Supporting information

Six-plex switchable DNA origami cipher disk for tandem-in-time cryptography

Yuxiang Dong^a, Zehui Jin^a, Xue Zhang^a, Yuanyuan Tang^{ab}, Ye Tian,^{*ab} Jun-Jie Zhu^{*a} and Qianhao Min^{*a}

^aState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China. E-mail: minqianhao@nju.edu.cn; jjzhu@nju.edu.cn; ytian@nju.edu.cn

^bShenzhen Research Institute of Nanjing University, Shenzhen, 518000, China

Table of Contents

Materials

Preparation of ssDNA modified AuNPs Design, fabrication and purification of Eoct-DOFs Assembly of Eoct-DOF dimer and the DOCD Information encryption and decryption by the DOCD Negative-stained TEM characterization Fluorescence monitoring of the space shift of AuNPs in the Eoct-DOF dimer Fig. S1-S46 Tables S1-S8 References

Materials

Single-stranded M13mp18 DNA genome was purchased from Bayou Biolabs, America. All short oligonucleotides were obtained from Sangon Biotech Co. Ltd. (Shanghai, China). AuNP with diameter ~10 nm was bought from Ted Pella, Inc. Tris-(2-carboxyethyl)phosphine (TCEP), magnesium acetate and tris-acetate-EDTA (TAE) buffer were acquired from Aladdin Bio-Chem Technology Co. Ltd. (Shanghai, China).

Preparation of ssDNA modified AuNPs

The 3'-thiolated DNA strands (HS-DNA1 and HS-DNA2, see Table S3 for the detailed sequences of thiolated DNA) were mixed with tris-(2-carboxyethyl)phosphine (TCEP) in ice water for 1.5 h (the ratio of TCEP to DNA at 100:1), and were then purified by size exclusion columns (G-25, GE Healthcare). Subsequently, the thiolated ssDNA was mixed with AuNPs solution (the ratio of DNA to AuNPs at 150 (HS-DNA1):150 (HS-DNA2):1 (AuNPs)) and incubated for 1.5 h. After that, phosphate buffer (10 mM) was added in the solution to age for 1.5 h. In the subsequent salt-aging process, 2.0 M NaCl solution was gradually added to the mixture during six steps at intervals of 1 h until the final concentration of NaCl reached 0.3 M. After 16 h, the unmodified ssDNA were removed by centrifugation at 20000 rcf for 1 h and washed by 0.01 M PBS buffer (10 mM phosphate buffer containing 0.1 M NaCl) for 4 times.

Design, fabrication and purification of Eoct-DOFs

Elongated octahedron DNA origami frame (Eoct-DOF) was designed by caDNAno software (http://cadnano.org/)^{1,2}. The frame was fabricated by mixing 10 nM M13mp18 DNA genome, 100 nM staple strands (Table S8), 75 nM anchor strands (including Anchor strands 1, 2, 3 for fixing single AuNP in frame A and Anchor strands 4, 5, 6 in frame B, Table S4), 100 nM sticky end strands and closing end strands (Table S5) in 40 mM tris-acetate, 1.0 mM EDTA, and 12.5 mM magnesium acetate (pH = 8.3 at 23 °C) buffer solution (1 × TAE buffer solution containing 12.5 mM magnesium acetate). The prepared mixture was then processed by the following annealing procedures:

1. 90 °C: 25 sec 2. 90 °C --->85 °C: with rate -0.1 °C / 5 sec 3. 85 °C --->65 °C: with rate -0.1 °C / 30 sec 4. 65 °C --->40 °C: with rate -0.1 °C / 4 min 5. 40 °C --->32 °C: with rate -0.1 °C / 2 min 6. 32 °C --->20 °C: with rate -0.1 °C / 1 min 7. Hold at 20 °C

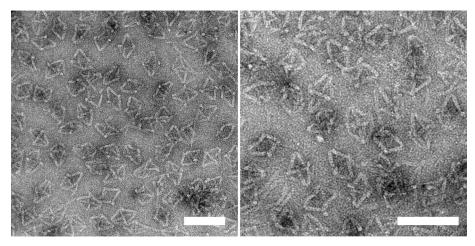
The prepared DNA origami frame was purified by PEG precipitation according to the literature³. Briefly, 20 g PEG lumps (Mw: 8000 g/mol or 10,000 g/mol) were dissolved in 100 mL 2 × TE solution containing 500 mM NaCl for preparation of PEG buffer. The prepared DNA origami sample was mixed with the same account of PEG buffer and was then centrifuged at 14500 rpm for 3 h. After the supernatant was removed, the condensed DNA origami sediment attached at the bottom was mixed with desired buffer solution (1 × TAE, 12.5 mM magnesium acetate) and redispersed at a constant temperature overnight (1000 rpm, 12 h, 37.5 °C).

Assembly of Eoct-DOF dimer and the DOCD

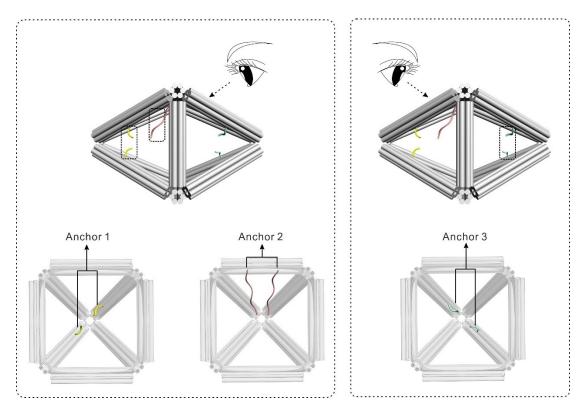
The Eoct-DOF dimer was assembled by mixing equal volume (50 µL) of purified Eoct-DOF A (10 nM) and Eoct-DOF B (10 nM) (see Fig. S4 and Table S5 for the structure design and sequences) in a centrifuge tube, followed by cooling down from 50 °C to 20 °C at the gradient of -0.2 °C/h. The DNA origami cipher disk (DOCD) was obtained by arranging the AuNPs in the prescribed position of Eoct-DOF dimer. Typically, 20 nM closing strands 1-6 were respectively mixed with 5 nM Eoct-DOF dimer at 37 °C for 30 min. Afterwards, ssDNA modified AuNPs were added into the solution with the molar ratio of AuNPs to Eoct-DOF dimer around 2:1. The different spatial distributions of AuNPs in the Eoct-DOF dimer can be adjusted by adding different input strands (the molar ratio of input strands to Eoct-DOF dimer at 6:1) with incubation at 37 °C for 30 min.

Information encryption and decryption by the DOCD

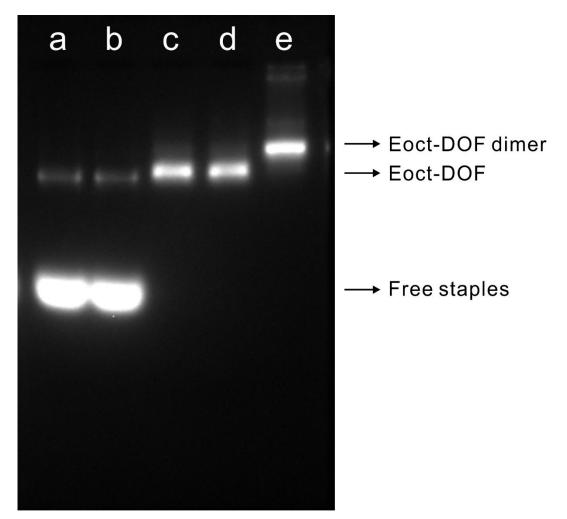
In this work, our designed DNA origami structure can exhibit six distinguishable visible patterns in response to different input DNA strands. By utilizing these programmable DNA origami patterns that can randomly and reversibly switch between each other, we presented a secure cryptography strategy based on six-plex switchable DOCD. By defining each pattern as one specific cipher symbol, we get characters of all capital letters and Arabic numerals with 36 transitions from one cipher symbol to another. In this way, we develop a secure and efficient encrypted communication scheme. The procedure of encrypted communication between the encoder and decoder included the following steps (Fig. S43): 1) The message was first converted into a string of DNA strands by referring to the code book and key book. 2) The obtained DNA strands (10 or 100 µM information strands, see Table S8 for detailed sequences) were assigned to different tubes, marked in sequence and then confidentially sent to the decoder. 3) After the tubes containing information strands were received, these information strands were in order added into the DOCD solution (212.4 µL) containing Eoct-DOF dimer (200 µL 5 nM), closing strands 1-6 (0.4 µL 10 µM for each strand), and ssDNA modified AuNPs (10 µL 200 nM). All the AuNPs were located outside the Eoct-DOF dimer. The first set of information strands (0.6 µL 10 µM for each strand) was added into the DOCD solution with the ratio of information strands to Eoct-DOF dimer at 6:1, and the mixture was incubated at 37 °C for 30 min. 5 µL of the mixture was then pipetted out for the preparation of TEM specimens, before the addition of the second set of information strands (0.9 µL 10 µM for each strand) into the mixture with the molar ratio of information strands to Eoct-DOF dimer at 9:1. In order to ensure a reaction efficiency as high as possible in each step during the chain replacement reaction, the amount of information strands was increased to 1.5 times compared to those added in the previous step. The above processes were repeated until the last set of information strands was added. 4) Finally, a string of cipher symbols was organized in a tandem-intime format by TEM characterization of the prepared specimens, and 5) converted to plaintext message according to the code book.

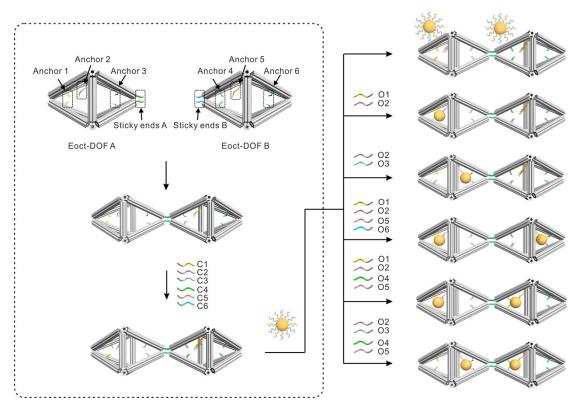

Negative-stained TEM characterization

 $5.0 \ \mu$ L of sample solution was deposited onto a carbon-coated Cu grid (Shunson Electronic Technology Co., LTD (Shenzhen, China)) pretreated with glow discharge (PELCO easiGlow (Ted Pella, Inc.)) and incubated for 5 min. The excessive sample solution was removed by filter paper, after which the sample attached on carbon grid was further washed with water twice. Subsequently, the sample was negatively stained


with 5.0 μ L of 2% uranyl acetate solution for 15 s. The excess stain solution was immediately wicked away by filter paper, followed by characterization on JEM-2800 TEM operated at 200 kV. The statistical analysis of the yields are obtained from ~150 Eoct-DOF dimers for each prescribed pattern.

Fluorescence monitoring of the space shift of AuNPs in the Eoct-DOF dimer


The space shift of AuNPs in the Eoct-DOF dimer was monitored by real-time fluorescence analysis. Fluorescence measurements were performed on a Hitachi Fluorescence Spectrophotometer F-7000 with a 350 µL quartz colorimetric ware. Monochromator was used for the selection of excitation and emission wavelength in the measurement. Briefly, the Anchor 1, 3, 4 and 6 were replaced by fluorescent FAM-, Cy3-, ROX- and Cy5-grafted Anchor 1, 3, 4 and 6, respectively, in the fabrication process of Eoct-DOF dimer (see Table S7 for the detailed sequences of fluorophoremodified anchor strands). The quadruple fluorophore-labeled DOCD solution for fluorescence measurement were prepared by mixing the obtained Eoct-DOF dimer (200 µL 5 nM) with closing strands 1-6 (0.4 µL 10 µM for each strand) and ssDNA modified AuNPs (10 µL 200 nM). After the information strands "O2 O3" (0.6 µL 10 µM for each strand) were added into the DOCD solution, the mixture was immediately placed into quartz colorimetric ware to monitor the fluorescence intensity of the four fluorophores ($\lambda_{ex}(FAM)$: 490 nm, $\lambda_{em}(FAM)$: 520 nm; $\lambda_{ex}(Cy3)$: 540 nm, $\lambda_{em}(Cy3)$: 560 nm; $\lambda_{ex}(ROX)$: 575 nm, $\lambda_{em}(ROX)$: 600 nm; $\lambda_{ex}(Cy5)$: 640 nm, $\lambda_{em}(Cy5)$: 660 nm). To acquire the kinetic data, fluorescence intensity was measured every 5 min. For each time point, it is necessary to manually switch the excitation and emission wavelength of the fluorescence spectrophotometer to record the intensities of four fluorophores in turn (each switching time around 5 s). After 30 min, the second set of information strands "O1 C3" (0.9 µL 10 µM for each strand) were added into the mixture with the molar ratio of information strands to Eoct-DOF dimer at 9:1. The next set of information strands were added after another 30 min until addition of all information strands was completed. The amount of information strands was increased to 1.5 times compare to those added in the previous step. The volume change in each step was shown in Table S2.


Fig. S1. The representative negative-stained TEM images of Eoct-DOFs. Scale bar: 100 nm.

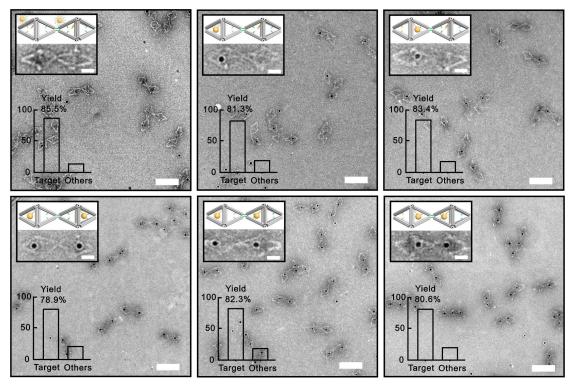

Fig. S2. The schematic position of three sets of anchor strands (Anchor 1, Anchor 2 and Anchor 3) extending from the edges to the interior of frame.

Fig. S3. 1% agarose gel image under UV light for Eoct-DOF A (a), Eoct-DOF B (b), PEG purified Eoct-DOF A (c), PEG purified Eoct-DOF B (d), and Eoct-DOF dimer (e).

Fig. S4. Construction of the Eoct-DOF dimer and the six kinds of spatial distributions of AuNPs in the Eoct-DOF dimer in response to different input strands.

Fig. S5. The representative negative-stained TEM images of six switchable patterns of the DOCD. Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm (inset: 20 nm).

Code book:

— → — = "A"	- → + = "B"	- → O = "C"	-→⊖ = "D"	- → Φ = "E"	-→⊕ ="F"
+ → - = "G"	+ → + = "H"	+ → O = "I"	+ → ⊖ = "J"	+ → Φ = "K"	+→⊕ ="L"
O → - = "M"	O → + = "N"	○→○ = "O"	O→⊖ = "P"	○→① = "Q"	O → ⊕ = "R"
⊖ → - = "S"	⊖ → + = "T"	⊖ → O = "U"	⊖ → ⊖ = "V"	⊖ → ⊕ = "W"	⊖ → ⊕ = "X"
⊕ → − = "Y"	⊕ + = "Z"	⊕ → ⊖ = "0"	⊕→⊖ ="1"	⊕ → ⊕ = "2"	⊕→⊕ ="3"
⊕ → − = "4"	⊕→ + = "5"	⊕→ ○ = "6"	⊕→ ⊖ = "7"	⊕ → ⊕ = "8"	⊕→ ⊕ = "9"

Key book:

—	+	0	θ	Ф	Ð	
U	C1 C2	C2 C3	C1 C2 C5 C6	C1 C2 C4 C5	C2 C3 C4 C5	-
01 02	U	O1 C3	C5 C6	C4 C5	O1 C3 C4 C5	+
02 03	C1 O3	U	C1 O3 C5 C6	C1 O3 C4 C5	C4 C5	0
01 02 05 06	O5 O6	O1 C3 O5 O6	U	C4 O6	O1 C3 C4 O6	θ
01 02 04 05	04 05	O1 C3 O4 O5	O4 C6	U	O1 C3	Φ
02 03 04 05	C1O3 O4 O5	04 05	C1 O3 O4 C6	C1 O3	U	Ð

U 🔶 Poly T

 $O \rightarrow Opening strand$

 $C \rightarrow Closing strand$

Fig. S6. The code book defining the transition of cipher symbols as 36 characters and the key book indicating the information strands required for each transition. For example, accomplishment of the transition " $+ \rightarrow -$ " requires the addition of the information strands "C1 C2".

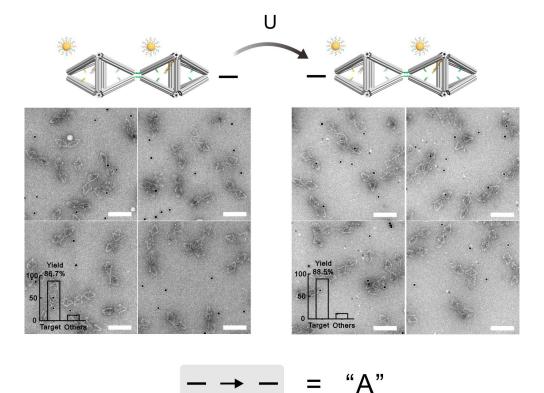


Fig. S7. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $- \rightarrow -$ " activated by information strand "U" for exporting the letter "A". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

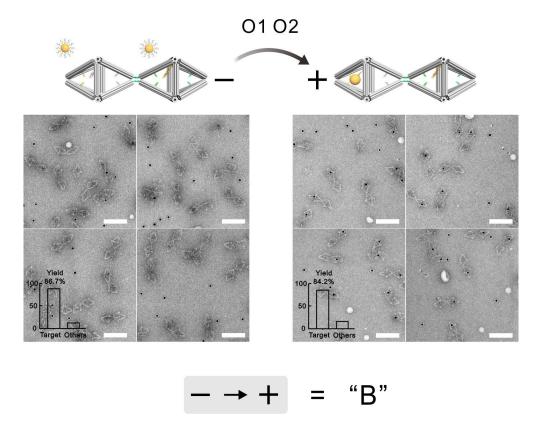
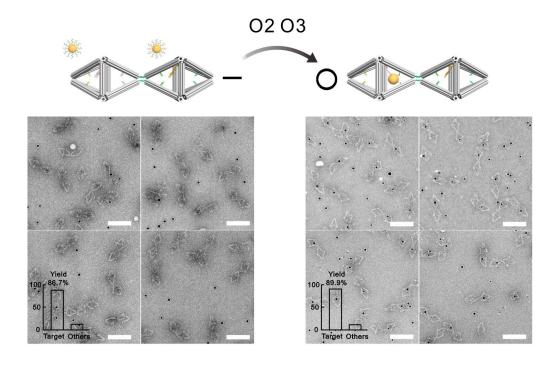



Fig. S8. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $- \rightarrow +$ " activated by information strands "O1 O2" for exporting the letter "B". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

 $- \rightarrow O = "C"$

Fig. S9. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $- \rightarrow$ O" activated by information strands "O2 O3" for exporting the letter "C". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

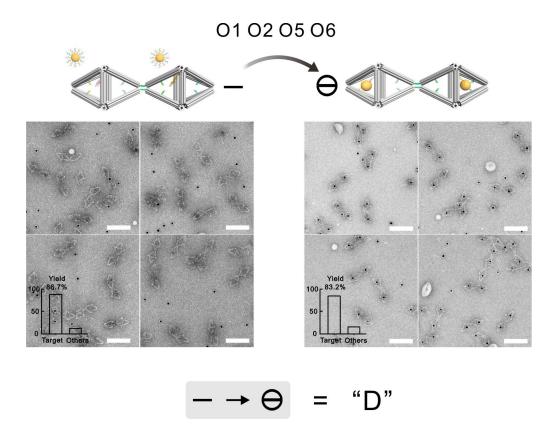


Fig. S10. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $- \rightarrow \ominus$ " activated by information strands "O1 O2 O5 O6" for exporting the letter "D". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

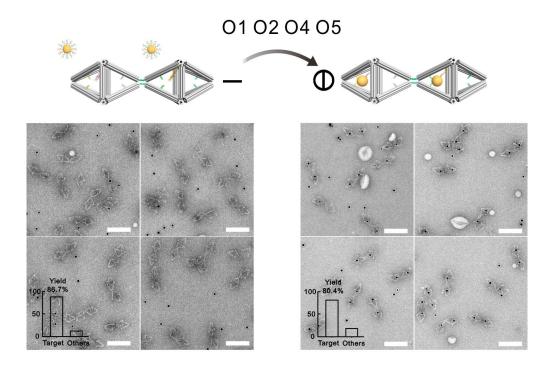
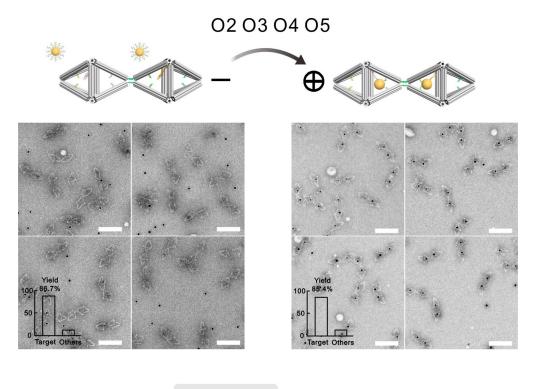
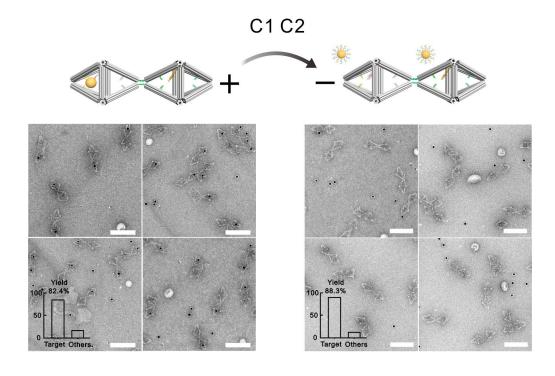


Fig. S11. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $- \rightarrow \bigcirc$ " activated by information strands "O1 O2 O4 O5" for exporting the letter "E". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

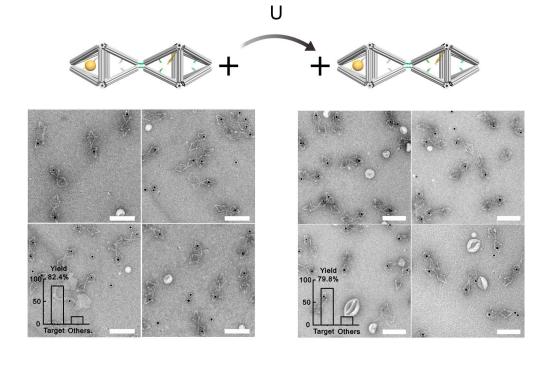


Fig. S12. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $- \rightarrow \oplus$ " activated by information strands "O2 O3 O4 O5" for exporting the letter "F". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

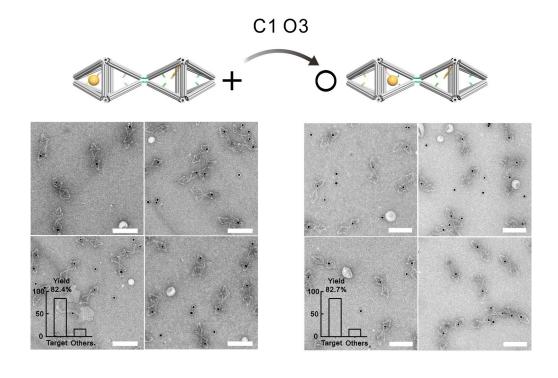

 $+ \rightarrow - = "G"$

Fig. S13. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $+ \rightarrow -$ " activated by information strands "C1 C2" for exporting the letter "G". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

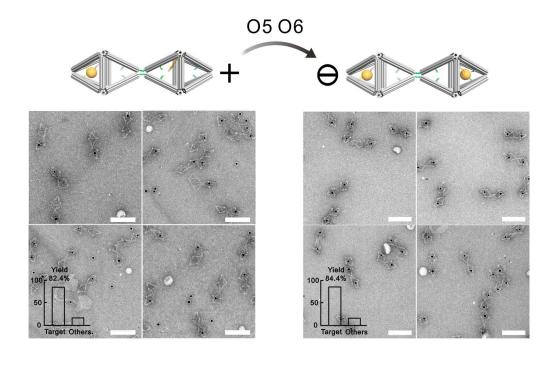

 $+ \rightarrow + = "H"$

Fig. S14. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $+ \rightarrow +$ " activated by information strand "U" for exporting the letter "H". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

 $+ \rightarrow O = "I"$

Fig. S15. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $+ \rightarrow$ O" activated by information strands "C1 O3" for exporting the letter "I". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

 $+ \rightarrow \Theta = "J"$

Fig. S16. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $+ \rightarrow \ominus$ " activated by information strands "O5 O6" for exporting the letter "J". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

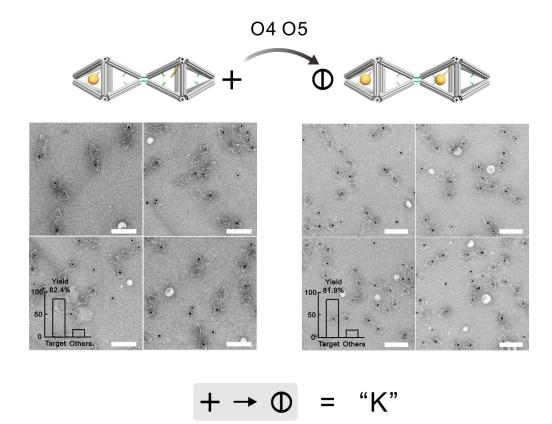


Fig. S17. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $+ \rightarrow \bigcirc$ " activated by information strands "O4 O5" for exporting the letter "K". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

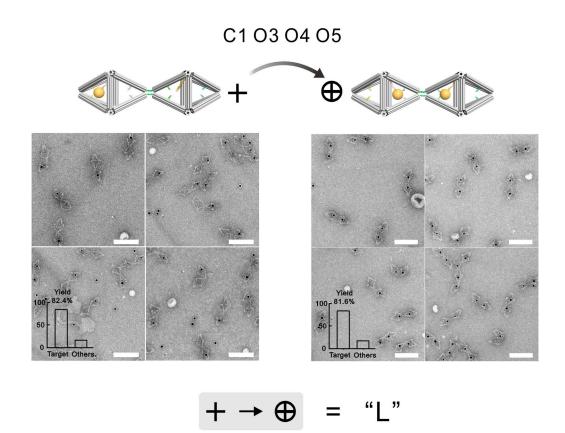
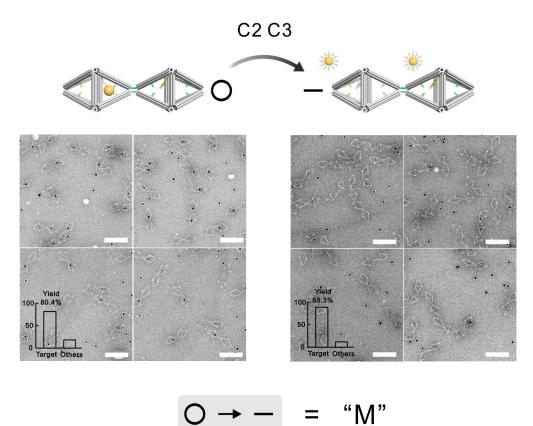
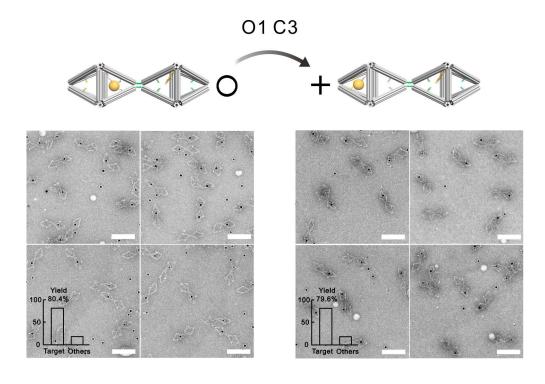
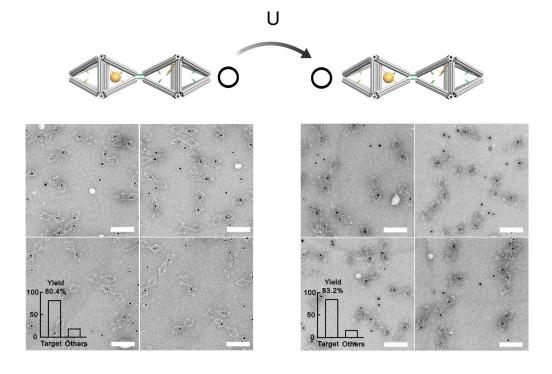




Fig. S18. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $+ \rightarrow \oplus$ " activated by information strands "C1 O3 O4 O5" for exporting the letter "L". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.


Fig. S19. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\bigcirc \rightarrow -$ " activated by information strands "C2

the DOCD undergoing the transition " $\bigcirc \rightarrow -$ " activated by information strands "C2 C3" for exporting the letter "M". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

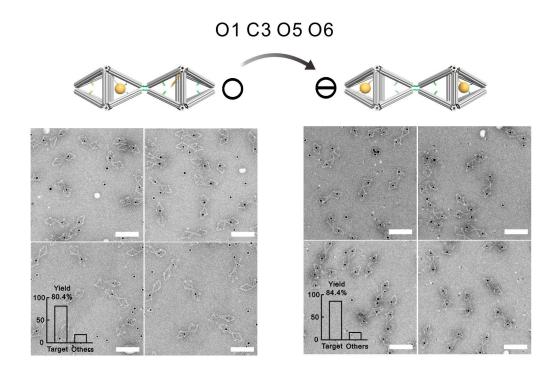

 $O \rightarrow + = "N"$

Fig. S20. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\bigcirc \rightarrow +$ " activated by information strands "O1 C3" for exporting the letter "N". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

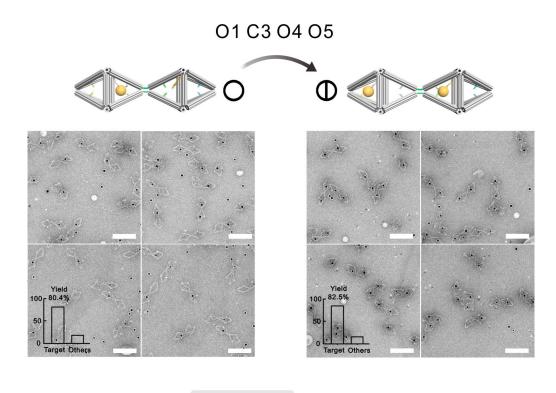

O → O = "O"

Fig. S21. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\bigcirc \rightarrow \bigcirc$ " activated by information strand "U" for exporting the letter "O". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

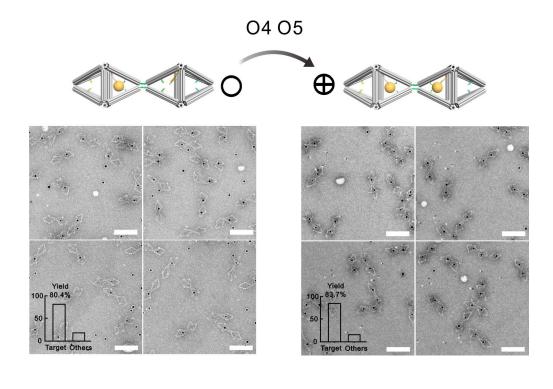

 $O \rightarrow \Theta = "P"$

Fig. S22. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\bigcirc \rightarrow \ominus$ " activated by information strands "O1 C3 O5 O6" for exporting the letter "P". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

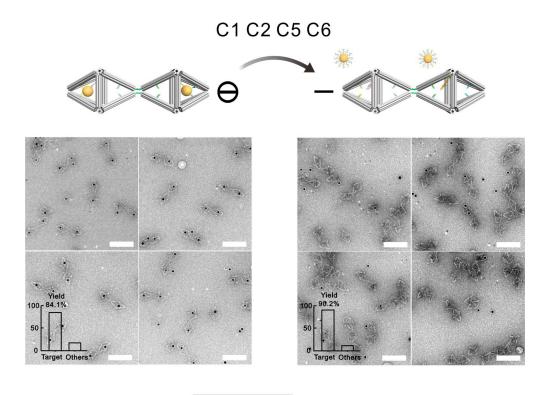

 $\bigcirc \rightarrow \bigcirc = "Q"$

Fig. S23. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\bigcirc \rightarrow \bigcirc$ " activated by information strands "O1 C3 O4 O5" for exporting the letter "Q". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

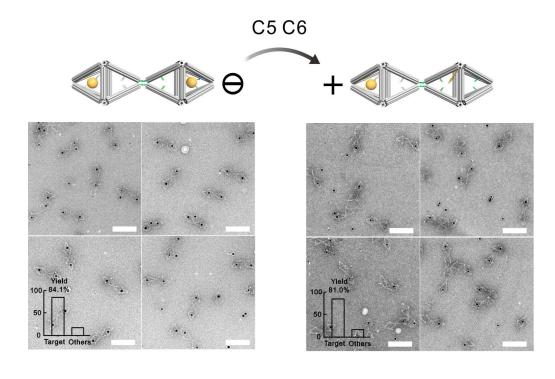

 $O \rightarrow \oplus = "R"$

Fig. S24. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\bigcirc \rightarrow \oplus$ " activated by information strands "O4 O5" for exporting the letter "R". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

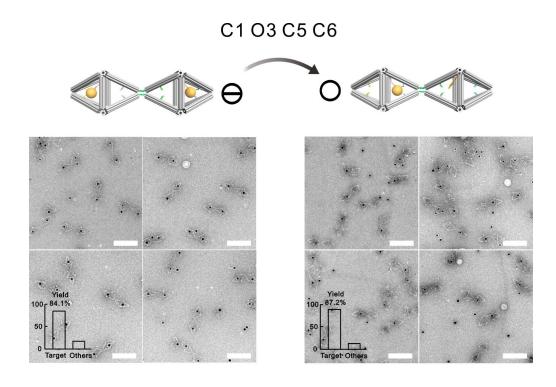

 $\Theta \rightarrow - = "S"$

Fig. S25. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\ominus \rightarrow -$ " activated by information strands "C1 C2 C5 C6" for exporting the letter "S". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

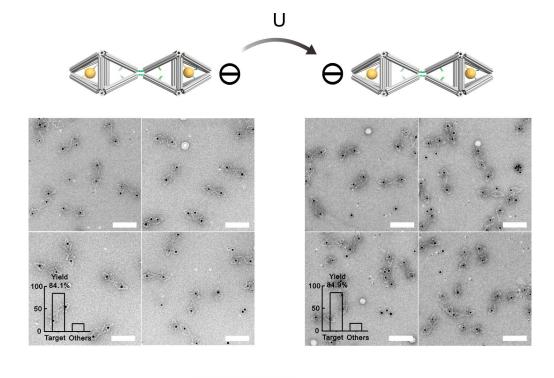

 $\Theta \rightarrow + = "T"$

Fig. S26. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\ominus \rightarrow +$ " activated by information strands "C5 C6" for exporting the letter "T". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

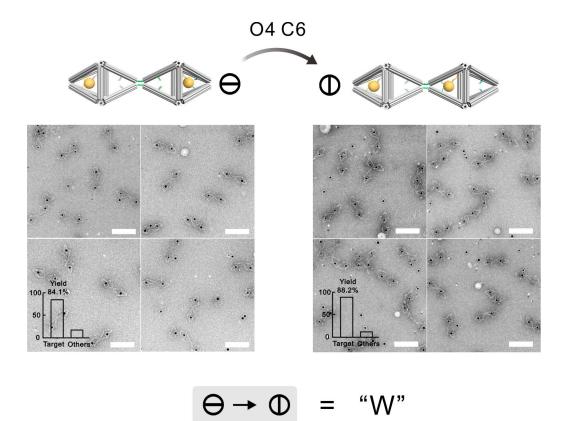

 $\Theta \rightarrow O = "U"$

Fig. S27. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\ominus \rightarrow \bigcirc$ " activated by information strands "C1 O3 C5 C6" for exporting the letter "U". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

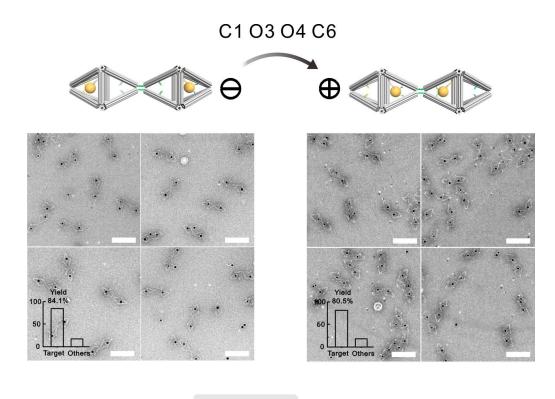

 $\Theta \rightarrow \Theta = "V"$

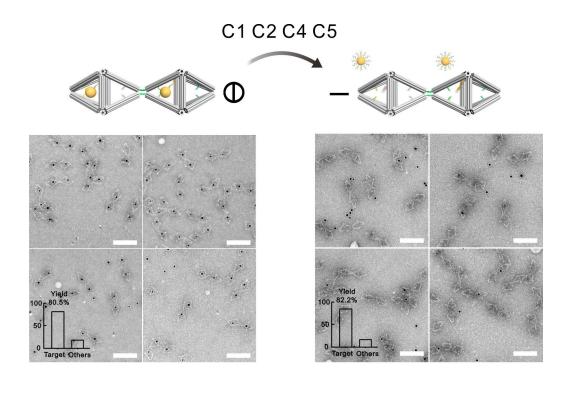
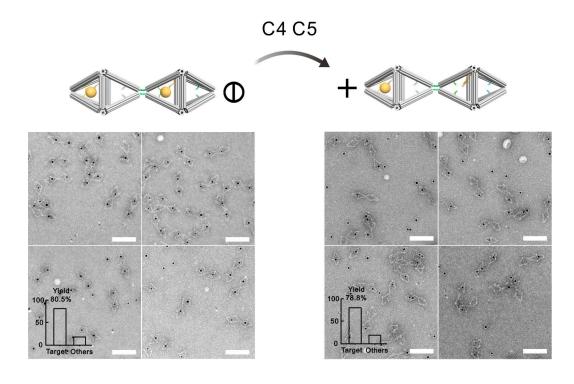
Fig. S28. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\ominus \rightarrow \ominus$ " activated by information strand "U" for exporting the letter "V". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

Fig. S29. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\Theta \rightarrow \Phi$ " activated by information strands " Θ 4

the DOCD undergoing the transition " $\ominus \rightarrow \oplus$ " activated by information strands "O4 C6" for exporting the letter "W". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

 $\Theta \rightarrow \oplus = "X"$

Fig. S30. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\ominus \rightarrow \oplus$ " activated by information strands "C1 O3 O4 C6" for exporting the letter "X". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

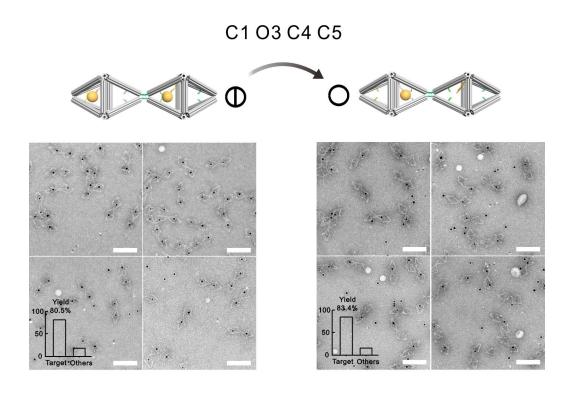


Fig. S31. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\bigoplus \rightarrow -$ " activated by information strands "C1 C2 C4 C5" for exporting the letter "Y". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

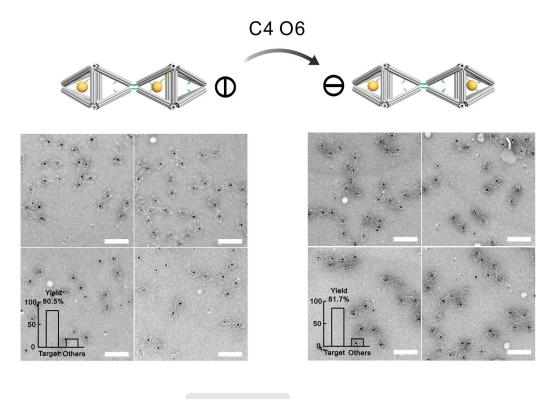

 $\oplus \rightarrow + = "Z"$

Fig. S32. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\bigcirc \rightarrow +$ " activated by information strands "C4 C5" for exporting the letter "Z". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

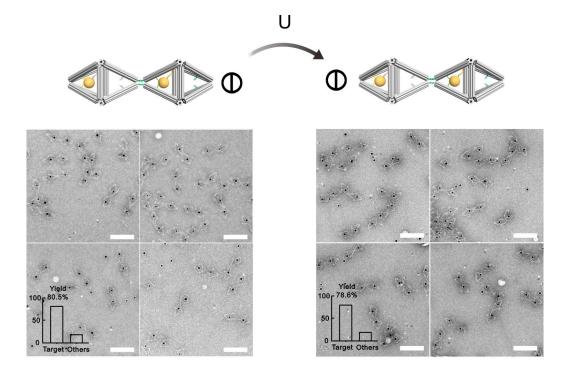

 $\Phi \rightarrow O = "0"$

Fig. S33. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\bigcirc \rightarrow \bigcirc$ " activated by information strands "C1 O3 C4 C5" for exporting the Arabic numeral "0". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

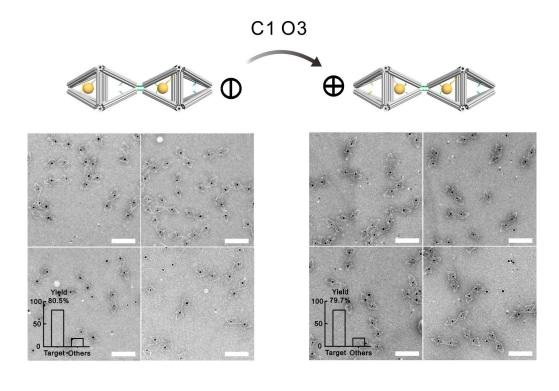

 $\oplus \rightarrow \ominus$ = "1"

Fig. S34. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\bigoplus \rightarrow \bigoplus$ " activated by information strands "C4 O6" for exporting the Arabic numeral "1". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

 $\oplus \rightarrow \oplus = "2"$

Fig. S35. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\bigcirc \rightarrow \bigcirc$ " activated by information strand "U" for exporting the Arabic numeral "2". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

 $\oplus \rightarrow \oplus$ = "3"

Fig. S36. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\bigoplus \rightarrow \bigoplus$ " activated by information strands "C1 O3" for exporting the Arabic numeral "3". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

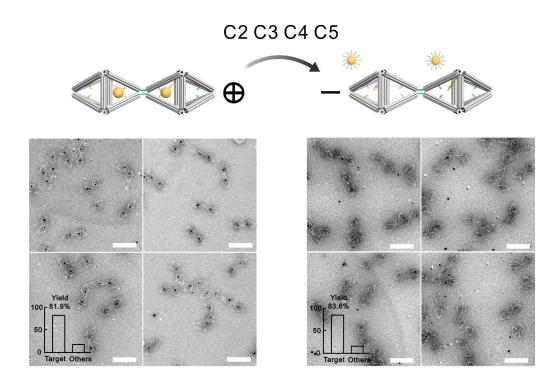
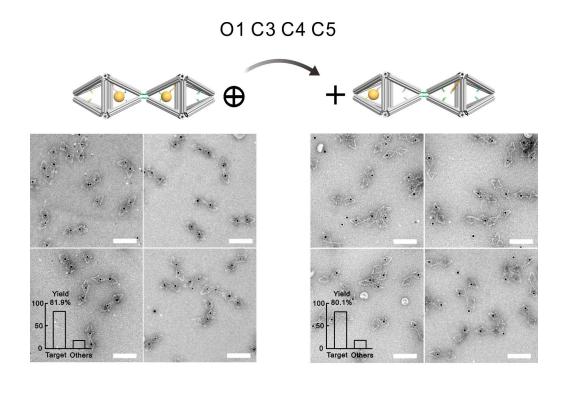



Fig. S37. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\oplus \rightarrow -$ " activated by information strands "C2 C3 C4 C5" for exporting the Arabic numeral "4". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

 $\oplus \rightarrow + = 5$

Fig. S38. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\oplus \rightarrow +$ " activated by information strands "O1 C3 C4 C5" for exporting the Arabic numeral "5". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

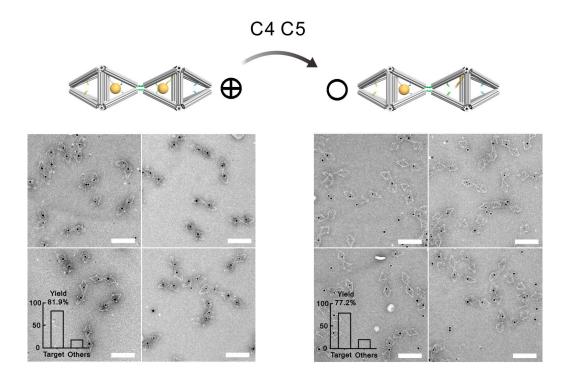


Fig. S39. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\oplus \rightarrow \bigcirc$ " activated by information strands "C4 C5" for exporting the Arabic numeral "6". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

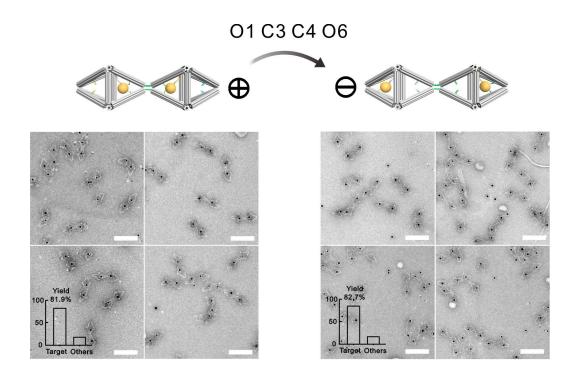


Fig. S40. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\bigoplus \rightarrow \bigoplus$ " activated by information strands "O1 C3 C4 O6" for exporting the Arabic numeral "7". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

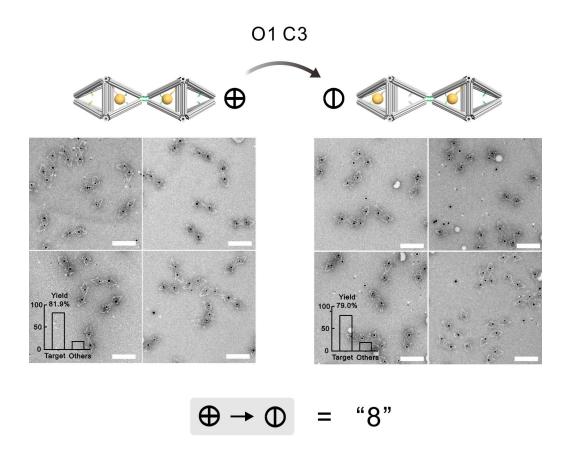


Fig. S41. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\oplus \rightarrow \oplus$ " activated by information strands "O1 C3" for exporting the Arabic numeral "8". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

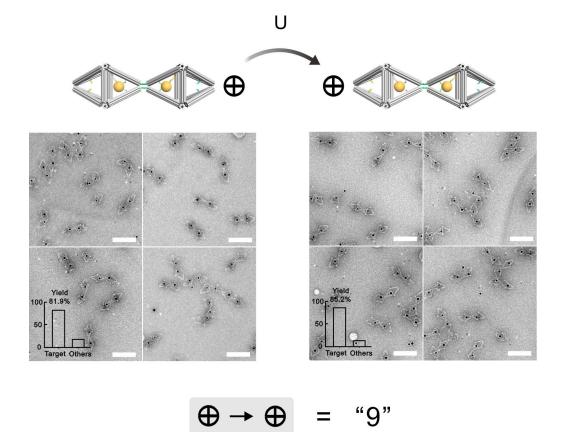


Fig. S42. Schematic and corresponding representative negative-stained TEM images of the DOCD undergoing the transition " $\oplus \rightarrow \oplus$ " activated by information strand "U" for exporting the Arabic numeral "9". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm.

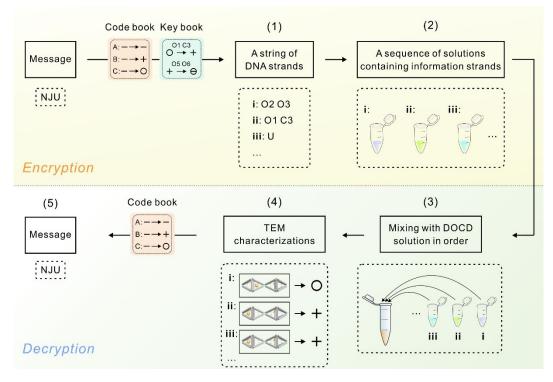
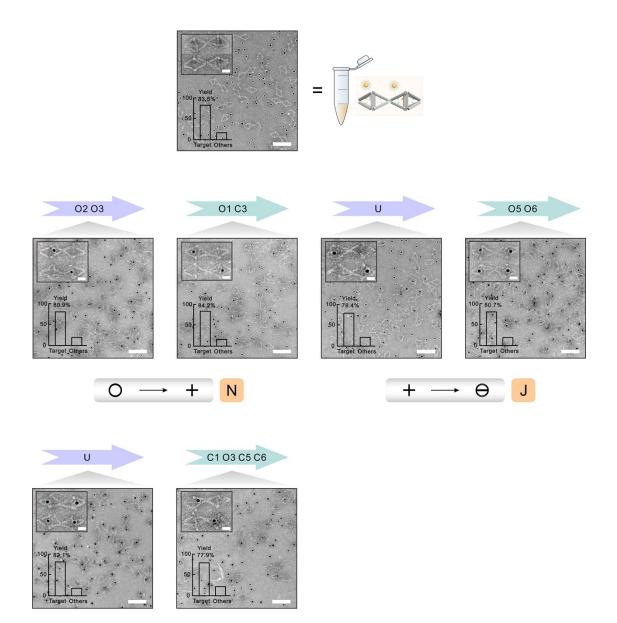
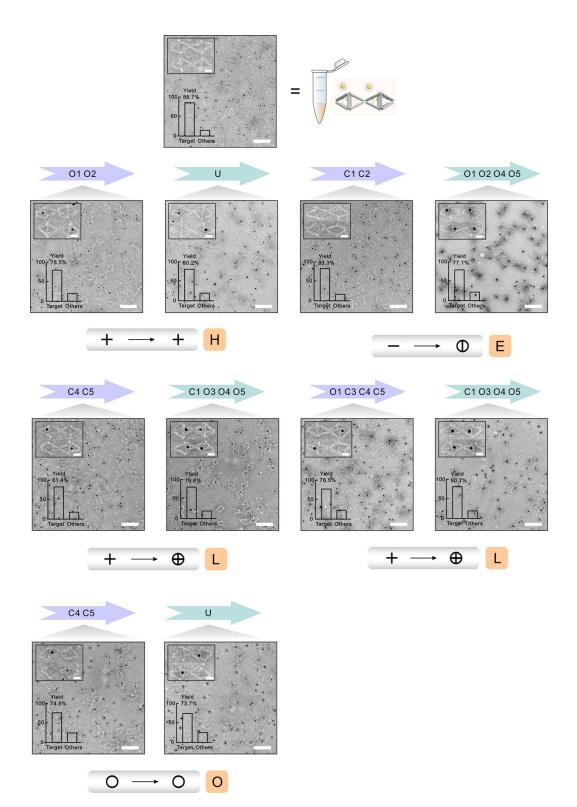




Fig. S43. A simple flow chart to explain the step-by-step cryptographic design pathway.

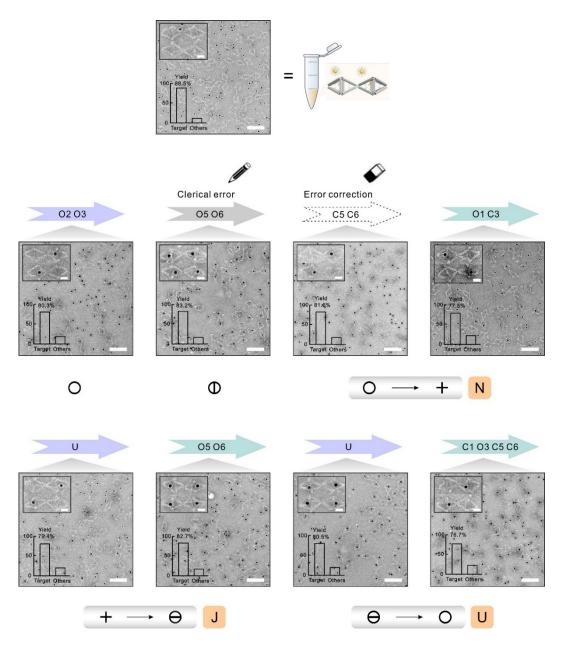


Fig. S44. The representative negative-stained TEM images of pattern transformation in the decryption process of example message "NJU". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm (inset: 20 nm).

Fig. S45. The representative negative-stained TEM images of pattern transformation in the decryption process of example message "HELLO". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm (inset: 20 nm).

Fig. S46. The representative negative-stained TEM images showing error correction in the second step^a during the decryption process of message "NJU". Insets show the population histograms for the prescribed target AuNPs-carrying Eoct-DOFs. "Target" and "Others" respectively represent the Eoct-DOF dimer structure consistent and inconsistent with the prescribed model. Scale bar: 100 nm (inset: 20 nm).

^a In case that the decoder mistook "O5 O6" for the right information strands "O1 C3" in the second step and suddenly realized it, he/she could deduce the wrong strands causing the mistake by observing the resulting TEM images and referring to the key book. The eraser strands were then determined to be "C5 C6", which could be used to

turn the DOCD back to the previous cipher. Thereafter, the remaining five groups of information strands were successively decrypted by the DOCD from the breakpoint and eventually translated to be the message "NJU".

Table S1. The efficiency statistics from one cipher symbol to another. The yields are obtained by counting the correct patterns from \sim 150 Eoct-DOF dimers as statistic sample in the TEM images for each case.

Character	Transition	Initial pattern	Yield	Final pattern	Yield
А			86.7%		88.5%
В	- → +		86.7%		84.2%
С	-+0		86.7%		89.9%
D	-+⊖		86.7%		83.2%
E	-→Φ		86.7%		80.4%
F	-+⊕		86.7%		85.4%
G	+ -		82.4%		88.3%
н	+ + +	\Rightarrow	82.4%		79.8%
I	+ → 0		82.4%		82.7%
J	+→⊖		82.4%		84.4%
к	+ → Φ		82.4%		81.9%
L	+→⊕		82.4%		81.6%
м	0≁-		80.4%		88.3%
N	0→+		80.4%		79.6%
0	0→0		80.4%		83.2%
Р	0+⊖		80.4%		84.4%
Q	0→0		80.4%		82.5%
R	0≁⊕		80.4%		83.7%
S	⊖≁−		84.1%		90.2%
Т	⊖++		84.1%		81.0%
U	⊖≁○		84.1%		87.2%
V	⊖≁⊖		84.1%		84.9%
W	⊖≁⊕		84.1%		88.2%
х	⊖≁⊕		84.1%		80.5%
Y	⊕ → -		80.5%		82.2%
Z	⊕ → +		80.5%		78.8%
0	⊕≁○		80.5%		83.4%
1	⊕≁⊖		80.5%		81.7%
2	⊕≁⊕		80.5%		78.6%
3	⊕≁⊕		80.5%		79.7%
4	⊕ → -		81.9%		83.6%
5	⊕ → +		81.9%		80.1%
6	⊕≁○		81.9%		77.2%
7	⊕≁⊖		81.9%		82.7%
8	⊕≁⊕		81.9%		79.0%
9	⊕≁⊕		81.9%		85.2%

	Initial	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
	sample ^a						
Information		02 03	O1 C3	U	O5 O6	U	C1 O3
strands		(0.6 µL	(0.9 µL	(1.35 µL	(2.0 µL	(3.0 µL	C5 C6
		10 µM	10 µM	10 µM)	10 µM	10 µM)	(0.45 µL
		for each	for each		for each		100 µM
		strand)	strand)		strand)		for each
							strand)
Total	212.4	213.6	215.4	216.75	220.75	223.75	225.55
volume	μL	μL	μL	μL	μL	μL	μL

Table S2. The volume change of the sample in each step during fluorescence measurements.

^a The initial sample contained Eoct-DOF dimer (200 μ L 5 nM), AuNPs (10 μ L 200 nM) and closing strands 1-6 (0.4 μ L 10 μ M for each strand).

Sequence name	Thiolated DNA sequence (5'-3')
HS-DNA 1	GAAGTGATGGATGAT-SH
HS-DNA 2	TAGGTGAGAAGTGAT-SH

Table S4. Sequences of anchor strands (Capture 66/86, Capture 138/125, Capture 97/98

for Eoct-DOF A: Cap	ture 66'/86'. Capture	e 138'/125', Capture	97'/98' for Eoct-DOF B).
	······		, , , , , , , , , , , , , , , , , , ,

	Sequence	Staple sequence (5'-3')
	name	
Anchor 1	Capture 66	ATCCATCACTTCACTACACTATTTCGAGGAAAA
	1	CGTCAAAAATGAAAATAGCTACAGAGCTAAAGA
	Capture 86	ATCCATCACTTCACTACACTATTTCAGTTCAGA
	1	GAAGGATTAGTTTCGTCACTCAACTAATAACGC
Anchor 2	Capture	ATCCATCACTTCATACTCTACGTTGTTGTTGTT
	-	GTTGTTAGCCTAAAGCAAGCAAGAACGCGAG
	138	GCGTGAAGCCGCTACAATTTTATCCTGAA
	Capture	ATCCATCACTTCATACTCTACGTTGTTGTTGTT
	L	GTTGTTTCGTAAATAAAAATAGATTCAAAAGG

	125	GTATATGATGAGATCTACAAAGGCTATC
Anchor-3	Capture 97	ACTTCTCACCTATCATCTTACTTTGCTGAGATA
	oup our of y y	TGGTTGCTTTAGTAGAAGAGGCGAATAATTACC
	Capture 98	ACTTCTCACCTATCATCTTACTTTAGTTTGAAA
	1	GCAAATATTTAAATTGTAAAGCCAGCAAATCTA
Anchor 4	Capture	ATCCATCACTTCTACATCTCATTTCGAGGAAA
	-	ACGTCAAAAATGAAAATAGCTACAGAGCTAAAG
	66'	Α
	Capture	ATCCATCACTTCTACATCTCATTTCAGTTCAGA
	86'	GAAGGATTAGTTTCGTCACTCAACTAATAACGC
Anchor 5	Capture	ATCCATCACTTCCACTTTCTCGTTGTTGTTGTT
	1	GTTGTTAGCCTAAAGCAAGCAAGAACGCGAG
	138'	GCGTGAAGCCGCTACAATTTTATCCTGAA
	Capture	ATCCATCACTTCCACTTTCTCGTTGTTGTTGTT
	1	GTTGTTTCGTAAATAAAAATAGATTCAAAAGG
	125'	GTATATGATGAGATCTACAAAGGCTATC
Anchor 6	Capture	ACTTCTCACCTACACTAATCATTTGCTGAGATA
	97'	TGGTTGCTTTAGTAGAAGAGGCGAATAATTACC
	Capture	ACTTCTCACCTACACTAATCATTTAGTTTGAAA
	98'	GCAAATATTTAAATTGTAAAGCCAGCAAATCTA

Table S5. Sequences of sticky end strands and closing end strands (sequence 1-4 for

Eoct-DOF A; sequence 1'-4' for Eoct-DOF B).

Sequence name	Staple sequence (5'-3')
Sticky end 1	CAATAGATAATATAAATCCTTTGCCCGG
	CGGTCTCAATCAATTAACCTAACCTTCAT
Sticky end 2	TTTAATGCGCGAAAGATAAAACAGAGCC
	AGCCAACCAGTAATTAACCTAACCTTCAT
Sticky end 3	TAACCGTTGTAGTCCAGAACAATATTTCG
	CCTGAACAAAATTTAACCTAACCTTCAT
Sticky end 4	GAAATTGCGTAGGGAGAAACAATAACGT
	TATTAGCAATTCATTAACCTAACCTTCAT
Sticky end 1'	AAAGTACAACGGGTTACTTAGCCGGACT
	CAGCAATACGTAATATGAAGGTTAGGTTA
Sticky end 2'	ATAGTTGCGCCGTTTTGCGGGATCGTGTT
	AGCGAGGAATTGCATGAAGGTTAGGTTA
Sticky end 3'	GTGAATTACCTTAACGGAACAACATTGGC
	GCAGGATATTCATATGAAGGTTAGGTTA
Sticky end 4'	TTTTCAGGGATACCACAGACAGCCCTCAG
	GTAGATCATAACCATGAAGGTTAGGTTA

AAAGTACAACGGGTTACTTAGCCGGACTC
AGCAATACGTAATTTTTTTTTTTTTTTTTTTT
ATAGTTGCGCCGTTTTGCGGGGATCGTGTTA
GCGAGGAATTGCTTTTTTTTTTTTTTTTTT
GTGAATTACCTTAACGGAACAACATTGGC
GCAGGATATTCATTTTTTTTTTTTTTTTTTT
TTTTCAGGGATACCACAGACAGCCCTCAGG
TAGATCATAACCTTTTTTTTTTTTTTTTTT
CAATAGATAATATAAATCCTTTGCCCGGCG
GTCTCAATCAATTTTTTTTTTTTTTTTTTTTT
TTTAATGCGCGAAAGATAAAACAGAGCCA
GCCAACCAGTAATTTTTTTTTTTTTTTTTTTT
TAACCGTTGTAGTCCAGAACAATATTTCGC
CTGAACAAAATTTTTTTTTTTTTTTTTTTTT
GAAATTGCGTAGGGAGAAACAATAACGTT
ATTAGCAATTCATTTTTTTTTTTTTTTTTTTTT

Table S6. Sequences of information strands.

Sequence name	Staple sequence (5'-3')
Closing strand 1	ACACATCTTAGTGTAGTGAAGTGA
Closing strand 2	TTACATCAGTAGAGTATGAAGTGA
Closing strand 3	ACTCACTTGTAAGATGATAGGTGA
Closing strand 4	TCACTTCTACATCTCAGTAGTTGA
Closing strand 5	TTCTACTTGAGAAAGTGGAAGTGA
Closing strand 6	TCTCACTTTGATTAGTGTAGGTGA
Opening strand 1	TCACTTCACTACACTAAGATGTGT
Opening strand 2	TCACTTCATACTCTACTGATGTAA
Opening strand 3	TCACCTATCATCTTACAAGTGAGT
Opening strand 4	TCACTTCTACATCTCAGTAGTTGA
Opening strand 5	TCACTTCCACTTTCTCAAGTAGAA
Opening strand 6	TCACCTACACTAATCAAAGTGAGA
Poly T	ТТТТТТТТТТТТТТТ

 Table S7. Sequences of fluorophore-modified capture strands.

Sequence name	Staple sequence (5'-3')
Capture-66-FAM	FAM-
	ATCCATCACTTCACTACACTATTTCGAGGAAAA

	CGTCAAAAATGAAAATAGCTACAGAGCTAAAGA
Capture-98-Cy3	Су3-
1 5 5 5	ACTTCTCACCTATCATCTTACTTTAGTTTGAAA
	GCAAATATTTAAATTGTAAAGCCAGCAAATCTA
Capture-66'-ROX	ROX-
	ATCCATCACTTCTACATCTCATTTCGAGGAAA
	ACGTCAAAAATGAAAATAGCTACAGAGCTAAAG
	A
Capture-98'-Cy5	Cy5-
	ACTTCTCACCTACACTAATCATTTAGTTTGAAA
	GCAAATATTTAAATTGTAAAGCCAGCAAATCTA

 Table S8. Sequences of staple strands of Eoct-DOF.

Sequence name	Staple sequence (5'-3')
Eoct 1	CTCGTTTACCAGACGACAACACTAAAGATT
Eoct 2	AAAAGGGACATTCTGGTCACACGTTGCAAC
Eoct 3	GCCACTACGAAGGCACGGGTAAAGCGAAAG
Eoct 4	TTGGGGCGCGAGCTGATTAGCTATTCCATA
Eoct 5	TTCAAATATATTTTAGAACGCGACCTCCGG
Eoct 6	CAATATAATCCTGATTGATGATGATTTTAA
Eoct 7	CAGACTGTAGCGCGTTAGTTTGCCCAGTAG
Eoct 8	GTCCACTATTAAAGAACCAGTTTTGGTTCC
Eoct 9	GAATAATAATTTTTTCCAACTAATAACGAT
Eoct 10	GGCCGATTAAAGGGATCGGGAGCCCGCCGC
Eoct 11	GCCTCTTCGCTATTACAGGGCGAGCACCGC
Eoct 12	AAGCCAGAATGGAAAGAAATAAACAGAGCC
Eoct 13	CCAGACGACGACAATAGGTAAAGCTCAACA
Eoct 14	TACCCAAATCAACGTAAGAACCGACGGTCA
Eoct 15	TTGCGCTCACTGCCCGACTCACACATGGTC
Eoct 16	AATTACATTTAACAATTCAAGAAATTGCTT
Eoct 17	GCCATCAAAAATAATTTTTTAACCTAATCAG
Eoct 18	AGTCAAATCACCATCAGAGAAAGTTTCAAC
Eoct 10	AACAAAGTCAGAGGGTTTAACTGTTATCCC

	F
Eoct 20	TTATTTTGTCACAATCACACCACACGCAGT
Eoct 21	ATCTGGTCAGTTGGCACAAACCCAGTATTA
Eoct 22	TAAGTATAGCCCGGAAGTCGAGAAAACATG
Eoct 23	AGCGAACCAGACCGGATTAATTCGTCAGAA
Eoct 24	GACTTGCGGGAGGTTTTTTTAGCTTACCGC
Eoct 25	ACAGCATGCTCCATAGATTTGTATCATCCC
East 26	CAGCGAAACGAA GAAATCGGCCCCCTACGGGGTCAGTGCCCT
Eoct 26	TTTGATCCAACG
Eoct 27	AACGGGTCCTGAACAAGAAAAATAATATCT
	TATCATTCCAAG
Eoct 28	AAAAGCCCTCAGGACGTTGGTGTAGATGGG
	GAACAGGCCTTC ATTAAATCACCTTTCATCAACATTAAAATTTC
Eoct 29	ATTAAATCAGCTTTCATCAACATTAAATTTG
Eoct 30	TACATTTAATAGTACATCCAATAAATCAAA
	GCTAACCAAAAA
Eoct 31	GCCCAATTTTGCCATAACGAGCGTCTTTGCA
	CCCATTAAATC ATAGCGAAATTACGTAGGAATACCACATCA
Eoct 32	GTACAGTACCGT
	GTTGGGATGAAAGAGGACAGATGAACGGAG
Eoct 33	TAGATCATTAGA
E + 24	CTTTTTCAAAGAATACTCATCTTTGACCGCCT
Eoct 34	GATGAAATCC
E + 25	AAGCCTGCGTGCCAGCTGCATTAATGAAAAG
Eoct 35	CATAAGTGTA
Eoct 36	TCAGTGATCATCAAGAACTGACCAACTTAGAA
	AAATCTACGT
Eoct 37	TAACAGTACCCTGTAGCCTCAGAGCATATACA
EOCT 57	GGCGCATCAA
Eoct 38	CTAATGCGAATATAAGAATCGCCATATTTACC
Loci 38	GCACTCATCG
Eoct 39	ATAGCTGTTGCCCCCGGGCAACAGCTGAATTG
Loci 57	GGCGTCGGGA
Eoct 40	GCCGCCATGTAGCGGGAAGGGAAGAAAGAGA
	GCTTTCTGAAT
Eoct 41	GGAATTAAATGGAACTACCATATCAAAACGTC
	AGAGTAACAG
Eoct 42	TCTGAATTCATCATTTATCATTTTGCGGTAATA
···· · =	CATGAATGG

Eoct 43	AGAGGCAATGAGGAAGGGTAGCAACGGCAGG TGTCAAATTCC
Eoct 44	CGTTCTATAGGTAATTTTAGAACCCTCAAGGA TGAACGGTAA
Eoct 45	TTCTACTCGCAAATCAATTCTGCGAACGTGTT GTAATCGGTA
Eoct 46	AGGAAAACCAGCAGACTGATAGCCCTAAACA ATATAGATAGA
Eoct 47	GAGCCGGTCGTAAGAAAGCGGCCAACGCTGA TCGTGCTCAAG
Eoct 48	AAACAGGAGATAACCCACAAGAATTGAGAGA GAATAACATAA
Eoct 49	GTGCATCACAACCCGTCGGATTCTCCGTGGCG CATCGTAACC
Eoct 50	CTAAAGTAGGCCGCACAATGACAACAACTGA ATTTAAATCTC
Eoct 51	AATCCAACAAAAGAAAGTAAGCAGATAGAA TAGCACGCTAAT
Eoct 52	TAACGTGAGAATCCGTGAGTGAATAACCACA TAGCGATAGCT
Eoct 53	GGATTATTGACCTGAATACGTGGCACAGAAC ATCGTACCGAA
Eoct 54	GTACGCCCTTTCCTTACAGGGCGCGTACAGAG TCAATAGTGA
Eoct 55	ATCATTTCGAAAGGAGCGGGAATAGCCCGCG AAAAAGCGTCA
Eoct 56	TTAATTGATATAATGCTGTGGAAGCCCGATTA GAGAAGGCGA
Eoct 57	ATCATAAACGAACTATGCGATTTTAAGAATGG TTTTGCTCAT
Eoct 58	AAGCATCGAGGAAGATATCTTTAGGAGCGAAG TATAAACAAT
Eoct 59	AAAGTATTCAAAAAGTCATAAATATTCAAAAT GTTATCACCG
Eoct 60	GCAAGGAACTAGCAGAGAGTCTGGAGCATTTT TGAATTCAAC
Eoct 61	ATCAGAGGAAGCGCACGATTTTTTGTTTACGCA ATAATAACG
Eoct 62	CACCATTACCACCCGCCTCCCTCAGAGCTAATC AAGCATTTT
Eoct 63	TTTGCTAAAAGCGTTTATTTGTATCGGATACC ATATGAAAT
Eoct 64	TAATGTGGCTGATAAATTATGCTATTTCCGCA ATGCCTGAG

Eoct 65	TAGATTAAATATATTGAGAAGTGTTTTTTGGA CGAGCACGTA
Eoct 66	CGAGGAAAACGTCAAAAATGAAAATAGCTAC
	AGAGCTAAAGA
Eoct 67	ATGTTAGTTATACACCGGAATCATAATTGACC
	GTGAATTCAT
Eoct 68	CAAAAGGGAGGCTTGCCACCCTCAGAACAAC
LUCI UO	CCATAACTACA
Eoct 69	AAGATTAGTATTCTAAATCAGATATAGATATA
	TTTTAAATAG
Eoct 70	AACCGATTTTATCAGCTTGCTTTCGAGGCATCG
	CCCACGCAT
Eoct 71	CAAAAACGGAGTGTCTTTCCAGACGTTCTGA
	GGCTTGCAGG
Eoct 72	TCGGTCGAGTAAATGAATTTTCTGTATGGTCA
2000 / 2	CCACGATAGC
Eoct 73	CAGACCAAAATTAAGTAGCCACCAGAACGGT
2000 / 0	TGACTTAGTAC
Eoct 74	CAGAGGCAAAGAACGGGTTTAGATAAGTATA
	CCAGAAACCTA
Eoct 75	GTTTCAGAAGGCTCCAAAAGGAGCCTTTAACA
	ACTTTCAACA
Eoct 76	AACCTGTGGGTGCCTGTGAAATTGTTATCAGC
	AAGCGGTCCA
Eoct 77	CAGAAGGAATAAGAGCAAGAAACAATGACCG
	AACAAAGTTAC
Eoct 78	TTTACAGTTAAAACACACTAAGCCCAATAAGA
	GGAGCTTTAC
Eoct 79	GTAGGGCGCAAGCCATCGGCTGTCTTTCCCCA
	TCCTGTTCAG
Eoct 80	AAGTTTGTACATCGATTTTCAGGTTTAATTATT
	TGTTATACT
Eoct 81	ACTTGCCATAATCAACAGTACATAAATCAGAT
	TTCTATTCAC
Eoct 82	TAATATTGTCTAAAGTTATGAGCGAGTATGAT
	GAAAGCAACC
Eoct 83	ATGGTTTACATATAAGAAAATACATACAAACT
	GTTTAGTATC
Eoct 84	CGGTCATTAATCAGGCAAGGCCGGAAACGGA
	ACCGCTCAGAT
Eoct 85	ACCCTTCTTACATTTGGAAATACCTACAATAAA
	AACCATTAC
Eoct 86	CAGTTCAGAGAAGGATTAGTTTCGTCACTCA
	ACTAATAACGC

Eoct 87	GGTCAGGAAAGACTATCAAAAAGATTAACAC CTGCAGGTCGA
Eoct 88	TGAGCAAAATGGAAGTGAGGCCACCGAGTTA
	GTAACTATCGG
Eoct 89	AGAGTTGCCGCTCACAATTCCACAAACTTTT
	GACCTGAAAT
Eoct 90	AGCACCGAGCCCCCTTGCCATCTTTTCACGCC
	ACCCCACCCT
Eoct 91	CTTTTTTAAGAAGACAAAATCGCGCAGAACTC
	AAATAACATC
Eoct 92	AGGAATTACCTTGCAGTGCCACGCTGAGACTT
2000/2	TACTAGACGT
Eoct 93	CCAGTCAGAGTAGTAAATTGGGCTTGAGACTG
	GCTCATTATA
Eoct 94	GCAAAGCGGATCCCACGACGGCCAGTGCGGGT
2000 / 1	AACTCCAACA
Eoct 95	AACACTGCAGAACCTTGCAAAAGAAGTTTAGA
	TACATGCAAA
Eoct 96	CCACCCTAGGATTAGCGGGGTTTTGCTCGAGGT
	TTAGGGGGT
Eoct 97	GCTGAGATATGGTTGCTTTAGTAGAAGAGGCG
	AATAATTACC
Eoct 98	AGTTTGAAAGCAAATATTTAAATTGTAAAGCC
	AGCAAATCTA
Eoct 99	GCTTAATAAAATCATAGAATCCTTGAAATTGC
	TTCAGGAACG
Eoct 100	TCAAAGGGAGATAGCCCTTATAAATCAAAGG
	CCCGTATAAAC
Eoct 101	TTCTGGTATGCAACAGCTTAATTGCTGACTCC
	TTTGGCGAAA
Eoct 102	AATAAGAAGAACGCGCCTGTTTATCAACATTT
	TCGAGCCAGT
Eoct 103	CTTAGGTGAGCCATGACGGAAATTATTCGCGA
	CATCATCTTC
Eoct 104	AAATACCACTAGAAAAAGCTGCTGATGCAATT
	TAACCAAAGA
Eoct 105	TGAATACGGTAATACAATACTTCTTTGATAAAA
	GAGAATTAC
Eoct 106	TGACCTAAAATCCATATAACTATATGTATATTA
	TCACCGTCA
Eoct 107	CTGTAGCTTTTGTTCAGGAAGATTGTATGGGGA
	CGACGACAG
Eoct 108	GGGGGATCAGGCTGACCAGGCAAAGCGCGAAG
	CTCAACATGT

Eoct 109	ACACCGCCTCGTATCATTTGAGGATTTAACTAA
	CAAGTTGAA
Eoct 110	CTGGCCCGCGGGGAGAGGCGGTTTGCGTTTGCC
	CTTCACCGC
Eoct 111	TACTCAGAGTACCACTGAGACTCCTCAAGAAAA
	CGAGAATGA
Eoct 112	AATAGTATTGAATCCCCCTCAAATGCTTTTGCCA
	GAGTACCG
Eoct 113	CAAAAGGATTAAAGGTGAAAAGGTGGCAACCA
	GCGTGGTTTG
Eoct 114	TTACCGTTTGGCCTCAGGAGGTTGAGGCAAGC
	GCTAGGGCGC
Eoct 115	TACATGGTTGAGTAACAGTGTCAGACGATCCA
	GTAACCGTCT
Eoct 116	TTAAGTTCAAGCTTGCATGTTCGCCATTGTGCT
	GCAGTACCT
Eoct 117	TTATCCGGTATGCCGGAGAGGGTAGCTAAACA
	AGAGAATCGC
Eoct 118	CTGACCTATAAGGCTTGCCCTGACGAGAGGCG
	CATAGGCTGG
Eoct 119	AACCAAGTAACAACGCCAACATGTAATTAACA
	AAGAAGGAGC
Eoct 120	CATCAGTTAGCATTGCAAGCCCAATAGGCGCC
	ACCAACCAAA
Eoct 121	AGTTAATGCAAAATGGTTGAGTGTTGTTCGTG
	GACTGATACAGGAGTGTACTGG
Eoct 122	GAATACCATAAGAAATTAGACGGGAGAAAAT
	TGAGATAGCTATCTTACCGAAGC
Eoct 123	GCGACCTCGGAACGAGTTTCCATTAAACCAAC
	CTAATTATACCAAGCGCGAAAC
Eoct 124	TATCGGCCCAAAAAAAATCAGCTCATTTCGCG
	TCTAACGGCGGATTGACCGTAA
Eoct 125	TCGTAAATAAAAATAGATTCAAAAGGGTATAT
	GATGAGATCTACAAAGGCTATC
Eoct 126	CATTATGTGATTCCGGTCAATAACCTGTAAAG
	GTGAAGGCAAAGAATTAGCAAA
Eoct 127	AGAACAATTAATTGAAGTACCGACAAAAAAC
	AACATAATTTACGAGCATGTAGA
Eoct 128	ATATGCGCAAACGTAAAGAAACGCAAAGAA
	TAGAATGATAAATAAGGCGTTAAA
Eoct 129	CCGACTTTGGGTTAATCGCAAGACAAAGTTA
	ATTTTCAACCGATTGAGGGAGGG
Eoct 130	ACGCCTGTGAGATTAGGCATAGTAAGAGCGA
	TAAACTCAGAGCCACCACCCTCA

Eoct 131	CGCTGGTTTTCCTGTAATGAGTGAGCTACTTT
	CCAGCCAGGGTGGTTTTTCTTT
Eoct 132	CGAACCAACGCTCAGGCAGATTCACCAGCCA
	ACAGTTTTGAATGGCTATTAGTC
Eoct 133	TAATAAAGGGAACCGAGTAATCTTGACAACA
	AAGCAATTTCAACTTTAATCATT
Eoct 134	CCTTGCTCAAGTTATGATGAAACAAACATTCA
	TTTGTCTGTCCATCACGCAAAT
Eoct 135	GAGTTAATTTGTCGAGAATAGAAAGGAAACG
2000100	TTGACTTAAACAGCTTGATACCG
Eoct 136	TGGCAAGGCATTGATGATATTCACAAACCGCA
2000 130	GTCGACGGGGAAAGCCGGCGAA
Eoct 137	TCGACAACTGCAACTGAACCTCAAATATAATC
	AACACTAATAGATTAGAGCCGT
Eoct 138	AGCCTAAAGCAAGCAAGAACGCGAGGCGTGA
	AGCCGCTACAATTTTATCCTGAA
Eoct 139	CAGAGCCACCATTATAGCGACAGAATCATTCA
	TCGAATCACCGGAACCAGAGCC
Eoct 140	TACCTTTAGTAACAATTCCTGATTATCAGTTTG
	GACACGTAAAACAGAAATAAA
Eoct 141	CTCTAGAGGATTGCTCAAATATCGCGTTAGCAA
	ACGCCAGGGTTTTCCCAGTCA
Eoct 142	TTTAAATGCCGGAACGCAACTGTTGGGAGCCA
	GCTTGATAAGAGGTCATTTTTG
Eoct 143	ATTTATCGCGCCGCCGTTAGAATCAGAGTTTAG
	ACTGTAAATCGTCGCTATTAA
Eoct 144	CCATAAATAAGAGGGGGGGGATAAGTGCCTAGG
	TGTTAGACTGGATAGCGTCCAA

References

- 1. S. M. Douglas, A. H. Marblestone, S. Teerapittayanon, A. Vazquez, G. M. Church and W. M. Shih, *Nucleic Acids Res.*, 2009, **37**, 5001–5006.
- Y. Tian, Y. Zhang, T. Wang, H. L. Xin, H. Li and O. Gang, *Nat. Mater.*, 2016, 15, 654–661.
- Y. Wang, L. Dai, Z. Ding, M. Ji, J. Liu, H. Xing, X. Liu, Y. Ke, C. Fan, P. Wang and Y. Tian, *Nat. Commun.*, 2021, **12**, 3011.