Supporting Information

Tomoyuki Mochida,^{*ab} Yi Qiu,^a Yusuke Funasako,^{cd} Makoto Inokuchi,^c Mariko Noguchi,^e Hiroki Fujimori,^e Yoshitomo Furushima^f

^aDepartment of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan. E-mail: tmochida@platinum.kobe-u.ac.jp

^bResearch Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan

^cDepartment of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, 1-1-1, Daigakudori, Sanyo-Onoda, Yamaguchi 756-0884, Japan

^dDepartment of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, 77 Noshima, Nada, Gobo, Wakayama, 644-0023, Japan

^eDepartment of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan

^fMaterials Characterization Laboratories, Toray Research Center Inc., 3-7, Sonoyama 3-chome, Otsu, Shiga 520-8567, Japan

Contents

Experimental details

 Table S1. Crystallographic parameters

Figure S1. PXRD patterns of 1 and K[TCM].

Figure S2. Crystal structure of 1 at 20 °C.

Figure S3. PXRD patterns of 1 and K[TCM].

Figures S4 & S5. Raman spectra of 1 and K(TCM).

Figure S6. Photographs of 1 taken at 120 °C after incongruent melting and after standing for 3 h.

Video S1. The melting and solidification behavior of 1.

Experimental

General. DSC was performed using a TA Instrument Q100 differential scanning calorimeter with sweep rates of 10–30 °C min⁻¹ under a nitrogen atmosphere. TG analyses were performed at 10 °C min⁻¹ under a nitrogen atmosphere using a Rigaku TG8120 analyzer. Infrared (IR) spectra were recorded via attenuated total reflectance (ATR diamond) using a Thermo Scientific Nicolet iS 5 FT-IR spectrometer. Raman spectra were measured using a Renishaw Ramascope System 1000 spectrometer ($\lambda_{ex} = 780$ nm). PXRD measurements were performed using Bruker APEX II Ultra and Rigaku Smartlab diffractometers. FSC measurements were conducted using a Mettler Toledo Flash DSC 1 instrument under a nitrogen atmosphere. A single crystal of **1** was heated to 250 °C at 100 °C min⁻¹, maintained at this temperature for 5 s, and then cooled to -80 °C at various cooling rates (20–500 °C s⁻¹). Subsequently, FSC traces were recorded upon heating the sample to 250 °C at 1000 °C s⁻¹. The measurements at various cooling rates were conducted using the same sample.

Synthesis of 1. The recrystallization of a mixture of $[\text{Emim}][\text{TCM}]^{S1}$ (16.8 mg, 0.08 mmol) and K[TCM] (11 mg, 0.08 mmol) from Et₂O–EtOH yielded the desired complex as colorless needle crystals, which were collected by filtration and dried under vacuum (9.7 mg, 35%). Grinding equimolar amounts of [Emim][TCM] and K[TCM] using a mortar and pestle also produced **1** quantitatively. Anal. Calcd. for C₁₄H₁₁N₈K: C, 50.90; H, 3.36; N, 33.92. Found: C, 50.90; H, 2.99; N, 33.51. IR (cm⁻¹): 2160 (CN), 1572, 1236, 1167, 840, 746, 702, 621, 563, 526. The material was not hygroscopic and completely stable under atmospheric condition.

X-ray structure determination. The X-ray diffraction data were collected on a Bruker APEX II Ultra CCD diffractometer at -173 °C and 20 °C with MoK α radiation ($\lambda = 0.71073$ Å). All calculations were performed using SHELXTL.^{S2} The crystallographic parameters are shown in **Table S1**. CSD number: CCDC 1869226 (data at -173 °C) and 2169840 (data at 20 °C).

References

[S1] Y. Yoshida, K. Muroi, A. Otsuka, G. Saito, M. Takahashi, T. Yoko, *Inorg. Chem.* 2004, 43, 1458–1462.

[S2] G. M. Sheldrick, Acta Crystallogr. 2008, C64, 112–122.

[S3] J. R. Witt, D. Britton, Acta Cryst. 1971, 27, 1835–1836.

	−173 °C	20 °C
Empirical formula	$C_{14}H_{11}N_8K$	
Formula weight	330.41	
Crystal system	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	8.5703(8)	8.6092(12)
<i>b</i> (Å)	9.7142(10)	9.8641(14)
<i>c</i> (Å)	10.2374(10)	10.4829(15)
α (°)	83.6370(10)	83.222(2)
β(°)	83.0040(10)	82.672(2)
γ(°)	81.1040(10)	81.215(2)
$V(Å^3)$	832.09(14)	868.2(2)
Ζ	2	2
$ ho_{ m calcd}$ (g cm ⁻³)	1.319	1.264
F (000)	340	340
Reflns collected	4019	4433
Independent reflns	2878	3222
Parameters	210	230
Temperature (K)	100	293
$R_1^a, R_w^b (I \ge 2\sigma)$	0.0336, 0.0878	0.0481, 0.1287
R_1^a, R_w^b (all data)	0.0342, 0.0883	0.0557, 0.1357
Goodness of fit	1.076	1.045
$\Delta \rho_{\rm max,min}$ [e Å ⁻³]	0.376, -0.380	0.334, -0.22

Table S1. Crystallographic parameters of 1 at –173 and 20 $^{\circ}\mathrm{C}$

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; {}^{b}R_{w} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}.$

Fig. S1. PXRD patterns of (a) **1** formed by grinding [Emim][TCM] and K[TCM] for 1 h at 22 °C, (b) **1** simulated from the single crystal data at 20 °C, and (c) K[TCM] simulated from the single crystal data.^{S3}

Fig. S2. (a) Packing diagram of **1** determined at 20 °C. (b) ORTEP drawings of the molecular structures of the cations determined at -173 °C (top) and 20 °C (bottom, occupancy ratio = 0.7:0.3).

Fig. S3. PXRD patterns of (a) 1 at 22 °C, (b) 1 after incongruent melting at 150 °C, and (c) K[TCM] at 22 °C (Cu*K* α radiation).

Fig. S4. Raman spectra of (a) K[TCM] (20 °C), (b) **1** after incongruent melting (120 °C, solid-rich region), (c) **1** after incongruent melting (120 °C, liquid region), and (d) [Emim][TCM] (20 °C). In the photograph of the sample at 120 °C shown on the right, the circles represent the regions for which the Raman spectra were recorded.

Fig. S5. Raman spectra of 1 measured at (a) 80 °C and (b) 20 °C.

Fig. S6. Photographs of **1** taken at 120 °C after incongruent melting (left) and after standing at the same temperature for 3 h (right).