gram-Scale Synthesis of 1a

Scheme $\mathbf{S 5}$
To a Schlenk tube were added 1a ($1.01 \mathrm{~g}, 7.0 \mathrm{mmol})$, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(3.2 \mathrm{~g}, 14 \mathrm{mmol})$, and DMSO (5 mL). The mixture was stirred in a heating mantle preheated to $140{ }^{\circ} \mathrm{C}$ for 28 h under N_{2} atmosphere. After cooled to room temperature, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phase was washed with water and brine (150 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether) to afford $\mathbf{2 a}(1.15 \mathrm{~g}, 87 \%)$ as yellow oil.

5. Preliminary Mechanistic Studies

5.1 GC-MS

Scheme S6

$$
\begin{aligned}
& y=0,31 \% \mathbf{2 t} \\
& y=2,0 \% \mathbf{2 t}+8 \% \mathbf{8 a}
\end{aligned}
$$

Scheme $\mathbf{S 7}$

$\mathbf{7 e}+\mathbf{7 b}$	$\xrightarrow[\text { TEMPO (y equiv) }]{\text { toluene }(2.0 \mathrm{~mL})}$	$\mathbf{2 t}$		
0.2 mmol	0.2 mmol	$140^{\circ} \mathrm{C}, \mathrm{N}_{2}, 28 \mathrm{~h}$		$\mathrm{y}=0,25 \% \mathbf{2 t}$
:---				

Scheme S8

Scheme $\mathbf{S 9}$

$\mathbf{7 e}+\mathbf{7 d}$	TEMPO (y equiv) toluene $(2.0 \mathrm{~mL})$ $\mathbf{2 t}+\mathbf{8 b}$
0.2 mmol	
$140^{\circ} \mathrm{C}, \mathrm{N}_{2}, 28 \mathrm{~h}$	
y	$=0,19 \% \mathbf{2 t}$
y	$=2,55 \% \mathbf{~ m m o l}+13 \% \mathbf{8 b}$

Scheme S10

5.2 Kinetic Isotope Effect Experiments

Scheme S11
Preparing five identical 20 mL -Schlenk tubes and each one equipped with a stir bar was charged with 1a $(0.2 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.4 \mathrm{mmol})$. Each tube was fitted with a rubber septum, then evacuated and refilled with nitrogen three times. Under nitrogen, DMSO (2 mL) was added in turn to the Schlenk tube through the rubber septum using syringes, and then the rubber septum was replaced by a Teflon screwcap under nitrogen flow. In the other five identical $25 \mathrm{~mL}-$ Schlenk tubes, DMSO- d_{6} was used instead of DMSO. In each group, 30, 60, 90, 120 and 150 min was chosen the reaction time respectively and the corresponding yield was obtained by flash chromatography. A kinetic isotope effect value $K_{\mathrm{H}} / K_{\mathrm{D}}=3.7229 / 0.5600=5.5$ was obtained.

5.3 Competitive Reaction between 2a and $\mathbf{2 a} \mathbf{a}-\boldsymbol{d}_{3}$

Scheme S12
To a Schlenk tube were added 1a (0.2 mmol), $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.4 \mathrm{mmol})$, DMSO (1.0 $\mathrm{mL})$ and DMSO- $d_{6}(1.0 \mathrm{~mL})$. The mixture was stirred in a heating mantle preheated to $130{ }^{\circ} \mathrm{C}$ for 2 h under N_{2} atmosphere. After cooled to room temperature, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic phase was washed with water and brine (150 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated under reduced pressure. The residue was detected by GC-MS and the ratio of $\mathbf{2 a}$ to $\mathbf{2 a}-\boldsymbol{d}_{\mathbf{3}}(4: 1)$ was obtainted.

5.4 A Control Experiment for the Identification of Butoxydibutylsulfonium Salt 9b

Scheme S13
For the identification of butoxydibutylsulfonium salt $\mathbf{9 b}$, a control experiment involving an intermediate with similar structure to $\mathbf{9 b}$ was conducted. This intermediate was generated in-situ from swern oxidation of phenylpropanol, the general procedure for this control experiment was as followed: to a Schlenk tube were added DMSO ($6.0 \mathrm{eq}, 213 u \mathrm{~L}$) and DCM (1.0 mL). Oxalyl choride ($5.0 \mathrm{eq}, 212 \mathrm{ul}$) was added through a syringe at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Then phenylpropanol ($1.0 \mathrm{eq}, 68 u \mathrm{~L}$) was added through a syringe , and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . After the removal of the DCM under reduced pressure followed by the addition of toluene $(2 \mathrm{~mL})$. When the resulting mixture was conducted at room temperature for 24 h , no formation of the desired phenylpropionaldehyde. When the resulting mixture was conducted at $140^{\circ} \mathrm{C}$ for 24 h , 23% yield of phenylpropionaldehyde was isolated.

6. Characterization of Products in Details

1-(4-chlorophenyl)-2-methyldisulfane (2a) ${ }^{[10]}$

The General Procedure B was followed, and hexane was used as the eluant to afford 2a as yellow oil ($36 \mathrm{mg}, 93 \%$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.6$, 133.0, 129.2, 129.1, 22.8.

1-(4-bromophenyl)-2-methyldisulfane (2b)

The General Procedure B was followed, and hexane was used as the eluant to afford 2b as white solid ($37 \mathrm{mg}, 78 \%$). M.p. 42.4-47.7. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48$ - 7.42 (m, 2H), 7.42 - $7.36(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 136.3, 132.1, 129.2, 120.8, 22.8. HRMS (ESI): calculated for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrS}_{2} \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}$ 234.9245, found 234.9248.

1-(2-bromophenyl)-2-methyldisulfane (2c)

The General Procedure B was followed, and hexane was used as the eluant to afford 2c as a colorless oil ($39 \mathrm{mg}, 83 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}\right.$, $\left.J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.52\left(\mathrm{dd}, J_{1}=7.9 \mathrm{~Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.07$ $(\mathrm{m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.4,133.0,127.9,127.5$, 126.8, 121.5, 22.5. HRMS (ESI): calculated for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrS}_{2} \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}$234.9245, found 234.9250.

1-(3-bromophenyl)-2-methyldisulfane (2d)

The General Procedure B was followed, and hexane was used as the eluant to afford 2d as a colorless oil ($39 \mathrm{mg}, 83 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.68(\mathrm{~m}, 1 \mathrm{H})$, $7.44-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.4,130.3,129.8,129.6,125.7,123.1,22.9$ HRMS (ESI): calculated for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrS}_{2} \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}$234.9245, found 234.9247.

1-(2-fluorophenyl)-2-methyldisulfane (2e)

The General Procedure B was followed, and hexane was used as the eluant to afford 2e as a colorless oil ($20 \mathrm{mg}, 58 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68$ - $7.64(\mathrm{~m}, 1 \mathrm{H})$, $7.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.6(\mathrm{~d}, J=245.5 \mathrm{~Hz}), 130.8,129.2(\mathrm{~d}, J=7.6 \mathrm{~Hz})$, $124.7(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 124.1(\mathrm{~d}, J=17.5 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 23.0(\mathrm{~d}, J=4.7$ Hz); ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.4$ (s, 1F). HRMS (ESI): calculated for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{FS}_{2} \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}$175.0046, found 175.0051.

1-(2,4-difluorophenyl)-2-methyldisulfane (2f)

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 f}$ as a colorless oil ($28 \mathrm{mg}, 72 \%$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64-7.59(\mathrm{~m}, 1 \mathrm{H})$, 6.96-6.71(m, 2H), $2.48(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.20\left(\mathrm{dd}, J_{1}=\right.$ $\left.208.2 \mathrm{~Hz}, J_{2}=11.7 \mathrm{~Hz}\right), 162.16-160.26(\mathrm{~m}), 133.46\left(\mathrm{dd}, J_{1}=9.5 \mathrm{~Hz}, J_{2}=2.6 \mathrm{~Hz}\right)$, $119.81\left(\mathrm{dd}, J_{1}=18.4 \mathrm{~Hz}, J_{2}=4.1 \mathrm{~Hz}\right), 112.00\left(\mathrm{dd}, J_{1}=21.7 \mathrm{~Hz}, J_{2}=3.7 \mathrm{~Hz}\right), 104.61$ $(\mathrm{t}, J=26.1 \mathrm{~Hz}), 23.13(\mathrm{~d}, J=3.4 \mathrm{~Hz}) .{ }^{19} \mathbf{F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-104.3(\mathrm{~s}, 1 \mathrm{~F})$, -109.1 (s, 1F). HRMS (ESI): calculated for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~S}_{2} \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}$191.9879, found 191.9875.

1-methyl-2-(4-nitrophenyl)disulfane (2g) ${ }^{[11]}$

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 g}$ as a yellow oil ($37 \mathrm{mg}, 93 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23-8.10(\mathrm{~m}, 2 \mathrm{H})$, 7.73 - $7.56(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.4,146.3,125.8$, 124.1, 22.7.

1-methyl-2-(4-(trifluoromethyl)phenyl)disulfane (2h)

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 h}$ as a colorless oil $(32.3 \mathrm{mg}, 72 \%) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.57(\mathrm{~m}$, 4H), $2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 142.3$ - $141.7(\mathrm{~m}), 126.7$ - 126.6 $(\mathrm{m}), 126.4,126.1(\mathrm{t}, J=4.1 \mathrm{~Hz}), 125.9(\mathrm{q}, J=3.8 \mathrm{~Hz}), 22.8 .{ }^{19}$ F NMR (470 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-62.4(\mathrm{~s}, 3 \mathrm{~F})$. HRMS (ESI): calculated for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{~S}_{2} \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}$223.9941, found 223.9938 .

1-methyl-2-(p-tolyl)disulfane (2i) ${ }^{[12]}$

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 i}$ as a colorless oil (14 mg, 41\%). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 137.3,133.6,129.8,128.7,22.9,21.0$.

1-(2,4-dimethylphenyl)-2-methyldisulfane (2j)

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 j}$ as a colorless oil $(21 \mathrm{mg}, 56 \%) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.1,137.6,131.9,131.5,129.8,127.3,22.6,20.9,20.1$. HRMS (ESI): calculated for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~S}_{2} \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}$184.0380, found 184.0390 .

1-(4-(tert-butyl)phenyl)-2-methyldisulfane (2k)

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 k}$ as a colorless oi $(28 \mathrm{mg}, 65 \%) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49$ - $7.42(\mathrm{~m}, 2 \mathrm{H})$, $7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.5$, 133.6, 128.2, 126.1, 34.6, 31.3, 23.0. HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~S}_{2} \mathrm{H}[\mathrm{M}+\mathrm{H}]^{+}$ 212.0693 , found 212.0688 .

1-(4-methoxyphenyl)-2-methyldisulfane (2l) ${ }^{[13]}$

The General Procedure B was followed, and hexane was used as the eluant to afford 21 as a yellow oil ($14 \mathrm{mg}, 38 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 159.6,132.0,127.7,114.6,55.3,55.3,22.8$.
1-methyl-2-(naphthalen-2-yl)disulfane (2m) ${ }^{[13]}$

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 m}$ as a yellow solid (34 mg, 82\%). M.p. $52.5-53.5 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.38(\mathrm{~m}, 3 \mathrm{H}), 2.49(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.2,133.6,132.4,128.9,127.8,127.4,126.7$, 126.3, 126.1, 125.8, 22.9.

2-(methyldisulfaneyl)thiophene (2n) ${ }^{[13]}$

The General Procedure B was followed, and hexane was used as the eluant to afford 2n as a yellow oil $(15 \mathrm{mg}, 46 \%) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.4(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.3-7.2(\mathrm{~m}, 1 \mathrm{H}), 7.0\left(\mathrm{dd}, J_{1}=5.4, J_{1}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.5(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.4,134.2,130.9,127.7,23.2$.

1-benzyl-2-methyldisulfane (20) ${ }^{[13]}$

The General Procedure B was followed, and hexane was used as the eluant to afford 20 as a yellow oil ($13 \mathrm{mg}, 38 \%$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.26(\mathrm{~m}, 5 \mathrm{H})$, $3.88(\mathrm{~s}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.6,129.4,128.6,127.5$, 43.0, 23.1.

1-methyl-2-octadecyldisulfane (2p)

The General Procedure B was followed, and hexane was used as the eluant to afford 2p as a white soild ($38 \mathrm{mg}, 57 \%$). M.p. $63.2-65.6$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $2.68(\mathrm{t}, J=7.3,2 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}$, $28 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 39.2,31.9,29.7,29.7$, 29.6, 29.5, 29.4, 29.3, 28.5, 22.7, 14.1. HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{~S}_{2} \mathrm{H}$ $[\mathrm{M}+\mathrm{H}]^{+} 332.2571$, found 332.2575 .

3-(methyldisulfaneyl)propan-1-ol (2q) ${ }^{[14]}$

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 q}$ as a colorless oil ($12 \mathrm{mg}, 45 \%$). ${ }^{1} \mathbf{H}$ NMR $\delta 3.76(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H}), 1.97$ (qui, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 60.9,34.4,31.8,23.1$.

3-(methyldisulfaneyl)propanoic acid (2r) ${ }^{[15]}$

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 r}$ as a colorless oil ($24 \mathrm{mg}, 78 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.21(\mathrm{~s}, 1 \mathrm{H}), 2.93$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.4,34.0,31.9,23.2$.

1-butyl-2-(4-methoxyphenyl)disulfane (2s) ${ }^{[15]}$

The General Procedure B was followed, and hexane was used as the eluant to afford 2s as a yellow oil (32 mg, 71\%). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.5-7.4(\mathrm{~m}, 2 \mathrm{H}), 6.9$ - $6.8(\mathrm{~m}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 2.7(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.4(\mathrm{q}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 0.9(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.5,131.6,128.5$, $114.6,55.4,38.5,30.8,21.7,13.7$.

1-butyl-2-(4-chlorophenyl)disulfane (2t) ${ }^{[16]}$

The General Procedure B was followed, and hexane was used as the eluant to afford 2t as a yellow oil ($30 \mathrm{mg}, 65 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.38(\mathrm{~m}, ~, 2 \mathrm{H})$, $7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{~m}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~m}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{q}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.1,133.6$, $129.3,129.0,38.9,31.3,21.7,13.7$.

1-benzyl-2-cyclohexyldisulfane (2u) ${ }^{[17]}$

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 u}$ as a yellow oil ($40 \mathrm{mg}, 83 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.25(\mathrm{~m}, 4 \mathrm{H})$, $7.23(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{tt}, J=10.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.70\left(\mathrm{dd}, J_{1}=9.7, J_{2}=5.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.28-1.12(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 137.7,129.3,128.5,127.4,49.3,44.7,32.8,26.1,25.7$.

1-benzyl-2-(4-chlorophenyl)disulfane (2v) ${ }^{[18]}$

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 v}$ as a yellow oil (43 mg, 80\%). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.28(\mathrm{~m}, 2 \mathrm{H})$, 7.25 - $7.16(\mathrm{~m}, 7 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.4,132.8,129.4$, $129.1,129.0,128.6,127.6,43.5$.

1-(4-chlorophenyl)-2-phenyldisulfane (2w) ${ }^{[19]}$

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 w}$ as a yellow oil $(32 \mathrm{mg}, 80 \%) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.6,135.6,133.3,129.2,129.2,129.0,127.8,127.5$.

1-(4-methoxyphenyl)-2-phenyldisulfane ($2 x)^{[8]}$

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 w}$ as a yellow oil $(21 \mathrm{mg}, 43 \%) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.4\left(\mathrm{dd}, J_{1}=11.1 \mathrm{~Hz}\right.$, $\left.J_{2}=8.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.3(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 160.1,136.1,133.4,132.2,129.8,129.2,127.6,114.8$, 55.4.

1-(4-nitrophenyl)-2-phenyldisulfane (2y) ${ }^{[24]}$

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 y}$ as a yellow oil $(33 \mathrm{mg}, 62 \%) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.2-8.1(\mathrm{~m}, 2 \mathrm{H}), 7.7$ - $7.6(\mathrm{~m}, 2 \mathrm{H}), 7.5-7.4(\mathrm{~m}, 2 \mathrm{H}), 7.3(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.3-7.2(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.5,146.2,135.3,129.4,128.0,127.8,126.2,124.2$.

1-(4-methoxyphenyl)-2-(p-tolyl)disulfane (2z) ${ }^{[21]}$

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 z}$ as a yellow soild (27 mg, 52\%). M.p. 43.2-45.3. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$7.44-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.77(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,137.6,134.1,131.9,129.8,129.1,128.31$, 114.7, 55.4, 21.1.

1-(4-nitrophenyl)-2-(p-tolyl)disulfane (2aa) ${ }^{[22]}$

The General Procedure B was followed, and hexane was used as the eluant to afford 2aa as a yellow soild ($28 \mathrm{mg}, 50 \%$). M.p. 63.0-63.5. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) δ $8.20-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 146.5, 146.4, 138.5, 131.9, 130.2, 128.7, 126.2, 124.1, 21.1.

1-(4-bromophenyl)-2-(4-methoxyphenyl)disulfane (2bb) ${ }^{[20]}$

The General Procedure B was followed, and hexane was used as the eluant to afford $\mathbf{2 x}$ as a yellow oil ($20 \mathrm{mg}, 31 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.32(\mathrm{~m}, 6 \mathrm{H})$, $6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0,136.7$, 132.1, 132.1, 129.9, 127.5, 121.3, 114.8, 55.4.

1-(4-chlorophenyl)-2-(4-methoxyphenyl)disulfane (2cc) ${ }^{[6]}$

The General Procedure B was followed, and hexane was used as the eluant to afford 2cc as a yellow oil ($40 \mathrm{mg}, 71 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.4$ (dd, $J_{1}=11.1$ $\left.\mathrm{Hz}, J_{2}=8.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.3(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 160.1, 136.1, 133.4, 132.2, 129.8, 129.2, 127.6, 114.8, 55.4.
methyl(phenylselanyl)sulfane (5a) ${ }^{[23]}$

The General Procedure C was followed, and hexane was used as the eluant to afford 5a as a yellow oil (29 mg, 72\%). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.58(\mathrm{~m}, 2 \mathrm{H})$, $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 131.7,130.2$, 129.2, 127.5, 22.3.

((2-chlorophenyl)selanyl)(methyl)sulfane (5b)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford 5b as a yellow oil $(41 \mathrm{mg}, 86 \%) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.82(\mathrm{~m}, 1 \mathrm{H})$, 7.34-7.29(m, 2H), 7.21-7.18(m 1H), $2.60(\mathrm{~s}, 3 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 132.8, 131.1, 129.5, 128.1, 127.8, 127.6, 22.0. HRMS (ESI): calculated for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{ClSSeH}[\mathrm{M}+\mathrm{H}]^{+}$238.9195, found 238.9199.
((4-bromophenyl)selanyl)(methyl)sulfane (5c)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford 5c as a yellow oil ($36 \mathrm{mg}, 63 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.46 - $7.42(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 132.2,131.7,130.6$, 121.6, 22.3. HRMS (ESI): calculated for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrSSeH}[\mathrm{M}+\mathrm{H}]^{+}$282.8690, found 282.8698.
((2-bromophenyl)selanyl)(methyl)sulfane (5d)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford 5d as a yellow oil ($37 \mathrm{mg}, 65 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}$,

3H); ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 132.2, 131.7, 130.6, 121.6, 22.3. HRMS (ESI): calculated for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrSSeH}[\mathrm{M}+\mathrm{H}]^{+}$282.8690, found 282.8698 .
((4-iodophenyl)selanyl)(methyl)sulfane (5e)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford, 5e as a yellow oil ($53 \mathrm{mg}, 81 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.9$, 132.1, 131.8, 91.0, 7.3. HRMS (ESI): calculated for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{ISSeH}[\mathrm{M}+\mathrm{H}]^{+} 330.8551$, found 330.8560 .

4-((methylthio)selanyl)benzonitrile (5f)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford 5 f as a yellow oil ($28 \mathrm{mg}, 62 \%$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (dd, $J_{1}=8.4, J_{2}=$ $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 138.9, 132.5, 128.8, 118.5, 110.5, 22.3. HRMS (ESI): calculated for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NSSeH}[\mathrm{M}+\mathrm{H}]^{+}$ 229.9537, found 229.9544 .
methyl((3-nitrophenyl)selanyl)sulfane (5g)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford $\mathbf{5 g}$ as a yellow oil ($38 \mathrm{mg}, 76 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.11-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.66(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.8,134.8,134.1,129.8,123.8,122.1,22.5$. HRMS (ESI): calculated for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}_{2} \mathrm{SSeH}[\mathrm{M}+\mathrm{H}]^{+} 249.9435$, found 249.9428 . methyl((4-(trifluoromethyl)phenyl)selanyl)sulfane (5h)

The General Procedure C was followed, and hexane was used as the eluant to afford $\mathbf{5 h}$ as a yellow oil ($46 \mathrm{mg}, 85 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.73$ ($\mathrm{d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.7$, 129.0, 126.1, 126.0, $125.9(\mathrm{q}, J=12.5 \mathrm{~Hz}), 125.9,22.3 .{ }^{19} \mathbf{F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.5 (s, 3F). HRMS (ESI): calculated for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{SSeH}[\mathrm{M}+\mathrm{H}]^{+}$272.9459, found 272.9455 .

methyl((3-(trifluoromethyl)phenyl)selanyl)sulfane (5i)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford $\mathbf{5 i}$ as a yellow oil ($33 \mathrm{mg}, 61 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.9,132.7,131.6(\mathrm{q}, J=37.5 \mathrm{~Hz}), 129.5,126.1(\mathrm{q}, J=$ $4.0 \mathrm{~Hz}), 124.1(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.8(\mathrm{q}, \mathrm{J}=275 \mathrm{~Hz}), 22.4 .{ }^{19} \mathbf{F} \mathbf{N M R}(470 \mathrm{MHz}$, CDCl_{3}) $\delta-62.7$ (s, 3F). HRMS (ESI): calculated for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{SSeH}[\mathrm{M}+\mathrm{H}]^{+}$272.9459, found 272.9455 .
methyl(p-tolylselanyl)sulfane (5j)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford $\mathbf{5 j}$ as a yellow oil ($29 \mathrm{mg}, 66 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.8,131.1,130.0,128.2,22.3,21.1$. HRMS (ESI): calculated for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{SSeH}$ $[\mathrm{M}+\mathrm{H}]^{+} 218.9741$, found 218.9738 .
((4-(tert-butyl)phenyl)selanyl)(methyl)sulfane (5k)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford 5k as a yellow oil ($42 \mathrm{mg}, 81 \%$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.0,130.6,128.3,126.3,34.6,31.3,22.4$. HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{SSeH}[\mathrm{M}+\mathrm{H}]^{+}$261.0211, found 2610207.
(mesitylselanyl)(methyl)sulfane (5I)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford $\mathbf{5 l}$ as a yellow oil ($24 \mathrm{mg}, 48 \%$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.97-6.95(\mathrm{~m}, 2 \mathrm{H})$, $2.58(\mathrm{~s}, 9 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9,139.3,129.8,128.8$, 24.4, 21.9, 21.0. HRMS (ESI): calculated for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{SSeH}[\mathrm{M}+\mathrm{H}]^{+}$247.0054, found 247.0061 .
([1,1'-biphenyl]-4-ylselanyl)(methyl)sulfane (5m)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford $\mathbf{5 m}$ as a yellow oil ($29 \mathrm{mg}, 51 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.42\left(\mathrm{dd}, J_{1}=8.4, J_{2}=6.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H})$, $2.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 140.7, 140.4, 130.8, 130.8, 128.9, 128.0, 127.6, 127.1, 22.4. HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{SSeH}[\mathrm{M}+\mathrm{H}]^{+}$280.9898, found 280.9891 .
((4-methoxyphenyl)selanyl)(methyl)sulfane (5n)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford $\mathbf{5 n}$ as a yellow oil ($16 \mathrm{mg}, 35 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0,134.1,122.2,114.9,55.4,22.2$. HRMS (ESI): calculated for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{OSSeH}$ $[\mathrm{M}+\mathrm{H}]^{+} 234.9690$, found 234.9696 .
((3-methoxyphenyl)selanyl)(methyl)sulfane (50)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford 50 as a yellow oil (24 mg, 52\%). ${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.26-7.15(\mathrm{~m}, 3 \mathrm{H})$, 6.81-6.79(m, 1H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.2$, 132.8, 129.9, 122.0, 115.1, 113.3, 55.3, 22.4. HRMS (ESI): calculated for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{OSSeH}[\mathrm{M}+\mathrm{H}]^{+}$234.9690, found 234.9696.

5-((methylthio)selanyl)benzo[d][1,3]dioxole (5p)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford 5p as a yellow oil $(26 \mathrm{mg}, 53 \%) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.16(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11\left(\mathrm{dd}, J_{1}=8.0, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 148.3,148.1,125.9,123.4,112.6,108.9,101.3$, 22.2. HRMS (ESI): calculated for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{SSeH}[\mathrm{M}+\mathrm{H}]^{+}$248.9483, found 248.9488. methyl(naphthalen-2-ylselanyl)sulfane (5q)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford $\mathbf{5 q}$ as a yellow soild ($29 \mathrm{mg}, 57 \%$). M.p. $52.5-54.6 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.05\left(\mathrm{dd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.89-7.82(\mathrm{~m}, 2 \mathrm{H})$, $7.62-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 134.2, 130.5, 130.1, 129.0, 128.7, 126.7, 126.3, 125.8, 22.1. HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{SSeH}[\mathrm{M}+\mathrm{H}]^{+}$254.9741, found 254.9735 .

3-((methylthio)selanyl)pyridine (5r)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford 5r as a yellow oil (23 mg, 51\%). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~s}$,
$1 \mathrm{H}), 7.99-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.0, 148.6, 138.3, 124.3, 22.4. HRMS (ESI): calculated for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NSSeH}[\mathrm{M}+\mathrm{H}]^{+}$ 205.9537, found 205.9545.
butyl(phenylselanyl)sulfane (5s) ${ }^{[15]}$

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford 5s as a yellow oil ($60 \mathrm{mg}, 61 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.6(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.3(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.8(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.6(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.4(\mathrm{p}, J=$
 129.9, 129.1, 127.2, 38.0, 32.3, 21.6, 13.6.
(4-methoxyphenyl)(phenylselanyl)sulfane (5u) ${ }^{[25]}$

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford $\mathbf{5 u}$ as a yellow oil ($77 \mathrm{mg}, 65 \% ; 41 \mathrm{mg}, 35 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.7$ $7.5(\mathrm{~m}, 2 \mathrm{H}), 7.4\left(\mathrm{dd}, J_{1}=10.6 \mathrm{~Hz}, J_{2}=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.3-7.2(\mathrm{~m}, 3 \mathrm{H}), 6.9-6.8(\mathrm{~m}$, $2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.3,133.9,133.0,131.9,131.3$, 129.6, 128.8, 115.0, 55.7.
((4-chlorophenyl)selanyl)(4-methoxyphenyl)sulfane (5v)

The General Procedure \mathbf{C} was followed, and hexane was used as the eluant to afford $\mathbf{5 v}$ as a yellow oil ($91 \mathrm{mg}, 69 \% ; 62 \mathrm{mg}, 47 \%$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.5(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.4-7.4(\mathrm{~m}, 2 \mathrm{H}), 7.3(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.8(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.8$ (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.2,134.1,133.8,132.5,131.0,129.3$, 127.5, 114.7, 55.4. HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClOSSeH}[\mathrm{M}+\mathrm{H}]^{+}$329.9384, found 329.9388 .

7. Reference:

[1] Leng, T.; Wu, G.; Zhou, Y.-B.; Gao, W.; Ding, J.; Huang, X.; Liu, M.; Wu, H. Silver-Catalyzed One-Pot Three-Component Selective Synthesis of β-Hydroxy Selenides. Adv. Synth. Catal. 2018, 360, 4336-4340.
[2] Singh, D.; Deobald, A. M.; Camargo, L. R. S.; Tabarelli, G.; Rodrigues, O. E. D.; Braga, A. L. An Efficient One-Pot Synthesis of Symmetrical Diselenides or Ditellurides from Halides with CuO Nanopowder $/ \mathrm{Se}^{0}$ or $\mathrm{Te}^{0} /$ Base. Org. Lett. 2010, 12, 3288-3291.
[3] Sébastien, R.; Anne, R. O. K.; Julie, B.; Patrice, V. Metal-Free ipso-Selenocyanation of Arylboronic Acids Using Malononitrile and Selenium Dioxide. Synthesis 2019, 51, 3758-3764.
[4] Zhang, Y.; Jia, X.; Zhou, X. Samarium Diiodide-Induced Reduction ofAmorphous Selenium: A Facile Synthesis of DiarylDiselenides. Synth. Comтии. 1994, 24, 1247-1252.
[5] Kommula, D.; Li, Q.; Ning S.; Liu W.; Wang Q.; Zhao, K. Z. Iodine mediated synthesis of diaryl diselenides using SeO_{2} as a selenium source. Synth. Commun. 2020, 50, 1026-1034.
[6] Yao, H.-F.; Li, F.-H.; Li, J.; Wang, S.-Y.; Ji, S.-J. Iron(III) chloride-promoted cyclization of α, β-alkynic tosylhydrazones with diselenides:synthesis of 4-(arylselanyl)-1H-pyrazoles. Org. Biomol. Chem. 2020, 18, 1987-1993.
[7] Curran, S. P.; Connon, S. J. Selenide Ions as Catalysts for Homo- and Crossed-Tishchenko Reactions of Expanded Scope. Org. Lett. 2012, 14, 1074-1077.
[8] Li, F.; Wang, D.; Chen H.; He, Z.; Zhou, L.; Zeng Q. Transition metal-free coupling reactions of benzylic trimethylammonium salts with di(hetero)aryl disulfides and diselenides. Chem. Commun. 2020, 56, 13029-13032.
[9] Saravanan, P.; Anbarasan, P. Trifluoromethylthiolative 1,2-difunctionalization of alkenes with diselenides and AgSCF_{3}. Chem. Commun. 2019, 55, 4639-4642.
[10] Tsutsumi, N.; Itoh, T.; Ohsawa, A. Cleavage of S-S Bond by Nitric Oxide (NO) in the Presence of Oxygen: A Disproportionation Reaction of Two Disulfides. Pharma. Bull. 2000, 48, 1524-1528.
[11]Turos, E.; Revell, K. D.; Ramaraju, P.; Gergeres, D. A.; Greenhalgh, K.; Young, A. Unsymmetric aryl-alkyl disulfide growth inhibitors of methicillin-resistant Staphylococcus aureus and Bacillus anthracis. Bio. Med. Chem.2008, 16, 6501-6508.
[12]Taniguchi, N. Unsymmetrical disulfide and sulfenamide synthesis via reactions of thiosulfonates with thiols or amines. Tetrahedron 2017, 73, 2030-2035.
[13]Guo, J.; Zha, J.; Zhang, T.; Ding, C.-H.; Tan, Q.; Xu, B. PdCl2/DMSO-Catalyzed Thiol-Disulfide Exchange: Synthesis of Unsymmetrical Disulfide. Org. Lett. 2021, 23, 3167-3172.
[14]Arisawa, M.; Suwa, A.; Yamaguchi, M. RhCl_{3}-catalyzed disulfide exchange reaction using water solvent in homogeneous and heterogeneous systems. J. Org. Chem. 2006, 691, 1159-1168.
[15]Tanaka, K.; Ajiki, K. Phosphine-free cationic rhodium(I) complex-catalyzed disulfide exchange reaction: convenient synthesis of unsymmetrical disulfides. Tetrahedron Letters 2004, 45, 5677-5679.
[16]Kiyoshi T.; Xing C.; Fumio Y. Oxidation of thiol with 5-arylidene-1,3-dimethylbarbituric acid: application to synthesis of unsymmetrical disulfide. Tetrahedron, 1988, 11, 3241-3249.
[17] Wu, Z.; Pratt, D. A. Radical Substitution Provides a Unique Route to Disulfides. J. Am. Chem. Soc. 2020, 142, 10284-10290.
[18]Xiao, X.; Feng, M.; Jiang, X. New Design of a Disulfurating Reagent: Facile and Straightforward Pathway to Unsymmetrical Disulfanes by Copper-Catalyzed Oxidative Cross-Coupling. Angew.Chem. Int. Ed. 2016, 55, 14121-14125.
[19]Zou, J.; Chen, J.; Shi, T.; Hou, Y.; Cao, F.; Wang, Y. Phthalimide-Carried Disulfur Transfer To Synthesize Unsymmetrical Disulfanes via Copper Catalysis. ACS Catal. 2019, 9, 11426-11430.
[20] Wang, Y.; Deng, J.; Chen, J.; Cao, F.; Hou, Y.; Yang, Y. Dechalcogenization of Aryl Dichalcogenides to Synthesize Aryl Chalcogenides via Copper Catalysis. ACS Catal. 2020, 10, 2707-2712.
[21]Bizzini, L. D.; Zwick, P.; Mayor, M. Preparation of Unsymmetrical Disulfides from Thioacetates and Thiosulfonates. Eur. J. Org. Chem. 20192019 6956-6960.
[22]Dethe, D. H.; Srivastava, A.; Dherange, B. D.; Kumar, B. V. Unsymmetrical Disulfide Synthesis through Photoredox Catalysis. Adv. Synth. Catal. 2018, 360, 3020-3025.
[23]Detty, M. R. Mild reductions of oxides of the Group 6a elements sulfur, selenium, and tellurium with (phenylseleno)trimethylsilane. J. Org. Chem. 1979, 44, 4528-4531.
[24]Li, H.; Tao, C.; Xie, Y.; Wang, A.; Chang, Y.; Yu, H. Transformation of arylboronic acids with sodium thiosulfate into organodisulfides catalyzed by a recyclable polyoxometalate-based Cr catalyst. Green Chem. 2021, 23, 6059-6064.
[25]Chen, J.; Tang, Z.; Qiu, R.; He, Y.; Wang X.,; Li, N. Cesium-Catalyzed Regioselective Synthesis of Trisubstituted Heteroatom Alkenes: A New Strategy for the Preparation of Functional Alkenes. Org. Lett. 2015, 17, 2162-2165.

8. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra of Products

$$
\mathrm{CDCl}_{3} .125 \mathrm{~Hz}
$$

令

$\mathrm{CDCl}_{3} .125 \mathrm{~Hz}$

7 \%aicieig big

-访

Cocle

$\mathrm{CDCl}_{3} .125 \mathrm{~Hz}$

No siog

$$
\text { CDCl3. } 125 \mathrm{~Hz}
$$

ABu

$\mathrm{CDCl}_{3} .125 \mathrm{~Hz}$

$$
\begin{aligned}
& \text { Me } \quad 40 \\
& \mathrm{CDCl}_{3} .125 \mathrm{~Hz}
\end{aligned}
$$

[^0]

$\stackrel{4 \mathrm{q}}{\mathrm{CDCl}_{3} .500 \mathrm{~Hz}}$

$$
\text { CDCl3. } 500 \mathrm{~Hz}
$$

$\mathrm{CDCl}_{3}, 125 \mathrm{~Hz}$

$\begin{array}{llllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

$\mathrm{H}_{16} \mathrm{~S}_{\mathrm{S}^{\prime}}$

$$
\stackrel{2 \mathrm{p}}{\mathrm{CDCl}_{3 .} 125 \mathrm{~Hz}}
$$

$$
\text { CDCl3. } 125 \mathrm{~Hz}
$$

200	190	180	170	160	150	140	130	120	110	${ }^{100}{ }_{\mathrm{f1}(\mathrm{ppm})}{ }^{90}$	80	70	60	50	40	30	20	10	${ }_{0}^{1}$	-10
						$\begin{gathered} \text { mon } \\ \\ \hline \end{gathered}$	-					$\stackrel{\substack{\text { de }}}{\substack{1}}$								

CDCl

CDCle

$\mathrm{CDCl}_{3}, 500 \mathrm{~Hz}$

[^0]:

