Solvent Controlled Rh(III)-Catalyzed Switchable [4+2] Annulation of 2Arylindoles with Iodonium Ylides

Saiprasad Nunewar ${ }^{\text {a }}$ Sanjeev Kumar, ${ }^{\text {a }}$ Pendam Priyanka, ${ }^{\text {a }}$ Pradeep Girase ${ }^{\text {a }}$ and Vinaykumar Kanchupalli*[a]
${ }^{\text {a Department }}$ of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India.

1. General methods 2
2. Preparation of starting precursors 3
3. Optimization studies 4
(a) Screening of additive, base, solvent and temperature 4
(b) Screening of transition-metal catalyst for product 3a 6
(c) Screening of transition-metal catalyst for product $\mathbf{4 a}$ 7
4. Mechanistic studies 8
4.1 Mechanistic studies for product 3a 8
4.2 Mechanistic studies for product 4a 13
4.3 Studies on directing groups 18
5. General procedure for product $\mathbf{3}$ 22
6. General procedure for product 4 38
7. Synthetic transformations 50
8. X-ray data 54
9. References 59
10. NMR data 60

1. General methods

All the reactions were performed in an oven-dried glassware. Solvents were dried using standard methods. Tetrahydrofuran was dried over sodium-benzophenone ketyl. Acetonitrile and dichloromethane were distilled over calcium hydride. Unless otherwise stated, all the commercial reagents were used as received. Progress of the reaction was monitored by thin layer chromatography (Merck Silica-gel 60 F-254, 0.25 nm , pre-coated plates on alumina). Column chromatographic purifications were performed on Merck silica gel (100-200 mesh). Melting points were recorded on a digital melting point apparatus and are uncorrected.

Spectroscopic characterizations were carried at the Central Instrumentation Facility (CIF), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker Avance-III FT-NMR spectrometers at 500 MHz and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $125 \mathrm{MHz} .{ }^{1} \mathrm{H}$ NMR chemical shifts are reported in ppm relative to the TMS $(\delta=0)$ and are abbreviated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm relative to the residual CDCl_{3} signal $(\delta=77.16)$ and DMSO- d_{6} signal $(\delta=39.5$). IR spectra was recorded on PerkinElmer FT-IR spectrometer. HRMS data was obtained on Agilent Q-TOF 6540 high resolution mass spectrometers.

2. Preparation of starting precursors:

2.1 Synthesis of 2-Phenyl indole derivatives:

All the 2-Phenyl indole derivatives $\mathbf{1 a - 1 z}$ were prepared according to reported literature procedure. ${ }^{1}$

$1 b$

1d

1 e

$1 f$

1j

1k

11

1m

1n

19

1s

14

1v

1w

1y

$1 z$

2.2 Synthesis of hypervalent iodonium ylides:

All the hypervalent iodonium ylides $\mathbf{2 a - 2 m}$ were prepared by reported literatre. ${ }^{2}$

3. Optimization studies:

(a) Screening of Additive, Base, solvent, and temperature

Entry	Additive	Acid or base	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\mathbf{3 a}(\%)^{b}$	$\mathbf{4 a}(\%)^{b}$
1	CsOPiv	-	DCM	45	53	trace
2	AgOAc	-	DCM	45	48	trace
3	NaOAc	-	DCM	45	32	nd
4	KOAc	-	DCM	45	51	nd
5	CsOAc	-	DCM	45	58	nd
6	KPF_{6}	-	DCM	45	nd	nd
7	AgSbF_{6}	-	DCM	45	nd	nd
8	$\mathrm{Cu}(\mathrm{OAc})_{2}$	-	DCM	45	nd	nd
9	AgOTf	-	DCM	45	nd	nd
10	CsOAc	-	DCM	55	65	nd

11	CsOAc	-	DCM	65	63	nd
$12^{\text {c }}$	CsOAc	-	DCM	55	61	nd
13^{d}	CsOAc	-	DCM	55	51	nd
14	CsOAc	AcOH	DCM	55	35	nd
15	CsOAc	PivOH	DCM	55	31	nd
16^{e}	CsOAc	Ada-COOH	DCM	55	25	nd
17	CsOAc	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	DCM	55	62	nd
18	CsOAc	NaHCO_{3}	DCM	55	76	nd
19^{f}	CsOAc	NaHCO_{3}	DCM	55	72	nd
20^{8}	CsOAc	NaHCO_{3}	DCM	55	65	nd
21	-	NaHCO_{3}	DCM	55	>5	nd
22	CsOAc	$\mathrm{K}_{3} \mathrm{PO}_{4}$	DCM	55	59	nd
23	CsOAc	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DCM	55	44	nd
24	CsOAc	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DCM	55	51	nd
25	CsOAc	$\mathrm{NH}_{4} \mathrm{CO}_{3}$	DCM	55	39	nd
26^{h}	CsOAc	NaHCO_{3}	DCM	55	74	nd
27^{i}	CsOAc	NaHCO_{3}	DCM	55	49	nd
28	CsOAc	NaHCO_{3}	CHCl_{3}	55	60	nd
29	CsOAc	NaHCO_{3}	DCE	55	53	nd
30	CsOAc	NaHCO_{3}	DMSO	55	nd	nd
31	CsOAc	NaHCO_{3}	DMF	55	nd	nd
32	CsOAc	NaHCO_{3}	MeCN	55	45	nd
33	CsOAc	NaHCO_{3}	Acetone	55	10	nd
34	CsOAc	NaHCO_{3}	THF	55	15	nd
35	CsOAc	NaHCO_{3}	1,4-Dioxane	55	18	nd
36	CsOAc	NaHCO_{3}	Toluene	55	trace	nd
37	CsOAc	NaHCO_{3}	MeOH	55	nd	nd
38	CsOAc	NaHCO_{3}	EtOH	55	nd	nd
39	CsOAc	NaHCO_{3}	i PrOH	55	nd	nd
40	CsOAc	NaHCO_{3}	TFE	55	nd	22
41	CsOAc	NaHCO_{3}	HFIP	55	nd	35
42	CsOAc	NaHCO_{3}	HFIP	70	nd	44

43	CsOAc	NaHCO_{3}	HFIP	85	nd	39
44	CsOAc	-	HFIP	70	nd	52
$\mathbf{4 5}^{j}$	CsOAc	-	HFIP	$\mathbf{7 0}$	nd	$\mathbf{6 8}$
46^{k}	CsOAc	-	HFIP	70	nd	52
47^{l}	CsOAc	-	HFIP	70	nd	65
48^{m}	CsOAc	-	HFIP	70	nd	53
49	CsOAc	NaHCO_{3}	DCM	70	58	nd
50	CsOAc	-	HFIP	40	nd	25

${ }^{a}$ Reaction Conditions: 1a ($0.11 \mathrm{mmol}, 1.1$ equiv), 2a ($0.10 \mathrm{mmol}, 1.0$ equiv), DCM (1 mL). ${ }^{b}$ Isolated yield. ${ }^{c} \mathrm{CsOAc}\left(2\right.$ equiv). ${ }^{d} \mathrm{CsOAc}$ (0.5 equiv). ${ }^{e} 1$-Adamentane carboxylic acid. ${ }^{f} \mathrm{NaHCO}_{3}$ (2 equiv). ${ }^{g} \mathrm{NaHCO}_{3}$ (0.5 equiv). ${ }^{h} \mathbf{1 a}$ (1.5 equiv). ${ }^{i} \mathbf{1} \mathbf{1 a}$ (0.5 equiv). ${ }^{j} \mathrm{HFIP}$ (2.0 mL). ${ }^{k}$ HFIP (0.5 mL). ${ }^{l} \mathbf{1 a}$ (1.5 equiv). ${ }^{m} \mathbf{1 a}$ (0.5 equiv). nd $=$ not detected (reaction continued for 24 h).
(b) Screening of Catalyst for 3a

\qquad

Entry	Catalyst	3a (\%) $)^{\boldsymbol{b}}$
$\mathbf{1}$	$\left[\mathbf{C p}^{*} \mathbf{R h C l}_{2}\right]_{2}$	$\mathbf{7 6}$
2	-	nd
3^{c}	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	71
4	$\left[\mathrm{Cp} * \mathrm{Rh}_{\left.\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}}\right.$	62
5	$\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}$	47
6	$\left[\mathrm{CoCp}^{*}(\mathrm{CO}) \mathrm{I}_{2}\right.$	nd
7	$\left[\mathrm{Ru}\left(p-\mathrm{cymene}^{2}\right) \mathrm{Cl}_{2}\right]_{2}$	nd
8	$\left[\mathrm{Rh}_{2}(\mathrm{OAc})_{4}\right]$	nd
9	$\left[\mathrm{Rh}_{2}(S-\mathrm{DOSP})_{4}\right]$	nd

${ }^{a}$ Reaction Conditions: $1 \mathbf{1 a}(0.11 \mathrm{mmol}, 1.1$ equiv.), $\mathbf{2 a}(0.10 \mathrm{mmol}, 1.0$ equiv.), DCM (1.0 mL). ${ }^{b}$ Isolated yield. ${ }^{c}\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(3 \mathrm{~mol} \%) .{ }^{d} \mathrm{nd}=$ not detected (reaction continued for 24 h$)$.
(c) Screening of Catalyst for $\mathbf{4 a}$

1 a
2a
4a

Entry	Catalyst	$\mathbf{3 a}(\boldsymbol{\%})^{\boldsymbol{b}}$
$\mathbf{1}$	$\left[\mathbf{C p}^{*} \mathbf{R h C l}_{2}\right]_{2}$	$\mathbf{6 8}$
2	-	nd
3^{c}	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	59
4	$\left[\mathrm{Cp}^{*} \mathrm{Rh}_{\left.\left(2 \mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}}\right.$	$\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}$
5	$\left[\mathrm{CoCp} *(\mathrm{CO}) \mathrm{I}_{2}\right.$	51
6	$\left[\mathrm{Ru}(p-\mathrm{cymene}) \mathrm{Cl}_{2}\right]_{2}$	nd
7	$\left[\mathrm{Rh}_{2}(\mathrm{OAc})_{4}\right]$	nd
8	$\left[\mathrm{Rh}_{2}(S-\mathrm{DOSP})_{4}\right]$	nd
9		nd

${ }^{a}$ Reaction Conditions: 1a ($0.11 \mathrm{mmol}, 1.1$ equiv.), $\mathbf{2 a}(0.10 \mathrm{mmol}, 1.0$ equiv.), HFIP (2.0 mL).
${ }^{b}$ Isolated yield. ${ }^{c}\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(3 \mathrm{~mol} \%) .{ }^{d} \mathrm{nd}=$ not detected (reaction continued for 24 h$)$.

4. Mechanistic studies:

4.1 Mechanistic studies for 3a product:

(a) H / D exchange reaction for 3a product

To a mixture of 2-phenyl indole 1a ($0.11 \mathrm{mmol}, 1.1$ equiv), $\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}$ ($5 \mathrm{~mol} \%$), CsOAc (1.0 equiv) and NaHCO_{3} (1.0 equiv) in an oven dried 10 mL reaction tube was added dry DCM $(1.0 \mathrm{~mL})$ and $\mathrm{CD}_{3} \mathrm{OD}\left(1.29 \mathrm{mmol}, 10\right.$ equiv) under N_{2} atmosphere. Then the tube was capped with septa, and the resulting mixture was stirred at $55^{\circ} \mathrm{C}$ on oil bath for 6 h . The residue was filtered through celite, and solvent was evaporated under reduced pressure to afford the crude 1a-d and was used directly for the ${ }^{1} \mathrm{H}$ NMR analysis.

Found H / D exchange 21% at ortho position 2-phenyl indole.

(b) Parallel reactions for KIE value measurement for 3a product

To an oven dried screw cap reaction tube equipped with a magnetic stir bar, 0.11 mmol of 2Phenylindole H 5 was subjected to standard reaction conditions. After an equal interval of 30 minutes, reaction mixture was concentrated and directly taken for NMR analysis up to 180 minutes. Identical set of experiments were performed using 2-Phenylindole- \boldsymbol{d}_{5} and NMR analysis was carried out.

Studies for 2-Phenylindole H5

S.no	Time (minutes)	Rate conversion	Mmol of Product
1	30	0.18	0.018
2	60	0.22	0.022
3	90	0.29	0.029
4	120	0.32	0.032
5	150	0.38	0.038
6	180	0.42	0.042

Studies for 2-Phenylindole D5

S.no	Time (minutes)	Rate conversion	Mmol of Product
1	30	0.12	0.012
2	60	0.14	0.014
3	90	0.18	0.018
4	120	0.21	0.021
5	150	0.23	0.023
6	180	0.30	0.030

7,8-dihydroindolo $[1,2-f]$ phenanthridin-5(6H)-one-1,2,3,4- \boldsymbol{d}_{4} (3a- \boldsymbol{d}_{4}):

Obtained as pale yellow solid; $(19 \mathrm{mg}$, Yield $=65 \%)$, m.p. $158-159{ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.4$ (ethyl acetate/hexane: 23:77).
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.10$ (d, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.81$ (d, $J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}$, $1 \mathrm{H}), 3.66(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{p}, J=12.6$, $6.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.7,151.0,136.4,133.7,131.6,124.7,123.5,121.8,121.2$, 116.3, 113.7, 111.7, 97.1, 39.0, 30.8, 21.5.

IR (Neat, v/cm ${ }^{-1}$) 3266, 3043, 2958, 2870, 1636, 1564, 1418, 1329, 1244, 1135, 1034.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{D}_{4} \mathrm{NO} 290.1478$; Found 290.1477 .
(c) Competitive reactions for KIE value measurement for 3a product

To a mixture of $\mathbf{1 a}(0.11 \mathrm{mmol}, 1.1$ equiv), 1a- $\boldsymbol{d}(0.11 \mathrm{mmol}, 1.1$ equiv), $\mathbf{2 a}(0.10 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$, CsOAc (1.0 equiv) and NaHCO_{3} (1.0 equiv) in an oven dried 10 mL reaction tube was added dry $\mathrm{DCM}(1.0 \mathrm{~mL})$ under N_{2} atmosphere. Then the tube was capped with septa, and the resulting mixture was stirred at $55^{\circ} \mathrm{C}$ on oil bath for 6 h . The reaction mixture was filtered by silica pad, solvent was evaporated under reduced pressure to give mixture of the product mixture of products $\mathbf{3 a}$ and $\mathbf{3 a}-\boldsymbol{d}_{\mathbf{4}}$ and $\mathbf{1 a}$ and $\mathbf{1 a} \mathbf{- d}$. The KIE was determined by the ${ }^{1} \mathrm{H}$ NMR integration.

A kinetic isotopic effect of these two reactions was determined to be $k H / k D=1.94$ (0.66/0.34)

(d) Competitive reaction between 2-phenyl indoles:

To a mixture of $\mathbf{1 f}(0.11 \mathrm{mmol}, 1.1$ equiv), $\mathbf{1 e}(0.11 \mathrm{mmol}, 1.1$ equiv), $\mathbf{2 a}(0.10 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and CsOAc (1.0 equiv) in an oven dried 10 mL reaction tube was added DCM (1.0 mL) under N_{2} atmosphere. Then the tube was capped with septa, and the resulting mixture was stirred at $55^{\circ} \mathrm{C}$ on oil bath for 6 h . The reaction mixture was filtered by celite pad, solvent was evaporated under reduced pressure to give mixture of the product $\mathbf{3 f}$ and $\mathbf{3 e}$ which was submitted for NMR. The ratio of $\mathbf{3 f} / \mathbf{3}$ e of purified product was determined to be $\mathbf{1 . 3 6 / 1 . 0}$ by ${ }^{1} \mathrm{H}$ NMR integration (see below). Resulting, the reaction $\mathbf{3 f}$ is proceeding $\mathbf{1 . 3 6}$ times faster than $\mathbf{3 e}$.

4.2 Mechanistic studies for 4a product:

(a) H / D exchange reaction for $\mathbf{4 a}$ product

To a mixture of 2-phenyl indole $\mathbf{1 a}\left(0.11 \mathrm{mmol}, 1.1\right.$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and CsOAc (1.0 equiv) in an oven dried 10 mL reaction tube was added HFIP (2.0 mL) and $\mathrm{CD}_{3} \mathrm{OD}$ (1.29 mmol, 10 equiv) under N_{2} atmosphere. Then the tube was capped with septa, and the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ on oil bath for 6 h . The residue was filtered through celite and solvent as evaporated under reduced pressure to afford the crude $\mathbf{1 a} \mathbf{-} \boldsymbol{d}$ and was directly used for proton ${ }^{1} \mathrm{H}$ analysis.

Found H / D exchange 15% at ortho position 2-phenyl indole.

(b) Parallel reactions for KIE value measurement for $\mathbf{4 a}$ product

4a-d
To an oven dried screw cap reaction tube equipped with a magnetic stir bar, 0.11 mmol of 2Phenylindole H5 was subjected to standard reaction conditions. After an equal interval of 30 minutes, reaction mixture was concentrated and directly taken for NMR analysis up to 180 minutes. Identical set of experiments were performed using D5-2-Phenylindole and NMR analysis was carried out.

Studies for 2-Phenylindole H5

S.no	Time (minutes)	Rate conversion	Mmol of Product
1	30	0.17	0.017
2	60	0.21	0.021
3	90	0.29	0.029
4	120	0.33	0.033
5	150	0.44	0.044
6	180	0.55	0.05

Studies for 2-Phenylindole D5

S.no	Time (minutes)	Rate conversion	Mmol of Product
1	30	0.08	0.008
2	60	0.11	0.011
3	90	0.16	0.016
4	120	0.20	0.020
5	150	0.23	0.023
6	180	0.32	0.032

1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one-5,6,7,8- \boldsymbol{d}_{4} (4a- \boldsymbol{d}_{4}):

Obtained as pale yellow solid; $(17 \mathrm{mg}$, Yield $=59 \%)$, m.p. $158-159^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.4$ (ethyl acetate/hexane: 30:70).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.73(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=6.9$, $12.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 200.0,145.4,139.0,138.3,128.5,125.3,124.9,122.7,121.2$, 120.2, 116.1, 111.6, 40.9, 29.6, 22.7.

IR (Neat, v/cm ${ }^{-1}$) 3262, 3205, 3043, 2938, 2870, 1628, 1547, 1454, 1248, 1187, 1123.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{D}_{4} \mathrm{NO}$ 290.1478; Found 290.1474.
(c) Competitive reactions for KIE value measurement for 4a product

To a mixture of $\mathbf{1 a}(0.11 \mathrm{mmol}, 1.1$ equiv), 1a-d ($0.11 \mathrm{mmol}, 1.1$ equiv), $\mathbf{2 a}(0.10 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and CsOAc (1.0 equiv) in an oven dried 10 mL reaction tube was added HFIP (2.0 mL) under N_{2} atmosphere. Then the tube was capped with septa, and the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ on oil bath for 3 h . The reaction mixture was filtered by celite pad, solvent was evaporated under reduced pressure to give mixture of the product mixture of products $\mathbf{4 a}$ and $\mathbf{4 a}-\boldsymbol{d}_{\mathbf{4}}$ and $\mathbf{1 a}$ and $\mathbf{1 a}-\boldsymbol{d}_{\mathbf{4}}$ The KIE was determined by the ${ }^{1} \mathrm{H}$ NMR integration.

A kinetic isotopic effect of these two reactions was determined to be $k H / k D=1.63$ (0.62/0.38).

(d) Competitive reaction between 2-phenyl indoles:

To a mixture of $\mathbf{1 f}(0.11 \mathrm{mmol}, 1.1$ equiv), $\mathbf{1 e}(0.11 \mathrm{mmol}, 1.1$ equiv), $\mathbf{2 a}(0.10 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and CsOAc (1.0 equiv) in an oven dried 10 mL reaction tube was added HFIP (2.0 mL) under N_{2} atmosphere. Then the tube was capped with septa, and the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ on oil bath for 6 h . The reaction mixture was filtered by celite pad, solvent was evaporated under reduced pressure to give mixture of the product $\mathbf{4 e}$ and $\mathbf{4 f}$ which was submitted for NMR. The ratio of $\mathbf{4 e} / \mathbf{4 f}$ of purified product was determined to be $\mathbf{1 . 0 / 0 . 2 2}$ by ${ }^{1} \mathrm{H}$ NMR integration (see below). Resulting, the reaction 4 e is proceeding 4.5 times faster than $\mathbf{4 f}$.

4.3 Studies on Directing groups:

a) Reaction of $\mathbf{1 z}$ with iodonium ylide for $\mathbf{3 a}$ product:

To an oven dried 10 mL reaction tube with a magnetic stir bar was charged with $\mathbf{1 z}(0.11 \mathrm{mmol}$, 1.1 equiv), 2a ($0.10 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}(5.0 \mathrm{~mol} \%)$, $\mathrm{CsOAc}(0.10 \mathrm{mmol}, 1.0$ equiv), $\mathrm{NaHCO}_{3}\left(0.10 \mathrm{mmol}, 1.0\right.$ equiv) and dry $\mathrm{DCM}(1.0 \mathrm{~mL})$ was added under N_{2} atmosphere. Then, the tube was capped with septa, and the resulting mixture was stirred at 55 ${ }^{\circ} \mathrm{C}$ for the period of 18 h . Further, the reaction was monitored by TLC to confirm the product formations and it was observed that starting material $\mathbf{1 z}$ was intact and the desired product was not formed.
b) Reaction of $\mathbf{1 z}$ with iodonium ylide for $\mathbf{4 a}$ product:

To an oven dried 10 mL reaction tube with a magnetic stir bar was charged with $\mathbf{1 z}(0.11 \mathrm{mmol}$, 1.1 equiv), 2a ($0.10 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5.0 \mathrm{~mol} \%)$, $\mathrm{CsOAc}(0.10 \mathrm{mmol}, 1.0$ equiv), and HFIP (2.0 mL) was added under N_{2} atmosphere. Then, the tube was capped with septa, and the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for the period of 12 h . Further, the reaction was monitored by TLC to confirm the product formations and it was observed that starting material $\mathbf{1 y}$ was intact and the desired product was not formed.
c) Reaction of $\mathbf{1 p}$ with iodonium ylide for $\mathbf{4 a}$ product:

To an oven dried 10 mL reaction tube with a magnetic stir bar was charged with $\mathbf{1 k}(0.11 \mathrm{mmol}$, 1.1 equiv), 2a ($0.10 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5.0 \mathrm{~mol} \%)$, $\mathrm{CsOAc}(0.10 \mathrm{mmol}, 1.0$ equiv), and HFIP (2.0 mL) was added under N_{2} atmosphere. Then, the tube was capped with septa, and the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for the period of 12 h . Further, the reaction was monitored by TLC to confirm the product formations and it was observed that starting material $\mathbf{1 p}$ was intact and the desired product was not formed.
d) Preparation of 2-phenyl-1 d-indole:

To a solution of $\boldsymbol{1} \boldsymbol{a}$ ($0.051 \mathrm{mmol}, 1.0$ equiv), in 1 mL DCM was added deuterium oxide $\left(\mathrm{D}_{2} \mathrm{O}\right)$ 1 mL . Then the contents were stirred at $55{ }^{\circ} \mathrm{C}$ on an oil bath for 12 h . Then solvent was evaporated under reduced pressure and the residue was subjected for ${ }^{1} \mathrm{H}$ NMR.

Found H/D exchange 97% at NH of 2-phenyl indole.

2-phenyl-1d-indole

${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.71-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H})$, 7.20 (ddd, $J=8.1,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 137.9,136.8,132.5,129.3,129.2,127.8,125.3,122.5,120.8$, 120.4, 110.0, 100.0.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{DN} 195.1028$; Found 195.1023.

2-Phenyl-1d-indole:

$\infty \times \infty$

${ }^{13} \mathrm{C}$ NMR of compound 2-phenyl-1 \mathbf{d}-indole ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one:

1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4a):

5. General procedure for product 3:

General procedure A: In a 10 mL oven dried reaction tube with a magnetic stir bar was charged with 2-phenylindole derivatives 1 (0.11 mmol , 1.1 equiv), Iodonium ylide $\mathbf{2 a}$ (0.10 mmol, 1.0 equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}$ ($5 \mathrm{~mol} \%$), CsOAc (1.0 equiv) and NaHCO_{3} (1.0 equiv) in 1 mL of dry DCM under N_{2} atmosphere. Then the tube was capped with septa and the resulting mixture was stirred at $55^{\circ} \mathrm{C}$ on oil bath for 18 h . The reaction completion was monitored by TLC. Upon completion of reaction, the solvent was evaporated under reduced pressure and the crude product was directly purified by a silica gel column chromatography by using ethyl acetate/hexane as the eluent to afford the corresponding product $\mathbf{3}$.

7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3a):

Prepared by following procedure A, obtained as pale yellow solid; (22 mg , Yield $=76 \%$), m.p. $164-165^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.22(\mathrm{dd}, J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.09-8.06$ $(\mathrm{m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{ddd}, J=8.4,7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (td, $J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{ddd}, J=8.5,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H})$, $3.63(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{p}, J=6.3, \mathrm{z} 12.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl3) $\delta 197.7,151.0,136.3,133.6,131.6,128.4,127.3,127.0,126.1$, 124.6, 123.5, 123.1, 121.8, 121.2, 116.3, 113.6, 97.1, 38.9, 30.7, 21.5.

IR (Neat, $\mathbf{v / c m}^{-1}$) 3116, 3002, 2920, 2864, 1628, 1559, 1457, 1378, 1281, 1182, 1050, 941, 850, 761.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NO} 286.1227$; Found 286.1226.

3-methyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one: (3b):

Prepared by following procedure A, obtained as pale yellow solid; (22 mg , Yield $=73 \%$), m.p. $204-205{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.90(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07$ (d, $J=$
(d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{t}, J=5.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{p}, J=6.1,12.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.9,159.9,151.8,136.6,133.4,132.0,127.7,124.6,123.6$, $121.2,120.8,118.2,116.6,116.3,113.2,108.9,95.4,55.6,39.0,30.8,21.5$.

IR (Neat, $\mathbf{v / c m}^{-1}$) 3030, 2951, 2923, 2853, 1738, 1637, 1608, 1593, 1568, 1485, 1455, 1409, 1392, 1353, 1316, 1292, 1250, 1226, 1184, 1160, 1084, 1054, 1021, 1002, 931, 876.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO} 300.1383$; Found 300.1376.

3-ethyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3c):

 Prepared by following procedure A, obtained as pale yellow solid; (24 mg , Yield $=78 \%$), m.p. $180-181^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.09-8.05(\mathrm{~m}, 1 \mathrm{H}), 8.01$ (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.77-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.8,151.1,144.9,136.6,133.6,131.8,127.5,126.2,125.9$, $123.4,123.2,122.5,121.5,121.0,116.3,113.7,96.4,39.0,30.8,29.6,21.5,15.9$.

IR (Neat, v/cm ${ }^{-1}$) 2961, 2944, 2865, 1635, 1592, 1569, 1483, 1417, 1393, 1352, 1332, 1282, 1250, 1158, 1126, 1083, 1009, 929, 884.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO} 314.1540$; Found 314.1532.

3-(tert-butyl)-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3d):

Prepared by following procedure A, obtained as pale yellow solid; (24 mg , Yield $=70 \%$), m.p. $174-175{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.36(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{ddd}, J=8.4,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.78(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{p}, J=12.8,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.8,151.5,151.0,136.4,133.5,131.7,128.8,127.2,125.9$, $125.0,123.4,123.3,122.8,122.2,121.4,121.0,116.2,113.7,96.3,39.0,31.4,30.7,29.7,21.5$.

IR (Neat, v/cm ${ }^{-1}$) 3052, 2946, 2924, 2854, 1738, 1650, 1593, 1567, 1486, 1455, 1435, 1392, $1359,1331,1283,1258,1183,1108,1060,1009,926,906,888$.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO} 342.1853$; Found 342.1847.

3-methoxy-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3e):

Prepared by following procedure A, obtained as pale yellow solid; (22 mg , Yield $=71 \%$), m.p. $145-146{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.88(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.27(\mathrm{p}, J=6.3,12.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 197.9,159.9,151.7,136.5,133.4,132.0,127.7,124.6,123.5$, $121.1,120.8,118.2,116.5,116.3,113.1,108.9,95.3,55.5,39.0,30.7,21.4$.
IR (Neat, $\mathbf{v / c m}^{-1}$) 3001, 2970, 2931, 2839, 1738, 1640, 1610, 1593, 1569, 1485, 1443, 1421, 1390, 1331, 1296, 1258, 1229, 1165, 1037, 1012, 998, 907, 888.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{2} 316.1333$; Found 316.1337.

3-fluoro-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3f):

Prepared by following procedure A, obtained as pale yellow solid; (18 mg , Yield $=59 \%$), m.p. $170-171^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.04(\mathrm{dd}, J=12.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=8.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{ddd}, J=8.4,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.73(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=6.3,12.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.3,162.8(\mathrm{~d}, J=245.0 \mathrm{~Hz}), 152.0,135.8,133.6,131.7$, $127.9(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 125.0(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 123.8,121.9,121.1(2 \mathrm{C}), 116.4,115.5(\mathrm{~d}, J=$ $23.9 \mathrm{~Hz}), 113.1(\mathrm{~d}, J=25.9 \mathrm{~Hz}), 112.7(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 96.8,38.8,30.7,21.4$.
${ }^{19}$ F NMR ($\mathbf{4 7 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-106.92
IR (Neat, v/cm ${ }^{-1}$) 3131, 3069, 2961, 1640, 1607, 1595, 1573, 1455, 1418, 1393, 1360, 1332, 1290, 1267, 1182, 1152, 1105, 1084, 1030, 933, 914, 888.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FNO} 304.1133$; Found 304.1133.

3-chloro-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3g):

Prepared by following procedure A, obtained as pale yellow solid; (22 mg , Yield $=69 \%$), m.p. $228-229{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.24(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J$ $=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{P}, J=$ $6.3,12.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.2,151.8,135.3,134.3,133.6,131.5,127.4,127.2,126.5$, 124.2, 123.7, 122.8, 122.1, 121.2, 116.4, 112.4, 97.3, 38.7, 30.6, 21.3.

IR (Neat, v/cm ${ }^{-1}$) 3112, 3053, 2934, 2850, 1653, 1609, 1596, 1566, 1533, 1467, 1432, 1409, 1388, 1352, 1290, 1264, 1204, 1180, 1134, 1108, 1054, 1027, 961, 925, 891.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClNO} 320.0837$; Found 320.0834.

3-bromo-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3h):

Prepared by following procedure A, obtained as pale yellow solid; (24 mg , Yield $=65 \%$), m.p. $234-235{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.42(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=5.0,12.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.33 (ddd, $J=8.4,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=7.11 \mathrm{~Hz}$, 2 H), 2.24 (p, $J=6.2,12.5 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.2,151.9,135.4,133.6,131.5,130.3,129.6,127.5,124.4$, 123.8, 123.2, 122.7, 122.2, 121.3, 116.4, 112.4, 97.5, 38.7, 30.6, 21.3.

IR (Neat, v/cm ${ }^{-1}$) 3110, 3048, 2959, 2929, 2857, 1654, 1604, 1595, 1565, 1478, 1455, 1430, 1388, 1352, 1289, 1263, 1203, 1180, 1134, 1080, 1053, 1028, 1007, 932, 858.
HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrNO} 364.0332$; Found 364.0333.

3-(trifluoromethyl)-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3i):

Prepared by following procedure A, obtained as pale yellow solid; (24 mg , Yield $=68 \%$), m.p. $230-231^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.59(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.26(\mathrm{t}, J=6.2,12.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.3,152.0,134.9,133.8,131.3,129.9,127.0,126.0,124.5$ (q, $J=4.2 \mathrm{~Hz}), 124.4(\mathrm{q}, J=272.4), 123.9,123.6,123.5,(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 122.6(\mathrm{q}, J=245.9$ $\mathrm{Hz}), 121.6,116.4,112.7,98.9,38.7,30.6,21.3$.
${ }^{19}$ F NMR ($\mathbf{4 7 0} \mathbf{~ M H z , ~ C D C l} 3$) δ-62.22.
IR (Neat, v/cm ${ }^{-1}$) 3112, 3062, 2954, 1652, 1608, 1595, 1562, 1488, 1473, 1422, 1394, 1364, 1346, 1296, 1265, 1183, 1157, 1079, 1028, 915, 870.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO} 354.1101$; Found 354.1102.

5-oxo-5,6,7,8-tetrahydroindolo[1,2-f]phenanthridine-3-carbonitrile (3j):

Prepared by following procedure A, obtained as pale yellow solid; (18 mg , Yield $=57 \%$), m.p. $265-267^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 32:68).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.66(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=$ $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{p}, J=12.7,6.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.2,152.5,134.5,134.04,131.9,131.3,131.3,129.6,128.0$, $127.8,126.2,124.2,123.7,123.3,121.9,119.5,116.5,100.1,38.7,30.8,21.3$.
IR (Neat, $\mathbf{v}^{\prime} \mathbf{c m}^{-1}$) 3129, 3104, 3055, 2951, 2219, 1639, 1594, 1567, 1527, 1483, 1455, 1333, 1293, 1277, 1255, 1187, 1142, 1027, 1014, 913, 888, 849.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$ 311.1179; Found 311.1178.

2-methoxy-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3k):

Prepared by following procedure A, obtained as pale yellow solid; (21 mg , Yield $=67 \%$), m.p. $170-171{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 28:72).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.20(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ (d, $J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.65$ $(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{p}, J=6.5,13.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.8,158.6,149.1,136.2,133.8,131.5,129.0,126.2,123.4$, 121.8, 121.2, 119.9, 116.5, 116.3, 113.7, 105.7, 97.1, 55.5, 38.9, 30.6, 21.6.

IR (Neat, v/cm ${ }^{-1}$) 3065, 3023, 2970, 1945, 2846, 1738, 1633, 1593, 1554, 1494, 1455, 1422, 1378, 1365, 1314, 1294, 1285, 1216, 1135, 1086, 1040, 1008, 950, 877.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{2} 316.1333$; Found 316.1326.

2-bromo-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (31):

Prepared by following procedure A, obtained as pale yellow solid; (22 mg , Yield $=61 \%$), m.p. $201-202{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3\right) \delta 9.13(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=$ $9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{ddd}, J=8.5,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H})$, $3.61(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{p}, J=6.1,12.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 197.4, 151.2, 134.6, 133.7, 131.3, 131.2, 128.9, 126.3, 125.5, 124.8, 123.7, 122.3, 121.4, 121.2, 116.3, 112.9, 97.9, 38.8, 30.6, 21.3.

IR (Neat, v/cm ${ }^{-1}$) 3136, 3044, 2961, 2892, 1737, 1637, 1587, 1564, 1478, 1466, 1410, 1390, 1353, 1313, 1284, 1246, 1179, 1133, 1081, 1051, 1007, 982, 944, 907.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]{ }^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrNO} 364.0332$; Found 364.0333.

2,3-dichloro-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3m):

Prepared by following procedure A, obtained as pale yellow solid; (17.6 mg , Yield $=50 \%$), m.p. $170-171{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.46(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.82(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{ddd}, J=8.4,7.1$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{p}, J=6.5$, $12.9 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.0,152.0,134.1,133.7,132.3,131.3,131.2,128.7,125.5$, 124.3, 124.1, 124.0, 122.7, 121.5, 116.4, 111.9, 98.3, 38.6, 30.6, 21.2.

IR (Neat, v/cm ${ }^{-1}$) 3118, 3034, 2942, 2867, 1738, 1653, 1634, 1596, 1567, 1537, 1478, 1453, 1433, 1355, 1331, 1314, 1277, 1244, 1207, 1171, 1130, 1055, 1010, 952, 904, 867.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{NO} 354.0447$; Found 354.0450.

7,8-dihydrobenzo[j]indolo[1,2-f]phenanthridin-9(6H)-one (3n):

Prepared by following procedure A, obtained as yellow solid; (22 mg , Yield $=65 \%$), m.p. $195-196^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.71$ ($\mathrm{s}, 1 \mathrm{H}$), 8.33 ($\mathrm{s}, 1 \mathrm{H}$), 7.98 - 7.95 $(\mathrm{m}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.6$
$\mathrm{Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=6.3,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~s}$, 1 H), 3.47 (t, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.70(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.22$ (p, $J=6.4,13.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 197.7, 151.2, 136.1, 134.2, 133.4, 131.8, 131.4, 129.2, 127.4, $126.4,126.2,126.1,123.9,123.3,123.1,122.3,121.4,121.2,116.1,113.3,99.1,38.9,30.6$, 21.4.

IR (Neat, v/cm ${ }^{-1}$) 3030, 2970, 2938, 1738, 1623, 1589, 1561, 1535, 1494, 1457, 1428, 1366, 1354, 1228, 1217, 1010, 963, 901, 875.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{NO} 336.1383$; Found 336.1374.

9,10-dihydrobenzo[i]indolo[1,2-f]phenanthridin-7(8H)-one (3o):

Prepared by following procedure A, obtained as pale yellow solid; (19 mg, Yield $=58 \%$), m.p. $148-149{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.11(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=6.4 \mathrm{~Hz}$, 2 H), 2.37 ($\mathrm{p}, J=6.3,12.7 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 197.5, 150.8, 135.8, 133.0, 132.7, 132.0, 129.3, 128.8 (2C), 128.6 (2C), 127.0, 126.4, 126.3, 125.6, 124.2, 123.8, 122.1, 121.2, 116.3, 102.4, 39.1, 31.2, 21.8.

IR (Neat, v/cm ${ }^{-1}$) 3054, 2951, 5928, 2850, 1737, 1644, 1585, 1566, 1524, 1464, 1432, 1375, 1335, 1288, 1217, 1182, 1128, 1051, 1007, 986, 912, 895.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{NO} 336.1383$; Found 336.1384.

14-methyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3p):

Prepared by following procedure A, obtained as pale yellow solid; (25 mg, Yield $=82 \%$), m.p. $162-163^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 26:74).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.23(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H})$, $7.36-7.31(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{p}, J=12.8$, $6.3 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.3,151.2,132.6,132.1,130.9,127.3,126.8,126.7,126.5$, $126.2,124.3,122.9,121.9,118.8,116.2,113.0,107.8,38.8,30.8,21.5,11.8$.

IR (Neat, v/cm ${ }^{-1}$) 3118, 3037, 2969, 2952, 2875, 1738, 1644, 1585, 1569, 1536, 1476, 1453, 1435, 1394, 1383, 1328, 1247, 1231, 1216, 1181, 1126, 1079, 1053, 1031, 989, 948.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO} 300.1383$; Found 300.1381.
N-(2-(5-oxo-5,6,7,8-tetrahydroindolo[1,2-f]phenanthridin-14-yl)ethyl)acetamide (3q):

Prepared by following procedure A, obtained as pale yellow solid; (28 mg, Yield $=75 \%$), m.p. $224-225^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.2$ (ethyl acetate/hexane: 98:02).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 9.25-9.21(\mathrm{~m}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}$, $2 \mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{bs}, 1 \mathrm{H}), 3.71$ $-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.56(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{p}, J=12.6,6.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.89 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.2,170.6,150.9,132.5,132.4,131.6,128.0,127.3,126.9$, $126.8,125.6,123.8,123.3,122.4,118.7,116.3,113.6,109.2,39.0,38.8,31.1,25.7,23.3,21.6$.
IR (Neat, v/cm ${ }^{-1}$) 3394, 2938, 1658, 1647, 1586, 1513, 1507, 1482, 1451, 1387, 1363, 1321, 1285, 1264, 1195, 1184, 1148, 1114, 1083, 1027, 979, 881.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} 371.1755$; Found 371.1759.

5-oxo-5,6,7,8-tetrahydroindolo[1,2-f]phenanthridine-14-carbaldehyde (3r):

Prepared by following procedure A, obtained as pale yellow solid; (18 mg, Yield $=56 \%$), m.p. $162-163{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 23:77).
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 10.74(\mathrm{~s}, 1 \mathrm{H}), 9.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 3.69$ $(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{p}, J=6.5,12.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 197.2, 185.8, 149.4, 142.3, 133.5, 131.1, 129.7, 128.6, 128.2, $127.8,127.0,125.9,124.0,123.7,122.4,116.2,116.1,113.0,38.8,31.1,21.7$.

IR (Neat, v/cm ${ }^{-1}$) 2923, 2852, 1716, 1660, 1596, 1495, 1452, 1372, 1296, 1238, 1181, 1081.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}_{2}$ 314.1176; Found 314.1176.

13-methoxy-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3s):

Prepared by following procedure A, obtained as pale yellow solid; (21 mg , Yield $=68 \%$), m.p. $191-192{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.21$ $(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.27$ (t, $J=6.5,12.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 197.7, 153.1, 151.0, 135.0, 134.6, 128.1, 127.4, 127.0, 125.9, $125.0,122.9,122.5$ (2C), 113.9, 109.4, 102.9, 94.1, 55.7, 38.9, 30.6, 21.5.
IR (Neat, v/cm ${ }^{-1}$) 3049, 2957, 2835, 1653, 1636, 1596, 1559, 1545, 1473, 1419, 1394, 1331, 1254, 1178, 1102, 1075, 1034, 981, 926.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{2} 316.1333$; Found 316.1332.

12-methyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3t):

Prepared by following procedure A, obtained as pale yellow solid; $(22 \mathrm{mg}$, Yield $=72 \%)$, m.p. $209-210^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 9.23(\mathrm{dd}, J=8.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}$, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42$ $(\mathrm{m}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{p}, J=12.7,6.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 197.6, 151.0, 136.3, 133.1, 131.9, 131.9, 128.3, 127.1, 126.9, $126.1,124.5,123.3,123.0,120.8,115.9,113.2,96.7,38.9,30.5,21.5,21.4$.

IR (Neat, v/cm ${ }^{-1}$) 3016, 2949, 2970, 2917, 2867, 1737, 1630, 1594, 1566, 1526, 1487, 1450, 1391, 1327, 1309, 1282, 1247, 1229, 1178, 1129, 1037, 1004, 983, 953, 872.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO} 300.1383$; Found 300.1379.

12-methoxy-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3u):

Prepared by following procedure A , obtained as pale yellow solid; (25 mg , Yield $=78 \%$), m.p. $176-177{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=$ $7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J$ $=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{t}, J=6.1 \mathrm{~Hz}$, 2 H), 2.73 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.27 ($\mathrm{p}, J=6.2,12.5 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 197.6, 156.3, 150.6, 136.9, 132.8, 128.5, 128.3, 127.1, 126.9, 126.1, 124.2, 123.0, 117.1, 113.0, 111.5, 102.1, 96.9, 55.7, 38.9, 30.5, 21.4.

IR (Neat, v/cm ${ }^{-1}$) 3122, 2989, 2952, 2938, 2832, 1737, 1633, 1594, 1525, 1487, 1463, 1450, 1396, 1348, 1325, 1292, 1284, 1180, 1087, 1038, 939, 855.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{2}$ 316.1333; Found 316.1337.

12-fluoro-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3v):

Prepared by following procedure A, obtained as pale yellow solid; (19 mg , Yield $=64 \%$), m.p. $220-221{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 29:71).
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=$ $7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=9.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.41 (dd, $J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{td}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=6.1 \mathrm{~Hz}$, 2 H), 2.76 (t, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.31 ($\mathrm{p}, J=6.2,12.8 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13}$ C NMR (126 MHz, CDCl ${ }_{3}$) δ 197.5, 159.6 (d, $J=241.2 \mathrm{~Hz}$), 150.4, 137.7 (d, $J=10.3 \mathrm{~Hz}$), 132.7, 130.2, 128.8, 127.5, 127.1, 126.2, 124.2, 123.2, 117.2 (d, $J=9.4 \mathrm{~Hz}), 113.7$, 109.7 (d, $J=25.9 \mathrm{~Hz}), 105.8(\mathrm{~d}, J=23.3 \mathrm{~Hz}), 96.8(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 38.9,30.6,21.5$.
${ }^{19}$ F NMR ($\mathbf{4 7 0} \mathbf{~ M H z , ~ C D C l} 3$) δ-119.20.
IR (Neat, v/cm ${ }^{-1}$) 3118, 3062, 2941, 287, 1645, 1596, 1578, 1529, 1486, 1467, 1432, 1392, 1361, 1350, 1277, 1247, 1178, 1149, 1127, 1086, 1057, 1006, 982.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FNO} 304.1133$; Found 304.1129.

5-oxo-5,6,7,8-tetrahydroindolo[1,2-f]phenanthridine-12-carbonitrile (3w):

Prepared by following procedure A, obtained as pale yellow solid; (16 mg , Yield $=51 \%$), m.p. $290-291{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 30:70).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 9.22(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=5.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~s}$, $1 \mathrm{H}), 3.69(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{p}, J=6.3,12.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 197.5,149.7$, 138.4, 131.2, 129.5, 128.0, 127.4, 126.1 (2C), $124.3,123.9,123.5,119.8,116.9,115.2,106.7,102.8,96.9,38.9,30.8,21.5$.

IR (Neat, v/cm ${ }^{-1}$) 3115, 3058, 2973, 2938, 2223, 1651, 1596, 1483, 1455, 1428, 1385, 1322, 1281, 1253, 1209, 1180, 1126, 1088, 1041, 981.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O} 311.1179$; Found 311.1176.

11-chloro-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3x):

Prepared by following procedure A, obtained as pale yellow solid; (21 mg , Yield $=66 \%$), m.p. $193-194{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H})$, $7.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.26(p, J=6.4,13.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl3) $\delta 197.4,150.1,136.7,133.4,129.7,128.5,127.4,127.0,127.0$, $125.8,124.5,123.8,123.0,121.5,116.1,113.9,96.6,38.7,30.3,21.2$.
IR (Neat, v/cm ${ }^{-1}$) 3026, 2970, 2945, 1738, 1646, 1591, 1563, 1548, 1476, 1450, 1436, 1364, 1328, 1293, 1229, 1216, 1174, 1138, 1075, 1040, 1010, 990, 918, 861.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClNO} 320.0837$; Found 320.0834.

11-phenyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3y):

Prepared by following procedure A, obtained as pale yellow solid; (21 mg, Yield $=58 \%$), m.p. $160-167^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.24(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H})$, $8.13(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.47(\mathrm{~m}$,
$4 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.33(\mathrm{t}, J=6.0,11.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.6,151.0,142.4,137.0,135.5,134.4,130.8,130.2,129.1$, 128.6, 127.7, 127.5, 127.2, 127.1, 126.2, 124.8, 123.4, 123.2, 121.3, 115.1, 113.9, 96.9, 38.9, 30.9, 21.6.

IR (Neat, v/cm ${ }^{-1}$) 3101, 3026, 2938, 2882, 2839, 1738, 1641, 1591, 1472, 1449, 1434, 1390, 1347, 1283, 1242, 1187, 1139, 1077, 1057, 1024, 918, 856.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NO} 362.1540$; Found 362.1542.

6-methyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3z):

Prepared by following procedure A, obtained as pale yellow solid; (19 mg, Yield $=65 \%$), m.p. $137-138{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 22:78).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.71$ $(\mathrm{m}, 1 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 200.5,150.0,136.4,133.7,131.6,128.4,127.3,127.0,126.2$, $124.8,123.4,123.2,121.8,121.2,116.3,113.2,96.9,41.7,29.8,29.2,15.9$.

IR (Neat, v/cm-1) 3103, 2952, 2851, 1647, 1559, 1469, 1376, 1332, 1274, 1177, 1076, 995, 901, 840, 763.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO} 300.1383$; Found 300.1386.

7-methyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3aa):

Prepared by following procedure A, obtained as pale yellow solid; (21 mg , Yield $=69 \%$), m.p. $150-151^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=10.1$, $4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=$
$7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=12.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=16.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=12.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 1.31$ (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 197.8,150.4,136.4,133.7,131.6,128.5,127.4,126.9,126.1$, 124.6, 123.5, 123.1, 121.8, 121.2, 116.4, 113.3, 97.1, 47.0, 38.8, 28.9, 21.4.

IR (Neat, v/cm ${ }^{-1}$) 3034, 2953, 2924, 2860, 1737, 1644, 1592, 1569, 1482, 170, 1452, 1391, 1351, 1340, 1290, 1229, 1217, 1169, 1057, 1057, 1024, 971, 911.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO} 300.1383$; Found 300.1381.

7,7-dimethyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3ab):

Prepared by following procedure A, obtained as pale yellow solid; (23 mg , Yield $=72 \%$), m.p. $145-146^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}$, $1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H})$, 3.49 (s, 2H), 2.62 (s, 2H), 1.24 (s, 7H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$) δ 197.9, 149.2, 136.6, 133.7, 131.7, 129.2, 128.5, 127.4, 126.9, $125.9,124.7,123.5,123.1,121.7,121.2,116.5,112.6,97.1,52.5,44.3,32.5,28.7$.
IR (Neat, v/cm ${ }^{-1}$) 2970, 2944, 2888, 1721, 1659, 1617, 1597, 1540, 1449, 1425, 1352, 1276, 1216, 1194, 1154, 1135, 1095.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO} 314.1540$; Found 314.1541.

7-pentyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3ac):

Prepared by following procedure A, obtained as pale yellow solid; (24 mg , Yield $=67 \%$), m.p. $114-115{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=16.8,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.21$ (dd, $J=16.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83$ (dd, $J=15.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ (dd, $J=15.6$, $12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 4 \mathrm{H})$, $0.92(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.9,150.6,136.4,133.7,131.6,128.5,127.4,126.9,126.1$, $124.6,123.5,123.1,121.8,121.2,116.3,113.4,97.1,45.3,37.3,35.9,33.7,31.9,26.5,22.7$, 14.2.

IR (Neat, v/cm ${ }^{-1}$) 3125, 3066, 2958, 2923, 2845, 2845, 1652, 1593, 1539, 1471, 1452, 1391, 1336, 1296, 1247, 1198, 1135, 1053, 960, 837.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO} 356.2009$; Found 356.2010.

7-phenyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3ae):

Prepared by following procedure A, obtained as pale yellow solid; (23 mg , Yield $=63 \%$), m.p. 232-233 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=15.8,7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.38(\mathrm{dd}, J=15.0,7.4 \mathrm{~Hz}, 4 \mathrm{H})$, $7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.06-$ 2.94 ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl3) $\delta 196.9,150.1,142.5,136.3,133.6,131.6,129.3,128.5,127.6$, $127.5,127.0,127.0,125.9,124.6,123.6,123.2,121.9,121.2,116.3,113.3,97.3,45.4,39.6$, 38.5.

IR (Neat, v/cm ${ }^{-1}$) 3027, 3002, 2970, 2945, 1737, 1648, 1634, 1593, 1556, 1481, 1453, 1431, 1371, 1229, 1217, 1144, 1050, 956, 941, 865.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NO} 362.1540$; Found 362.1531.

7-(p-tolyl)-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3af):

Prepared by following procedure A, obtained as pale yellow solid; (26 mg , Yield $=70 \%$), m.p. $194-196{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=$ $7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ $(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 2 \mathrm{H})$, $3.03-2.92$ (m, 2H), 2.41 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.1,150.2,139.6,137.3,136.4,133.6,131.6,129.9,128.5$, $127.5,126.9,126.8,126.0,124.6,123.6,123.2,121.9,121.2,116.4,113.3,97.2,45.6,39.2$, 38.7, 21.2.

IR (Neat, v/cm ${ }^{-1}$) 3132, 3019, 2957, 2864, 1737, 1638, 1594, 1556, 1513, 1481, 1454, 1392, 1247, 1198, 1145, 1133, 1053, 943, 922, 867.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO} 376.1696$; Found 376.1691.

7-(4-methoxyphenyl)-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3ag):

Prepared by following procedure A, obtained as pale yellow solid; (24 mg, Yield $=61 \%$), m.p. $220-221^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 24:76).
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3) $\delta 9.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ $(\mathrm{s}, 3 \mathrm{H}), 3.61-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.93(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl3) $\delta 197.1,159.0,150.2,136.4,134.7,133.6,131.6,128.6,127.9$, $127.5,126.9,126.0,124.7,123.6,123.2,121.9,121.2,116.3,114.6,113.4,97.3,55.5,45.7$, 39.0, 38.8.

IR (Neat, v/cm¹) 2999, 2973, 2924, 2836, 1738, 1646, 1571, 1530, 1470, 1365, 1229, 1200, $1157,1141,1027,955,904,827$.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{2} 392.1646$; Found 392.1639.

7-(4-isopropylphenyl)-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3ah):

Prepared by following procedure A, obtained as pale yellow solid; (26 mg, Yield $=65 \%$), m.p. $235-236^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}$, $3 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.03-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.02-2.93(\mathrm{~m}, 3 \mathrm{H}), 1.30(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl3) $\delta 197.1,150.3,148.2,139.9,136.4,133.6,131.6,128.5,127.5$, $127.3,127.0,126.9,126.0,124.7,123.6,123.2,121.9,121.2,116.4,113.4,97.3,45.6,39.2$, 38.6, 33.9, 24.2.

IR (Neat, v/cm ${ }^{-1}$) 3132, 3019, 2957, 2864, 1737, 1638, 1594, 1556, 1513, 1454, 1392, 1352, $1291,1247,1198,1145,1133,1053,957,943,922,867$.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{NO} 404.2009$; Found 404.2006.

7-(4-fluorophenyl)-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3ai):

Prepared by following procedure A, obtained as pale yellow solid; (25 mg , Yield $=65 \%$), m.p. $191-192{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}$, $J=8.5,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.95-3.88(\mathrm{~m}$, $1 \mathrm{H}), 3.54-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 196.7,163.2(\mathrm{~d}, J=246.10 \mathrm{~Hz}), 150.0,138.2(\mathrm{~d}, J=2.97 \mathrm{~Hz})$, $136.2,133.5,131.6,128.5(\mathrm{~d}, J=3.19 \mathrm{~Hz}), 128.5,127.6,126.9,125.8,124.6,123.7,123.2$, $122.0,121.3,116.2(\mathrm{~d}, J=6.70 \mathrm{~Hz}), 116.0,113.3,97.3,45.4,38.8,38.6$.

${ }^{19}$ F NMR ($\mathbf{4 7 0} \mathbf{~ M H z , ~ C D C l} 3$) δ-114.9.

IR (Neat, $\mathbf{v / c m}^{-1}$) 3034, 2977, 2970, 2942, 1738, 1642, 1594, 1510, 1482, 1469, 1454, 1388, 1353, 1335, 1224, 1158, 1138, 1053, 943, 835.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{FNO}$ 380.1446; Found 380.1447.

7-(4-chlorophenyl)-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3aj):

Prepared by following procedure A, obtained as pale yellow solid; (27 mg , Yield $=69 \%$), m.p. $200-201{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{dd}, J=11.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ - 3.41 (m, 2H), 2.95-2.89 (m, 2H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$) δ 196.4, 149.8, 141.4, 136.2, 133.5, 132.3, 131.6, 128.7, 128.6, $127.6,126.9,125.8,124.6,123.7,123.2,122.0,121.4,121.3,116.2,113.3,97.4,45.1,39.0$, 38.3.

IR (Neat, v/cm ${ }^{-1}$) 3118, 3058, 3026, 2956, 1737, 1648, 1593, 1469, 1450, 1352, 1319, 1281, 1243, 1143, 1088, 1046, 1013, 957, 827.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]{ }^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{ClNO} 396.1150$; Found 396.1151 .

7-(4-bromophenyl)-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3ak):

Prepared by following procedure A, obtained as pale yellow solid; (28 mg , Yield $=64 \%$), m.p. $231-232{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{~ M H z}, \mathbf{C D C l} 3\right) \delta 9.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 3.94-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.95$ -2.89 (m, 2H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta$ 196.4, 149.8, 141.4, 136.2, 133.5, 132.3, 131.6, 128.7, 128.6, $127.6,126.9,125.8,124.6,123.7,123.2,122.0,121.4,121.3,116.2,113.3,97.4,45.1,39.0$, 38.3.

IR (Neat, v/cm ${ }^{-1}$) 3108, 3026, 2970, 2924, 1738, 1649, 1594, 1469, 1450, 1431, 1353, 1281, 1230, 1216, 1160, 1143, 1071, 957.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{BrNO} 440.0645$; Found 440.0637 .

5. General procedure for product 4:

General procedure B: In a 10 mL oven dried reaction tube with a magnetic stir bar was charged with 2-phenylindole derivatives $\mathbf{1}(0.11 \mathrm{mmol}, 1.1$ equiv), Iodonium ylide $2(0.10$ mmol, 1.0 equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and CsOAc (1.0 equiv) in 2 mL of HFIP under N_{2} atmosphere. Then the tube was capped with septa and the resulting mixture was stirred at 70 ${ }^{\circ} \mathrm{C}$ on oil bath for 12 h . The reaction completion was monitored by TLC. Upon completion of reaction, the solvent was evaporated under reduced pressure and the crude product was directly purified by a silica gel column chromatography by using ethyl acetate/hexane as the eluent to afford the corresponding product 4.

1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4a):

Prepared by following procedure B and obtained as pale yellow solid; (19 mg , Yield $=68 \%$), m.p. $235-236{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 24:76).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.24$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{ddd}, J=8.5,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}$, $J=6.1 \mathrm{~Hz}, \mathrm{H}), 2.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{p}, J=6.4,12.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 199.8,145.6,139.6,139.1,130.8,128.1,127.7,125.3,124.7$, $124.6,122.3,121.5,120.6,120.5$ (2C), 115.6, 111.8, 40.8, 29.5, 22.6.

IR (Neat, v/cm ${ }^{-1}$) 3257, 2922, 2850, 1627, 1550, 1507, 1457, 1430, 1378, 1339, 1251, 1180, 1124, 1111, 1038, 1019, 979, 850.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NO} 286.1227$; Found 286.1225.

6-methyl-1,2,3,9-tetrahydro-4H-dibenzo $[a, c]$ carbazol-4-one (4b):

Prepared by following procedure B obtained as pale yellow solid; (16 mg , Yield $=53 \%$), m.p. $175-176{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.49$ ($\mathrm{s}, 1 \mathrm{H}$), $9.04(\mathrm{~s}, 1 \mathrm{H}), 8.24$ ($\mathrm{d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34$ $(\mathrm{m}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{p}, J=6.3,12.9$ $\mathrm{Hz}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta$ 199.9, 145.6, 139.5, 139.2, 137.8, 131.2, 127.6, 127.2, 124.7, 124.7, 122.3, 121.2, 120.6, 120.4, 118.5, 115.2, 111.7, 40.9, 29.6, 22.7, 22.5.

IR (Neat, v/cm ${ }^{-1}$) 3288, 2922, 2852, 1718, 1675, 1589, 1487, 1449, 1369, 1284, 1260, 154, 1078, 1020, 991, 889.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO} 300.1383$; Found 300.1379.

6-ethyl-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4c):

Prepared by following procedure B obtained as pale yellow solid; (18 mg , Yield $=58 \%$), m.p. $245-246{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 30:70).
${ }^{1}$ H NMR (500 MHz, DMSO-d6) $\delta 12.60(\mathrm{~s}, 1 \mathrm{H}), 9.43$ ($\mathrm{s}, 1 \mathrm{H}$), 8.47 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{q}, J=7.5 \mathrm{~Hz}$, 2 H), $2.74(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{p}, J=6.4,12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d $\mathbf{6}$) $\delta 198.8,145.6,143.1,139.4,138.7,130.5,125.9,125.5$, 124.7, 123.8, 122.2, 122.0, 120.4, 119.2, 118.5, 114.4, 111.8, 40.4, 29.1, 28.9, 22.2, 15.8.

IR (Neat, v/cm ${ }^{-1}$) 3185, 3160, 2961, 2927, 2868, 1623, 1617, 1554, 1545, 1457, 1429, 1355, 1329, 1283, 1254, 1189, 1139, 1059, 1019, 903, 880.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO} 314.1540$; Found 314.1533.

6-(tert-butyl)-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4d):

Prepared by following procedure B obtained as pale yellow solid; (22 mg , Yield $=65 \%$), m.p. $135-136^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 30:70).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.79(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.15(\mathrm{~s}, 1 \mathrm{H})$, $8.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{p}, J=12.5,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 200.4,151.0,145.6,139.0$ (2C), 138.5, 131.0, 124.9, 124.8, 124.1, 122.5, 121.0, 120.0, 120.3, 118.1, 115.5, 111.6, 40.9, 35.6, 31.6, 29.5, 22.6.

IR (Neat, v/cm ${ }^{-1}$) 3244, 2947, 2862, 1624, 1599, 1554, 1506, 1436, 1355, 1249, 1181, 1124, 1005, 843, 795.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO} 342.1853$; Found 342.1849.

6-methoxy-1,2,3,9-tetrahydro-4H-dibenzo $[a, c]$ carbazol-4-one (4e):

Prepared by following procedure B obtained as pale yellow solid; (18 mg , Yield $=59 \%$), m.p. $234-235^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 22:78).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.35(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H})$, $8.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.87(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{p}, J=6.3,13.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 200.0,159.7,146.4,139.7,139.6,132.8,124.7,124.5,123.0$, 122.1, 120.5, 119.5, 116.9, 115.2, 114.5, 111.6, 107.6, 55.4, 40.9, 29.7, 22.6.

IR (Neat, v/cm ${ }^{-1}$) 3291, 3139, 3066, 2990, 2930, 2850, 1734, 1617, 1550, 1507, 1456, 1429, 1375, 1329, 1297, 1246, 1183, 1167, 1066, 1033, 895.

HRMS (ESI) m / z calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 316.1333$; Found 316.1332.

6-fluoro-1,2,3,9-tetrahydro-4H-dibenzo $[a, c]$ carbazol-4-one (4f):

Prepared by following procedure B obtained as pale yellow solid; (14 mg , Yield $=45 \%$), m.p. $291-292{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.52(\mathrm{dd}, J=13.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.06(\mathrm{~s}$, $1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=9.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.37$ (p, $J=6.3,12.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO-d $\mathbf{d}_{\mathbf{6}}$) $\delta 194.9,157.7(\mathrm{~d}, J=241.67 \mathrm{~Hz}), 143.2,135.4,134.6,127.5$ $(\mathrm{d}, J=10.70 \mathrm{~Hz}), 121.1,120.7(\mathrm{~d}, J=9.66 \mathrm{~Hz}), 119.7,118.4,116.7,114.6(\mathrm{~d}, J=4.46 \mathrm{~Hz})$, $113.3,110.8,110.8,110.6,108.0,107.6(d, J=25.03 \mathrm{~Hz}), 36.2,25.0,18.1$.
${ }^{19}$ F NMR ($\mathbf{4 7 0} \mathbf{~ M H z , ~ C D C l} 3$) δ-110.9.
IR (Neat, v/cm ${ }^{-1}$) 3297, 3134, 3074, 2955, 2852, 1634, 1623, 1564, 1457, 1436, 1354, 1245, 1220, 1133, 1011, 912.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FNO} 304.1133$; Found 304.1136.

6-chloro-1,2,3,9-tetrahydro-4H-dibenzo $[a, c]$ carbazol-4-one (4g):

Prepared by following procedure B obtained as pale yellow solid; (15 mg , Yield $=48 \%$), m.p. $273-274{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- \mathbf{d}_{6}) $\delta 12.80(\mathrm{~s}, 1 \mathrm{H}), 9.70(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.26$ (p, $J=12.6,6.2 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d \mathbf{d}_{6}) $\delta 198.9,147.1,139.5,138.2,132.6,130.8,126.2,125.6$, $125.3,124.1,123.6,122.4,120.8,118.6,118.3,115.3,112.0,40.1,28.9,22.0$.
IR (Neat, v/cm ${ }^{-1}$) 3284, 3059, 2920, 2850, 16217, 1553, 1503, 1456, 1426, 1339, 1251, 1173, 1128, 1086, 867, 791.
HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClNO} 320.0837$; Found 320.0841.

6-(trifluoromethyl)-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4h):

Prepared by following procedure B obtained as pale yellow solid; (14 mg , Yield $=41 \%$), m.p. $255-256{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 35:65).

Note: A trace amount of unwanted product was observed with product. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{\mathbf{6}}$) $\delta 12.95$ ($\mathrm{s}, 1 \mathrm{H}$), 10.06 (s, 1H), 8.77 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.34 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{p}, J=5.8,12.8$ $\mathrm{Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d $\mathbf{6}$) δ 199.1, 147.1, 139.6, 137.5, 130.1, 128.9, 127.1, 125.9, $125.6,124.8(\mathrm{q}, J=3.34 \mathrm{~Hz}), 124.65(\mathrm{q}, J=230.67 \mathrm{~Hz}), 123.4(\mathrm{~d}, J=3.24 \mathrm{~Hz}), 122.6,120.9$ (d, $J=4.90 \mathrm{~Hz}$), 120.6, 119.2, 116.5, 112.2, 40.1, 28.9, 22.0.
${ }^{19}$ F NMR ($\mathbf{4 7 0} \mathbf{~ M H z , ~ D M S O - ~} \boldsymbol{d}_{6}$) δ-60.43.
IR (Neat, v/cm ${ }^{-1}$) 3220, 3194, 3173, 3117, 1622, 1558, 1512, 1456, 1327, 1315, 1289, 1248, 1165, 1117, 1081, 1050, 995, 917.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO} 354.1101$; Found 354.1097.

7-methoxy-1,2,3,9-tetrahydro-4H-dibenzo $[a, c]$ carbazol-4-one (4j):

Prepared by following procedure B obtained as pale yellow solid; (18 mg , Yield $=57 \%$), m.p. $152-153{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 20:80).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 9.59(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H})$, $8.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=9.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.84(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{p}, J=12.8,6.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 200.2,157.3,143.1,139.0,137.8,130.3,125.8,125.2,124.9$, 122.7, 121.4, 121.3, 121.0, 118.5, 116.4, 111.6, 100.7, 55.5, 40.8, 29.3, 22.7.

IR (Neat, v/cm ${ }^{-1}$) 3251, 3074, 2993, 2854, 1622, 1565, 1513, 1469, 1429, 1388, 1354, 1284, 1228, 1178, 1136, 1092, 1001, 960.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{2}$ 316.1333; Found 316.1327.

7-bromo-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4k):

Prepared by following procedure B obtained as pale yellow solid; (15 mg , Yield $=43 \%$), m.p. 289-291 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 12.76(\mathrm{~s}, 1 \mathrm{H}), 9.52(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.81(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{t}, J$ $=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{p}, J=6.8,12.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, ~ D M S O-d_{6}\right) ~ \delta 198.8,146.2,139.5,137.2,130.1,129.7,128.6,125.3$, 124.2, 123.5, 122.5, 121.7, 120.7, 119.2, 118.6, 115.8, 112.0, 40.1, 28.9, 22.0.

IR (Neat, v/cm ${ }^{-1}$) 3315, 3254, 3057, 2936, 1635, 1623, 1581, 1554, 1490, 1426, 1356, 1326, 1255, 1184, 1138, 1081, 107, 979.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrNO} 364.0332$; Found 364.0333.

6,7-dichloro-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (41):

Prepared by following procedure B obtained as pale yellow solid; (13 mg , Yield $=37 \%$), m.p. $283-284^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).

Note: A trace amount of unwanted product was observed with product.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{\mathbf{6}}$) $\delta 12.81(\mathrm{~s}, 1 \mathrm{H}), 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.76$ (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{p}, J=11.8,5.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, ~ D M S O-d_{6}\right) ~ \delta 199.2,147.8,139.9,137.4,130.6,129.5,129.1,128.3$, 126.0, 123.9, 123.8, 123.0, 121.4, 120.3, 118.4, 116.5, 112.6, 40.4, 29.3, 22.3.

IR (Neat, v/cm ${ }^{-1}$) 3259, 3217, 3196, 3134, 3109, 2971, 2906, 1623, 1617, 1542, 1534, 1452, 1419, 1323, 1251, 1164, 1002, 880, 782, 743.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{NO} 354.0447$; Found 354.0438.

12-methyl-1,2,3,9-tetrahydro-4H-dibenzo $[a, c]$ carbazol-4-one (4m):

Prepared by following procedure B obtained as pale yellow solid; (16 mg , Yield $=55 \%$), m.p. $204-205{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.02(\mathrm{~s}, 1 \mathrm{H})$, $8.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.57$
$(\mathrm{m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{p}, J=12.8,6.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 200.0,145.6,138.5,137.2,130.9,130.6,128.5,128.0,126.6$, 125.6, 125.05, 122.6, 121.1, 120.3, 120.2, 115.8, 111.2, 40.9, 29.7, 22.7, 22.0.

IR (Neat, v/cm ${ }^{-1}$) 3258, 3111, 2945, 2862, 1627, 1558, 1456, 1379, 1307, 1248, 1140, 1038. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO} 300.1383$; Found 300.1378.

12-methoxy-1,2,3,9-tetrahydro-4H-dibenzo $[a, c]$ carbazol-4-one (4n):

Prepared by following procedure B obtained as pale yellow solid; (19 mg , Yield $=59 \%$), m.p. $192-193{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.65(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.08(\mathrm{~s}, 1 \mathrm{H})$, $8.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{p}, J=12.5,6.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 199.9,155.0,145.6,139.1,133.9,130.9,128.5,128.1,125.7$, $125.4,121.0,120.3,120.2,115.9,113.8,112.0,106.3,56.4,40.8,29.5,22.6$.
IR (Neat, v/cm ${ }^{-1}$) 3305, 2954, 2920, 2852, 1709, 1652, 1559, 1512, 1461, 1375, 1264, 1208, 1157, 1109, 1028, 809.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{2} 316.1333$; Found 316.1333.

11-chloro-1,2,3,9-tetrahydro-4H-dibenzo $[a, c]$ carbazol-4-one (40):

Prepared by following procedure B obtained as pale yellow solid; (17 mg , Yield $=52 \%$), m.p. $267-268{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO-d $\left.\mathbf{d}\right) \delta 12.78(\mathrm{~s}, 1 \mathrm{H}), 9.58-9.49(\mathrm{~m}, 1 \mathrm{H})$, $8.52-8.48(\mathrm{~m}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.31$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{p}, J=6.2,11.6 \mathrm{~Hz}$, 2 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d $\mathbf{6}$) $\delta 198.8$, 145.2, 140.0, 139.0, 130.2, 129.3, 127.8, 127.3, $125.5,123.6,122.5,121.9,120.6,120.1,119.9,114.5,111.4,40.2,28.7,22.1$.
IR (Neat, v/cm ${ }^{-1}$) 3265, 3226, 3196, 3124, 2949, 1630, 1617, 1558, 1545, 1456, 1355, 1325, 1212, 1179, 1142, 1120, 1066, 1041, 980, 919.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClNO} 320.0837$; Found 320.0828.

3-methyl-1,2,3,9-tetrahydro-4H-dibenzo $[a, c]$ carbazol-4-one (4p):

Prepared by following procedure B obtained as pale yellow solid; (17 mg , Yield $=58 \%$), m.p. $221-222^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 20:80).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{~ M H z}, \mathbf{C D C l} 3\right) \delta 9.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.11(\mathrm{~s}, 1 \mathrm{H}), 8.21$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{ddd}, J=8.6,6.9,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.83(\mathrm{~m}$, $1 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 203.2,144.3,139.0,138.1,130.8,128.2,127.9,125.6,125.6$, $124.8,122.6,121.1,121.1,120.4,120.1,115.9,111.6,43.3,30.7,28.6,16.1$.
IR (Neat, v/cm ${ }^{-1}$) 3331, 2962, 2929, 2867, 2828, 1632, 1558, 1507, 1457, 1338, 1326, 1248, 1163, 1075, 988, 934.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO} 300.1383$; Found 300.1381.

2-methyl-1,2,3,9-tetrahydro-4H-dibenzo [a,c]carbazol-4-one (4q):

Prepared by following procedure B obtained as pale yellow solid; (19 mg, Yield $=63 \%$), m.p. $168-169^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1}$ H NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 12.67$ ($\mathrm{s}, 1 \mathrm{H}$), 9.59 (dd, $J=6.4,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.55(\mathrm{dd}, J=6.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=6.4,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86 (dd, $J=17.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=17.1,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=15.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, ~ D M S O-d_{6}\right) \delta 198.9,144.9,139.4,138.6,130.0,127.5,127.2,125.3$, 124.8, 123.7, 122.3, 121.9, 120.4, 120.1, 118.9, 114.8, 111.8, 48.2, 36.9, 29.2, 21.1.

IR (Neat, v/cm ${ }^{-1}$) 3109, 2951, 2923, 1653, 1616, 1570, 1507, 1487, 1430, 1339, 1283, 1260, 1138, 1109, 1018, 964.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO} 300.1383$; Found 300.1387.

2,2-dimethyl-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4r):

Prepared by following procedure B obtained as pale yellow solid; (18 mg , Yield $=58 \%$), m.p. $171-172{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.75$ ($\mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $9.27(\mathrm{~s}, 1 \mathrm{H}), 8.25$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=8.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (ddd, $J=8.6,6.9$,
$1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.36$ $(\mathrm{m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 200.1,143.7,139.6,139.3,130.5,127.8,127.7,125.2,124.7$, $124.4,122.4,121.6,120.5,120.4,119.3,115.8,111.8,54.3,43.4,33.1,28.6$.
IR (Neat, v/cm ${ }^{-1}$) 3122, 3098, 2957, 2871, 1743, 1684, 1653, 1635, 1575, 1554, 1448, 1369, 1258, 1138, 1071, 999, 930.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO} 314.1540$; Found 314.1542.

2-pentyl-1,2,3,9-tetrahydro-4H-dibenzo [a,c]carbazol-4-one (4s):

Prepared by following procedure B obtained as pale yellow solid; (22 mg , Yield $=63 \%$), m.p. $215-216^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75). ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{\mathbf{6}}$) $\delta 12.68(\mathrm{~s}, 1 \mathrm{H}), 9.57(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H})$, $8.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.48(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.25(\mathrm{dd}, J=16.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{t}, J=12.46 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}$, $1 \mathrm{H}), 1.64-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~s}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , DMSO-d6) δ 199.4, 145.3, 139.9, 139.1, 130.4, 128.0, 127.6, 125.6, $125.4,124.2,122.7,122.4,121.0,120.6,119.6,115.3,112.4,46.8,35.7,35.6,34.5,31.9,26.3$, 22.6, 14.5.

IR (Neat, v/cm ${ }^{-1}$) 3231, 3190, 3161, 3080, 2953, 2920, 2849, 1631, 1616, 1584, 1559, 1457, 1378, 1339, 1284, 1142, 1019, 953.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO} 356.2009$; Found 356.2010.
2-phenyl-1,2,3,9-tetrahydro-4H-dibenzo $[a, c]$ carbazol-4-one (4t):

Prepared by following procedure B obtained as pale yellow solid; (20 mg , Yield $=55 \%$), m.p. $157-158{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 11.46(\mathrm{~s}, 1 \mathrm{H}), 9.71(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.43$ $(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=11.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.63$ $-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{td}, J=12.3$, $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.22-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.06(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl3) $\delta 199.0,144.6,143.8,139.6,139.4,130.7,129.5,128.9,127.9$, $127.8,126.9,126.8,125.4,124.8,124.3,122.3,121.7,120.6,120.5,115.4,111.8,47.3,40.4$, 37.4 .

IR (Neat, v/cm ${ }^{-1}$) 3199, 2917, 2849, 1653, 1610, 1550, 1506, 1457, 1433, 1380, 1340, 1257, 1159, 1047, 1022, 994.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NO} 362.1540$; Found 362.1545.

2-(p-tolyl)-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one: (4u):

Prepared by following procedure B obtained as pale yellow solid; (19 mg , Yield $=51 \%$), m.p. $276-277^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{\mathbf{6}}$) $\delta 12.70(\mathrm{~s}, 1 \mathrm{H}), 9.66-9.59(\mathrm{~m}, 1 \mathrm{H}), 8.59$ - $8.53(\mathrm{~m}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-$ $7.64(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.00-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.64(\mathrm{~m}$, $1 \mathrm{H}), 3.62-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (126 MHz, DMSO-d6) δ 198.2, 144.7, 141.0, 139.4, 138.8, 135.7, 130.0, 129.1, 127.7, 127.2, 126.9, 125.4, 124.9, 123.6, 122.1, 122.0, 120.6, 120.2, 118.9, 114.7, 111.9, 46.9, 39.1, 36.7, 20.7.

IR (Neat, v/cm ${ }^{-1}$) 3257, 3165, 3121 3010, 2952, 2919, 2891, 1636, 1617, 1559, 1448, 1419, 1378, 1330, 1283, 1252, 1168, 1048, 953, 810.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO} 376.1696$; Found 376.1699.

2-(4-methoxyphenyl)-1,2,3,9-tetrahydro-4H-dibenzo $[a, c]$ carbazol-4-one(4v):

Prepared by following procedure B obtained as pale yellow solid; (19 mg , Yield $=48 \%$), m.p. $226-227^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: $30: 70$).
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3) $\delta 9.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.14(\mathrm{~s}, 1 \mathrm{H}), 8.17$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.15-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 3.67-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.06(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, ~ D M S O-d_{6}\right) ~ \delta 198.3,158.0,144.9,139.4,138.8,136.1,130.1,128.0$, $127.7,127.2,125.5,125.0,123.6,122.2,122.0,120.6,120.2,119.0,114.8,114.0,112.0,55.1$, 47.2, 38.7, 36.9.

IR (Neat, v/cm ${ }^{-1}$) 3299, 3035, 2924, 2888, 2826, 1635, 1619, 1584, 1558, 1456, 1329, 1288, 1249, 1178, 1035, 952, 826.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{2}$ 392.1646; Found 392.1648.

2-(4-isopropylphenyl)-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4w):

Prepared by following procedure B obtained as pale yellow solid; (23 mg , Yield $=57 \%$), m.p. $192-194{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 22:78).
${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO-d6) $\delta 12.73$ ($\mathrm{s}, 1 \mathrm{H}$), 9.65 (dd, $J=6.6,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.59(\mathrm{dd}, J=6.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-3.96(\mathrm{~m}$, $1 \mathrm{H}), 3.79-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.83$ $(\mathrm{m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, DMSO-d6) δ 198.2, 146.6, 144.8, 141.4, 139.4, 138.8, 130.1, 127.7, $127.2,126.9,126.5,125.5,124.9,123.6,122.2,122.0,120.6,120.2,118.9,114.8,111.9,47.0$, 39.1, 36.6, 33.1, 24.0.

IR (Neat, v/cm ${ }^{-1}$) 3216, 3164, 3054, 2955, 2955, 2849, 1632, 1616, 1576, 1559, 1424, 1380, 1340, 1283, 1253, 1181, 1141, 1049, 954.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{NO} 404.2009$; Found 404.2000.

2-(4-fluorophenyl)-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4x):

Prepared by following procedure B obtained as pale yellow solid; (13 mg , Yield $=34 \%$), m.p. $160-161^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3) $\delta 9.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.64(\mathrm{~s}, 1 \mathrm{H}), 8.20$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ $(\mathrm{dd}, J=12.5,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{q}, J=8.6 \mathrm{~Hz}$, $4 \mathrm{H}), 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.59(\mathrm{~m}, 2 \mathrm{H})$, $3.11-3.06(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 198.7,162.0(\mathrm{~d}, J=230.84 \mathrm{H}), 144.4,139.5(\mathrm{~d}, J=26.42 \mathrm{~Hz})$, $130.7,128.4,128.3,128.2,127.9(\mathrm{~d}, J=2.33 \mathrm{~Hz}), 126.8,125.4,124.8,124.3,122.2,121.6$, $120.6(\mathrm{~d}, J=4.54 \mathrm{~Hz}), 119.9,115.7,115.5,115.4,111.8,47.4,39.0,37.5$.
${ }^{19}$ F NMR (470 MHz, CDCl 3) $\delta-115.99$.
IR (Neat, v/cm ${ }^{\mathbf{- 1}}$) $3310,3055,2921,2851,1700,1602,1507,1457,1340,1284,1201,1157$, 1026, 964, 830.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{FNO} 380.1446$; Found 380.1444.

2-(4-chlorophenyl)-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4y):

Prepared by following procedure B obtained as pale yellow solid; (17 mg , Yield $=43 \%$), m.p. $175-176^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 32:68).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.11(\mathrm{~s}, 1 \mathrm{H}), 8.15$ (t, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.15-$ $4.09(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.8,144.6,143.4,139.4,138.8,131.5$, $131.3,130.0,129.5,127.6,127.2,125.0,123.6,122.2,122.0,120.2,119.7,118.9,114.7,112.0$, 111.8, 46.5, 38.9, 36.2.

IR (Neat, v/cm ${ }^{-1}$) 3266, 3063, 2974, 2924, 2851, 1628, 1559, 1507, 1457, 1330, 1283, 1253, 1146, 1073, 1008, 817.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{ClNO} 396.1150$; Found 396.1146.

2-(4-bromophenyl)-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4z):

Prepared by following procedure B obtained as pale yellow solid; (20 mg , Yield $=46 \%$), m.p. $161-163{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 10.77(\mathrm{~s}, 1 \mathrm{H}), 9.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.60$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.31-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.02(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 198.6, 144.3, 142.4, 139.5, 139.3, 132.8, $130.8,129.1,128.4,128.1,128.1,125.6,125.1,124.4,122.4,121.4,120.8,120.6,120.1,115.5$, 111.9, 47.2, 40.0, 37.4.

IR (Neat, v/cm ${ }^{-1}$) 3215, 3055, 2922, 2850, 1684, 1616, 1559, 1507, 1490, 1456, 1330, 1253, 1091, 1012, 818.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{BrNO} 440.0645$; Found 440.0638.

1,3,4,10-tetrahydrobenzo[a]cyclohepta[c]carbazol-5(2H)-one (4ab):

Prepared by following procedure A, obtained as pale yellow solid; (19 mg, Yield $=62 \%$), m.p. $192-193{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 20:85).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 8.34-8.30(\mathrm{~m}, 1 \mathrm{H}), 8.28(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.52$
$(\mathrm{m}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.07$ (p, J=13.4, 6.6 Hz, 2H), 1.84 (p, $J=12.6,6.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 210.8,139.1,136.9,135.3,128.9,128.7,126.9,126.1,125.3$, 125.1, 124.3, 122.1, 120.7, 120.6, 119.9, 116.0, 111.6, 42.6, 28.5, 23.4, 21.3.

IR (Neat, v/cm ${ }^{-1}$) 3343, 3302, 3279, 2921, 2887, 2857, 1631, 1517, 1456, 1330, 1283, 1262, 1154, 1129, 1046, 1018, 975, 934.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO} 300.1383$; Found 300.1385.

7. Synthetic transformations:

i) Suzuki-Miyaura Coupling:

In a oven-dried 10 mL reaction tube, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$, potassium triphosphate $(0.18$ mmol, 2.2 equiv) and DME (2 mL) were taken. The solution was degassed with nitrogen for 10 min . After that, compound $\mathbf{3 h}(0.082 \mathrm{mmol}, 1.0$ equiv), Phenylboronic acid ($0.12 \mathrm{mmol}, 1.5$ equiv) and water (0.5 mL) was added. Then, the reaction tube was capped with septa and allowed to stir at $70^{\circ} \mathrm{C}$ in a pre-heated oil bath for the 12 h . The reaction was monitored by TLC and upon completion of the reaction, the reaction mixture was cooled to room temperature and diluted with water (5 mL) and extracted with ethyl acetate ($2 \times 10 \mathrm{~mL}$). Further, the combined organic layer was washed with brine $(10 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was concentrated under reduced pressure and the residue was purified by a silica gel column chromatography using ethyl acetate/hexane as the eluent to afford desired product $5 .{ }^{2}$

3-phenyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (5):

Obtained as pale yellow solid; (23 mg , Yield $=78 \%$), m.p. 192$194{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 20:80).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.57$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.13 (d, J $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.77 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.76(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{p}, J=12.8,6.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 197.7, 151.4, 141.1, 140.9, 136.1, 133.8, 131.7, 129.0, 127.6, $127.5,126.5$ (2C), 126.2, 125.5, 123.7, 123.6, 121.8, 121.2, 116.3, 113.6, 97.2, 39.0, 30.8, 21.5. IR (Neat, v/cm ${ }^{-1}$) 3069, 3029, 2970, 2875, 1737, 1652, 1592, 1565, 1478, 1433, 1389, 1355, 1216, 1174, 1158, 1117, 1025, 986.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NO} 362.1540$; Found 362.1537.

ii) Heck coupling reaction:

In a oven dried 10 mL reaction tube, $\mathbf{3 h}\left(0.082 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%$, $)$, $\operatorname{tri}(o-$ tolyl) phosphine ($0.016 \mathrm{mmol}, 2.2$ equiv) and $\mathrm{Et} 3 \mathrm{~N}(1 \mathrm{~mL})$ were taken. The solution was degassed with nitrogen for 10 min . After that, styrene ($0.12 \mathrm{mmol}, 1.5$ equiv) was added and the reaction tube was capped with septa and allowed to stir at $100^{\circ} \mathrm{C}$ in a pre-heated oil bath for the 12 h . The reaction was monitored by TLC and upon completion of the reaction, the mixture was quenched with water (2 mL) and extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Further, the residue was purified by a silica gel column chromatography using ethyl acetate/hexane (30/70) as the eluent to afford desired product $6 .{ }^{2}$

(E)-3-styryl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (6):

Obtained as pale yellow solid; (20 mg , Yield $=63 \%$), m.p. 192$194{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 9.40(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.66(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.28$ $(\mathrm{m}, 2 \mathrm{H}), 7.25(\mathrm{bs}, 3 \mathrm{H}), 3.67(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.80-2.76(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{p}, J=$ $12.6,6.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.8,151.4,137.5,137.3,136.2,133.8,131.8,129.2,129.1$, $128.9,127.8,126.8,126.4,125.6,125.1,123.9,123.6,123.5,121.9,121.2,116.3,113.4,97.2$, 39.0, 30.8, 21.5.

IR (Neat, v/cm ${ }^{-1}$) 3069, 3029, 2970, 2875, 1737, 1652, 1592, 1565, 1478, , 1433, 1389, 1355, 1216, 1174, 1158, 1117, 1025, 986.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO} 388.1696$; Found 388.1691.

iii) Alkenylation:

To a a solution of $\mathbf{3 a}(0.070 \mathrm{mmol}, 1.0$ equiv $), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(0.12 \mathrm{mmol}$, 1.8 equiv) in 2 mL DMF: DMSO (9:1) was added ethyl acrylate ($0.070 \mathrm{mmol}, 1.0$ equiv). Then the contents were stirred at $70{ }^{\circ} \mathrm{C}$ for 18 h . completion of reaction was checked by TLC. Upon completion of the reaction, the reaction mixture as extracted with ice-cold water and EtOAc $(2 \times 10 \mathrm{~mL})$ the solvent was evaporated under reduced pressure and the residue was purified by a silica gel column chromatography using ethyl acetate/hexane as the eluent to give compound 7. ${ }^{3}$
ethyl (E)-3-(5-oxo-5,6,7,8-tetrahydroindolo[1,2-f]phenanthridin-14-yl)acrylate (7):

Obtained as yellow solid; (19 mg , Yield $=72 \%$), m.p. $192-194{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=$ 0.5 (ethyl acetate/hexane: 30:70).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=16.0$
$\mathrm{Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.55$
(m, 1H), 7.52 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5$
$\mathrm{Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{p}, J=13.6,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 197.1, 167.8, 150.0, 138.0, 135.1, 133.5, 129.6, 129.2, 127.8, 127.7, 126.6, 126.5, 124.9, 124.4, 123.1, 120.2, 120.0, 116.4, 114.7, 108.6, 60.6, 38.8, 30.9, 21.6, 14.6.

IR (Neat, v/cm ${ }^{-1}$) 3108, 3060, 2942, 2902, 1701, 1652, 1608, 1596, 1523, 1479, 1454, 1382, 1313, 1272, 1183, 1086.

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{3} 384.1595$; Found 384.1588.

iv) 1,6-conjugate addition of 3 a with \boldsymbol{p}-quinone methide:

To a solution of 3a (0.070 mmol , 1.0 equiv), 4-(2-bromobenzylidene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one ($0.070 \mathrm{mmol}, 1.0$ equiv) in 2 mL DCE was added ZnBr_{2} (10 $\mathrm{mol} \%)$. Then the contents were stirred at room temperature for 1 h . Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by a silica gel column chromatography using ethyl acetate/hexane as the eluent to give compound 8. ${ }^{3}$

14-((2-bromophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)-7,8-dihydroindolo[1,2f]phenanthridin-5(6H)-one (8):

Obtained as light yellow solid; (39 mg , Yield $=85 \%$), m.p. 201-202 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane: 25:75).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.19(\mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H})$, 7.19 (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{dd}, J=8.1,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.79(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathbf{C D C l} 3\right) \delta 197.2,152.5,150.9,142.8,135.9,133.3,133.1,133.0,132.3$, $131.8,131.5,128.4,128.1,127.6,127.5,126.8,126.4$ (2C), 126.3, 126.1 (2C), 125.5, 125.4, $122.7,121.7,116.1,114.5,113.9,49.3,38.9,34.5,31.4,30.5,21.9$.
IR (Neat, v/cm ${ }^{-1}$) 3634, 3072, 2954, 2930, 2853, 1713, 1636, 1588, 1515, 1450, 1434, 1394, 1365, 1329, 1289, 1228, 1187, 1115, 1030.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{BrNO}_{2}$ 658.2316; Found 658.2306.

v) Reduction reaction:

To a solution of $\mathbf{3 p}$ ($0.1 \mathrm{mmol}, 1.0$ equiv), in 2 mL methanol at $0^{\circ} \mathrm{C}$ was added portion wise $\mathrm{NaBH}_{3} \mathrm{CN}$ ($0.1 \mathrm{mmol}, 1.0$ equiv). Then the contents were stirred at room temperature until the completion of $\mathbf{3 p}$. Upon completion of the reaction, the reaction mixture quenched with water. Further, the crude material extracted with EtOAc ($2 \times 10 \mathrm{~mL}$) and combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was collected and concentrated under reduced pressure, and the residue was purified by a silica gel column chromatography using ethyl acetate/hexane as the eluent to give compound $9 .{ }^{2}$

14-methyl-5,6,7,8-tetrahydroindolo[1,2-f]phenanthridine (9):

Obtained as light green solid; (23 mg , Yield $=80 \%$), m.p. $192-194{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}$ $=0.5$ (ethyl acetate/hexane: 30:70).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{qd}, J=$ $7.1,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{bs}, 2 \mathrm{H})$, 2.88 (bs, 2H), 2.85 (s, 3H), $2.05-1.94(m, 4 H)$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl3) $\delta 135.2,131.4,130.9,130.4,130.4,126.9,126.6,126.0,124.7$, $121.8,120.7,120.5,118.3,115.5,112.2,104.8,30.3,25.4,23.1,22.2,12.2$.

IR (Neat, v/cm ${ }^{-1}$) 3062, 3043, 2924, 2854, 1726, 1623, 1599, 1545, 1479, 1382, 1278, 1208, 1122, 1078, 1026.
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N} 286.1591$; Found 286.1582.

8. XRD data

X-ray data for the compounds $\mathbf{3 a b}$ and $\mathbf{4 r}$ were collected at room temperature on a Bruker D8 QUEST instrument with an $\mathrm{I} \mu \mathrm{S}$ Mo micro source ($\lambda=0.71073 \mathrm{~A}$) and a PHOTON-100 detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs [1]. The structure was solved using intrinsic phasing method [2] and further refined with the SHELXL [2-3] program and expanded using Fourier
techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms $[\mathrm{C}-\mathrm{H}$ $=0.93-0.97 \AA$, and $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ for methyl H or $1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ for other H atoms $]$.

Sample Preparation for crystal growth for 3ab:

In a 5 mL vial, compound $\mathbf{3 a b}$ was dissolved in $3: 1$ ratio of CDCl_{3} and Hexane solvent (0.6 $\mathrm{mL}: 0.2 \mathrm{~mL}$). The content kept for the slow evaporation over three days. After three days' pale yellow colour crystals were generated. The generated crystals were collected and send for the X-ray crystallographic analysis.

Colour code: Carbon (Light-gray), Oxygen (Red), Nitrogen (Blue)

CCDC	2156734
Formula	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}$
Formula weight	313.4000
Wavelength	0.71073
Temperature (K)	293
Crystal system	Orthorhombic
Space group	P b c a
$\mathrm{a}(\AA)$	$16.6240(5)$
$\mathrm{b}(\AA)$	$9.8728(3)$
$\mathrm{c}(\AA)$	$19.5796(6)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	90
$\gamma\left({ }^{\circ}\right)$	90
$\mathrm{~V}(\mathrm{~cm})^{3}$	$3213.51(17)$
Z	8
Density	1.296
$\mu(\mathrm{~mm})^{-1}$	0.079
$\mathrm{~F}(000)$	1328.6
No. of ref.	3391
Unique ref.	2353
R1	0.0452
wR2	0.1226
G. O. F.	1.024

Fig. 1: ORTEP drawing of the compound 3ab showing thermal ellipsoids at the 30\% probability level.

Colour code: Carbon (Light-gray), Oxygen (Red), Nitrogen (Blue)

(b) XRD data of $4 \mathbf{r}$

Sample Preparation for crystal growth for 4r:

The compound $\mathbf{4 r}$ was dissolved in $3: 1$ ratio of CDCl_{3} and Hexane solvent ($0.6 \mathrm{~mL}: 0.2 \mathrm{~mL}$). The content kept for the slow evaporation over three days. After three days' crystals were generated. The generated crystals were collected and send for the X-ray crystallographic analysis.

Colour code: Carbon (Light-gray), Nitrogen (Blue), Oxygen (Red)

CCDC	2156735
Formula	$\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{2}$
Formula weight	315.3720
Wavelength	0.71073
Temperature (K)	296
Crystal system	Monoclinic
Space group	C 1 c 1
$\mathrm{a}(\AA)$	$5.1663(15)$
$\mathrm{b}(\AA)$	$20.190(7)$
$\mathrm{c}(\AA)$	$14.945(5)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	$96.836(13)$
$\gamma\left({ }^{\circ}\right)$	90
$\mathrm{~V}(\mathrm{~cm})^{3}$	$1547.8(8)$
Z	4
Density	1.353
$\mu(\mathrm{~mm})^{-1}$	0.087
$\mathrm{~F}(000)$	664.0
No. of ref.	2695
Unique ref.	2601
R1	0.0937
wR2	0.1845
G. O. F.	1.285

Fig. 2: ORTEP drawing of the compound $4 \boldsymbol{r}$ showing thermal ellipsoids at the 30% probability level.

Colour code: Carbon (Light-gray), Oxygen (Red), Nitrogen (Blue)

9. References:

1. (a) Yang, S.D.; Sun, C.L.; Fang, Z.; Li, B.J.; Li, Y.Z.; Shi, Z.J. Angew. Chem. Int. Ed. 2008, 47, 1473-1476. (b) Mao, J.; Wang, Z.; Xu, X.; Liu, G.; Jiang, R.; Guan, H.; Zheng, Z.; Walsh, P.J. Angew. Chem. Int. Ed. 2019, 58, 11033-11038. (c) Markandeya, S.V.; Renuka, C.; Lakshmi, P.K.; Rajesh, A.; Sridhar, C.; Babu, K.R. Synth. Comm., 2018, 48, 135-145. (d) Xia, X.D.; Xuan, J.; Wang, Q.; Lu, L.Q.; Chen, J.R.; Xiao, W.J. Adv. Synth. Catal. 2014, 356, 28072812. (e) Prior, A.M.; Yu, X.; Park, E.J.; Kondratyuk, T.P.; Lin, Y.; Pezzuto, J.M.; Sun, D. Bioorg. Med. Chem. Lett. 2017, 27, 5393-5399. (f) Kraus, G.A.; Guo, H.; Kumar, G.; Pollock III, G.; Carruthers, H.; Chaudhary, D.; Beasley, J. Synthesis, 2010, 8, 1386-1393. (g) Bellezza, D.; Noverges, B.; Fasano, F.; Sarmiento, J.T.; Medio-Simón, M.; Asensio, G. Eur. J. Org. Chem. 2019, 1229-1235. (h) Fu, W.; Yang, K.; Chen, J.; Song, Q. Org. Biomol. Chem. 2017, 15, 8354-8360.
2. (a) Nunewar, S., Kumar, S., Pandhare, H., Nanduri, S. and Kanchupalli, V., Org. Lett. 2021, 23, 4233-4238. (b) Kumar, S., Nunewar, S. and Kanchupalli, V., Asian J. Org. Chem., 2022, 11, 202100689.
3. Thavaselvan, S. and Parthasarathy, K., Org. Lett. 2020, 22, 3810-3814.

10. NMR data:

7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3a):

$\stackrel{N}{i}$

$\underset{\sim}{\infty} \underset{\sim}{\infty}$

3-methyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3b):

3-ethyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3c):

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 d}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3-methoxy-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3e):

3-fluoro-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3f):

3-chloro-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one: (3g):

 றુற NiNiNini

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 h}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
-197.2
-
$\begin{array}{lll}\stackrel{\infty}{\infty} & 0 & m \\ & \underset{m}{1} & \stackrel{n}{N}\end{array}$

3-(trifluoromethyl)-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one(3i):

$\stackrel{\circ}{\circ}$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 i}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
M

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 i}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5－oxo－5，6，7，8－tetrahydroindolo［1，2－f］phenanthridine－3－carbonitrile（3j）：

0
0
0 ヴ ற

2-methoxy-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3k):

2-bromo-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (31):

2,3-dichloro-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3m):

7,8-dihydrobenzo[j]indolo[1,2-f]phenanthridin-9(6H)-one (3n):

(

9,10-dihydrobenzo[i]indolo[1,2-f]phenanthridin-7(8H)-one (30):

14-methyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3p):

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 q}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5-oxo-5,6,7,8-tetrahydroindolo[1,2-f]phenanthridine-14-carbaldehyde (3r):

13-methoxy-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3s):

12-fluoro-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3v):

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 v}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\text { n }}{\stackrel{\rightharpoonup}{\circ}}$

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} 90$
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 v}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5-oxo-5,6,7,8-tetrahydroindolo[1,2-f]phenanthridine-12-carbonitrile (3w):

11-chloro-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3x):
$\stackrel{\circ}{\circ}$

11-phenyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3y):

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 y}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
-197.6
○

7-methyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3aa):

-197.8

7,7-dimethyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3ab):

7-pentyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3ac):

が

7-phenyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3ae):

7-(p-tolyl)-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3af):

7-(4-methoxyphenyl)-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3ag):

7-(4-isopropylphenyl)-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3ah):

7-(4-fluorophenyl)-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3ai):

${ }^{19}$ F NMR of compound 3ai（ $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

7-(4-chlorophenyl)-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3aj):

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 a j}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
-196.4

No

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 a j}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

7-(4-bromophenyl)-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (3ak):

が
 $\stackrel{i}{i}$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 a k}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4a):

6-methyl-1,2,3,9-tetrahydro-4H-dibenzo [a,c]carbazol-4-one (4b):

6-ethyl-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4c):

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 c}$ (126 MHz , DMSO- d_{6})

6-(tert-butyl)-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4d):

6-methoxy-1,2,3,9-tetrahydro-4H-dibenzo [a,c]carbazol-4-one(4e):

றn min min NiNH

6-fluoro-1,2,3,9-tetrahydro-4H-dibenzo [a,c] carbazol-4-one (4f):

${ }^{19}$ F NMR of compound $\mathbf{4 f}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

6-chloro-1,2,3,9-tetrahydro-4H-dibenzo [a,c]carbazol-4-one (4g):
®
N
1
둥

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 g}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
-198.9
$\stackrel{\circ}{\infty} \underset{\sim}{\infty}$

6-(trifluoromethyl)-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4h):

レ
N
i

 m m m m NiNiNiNiNivivi

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 h}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6})

$\stackrel{\sim}{\infty} \stackrel{\circ}{\sim}$

${ }^{19}$ F NMR of compound $\mathbf{4 h}$ (470 MHz , DMSO- d_{6})

7-methoxy-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4j):

7-bromo-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4k):

6,7-dichloro-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (41):

12-methyl-1,2,3,9-tetrahydro-4H-dibenzo $[a, c]$ carbazol-4-one (4m):

12-methoxy-1,2,3,9-tetrahydro-4H-dibenzo [a,c]carbazol-4-one (4n):

11-chloro-1,2,3,9-tetrahydro-4H-dibenzo [a,c]carbazol-4-one (40):

3-methyl-1,2,3,9-tetrahydro-4H-dibenzo [a,c]carbazol-4-one (4p):

©

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 p}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{m}{\tilde{y}} \underset{\sim}{n} \stackrel{0}{\infty} \underset{\sim}{\infty}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 p}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2-methyl-1,2,3,9-tetrahydro-4H-dibenzo [a,c]carbazol-4-one (4q):

2,2-dimethyl-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4r):

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 r}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2-pentyl-1,2,3,9-tetrahydro-4H-dibenzo [a,c]carbazol-4-one (4s):

2-phenyl-1,2,3,9-tetrahydro-4H-dibenzo $[a, c]$ carbazol-4-one (4t):

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 t}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\circ}{\circ}$

2-(p-tolyl)-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4u):

O
N
N

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 u}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6})
-198.2

2-(4-methoxyphenyl)-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4v):

2-(4-isopropylphenyl)-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4w):

2-(4-fluorophenyl)-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4x):

${ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{4 x}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2-(4-chlorophenyl)-1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one (4y):

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 y}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
-197.8

¢

2-(4-bromophenyl)-1,2,3,9-tetrahydro-4H-dibenzo $[a, c]$ carbazol-4-one (4z):

1,3,4,10-tetrahydrobenzo[a]cyclohepta[c]carbazol-5(2H)-one (4ab):

 の $\infty \infty \infty \infty \infty$

○்

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 a b}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3-phenyl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (5):

$\stackrel{\stackrel{\rightharpoonup}{N}}{\stackrel{\rightharpoonup}{1}}$

(E)-3-styryl-7,8-dihydroindolo[1,2-f]phenanthridin-5(6H)-one (6):

ethyl (E)-3-(5-oxo-5,6,7,8-tetrahydroindolo[1,2-f]phenanthridin-14-yl)acrylate (7):

$\stackrel{\circ}{\circ}$

14-((2-bromophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)-7,8-dihydroindolo[1,2f]phenanthridin-5(6H)-one (8):

14-methyl-5,6,7,8-tetrahydroindolo[1,2-f]phenanthridine (9):

7，8－dihydroindolo［1，2－f］phenanthridin－5（6H）－one－1，2，3，4－d4（3a－d_{4} ）：

1,2,3,9-tetrahydro-4H-dibenzo[a,c]carbazol-4-one-5,6,7,8- d_{4} (4a- d_{4}):

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 a}-\boldsymbol{d} \mathbf{4}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]
[^0]:
 ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 a}-\boldsymbol{d}_{4}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

