Rapid Access to 9-Arylfluorene and Spirobifluorene through Pd-catalysed C-H Arylation/Deaminative Annulation

Yu Wu,^a Feng-Wei Wu,^a Kun Zhou,^a Yiming Li,*^b Lei Chen,^a Shuang Wang,^a Zhen-Yuan Xu,^a Shao-Jie Lou,*^a and Dan-Qian Xu*^a

^aCatalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China. E-mail: chrc@zjut.edu.cn (D.-Q. Xu). loushaojie@zjut.edu.cn (S.-J. Lou)

^bCollege of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China. E-mail: liyiming@zjxu.edu.cn (Y. Li)

General	2
Preparation of starting materials	2
Optimization of the conditions	2
Characterization of all products	5
Preliminary mechanistic studies 1	8
Further transformation	20
X-Ray data for 3ma and 3qa 2	22
l.References	25
NMR Spectra 2	26
	General Preparation of starting materials Optimization of the conditions Characterization of all products Preliminary mechanistic studies Pruther transformation 2 X-Ray data for 3ma and 3qa 2 NMR Spectra 2 NMR Spectra

I. General

Unless otherwise stated, all experiments were carried out under air atmosphere. The reagents and solvents were purchased from commercial suppliers and used without further purification unless noted. ¹H NMR and ¹³C NMR spectra were obtained on Bruker AVANCE III 600/500 instrument in CDCl₃ using TMS as an internal standard, operating at 600/500 MHz and 126/101 MHz, respectively. Chemical shifts (δ) are expressed in ppm and coupling constants *J* are given in Hz. For CDCl₃, the chemical shifts are reported as parts per million (ppm) to residual protium or carbon of the solvents; CHCl₃ δ H (7.28 ppm) and CDCl₃ δ C (77.03 ppm). ¹⁹F NMR were recorded on a Bruker AVANCE III or Ascend400. Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = multiplet, br = broad resonance. GC experiments were carried out using Agilent 7890B GC. GC-MS experiments that used dodecane as an internal standard were performed with a Thermo DSQ II, Trace GC Ultra. High resolution mass spectra [HRMS (ESI-TOF)] were obtained on an Agilent 6545 Q-TOF LCMS spectrometer equipped with an ESI source.

II. Preparation of starting materials

In an oven-dried round flask under Ar atmosphere, a mixture of the aryl nitrile (1 mmol) and the Grignard reagent (1.2 mmol) was stirred in dry THF (10 mL) at 70 $^{\circ}$ C for 2-8 h. The reaction mixture was cooled to room temperature and quenched by dry MeOH (10 mL) at 0 $^{\circ}$ C. After being stirred vigorously for 10 min, the sodium borohydride was added slowly and the mixture was heated at 60 $^{\circ}$ C until the imine was disappeared (determined by TLC). The volatile materials were evaporated under vacuum and the residue was purified by flash column chromatography.^{1,2}

III. Optimization of the conditions

Table S1. Screening of catalysts^{*a*}

3	PdCl ₂	55	_
4	$Pd(dba)_2$	62	
5	Pd(dppf)Cl ₂	35	
6	Pd(PCy ₃)Cl ₂	46	
7	$Pd(PPh_3)_2Cl_2$	69	
8	$Pd(OAc)_2$	61	
9		0	

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (1.5 equiv.), [Pd] (10 mol%), AgTFA (1.5 equiv.), HFIP (1.0 mL), 120 °C for 12 h. Yields were determined by GC-MS analysis using dodecane as an internal standard.

I 1a	+ 1 NH ₂ + 2a	PdCl ₂ (MeCN additive (1 HFIP, 120) ₂ (10 mol%) .5 equiv.) ⁰ °C, 12 h 3	aa
	Entry	Additives	Yield of 3aa (%)	_
	1	AgTFA	75	-
	2	$AgPO_4$	16	
	3	AgNO ₂	n.r	
	4	AgNO ₃	n.r	
	5	Ag_2SO_4	18	
	6		n.r	

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (1.5 equiv.), $PdCl_2(MeCN)_2$ (10 mol%), additive (1.5 equiv.), HFIP (1.0 mL), 120 °C for 12 h. Yields were determined by GC-MS analysis using dodecane as an internal standard.

Table S3. Screening of solvents^{*a*}

I Ia	+ NH ₂ 2a	PdCl ₂ (MeCN AgTFA (1 solven	I) ₂ (10 mol%) .5 equiv.) t, 12 h	Jaa
	Entry	Solvents	Yield of 3aa (%)	_
	1	DMF	n.r	-
	2	DME	n.r	
	3	EA	n.r	
	4	MeOH	n.r	
	5	Ethanol	n.r	
	6	1,4-Dioxane	n.r	

7	TFE	31
8	HFIP	75

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (1.5 equiv.), $PdCl_2$ (MeCN)₂ (10 mol%), AgTFA (1.5 equiv.), Solvents (1.0 mL), 120 °C for 12 h. Yields were determined by GC-MS analysis using dodecane as an internal standard.

Table S4. Screening of reaction temperatures^a

-	+	PdCl ₂ (Me AgTFA HF	CN) ₂ (10 mol%) (1.5 equiv.) IP, 12 h	
1a	2a		3	aa
	Entry	[T. ºC]	Yield of 3aa (%)	
	1	80	5	
	2	100	7	
	3	120	75	
	4	140	64	

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (1.5 equiv.), PdCl₂(MeCN)₂ (10 mol%), AgTFA (1.5 equiv.), HFIP (1.0 mL), stirred at indicated temperatures for 12 h. Yields were determined by GC-MS analysis using dodecane as an internal standard.

Table S5. Screening the ratio of 1a and $2a^a$

Entry PdCl₂ (MeCN)₂ (mmol) AgTFA (mmol) 1a (mmol) 2a (mmol) Yield of Yield of 3aa based 3aa based

					on 1a	on 2a
1	0.02	4	6	2	-	63
2	0.02	4	4	2	-	72
3	0.02	4	2	2	-	71
4	0.02	4	2	3	58	-
5	0.02	2	2	3	60	-
6	0.02	3	2	3	75	-
7	0.02	5	2	3	58	-
8	0.02	6	2	3	56	-
9	0.01	3	2	3	50	-

^{*a*}Reaction conditions: **1a**, **2a**, PdCl₂(MeCN)₂, AgTFA were used as indicated, HFIP (1.0 mL), 120 °C for 12 h. Yields were determined by GC-MS analysis using dodecane as an internal standard.

IV. Characterisation of all products

9-phenylfluorene (3aa): Colorless solid; isolated yield 74% (35.8 mg); $R_f = 0.71$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, J = 7.6 Hz, 2H), 7.43 (t, J = 7.4 Hz, 1H), 7.37 (d, J = 6.2 Hz, 2H), 7.28 – 7.34 (m, 6H), 7.15 (d, J = 6.8 Hz, 2H), 5.10 (s, 1H) ppm.¹³C NMR (151 MHz, CDCl₃) δ 148.0, 141.7, 141.1, 128.7, 128.4, 127.3, 126.9, 125.4, 119.9, 54.5 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₄⁺ 242.1096; found: 242.1099.

2-methyl-9-phenyl-9h-fluorene (3ba): Colorless solid; isolated yield 64% (32.8 mg); $R_f = 0.71$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 1H), 7.73 (d, J = 7.7 Hz, 1H), 7.41 (t, J = 7.4 Hz, 1H), 7.34 (d, J = 3.5 Hz, 3H), 7.33 – 7.26 (m, 2H), 7.24 (d, J = 7.6 Hz, 1H), 7.17 (s, 1H), 7.14 (d, J = 6.8 Hz, 2H), 5.05 (s, 1H), 2.40 (s, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 148.2, 147.8, 141.9, 141.2, 138.4, 137.3, 128.7, 128.4, 128.2, 127.3, 126.8, 126.8, 126.0, 125.3, 119.6, 119.6, 54.4, 21.7 ppm. HRMS (EI): [M]⁺ Calcd for C₂₀H₁₆⁺ 256.1252; found: 256.1250.

2-(1, 1-dimethylethyl)-9-phenyl-9h-fluorene (3ca): Colorless solid; isolated yield 82% (48.9 mg); R_f = 0.80 (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, *J* = 7.6 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 8.1 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.33 (t, *J* = 8.5 Hz, 3H), 7.30 – 7.24 (m, 2H), 7.16 (d, *J* = 6.8 Hz, 2H), 5.08 (s, 1H), 1.36 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 150.74, 148.1, 147.7, 141.9, 141.0, 138.6, 128.7, 128.4, 127.2, 126.8, 126.8, 125.2, 124.6, 122.2, 119.6, 119.4, 54.6, 35.0, 31.6 ppm. HRMS (EI): [M]⁺ Calcd for C₂₃H₂₂⁺ 298.1722; found: 298.1715.

2-fluoro-9-phenyl-9h-fluorene (3da): Colorless solid; isolated yield 63% (32.8 mg); $R_f = 0.74$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.79 – 7.73 (m, 2H), 7.40 (t, J = 7.5 Hz, 1H), 7.34 – 7.29 (m, 3H), 7.28 – 7.25 (m, 2H), 7.13 – 7.08 (m, 3H), 7.03 (d, J = 9.7, 2.5 Hz, 1H), 5.05 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 162.69 (d, J = 245.5 Hz), 150.06 (d, J = 8.2 Hz), 147.75, 140.93, 140.19, 136.97 (d, J = 2.6 Hz), 128.8, 128.3, 127.5, 127.1, 127.0, 125.3, 120.8 (d, J = 9.1 Hz), 119.6, 114.6 (d, J = 23.2 Hz), 112.6 (d, J = 22.9 Hz), 54.5 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -114.63 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₃F⁺ 260.1001; found: 260.0999.

2-chloro-9-phenyl-9h-fluorene (3ea): Colorless solid; isolated yield 62% (34.2 mg); $R_f = 0.73$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.39 (d, J = 8.1 Hz, 1H), 7.36 – 7.30 (m, 5H), 7.29 (d, J = 9.5 Hz, 1H), 7.11 (d, J = 6.7 Hz, 2H), 5.06 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 149.6, 147.7, 140.7, 140.0, 139.6, 133.0, 128.9, 128.3, 127.7 127.6, 127.5, 127.1, 125.7, 125.4, 120.8, 119.9, 54.4 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₃Cl⁺ 276.0706; found: 276.0709.

2-bromo-9-phenyl-9h-fluorene (3fa): Colorless solid; isolated yield 60% (38.5 mg); $R_f = 0.70$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.54 (d, J = 8.1 Hz, 1H), 7.47 (s, 1H), 7.42 (t, J = 7.2 Hz, 1H), 7.37 – 7.27 (m, 5H), 7.11 (d, J = 6.9 Hz, 2H), 5.06 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 149.9, 147.6, 140.7, 140.0, 130.5, 128.9, 128.6, 128.3, 127.8, 127.6, 127.2, 125.4, 121.2, 121.1, 120.0, 54.4 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₃Br⁺ 320.0201; found: 320.0208.

2-(trifluoromethoxy)-9-phenyl-9h- fluorene (3ga): Colorless solid; isolated yield 54% (35.2 mg); $R_f = 0.71$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, J = 8.4 Hz, 2H), 7.42 (t, J = 7.4 Hz, 1H), 7.35 (d, J = 7.5 Hz, 1H), 7.32 (t, J = 7.1 Hz, 3H), 7.29 – 7.27 (m, 1H), 7.18 (dt, J = 2.2, 1.2 Hz, 1H), 7.13 – 7.08 (m, 2H), 5.08 (s, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 148.0, 140.65, 139.7, 139.7, 128.9, 128.3, 127.6, 127.6, 127.2, 125.4, 120.6, 120.5 (q, J = 257.3 Hz), 120.4, 120.0, 118.4, 54.5 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -57.82 ppm. HRMS (EI): [M]⁺ Calcd for C₂₀H₁₃F₃O⁺ 326.0918; found: 326.0911.

2-phenoxy-9-phenyl-9h-fluorene (3ha): Colorless solid; isolated yield 66% (44.1 mg); $R_f = 0.67$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.77 (d, J = 8.3 Hz, 2H), 7.40 (t, J = 7.4 Hz, 1H), 7.35 – 7.31 (m, 3H), 7.30 – 7.27 (m, 2H), 7.25 (t, J = 6.1 Hz, 2H), 7.11 (d, J = 6.7 Hz, 2H), 7.09 (d, J = 7.5 Hz, 1H), 7.06 (d, J = 8.2 Hz, 1H), 7.04 (s, 1H), 7.01 (d, J = 7.5 Hz, 2H), 5.05 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 157.6, 156.7, 149.9, 147.8, 141.2, 140.5, 136.6, 129.7, 128.7, 128.3, 127.4, 126.9, 126.8, 125.3, 123.0, 120.8, 119.5, 118.5, 118.4, 116.6, 54.5 ppm. HRMS (EI): [M]⁺ Calcd for C₂₅H₁₈O⁺ 334.1358; found: 334.1355.

2,9-diphenyl-9h-fluorene (3ia): Colorless solid; isolated yield 78% (49.6 mg); $R_f = 0.69$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, J = 7.9 Hz, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 7.3 Hz, 2H), 7.58 (s, 1H), 7.44 (t, J = 7.7 Hz, 3H), 7.36 (t, J = 8.0 Hz, 2H), 7.34 – 7.27 (m, 4H), 7.17 (d, J = 7.0 Hz, 2H), 5.15 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 148.6, 148.2, 141.5, 141.3, 140.7, 140.8, 140.3, 128.8, 128.7, 128.4, 127.4, 127.4, 127.2, 126.9, 126.5, 125.4, 124.1, 120.2, 120.0, 54.6 ppm. HRMS (EI): [M]⁺ Calcd for C₂₅H₁₈⁺ 318.1409; found: 318.1411.

2-acetate-9-phenyl-9h-fluorene (3ja): Colorless solid; isolated yield 44% (26.4 mg); $R_f = 0.48$ (petroleum ether-EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, J = 8.1 Hz, 1H), 8.00 (s, 1H), 7.90 – 7.84 (m, 2H), 7.48 – 7.41 (m, 1H), 7.35 (d, J = 7.7 Hz, 2H), 7.33 – 7.25 (m, 3H), 7.11 (d, J = 6.5 Hz, 2H), 5.11 (s, 1H), 3.90 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 167.2, 149.0, 147.9, 145.6, 140.7, 139.8, 129.3, 128.9, 128.8, 128.5, 128.3, 127.6, 127.1, 126.6, 125.6, 120.8, 119.6, 54.4, 52.0 ppm. HRMS (ESI-TOF): [M + Na]⁺ Calcd. for C₂₁H₁₆O₂Na⁺ 323.1043; found: 323.1042.

1-methyl-9-phenyl-9h-fluorene (3ka): Colorless solid; isolated yield 65% (33.3 mg); $R_f = 0.73$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.79 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 7.5 Hz, 1H), 7.36 (td, J = 7.5, 4.6 Hz, 1H), 7.29 – 7.20 (m, 6H), 7.12 – 7.06 (m, 3H), 5.03 (s, 1H), 2.08 (s, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 148.6, 145.6, 141.6, 141.0, 140.6, 135.3, 128.9, 128.7, 128.1, 127.8, 127.2, 127.1, 126.6, 125.1, 119.9, 117.4, 54.1, 19.1 ppm. HRMS (EI): [M]⁺ Calcd for $C_{20}H_{16}^+$ 256.1252; found: 256.1250.

1-bromo-9-phenyl-9h-fluorene (3la): Colorless solid; isolated yield 48% (30.7 mg); $R_f = 0.81$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.80 (dd, J = 7.6, 5.2 Hz, 2H), 7.47 (d, J = 7.9 Hz, 1H), 7.40 (t, J = 6.7 Hz, 1H), 7.35 – 7.26 (m, 6H), 7.12 (d, J = 6.6 Hz, 2H), 5.13 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 148.2, 146.3, 144.0, 139.8, 139.6, 131.0, 129.4, 128.6, 128.4, 128.1, 127.4, 126.8, 125.3, 121.2, 120.3, 118.8, 56.0 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₃Br⁺ 320.0201; found: 320.0208.

1-chloro-9-phenyl-9h-fluorene (3ma): Colorless solid; isolated yield 51% (28.2 mg); $R_f = 0.70$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, J = 7.4 Hz, 1H), 7.76 (d, J = 7.5 Hz, 1H), 7.40 (t, J = 7.8 Hz, 2H), 7.34 – 7.24 (m, 6H), 7.11 (d, J = 6.7 Hz, 2H), 5.17 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 148.3, 144.4, 143.9, 139.8, 139.7, 132.1, 129.2, 128.6, 128.2, 128.1, 127.9, 127.4, 126.8, 125.3, 120.3, 118.3, 54.5 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₃Cl⁺ 276.0706; found: 276.0700.

1-fluoro-9-phenyl-9h-fluorene (3na): Colorless solid; isolated yield 55% (28.6 mg); $R_f = 0.70$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, J = 7.6 Hz, 1H), 7.49 (dd, J = 8.8, 2.5 Hz, 1H), 7.42 (t, J = 6.6 Hz, 1H), 7.35 – 7.24 (m, 6H), 7.10 (d, J = 6.8 Hz, 2H), 7.00 – 6.95 (m, 1H), 5.04 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 162.9 (d, J = 251.5 Hz), 148.8, 143.3, 143.0 (d, J = 2.5 Hz), 141.2, 140.1, 128.8, 128.2, 127.9, 127.5, 127.0, 126.4 (d, J = 8.9 Hz), 125.4, 120.1, 114.2 (d, J = 22.6 Hz), 106.9 (d, J = 21.3 Hz), 53.87 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -115.60 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₃F⁺ 260.1001; found: 260.0999.

1-acetate-9-phenyl-9h-fluorene (30a): Colorless solid; isolated yield 59% (35.4 mg); $R_f = 0.50$ (petroleum ether-EtOAc = 10:1); ¹**H** NMR (600 MHz, CDCl₃) δ 8.03 (dd, J = 7.6, 1.2 Hz, 1H), 7.94 (dd, J = 7.7, 1.1 Hz, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.55 (t, J = 7.7 Hz, 1H), 7.37 (t, J = 7.4 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.22 (t, J = 7.3 Hz, 2H), 7.16 (t, J = 7.3 Hz, 1H), 7.00 (d, J = 5.4 Hz, 2H), 5.58 (s, 1H), 3.64 (s, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 167.0, 148.8, 148.1, 143.3, 141.9, 138.9, 129.1, 128.4, 128.2, 128.0, 127.9, 127.6, 127.2, 126.3, 125.1, 123.7, 119.9, 55.2, 51.5 ppm. **HRMS** (ESI-TOF): [M + Na]⁺Calcd. for C₂₁H₁₆O₂Na⁺ 323.1043; found: 323.1040.

1, 3-dimethyl-9-phenyl-9h-fluorene (3pa): Colorless solid; isolated yield 64% (34.6 mg); $R_f = 0.66$ (petroleum ether-EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, J = 7.6 Hz, 1H), 7.52 (s, 1H), 7.35 (d, J = 15.3 Hz, 1H), 7.27 – 7.17 (m, 5H), 7.08 (d, J = 6.7 Hz, 2H), 6.93 (s, 1H), 4.99 (s, 1H), 2.47 (s, 3H), 2.05 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 149.0, 142.8, 141.7, 141.3, 140.7, 137.5, 134.9, 129.9, 128.6, 128.1, 127.1, 126.5, 125.1, 119.8, 118.0, 53.8, 21.5, 19.0 ppm. HRMS (EI): [M]⁺ Calcd for C₂₁H₁₈⁺ 270.1409; found: 270.1403.

1, 3-dichloro-9-phenyl-9h-fluorene (3qa): Colorless solid; isolated yield 45% (30.0 mg); $R_f = 0.73$ (petroleum ether-EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 7.7 Hz, 1H), 7.71 (d, J = 1.7 Hz, 1H), 7.44 – 7.35 (m, 1H), 7.33 – 7.23 (m, 6H), 7.06 (d, J = 6.2 Hz, 2H), 5.11 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 148.7, 145.0, 142.8, 139.1, 138.6, 134.5, 132.5, 128.8, 128.6, 128.2, 127.6, 127.4, 127.0, 125.4, 120.5, 118.7, 54.2 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₂Cl₂⁺ 310.0316; found: 310.0321.

1, 3-dibromo-9-phenyl-9h-fluorene (3ra): Colorless solid; isolated yield 37% (29.6 mg); $R_f = 0.77$ (petroleum ether-EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, J = 1.6 Hz, 1H), 7.73 (d, J = 7.5 Hz, 1H), 7.59 (d, J = 1.6 Hz, 1H), 7.39 (t, J = 5.6 Hz, 1H), 7.30 – 7.24 (m, 5H), 7.05 (d, J = 4.2 Hz, 2H), 5.04 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 148.5, 145.4, 145.2, 139.0, 138.4, 13230, 128.8, 128.7, 128.3, 127.6, 126.9, 125.4, 122.2, 122.1, 121.6, 120.5, 55.7 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₂Br₂⁺ 397.9306; found: 397.9327.

3-methyl-9-(4-methylphenyl)-9h-fluorene (3ab): Colorless solid; isolated yield 48% (25.9 mg); $R_f = 0.73$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.79 (d, J = 7.6 Hz, 1H), 7.63 (s, 1H), 7.38 (t, J = 7.4 Hz, 1H), 7.31 (d, J = 7.4 Hz, 1H), 7.25 (t, J = 7.5 Hz, 1H), 7.21 (d, J = 7.6 Hz, 1H), 7.09 (d, J = 7.9 Hz, 3H), 6.99 (d, J = 7.8 Hz, 2H), 5.00 (s, 1H), 2.47 (s, 3H), 2.33 (s, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 148.5, 145.3, 141.1, 141.0, 138.8, 136.9, 136.3, 129.4, 128.2, 128.1, 127.2, 125.3, 125.0, 120.4, 119.7, 53.7, 21.6, 21.1 ppm. HRMS (EI): [M]⁺ Calcd for C₂₁H₁₈⁺ 270.1409; found: 270.1403.

3-(1, 1-dimethylethyl)-9-(1, 1-dimethylethyl) phenyl-9h-fluorene (3ac): Colorless solid; isolated yield 20% (14.2 mg); $R_f = 0.78$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, J = 5.5 Hz, 2H), 7.39 (t, J = 7.4 Hz, 1H), 7.35 (d, J = 7.5 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.31 – 7.24 (m, 4H), 7.06 (d, J = 6.8 Hz, 1H), 5.02 (s, 1H), 1.42 (s, 9H), 1.31 (s, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 150.4, 149.4, 148.3, 145.2, 141.3, 140.7, 138.6, 127.8, 127.1, 127.0, 125.5, 125.4, 124.7, 124.6, 119.6, 116.6, 53.5, 34.8, 34.4, 31.6, 31.4 ppm. HRMS (EI): [M]⁺ Calcd for C₂₇H₃₀⁺ 354.2348; found: 354.2341.

3-chloro-9-(4-chlorophenyl)-9h-fluorene (3ad): Colorless solid; isolated yield 59% (36.7 mg); $R_f = 0.73$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.79 (dd, J = 4.9, 2.9 Hz, 2H),

7.44 (t, J = 8.0 Hz, 1H), 7.32 (, J = 11.2, 7.4 Hz, 2H), 7.29 – 7.25 (m, 3H), 7.22 (d, J = 8.1 Hz, 1H), 7.03 (d, J = 8.4 Hz, 2H), 5.00 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 147.9, 145.7, 142.8, 139.8, 139.6, 133.7, 132.9, 129.6, 129.0, 128.2, 127.8, 127.4, 126.3, 125.4, 120.3, 120.3, 53.3 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₂Cl₂⁺ 310.0316; found: 310.0321.

3-fluoro-9-(4-fluorophenyl)-9h-fluorene (3ae): Colorless solid; isolated yield 75% (41.7 mg); $R_f = 0.72$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, J = 7.6 Hz, 1H), 7.48 (d, J = 8.9 Hz, 1H), 7.43 (t, J = 7.1 Hz, 1H), 7.32 (d, J = 6.8 Hz, 2H), 7.24 (dd, J = 8.3, 5.0 Hz, 1H), 7.10 – 7.03 (m, 2H), 6.99 (t, J = 8.6 Hz, 3H), 5.01 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 163.3 (d, J = 152.5 Hz), 161.6 (d, J = 153.2 Hz), 148.7, 143.1 (d, J = 2.4 Hz), 142.9 (d, J = 8.9 Hz), 140.1, 136.9 (d, J = 3.3 Hz), 129.7 (d, J = 7.8 Hz, 2), 128.0, 127.6, 126.3 (d, J = 8.9 Hz), 125.3, 120.2, 115.6 (d, J = 21.4 Hz), 114.3 (d, J = 23.1 Hz), 107.0 (d, J = 23.2 Hz), 53.0 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -115.31, -115.85 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₂F₂⁺ 278.0907; found: 278.0901.

9-(4-methylphenyl)-9h-fluoren (3af) & 11-phenyl-11h-benzo-fluorene (3af'): Colorless solid; isolated as a mixture, yield 67 % (34.3 mg); $R_f = 0.67$ (petroleum ether-EtOAc = 10:1); Major product: ¹H NMR (600 MHz, CDCl₃) δ 7.82 (d, J = 7.6 Hz, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.34 (d, J = 8.7 Hz, 2H), 7.30 – 7.26 (m, 2H), 7.11 (d, J = 7.9 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 5.05 (s, 1H), 2.34 (s, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 148.1, 141.0, 138.5, 136.4, 129.4, 128.2, 127.3, 127.2, 125.3, 119.8, 54.1, 21.1 ppm. HRMS (EI): [M]⁺ Calcd for C₂₀H₁₆⁺ 256.1252; found: 256.1250. Minor product: ¹H NMR (600 MHz, CDCl₃) δ 8.25 (s, 1H), 7.98 (t, J = 8.0 Hz, 3H), 7.78 (t, J = 8.5 Hz, 2H), 7.75 (s, 1H), 7.38 (d, J = 3.2 Hz, 2H), 7.34 (t, J = 6.1 Hz, 2H), 7.31 (d, J = 7.6 Hz, 3H), 7.18 (d, J = 6.8 Hz, 2H), 5.29 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 148.3, 146.1, 142.5, 139.8, 133.4, 128.8, 128.5, 128.2, 128.1, 128.1, 127.6, 127.3, 126.9, 125.7, 125.7, 124.1, 120.6, 118.06, 54.0 ppm. HRMS (EI): [M]⁺ Calcd for C₂₀H₁₆⁺ 256.1252; found: 256.1252; found: CEI): [M]⁺ Calcd for C₂₀H₁₆⁺ 256.1252, 139.8, 133.4, 128.8, 128.5, 128.2, 128.1, 127.6, 127.3, 126.9, 125.7, 125.7, 124.1, 120.6, 118.06, 54.0 ppm. HRMS (EI): [M]⁺ Calcd for C₂₀H₁₆⁺ 256.1252; found: 256.1249.

9-(4-bromophenyl)-9h-fluoren (3ag) & 3-bromo-9-phenyl-9h-fluorene (3ag'): Colorless solid; isolated as a mixture, yield 53% (33.9 mg); $R_f = 0.74$ (petroleum ether-EtOAc = 10:1); Major product: ¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, J = 7.6 Hz, 2H), 7.42 (d, J = 8.3 Hz, 4H), 7.31 (t, J = 7.2 Hz, 4H), 7.00 (d, J = 8.3 Hz, 2H), 5.03 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 147.4, 141.0, 131.8, 130.1, 128.8, 128.3, 127.6, 127.5, 125.3, 120.0, 53.8 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₃Br⁺ 320.0201; found: 320.0207. Minor product: ¹H NMR (600 MHz, CDCl₃) δ 7.96 (s, 1H), 7.79 (d, J =7.6 Hz, 1H), 7.44 (d, J = 4.5 Hz, 2H), 7.41 – 7.39 (m, 2H), 7.35 (t, J = 6.1 Hz, 2H), 7.29 – 7.26 (m, 1H), 7.20 (d, J = 8.0 Hz, 1H), 7.10 (d, J = 6.7 Hz, 2H), 5.02 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 148.2, 146.7, 143.2, 140.9, 139.8, 128.1, 127.1, 126.8, 125.5, 123.2, 120.7, 120.2, 54.1 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₃Br⁺ 320.0201; found: 320.0202.

9-(4-chlorophenyl)-9h-fluoren (3ah) & 3-Chloro-9-phenyl-9h-fluorene (3ah'): Colorless solid; isolated as a mixture, yield 55% (30.4 mg); $R_f = 0.76$ (petroleum ether-EtOAc = 10:1); Major product: ¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, J = 7.6 Hz, 2H), 7.43 (t, J = 6.3 Hz, 2H), 7.34 – 7.22 (m, 6H), 7.05 (d, J = 8.4 Hz, 2H), 5.05 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 147.5, 141.0, 140.2, 132.6, 129.7, 128.9, 127.5, 127.4, 125.3, 120.0, 53.7 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₃Cl⁺ 276.0602; found: 276.0601. Minor product: ¹H NMR (600 MHz, CDCl₃) δ 7.82 – 7.77 (m, 2H), 7.45 – 7.41 (m, 1H), 7.36 – 7.26 (m, 7H), 7.10 (d, J = 6.7 Hz, 2H), 5.05 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 148.4, 146.2, 142.8, 141.0, 139.9, 133.4, 128.8, 128.3, 128.0, 127.3, 127.1, 126.4, 125.5, 120.2, 54.1 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₃Cl⁺ 276.0602; found: 276.0601.

9-(4-fluorophenyl)-9h-fluoren(3ai) & 3-fluoro-9-phenyl-9h-fluorene(3ai'): Colorless solid; isolated as a mixture, yield 62% (32.2 mg); $R_f = 0.73$ (petroleum ether-EtOAc = 10:1); Major product: ¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, *J* = 7.6 Hz, 2H), 7.42 (t, *J* = 7.2 Hz, 2H), 7.35 – 7.27 (m, 3H), 7.13 – 7.06 (m, 3H), 6.99 (t, *J* = 8.7 Hz, 2H), 5.06 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 161.9 (d, *J* = 244.5 Hz), 147.8, 140.9, 137.3 (d, *J* = 3.3 Hz), 129.8 (d, *J* = 8.0 Hz), 128.8, 128.2, 127.4 (d, *J* = 10.2 Hz), 125.3, 120.0, 115.5 (d, *J* = 21.4 Hz), 53.6 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -116.15 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₃F⁺ 260.1001; found: 260.0999. Minor product: ¹H NMR (600 MHz, CDCl₃) δ 7.79 (d, *J* = 7.6 Hz, 1H), 7.49 (d, *J* = 8.8 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.34 (t, *J* = 6.8 Hz, 2H), 7.31 – 7.25 (m, 4H), 7.15 (d, *J* = 8.7 Hz, 1H), 6.99 – 6.94 (m, 2H), 5.04 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 162.9 (d, *J* = 243.8 Hz), 125.5, 120.1, 114.2 (d, *J* = 8.8 Hz), 141.3, 140.2 (d, *J* = 2.8 Hz), 127.9, 127.0, 126.4 (d, *J* = 9.0 Hz), 125.5, 120.1, 114.2 (d, *J* = 23.2 Hz), 106.9 (d, *J* = 23.2 Hz), 53.9 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -115.59 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₃F⁺ 260.1001; found: 260.1001; found: 260.1004.

9-[4-(trifluoromethoxy) phenyl]-9h-fluoren(3aj): Colorless solid; isolated as a mixture, yield 60% (37.2 mg); $R_f = 0.72$ (petroleum ether-EtOAc = 10:1); Only the data of major product was provided: ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, J = 7.6 Hz, 2H), 7.56 (d, J = 7.9 Hz, 2H), 7.44 (dd, J = 7.9, 2.9 Hz, 2H), 7.34 – 7.29 (m, 4H), 7.24 (d, J = 8.0 Hz, 2H), 5.13 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 147.1, 146.0, 141.1, 128.9, 128.7, 128.3, 127.7, 127.5, 125.7 (q, J = 3.8 Hz), 125.3, 124.2 (q, J = 272.0 Hz), 120.1, 54.1 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.41 ppm. HRMS (EI): [M]⁺ Calcd for C₂₀H₁₃F₃⁺ 310.0969; found: 310.0960.

9-(2-naphthalenyl)-9h-fluorene(3ak): Colorless solid; isolated as a mixture, yield 62% (36.2 mg); $R_f = 0.72$ (petroleum ether-EtOAc = 10:1); Only the data of major product was provided: ¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, J = 7.6 Hz, 2H), 7.84 (d, J = 7.4 Hz, 2H), 7.81 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 8.5 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.44 (t, J = 7.4 Hz, 2H), 7.35 (d, J = 7.6 Hz, 2H), 7.29 (t, J = 7.4 Hz, 2H), 6.93 (d, J = 8.4 Hz, 1H), 5.24 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 147.9, 141.1, 139.1,

133.6, 132.6, 128.8, 128.5, 128.5, 127.7, 127.6, 127.4, 127.4, 127.3, 126.2, 126.1, 125.6, 125.5, 120.0, 54.6 ppm. **HRMS** (EI): [M]⁺ Calcd for C₂₃H₁₆⁺ 292.1252; found: 292.1258.

9-(2-bromophenyl)-9h-fluorene(3al): Colorless solid; isolated yield 32% (20.5 mg); $R_f = 0.74$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, J = 7.2 Hz, 2H), 7.72 (d, J = 8.1 Hz, 1H), 7.42 (m, J = 7.0 Hz, 4H), 7.29 (t, J = 7.5 Hz, 2H), 7.09 (t, J = 7.6 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 6.48 (d, J = 7.7 Hz, 1H), 5.81 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 147.4, 141.7, 141.1, 132.8, 129.2, 128.4, 127.9, 127.5, 127.4, 125.4, 125.3, 120.0, 53.0 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₃Br⁺ 320.0201; found: 320.0207.

9-(2-chlorophenyl)-9h-fluorene(3am): Colorless solid; isolated yield 45% (24.8 mg); $R_f = 0.75$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, J = 7.2 Hz, 2H), 7.55 (d, J = 8.1 Hz, 1H), 7.43 (m, J = 6.3 Hz, 4H), 7.30 (m, J = 7.5 Hz, 2H), 7.21 – 7.15 (t, 1H), 7.03 – 6.98 (t, 1H), 6.53 (d, J = 9.5 Hz, 1H), 5.82 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 147.3, 141.2, 139.8, 134.6, 129.6, 129.0, 128.1, 127.5, 127. 4, 127.3, 125.3, 120.0, 50.3 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₃Cl⁺ 276.0706; found: 276.0702.

9-(2-fluorophenyl)-9h-fluorene(3an): Colorless solid; isolated yield 69% (35.9 mg); $R_f = 0.76$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, J = 7.6 Hz, 2H), 7.49 – 7.38 (m, 4H), 7.32 (t, J = 7.5 Hz, 2H), 7.24 (t, J = 6.2 Hz, 1H), 7.20 (t, J = 9.8 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.74 (d, J = 7.6 Hz, 1H), 5.54 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 161.6 (d, J = 245.3 Hz), 146.9, 141.2, 129.3 (d, J = 4.4 Hz), 128.7, 128.6, 128.4 (d, J = 8.1 Hz), 127.4 (d, J = 9.0 Hz), 125.3, 124.4 (d, J = 3.5 Hz), 120.0, 115.6 (d, J = 22.4 Hz), 46.9 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -118.73 ppm. HRMS (EI): [M]⁺ Calcd for C₁₉H₁₃F⁺ 260.1001; found: 260.0998.

9-[2-(trifluoromethyl) phenyl]-9h-fluorene (3ao): Colorless solid; isolated yield 62% (38.4 mg); $R_f = 0.80$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, J = 7.8 Hz, 2H), 7.78 (d, J = 8.0 Hz, 1H), 7.46 – 7.39 (m, 2H), 7.33 – 7.26 (m, 5H), 7.23 (t, J = 6.9 Hz, 1H), 6.49 (d, J = 7.9 Hz, 1H), 5.53 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 148.4, 141.2, 140.9, 132.2, 130.1, 127.6, 127.5, 126.6, 125.4 (q, J = 4.7 Hz), 124.8 (q, J = 273.7 Hz), 120.0, 49.5 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -57.30 ppm. HRMS (EI): [M]⁺ Calcd for C₂₀H₁₃F₃⁺ 310.0969; found: 310.0960.

9, 9'-spirobifluorene (4a): Colorless solid; isolated yield 41% (25.9 mg); $R_f = 0.71$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, J = 7.7 Hz, 4H), 7.42 – 7.36 (m, 4H), 7.13 (t, J = 7.5 Hz, 4H), 6.75 (d, J = 8.6 Hz, 4H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 148.8, 141.8, 127.8, 127.7, 124.0, 120.0, 66.0 ppm. HRMS (EI): [M]⁺ Calcd for C₂₅H₁₆⁺ 316.1252; found: 316.1249.

2, **2'-bis(1, 1-dimethylethyl)-9**, **9'-spirobifluorene (4b):** Colorless solid; isolated yield 66% (56.5 mg); $R_f = 0.71$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.82 (d, J = 7.5 Hz, 2H), 7.79 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 6.3 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.07 (t, J = 7.5 Hz, 2H), 6.76 (s, 2H), 6.69 (d, J = 7.7 Hz, 2H), 1.19 (s, 18H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 151.3, 149.6, 149.0, 141.6, 139.4, 127.4, 127.2, 124.7, 123.9, 121.0, 119.6, 119.3, 66.3, 34.9, 31.4 ppm. HRMS (EI): [M]⁺ Calcd for C₃₃H₃₂⁺ 248.2504; found: 248.2520.

2, 2'-difluoro-9, 9'-spirobifluorene (4c): Colorless solid; isolated yield 53% (37.3 mg); $R_f = 0.67$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, J = 5.7 Hz, 2H), 7.79 (d, J = 5.3 Hz, 2H), 7.40 (t, J = 7.0 Hz, 2H), 7.15 – 7.08 (m, 4H), 6.75 (d, J = 7.6 Hz, 2H), 6.45 (d, J = 8.5 Hz, 2H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 162.8 (d, J = 246.8 Hz), 150.4 (d, J = 8.7 Hz), 148.1(d, J = 7.0 Hz, 2H), 7.15 – 7.08 (m, 4H), 6.75 (d, J = 7.6 Hz, 2H), 6.45 (d, J = 8.5 Hz, 2H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 162.8 (d, J = 246.8 Hz), 150.4 (d, J = 8.7 Hz), 148.1(d, J = 7.0 Hz, 2H) PCCl₃ δ 162.8 (d, J = 246.8 Hz), 150.4 (d, J = 8.7 Hz), 148.1(d, J = 8.7 Hz) PCCl₃ δ 162.8 (d, J = 8.7 Hz), 148.1(d, J = 8.7 Hz), 150.4 (d, J = 8.7 Hz), 148.1(d, J = 8.7 Hz), 148.1(d, J = 8.7 Hz), 150.4 (d, J = 8.7 Hz), 148.1(d, J = 8.7 Hz), 150.4 (d, J = 8.7 Hz), 148.1(d, J = 8.7 Hz), 148.1(

2.7 Hz), 140.8, 137.7, 128.1, 127.6, 124.0, 121.1 (d, J = 8.8 Hz), 119.8, 115.2 (d, J = 23.2 Hz), 111.4 (d, J = 23.5 Hz), 48.2 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -113.55 ppm. HRMS (EI): [M]⁺ Calcd for C₂₅H₁₄F₂⁺ 352.1064; found: 352.1075.

1, 1'-difluoro-9, 9'-spirobifluorene (4d): Colorless solid; isolated yield 35% (24.6 mg); $R_f = 0.73$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.82 (d, J = 7.6 Hz, 2H), 7.52 (d, J = 8.8 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.17 (t, J = 7.5 Hz, 2H), 6.86 – 6.80 (m, 2H), 6.74 (d, J = 7.6 Hz, 1H), 6.70 (d, J = 5.0 Hz, 1H), 6.69 (d, J = 5.0 Hz, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 163.2 (d, J = 244.8 Hz), 149.2, 143.7, 143.7, 143.6 (d, J = 2.4 Hz), 140.7 (d, J = 3.1 Hz), 128.5, 128.0, 125.1 (d, J = 9.1 Hz), 124.1, 120.3, 114.8 (d, J = 23.0 Hz), 107.2 (d, J = 23.3 Hz), 64.8 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ -114.71 ppm. HRMS (EI): [M]⁺ Calcd for C₂₅H₁₄F₂⁺ 352.1064; found: 352.1052.

3, **3'-dimethyl-9**, **9'-spirobifluorene** (**4e**): Colorless solid; isolated yield 35% (24.1 mg); $R_f = 0.79$ (petroleum ether-EtOAc = 10:1); ¹**H** NMR (600 MHz, CDCl₃) δ 7.83 (d, J = 7.7 Hz, 2H), 7.68 (s, 2H), 7.37 (t, J = 7.5 Hz, 2H), 7.11 (t, J = 7.5 Hz, 2H), 6.95 (d, J = 7.7 Hz, 2H), 6.74 (d, J = 7.5 Hz, 2H), 6.65 (d, J = 7.7 Hz, 2H), 2.46 (s, 6H) ppm. ¹³**C** NMR (151 MHz, CDCl₃) δ 149.4, 146.1, 141.9, 141.8, 137.4, 128.7, 127.7, 127.6, 124.0, 123.7, 120.6, 119.8, 65.3, 21.6 ppm. **HRMS** (EI): [M]⁺ Calcd for C₂₇H₂₀⁺ 344.1565; found: 344.1562.

3-methyl-9, 9'-spirobifluorene (4f): Colorless solid; isolated yield 33% (21.8 mg); $R_f = 0.76$ (petroleum ether-EtOAc = 10:1); ¹**H** NMR (600 MHz, CDCl₃) δ 7.87 (d, J = 7.6 Hz, 2H), 7.85 (d, J = 7.6 Hz, 1H), 7.70 (s, 1H), 7.38 (t, J = 7.5 Hz, 3H), 7.12 (q, J = 7.3 Hz, 3H), 6.96 (d, J = 7.7 Hz, 1H), 6.76 (d, J = 7.6 Hz, 2H), 6.75 (d, J = 7.5 Hz, 1H), 6.66 (d, J = 7.7 Hz, 1H), 2.47 (s, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 149.2, 149.0, 145.9, 141.9, 141.8, 141.7, 137.5, 128.8, 127.8, 127.7, 127.6, 124.0, 123.7, 120.6, 120.0, 119.9, 65.7, 21.6 ppm. **HRMS** (EI): [M]⁺ Calcd for C₂₆H₁₈⁺ 330.1409; found: 330.1406.

V. Preliminary mechanistic studies

1. The synthesis of possible intermediate Int-Amine and its transformation.

In an oven-dried round flask under Ar atmosphere, a mixture of the [1, 1'-biphenyl]-2-carbonitrile (1 mmol) and the bromophenylmagnesium (1.2 mmol) was stirred in dry THF (10 mL) at 70 $^{\circ}$ C for 8 h. The reaction mixture was cooled to room temperature and quenched by dry MeOH (10 mL) at 0 $^{\circ}$ C. After being stirred vigorously for 10 min, the sodium borohydride was added slowly and the mixture was heated at 60 $^{\circ}$ C until the imine was disappeared determined by TLC. The volatile materials were evaporated under vacuum and purified by flash column chromatography. The isolated yield of the **Int-Amine** was 81%.

alpha-phenyl-[1, 1'-biphenyl]-2-methanamine(Int-Amine): Colorless oil; isolated yield 81% (209.79 mg); $R_f = 0.25$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.71 (d, J = 7.9 Hz, 1H), 7.56 – 7.48 (m, 4H), 7.47 – 7.36 (m, 3H), 7.33 (d, J = 6.7 Hz, 8H), 5.50 (s, 1H), 1.81 (s, 2H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 145.8, 143.5, 141.5, 130.2, 129.6, 128.4, 128.3, 128.1, 127.4, 127.3, 127.2, 126.8, 126.8, 55.4 ppm. HRMS (ESI-TOF): [M + Na]⁺ Calcd. for C₁₉H₁₇NNa⁺ 259.1361; found: 259.1359.

1.1 Transformation of Int-amine under different conditions:

	NH ₂ HFIP, 120	rion ion ionn $ ionnionn ionn ionnionn ionnionn ionnionn $	
Entry	PdCl ₂ (MeCN) ₂ (10 mol%)	AgTFA(1.5 equiv)	Yield of 3a (%)
1	+	+	97
2	+	-	88
3	-	+	97
4	-	-	79

Reaction conditions: **Int-Amine** (0.1 mmol), $PdCl_2$ (MeCN)₂ (10 mol%), AgTFA (1.5 equiv), HFIP(1 mL), 120 °C, 12h. Yields were determined by GC-MS analysis using dodecane as an internal standard.

2. The synthesis of possible intermediate Int-Imine and its transformation.

In an oven-dried round flask under Ar atmosphere, a mixture of the [1, 1'-biphenyl]-2-carbonitrile (1 mmol) and the bromophenylmagnesium (1.2 mmol) was stirred in dry THF (10 mL) at 70 $^{\circ}$ C for 8 h. The volatile materials were evaporated under vacuum and purified by flash column chromatography. The isolated yield of the **Int-Imine** was 90%.

2-phenylbenzophenone imine (Int-Imine): Yellow solid; isolated yield 90% (231.3 mg); $R_f = 0.32$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 8.09 (s(br), 1H), 7.58 – 7.40 (m, 5H), 7.38 – 7.30 (m, 1H), 7.29 – 6.99 (m, 8H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 178.9, 140.5, 140.2, 139.8, 138.8, 130.4, 129.4, 129.0, 128.9, 128.2, 128.0, 127.3, 127.2 ppm. HRMS (ESI-TOF): [M + Na]⁺Calcd. for C₁₉H₁₅NNa⁺ 257.1204; found: 257.1202.

2.1 Transformation of Int-imine under different conditions:

	NH Condition HFIP, 120 °C	on C, 12 h	a a a a a a a a a a a a a a a a a a a
Entry	PdCl ₂ (MeCN) ₂ (10 mol%)	AgTFA(1.5 equiv)	Yield of 3a (%)
1	+	+	n.r
2	+	-	n.r
3	-	+	n.r
4	-	-	n.r

Reaction conditions: **Int-Imine** (0.1 mmol), $PdCl_2$ (MeCN)₂ (10 mol%), AgTFA (1.5 equiv), HFIP (1 mL), 120 °C, 12h. Yields were determined by GC-MS analysis using dodecane as an internal standard.

3. Capture of possible benzylic carbocation intermediate

Diphenylmethanamine **2a** (0.1 mmol) and thiophene (0.2 mmol) was stirred in HFIP at 140 °C for 12 h [with or without PdCl₂(MeCN)₂ (10 mol%) & AgTFA (1.5 equiv)]. The reaction mixture was cooled to ambient temperature, water (20 mL) and DCM (20mL) were added to the flask. The organic phase was separated and the combined organic layer was dried with MgSO₄ and concentrated to dryness, then the residue was purified by flash chromatography on silica gel to give the products as a mixture of **7** and **7**'(43% yield).

	NH2 +	PdCl ₂ (MeCN) ₂ (10 mol% AgTFA (1.5 equiv.) HFIP, 120 °C, 12 h	\xrightarrow{S}	+ + + + + + + + + + + + + + + + + + +	
-	Entry	PdCl ₂ (MeCN) ₂ (10 mol%)	AgTFA(1.5 equiv)	Yield of 7 & 7'	
				(%)	
_	1	+	+	42	
	2	-	-	43	

Reaction conditions: Diphenylmethanamine (0.1 mmol), Thiophene (2 equiv), HFIP(1 mL), 120 °C, 12h. Yields were determined by GC-MS analysis using dodecane as an internal standard.

2-(diphenylmethyl)thiophene (7) & 3-(diphenylmethyl)thiophene (7'): Colorless solid; yield 42% (21.0 mg); $R_f = 0.74$ (petroleum ether-EtOAc = 10:1); Only the data of major product was provided: ¹H **NMR** (600 MHz, CDCl₃) δ 7.33 (t, J = 7.5 Hz, 4H), 7.28 – 7.22 (m, 6H), 7.18 (d, J = 7.2 Hz, 1H), 6.96 (dd, J = 5.2, 3.5 Hz, 1H), 6.73 – 6.71 (m, 1H), 5.71 (s, 1H) ppm. ¹³C **NMR** (151 MHz, CDCl₃) δ 147.9, 143.8, 128.9, 128.4, 126.7, 126.6, 126.4, 124.5, 52.1 ppm. **HRMS** (EI): [M]⁺ Calcd for C₁₇H₁₄S⁺ 250.0816; found: 250.0813.

VI. Further transformation

To a solution of 3aa (60.6 mg, 0.25 mmol) in 1, 4-dioxane (2 mL) was added HP(O)Ph₂ (101.1 mg,

0.50 mmol) and Mg(NO₃)₂.6H₂O (64.1 mg, 0.25 mmol, 1 equiv). The mixture was heated to 100 $^{\circ}$ C and stirred for 12 h. Then saturated sodium bicarbonate solution was added into the mixture to quench the reaction. The organic phase was separated and washed by saturated sodium bicarbonate, and the water phase was extracted three times with CH₂Cl₂. The combined organic solution was dried with anhydrous magnesium sulfate (MgSO₄). The solvent was removed by rotary evaporation, and the residue was purified by column chromatography using petroleum ether/CH₂Cl₂ (10: 1) as eluent to get a colorless solid (**5**). Yield: 59.3 mg (92%).³

To a solution of **5** (258 mg, 1 mmol) in toluene (3 mL) was added dropwise methanesulfonicacid (CH₃SO₃H) (0.067 mL, 1 mmol) in toluene (1 mL). The mixture was heated to 140 °C and stirred for 12 h. In this reaction, toluene is used as not only reactant but also solvent. Then saturated sodium bicarbonate solution was added into the mixture to quench the reaction. The organic phase was separated and washed by saturated sodium bicarbonate, and the water phase was extracted three times with CH₂Cl₂. The combined organic solution was dried with anhydrous magnesium sulfate (MgSO₄). The solvent was removed by rotary evaporation, and the residue was purified by column chromatography using petroleum ether/CH₂Cl₂ (10: 1) as eluent to get a colorless solid (**6**). Yield: 166.0 mg (50%).⁴

9-phenylfluorenol (5): $R_f = 0.29$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.71 (d, J = 7.6 Hz, 2H), 7.42 (d, J = 7.6 Hz, 2H), 7.40 (d, J = 7.5 Hz, 2H), 7.36 (d, J = 7.5 Hz, 2H), 7.24 – 7.32 (m, 7.6 Hz, 5H), 2.50 (s, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 150.5, 143.2, 139.6, 129.1, 128.5, 128.2, 127.3, 125.4, 124.8, 120.1, 83.7 ppm. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd. for C₁₉H₁₄ONa⁺ 258.1045; found: 258.1043.

9-(4-methylphenyl)-9-phenyl-fluorene (6): $R_f = 0.71$ (petroleum ether-EtOAc = 10:1); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 7.5 Hz, 2H), 7.59 (d, J = 7.4 Hz, 2H), 7.49 (t, J = 7.6 Hz, 2H), 7.41 (t, J = 7.6 Hz, 4H), 7.38 – 7.32 (m, 3H), 7.29 (d, J = 5.8 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 2.44 (s, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 151.6, 146.3, 143.1, 140.3, 136.4, 129.1, 128.4, 128.3, 128.2, 127.9, 127.6, 126.8, 126.3, 120.3, 65.4, 21.1 ppm. **HRMS** (EI): [M]⁺ Calcd for C₂₆H₂₀⁺ 332.1565; found: 332.1562.

VII. X-Ray data for 3ma and 3qa

X-ray for **3ma**.

Fig S1. X-ray structure of 3ma

Identification code	A		
Empirical formula	C ₁₉ H ₁₃ Cl		
Formula weight	276.74		
Temperature/K	193.00		
Crystal system	monoclinic		
Space group	$P2_1/n$		
a/Å	9.0500(9)		
b/Å	6.2114(6)		
c/Å	24.788(2)		
α/°	90		
β/°	96.943(6)		
γ/°	90		
Volume/Å ³	1383.2(2)		
Z	4		
$\rho_{calc}g/cm^3$	1.329		
μ/mm^{-1}	1.520		
F(000)	576.0		
Crystal size/mm ³	0.12 ×0.1 ×0.1		
Radiation	GaKa ($\lambda = 1.34139$)		
2Θ range for data collection/° 8.754 to 120.412			
Index ranges	$\text{-10} \le h \le 11, \text{-6} \le k \le 7, \text{-28} \le l \le 32$		

Reflections collected	9267	
Independent reflections	2973 [$R_{int} = 0.0618$, $R_{sigma} = 0.0720$]	
Data/restraints/parameters	2973/336/296	
Goodness-of-fit on F ²	1.076	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0598, wR_2 = 0.1459$	
Final R indexes [all data]	$R_1 = 0.1076, wR_2 = 0.1658$	
Largest diff. peak/hole / e Å ⁻³ 0.27/-0.25		

X-ray for 3qa.

Fig S2. X-ray structure of 3ma

Identification code	А
Empirical formula	$C_{19}H_{12}Cl_2$
Formula weight	311.19
Temperature/K	193.00
Crystal system	orthorhombic
Space group	Pbca
a/Å	12.0130(14)
b/Å	6.5987(7)
c/Å	36.445(4)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2889.0(5)
Z	8
$\rho_{calc}g/cm^3$	1.431
μ/mm^{-1}	2.608
F(000)	1280.0
Crystal size/mm ³	$0.12 \times 0.1 \times 0.1$

Radiation	$GaK\alpha (\lambda = 1.34139)$	
2Θ range for data collection/ °10.602 to 120.476		
Index ranges	$\text{-15} \le h \le 10, \text{-8} \le k \le 8, \text{-44} \le l \le 46$	
Reflections collected	17413	
Independent reflections	3220 [$R_{int} = 0.0701$, $R_{sigma} = 0.0550$]	
Data/restraints/parameters	3220/0/190	
Goodness-of-fit on F ²	1.081	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0516, wR_2 = 0.1414$	
Final R indexes [all data]	$R_1 = 0.0672, wR_2 = 0.1536$	
Largest diff. peak/hole / e Å-3	0.27/-0.36	

VIII. References

- B. T. Gregg, K. C. Golden, J. F. Quinn, H.-J. Wang, W. Zhang, R. Wang, F. Wekesa, and D. O. Tymoshenko, *Tetrahedron Lett.*, 2009, 50, 3978-3981.
- 2. R. Crampton, S. Woodward, and M. Fox, Adv. Synth. Catal. 2011, 353, 903 906.
- 3. C. Hu, G. Hong, P. D. Nahide, Y. He, C. Zhou, M. C. Kozlowski and L. Wang, *Org. Chem. Front.*, **2019**, *6*, 3167–3171.
- C.-R. Yin, Y. Han, L. Li, S.-H. Ye, W.-W. Mao, M.-D. Yi, H.-F. Ling, L.-H. Xie, G.-W. Zhang, and W. Huang, *Polym. Chem.*, 2013, *4*, 2540-2545.

¹³C NMR Spectrum of 3aa (151 MHz, CDCl₃)

¹³C NMR Spectrum of 3ba (151 MHz, CDCl₃)

¹³C NMR Spectrum of 3ca (101 MHz, CDCl₃)

¹³C NMR Spectrum of 3da (151 MHz, CDCl₃)

¹H NMR Spectrum of 3ea (600 MHz, CDCl₃)

¹H NMR Spectrum of 3fa (600 MHz, CDCl₃)

¹H NMR Spectrum of 3ga (600 MHz, CDCl₃)

¹⁹F NMR Spectrum of 3ga (600 MHz, CDCl₃)

¹³C NMR Spectrum of 3ha (151 MHz, CDCl₃)

¹³C NMR Spectrum of 3ia (151 MHz, CDCl₃)

¹³C NMR Spectrum of 3ja (126 MHz, CDCl₃)

¹³C NMR Spectrum of 3la (151 MHz, CDCl₃)

¹³C NMR Spectrum of 3na (151 MHz, CDCl₃)

¹H NMR Spectrum of 3oa (600 MHz, CDCl₃)

¹H NMR Spectrum of 3ra (500 MHz, CDCl₃)

¹H NMR Spectrum of 3ad (600 MHz, CDCl₃)

¹H NMR Spectrum of 3ae (600 MHz, CDCl₃)

¹⁹F NMR Spectrum of 3ae (565 MHz, CDCl₃)

¹³C NMR Spectrum of 3af (151 MHz, CDCl₃)

¹H NMR Spectrum of 3ag (600 MHz, CDCl₃)

¹³C NMR Spectrum of 3ag (151 MHz, CDCl₃)

¹³C NMR Spectrum of 3ah (151 MHz, CDCl₃)

¹H NMR Spectrum of 3ai (600 MHz, CDCl₃)

¹³C NMR Spectrum of 3ai (151 MHz, CDCl₃)

¹⁹F NMR Spectrum of 3ai (565 MHz, CDCl₃)

¹H NMR Spectrum of 3aj (600 MHz, CDCl₃)

-45 f1 (ppm)

-40

-50 -55 -60

-65

-70

-75 -80

-85

-90

-5 -10

-15

-20

-25

-30 -35

-5000

-0

¹³C NMR Spectrum of 3ak (151 MHz, CDCl₃)

¹³C NMR Spectrum of 3al (151 MHz, CDCl₃)

¹³C NMR Spectrum of 3am (151 MHz, CDCl₃)

¹³C NMR Spectrum of 3an (151 MHz, CDCl₃)

¹³C NMR Spectrum of 4a (151 MHz, CDCl₃)

¹³C NMR Spectrum of 4b (600 MHz, CDCl₃)

¹³C NMR Spectrum of 4c (151 MHz, CDCl₃)

¹H NMR Spectrum of 4d (600 MHz, CDCl₃)

¹³C NMR Spectrum of 4d (565 MHz, CDCl₃)

¹³C NMR Spectrum of 5 (151 MHz, CDCl₃)

¹³C NMR Spectrum of 6 (151 MHz, CDCl₃)

¹³C NMR Spectrum of 7 & 7' (151 MHz, CDCl₃)

¹³C NMR Spectrum of Int-imine (151 MHz, CDCl₃)

