Supporting Information

Enantioselective Pd-Catalyzed Dearomative Reductive Heck and Domino Heck-Suzuki Reactions of 2-CF₃-Indoles

Ren-Xiao Liang,* Jian-Fei Chen, Ying-Ying Huang, Ya-Ping Yu, Han-Yue Zhang, Yu-Feng Song, Gavin Chit Tsui* and Yi-Xia Jia*

Table of Contents:

1. General information	S1
2. Preparation of 2-CF ₃ -indole 1	S1
3. Preparation of sodium tetraarylborates	S3
4. Procedure for enantioselective dearomative reductive Heck of 1	
5. Procedure for enantioselective Heck-Suzuki reaction of 1 with Ar ₄ BNa	S88
6. Synthetic transformations	S133
7. Crystal report of compounds 2f and 3a	S139
8. References	S143

1. General information

Reactions and manipulations involving organometallic or moisture sensitive compounds were carried out under nitrogen atmosphere and glassware was dried by heating gun for 15 min prior to use. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on Bruker AVANCE III 400 MHz or 600 MHz using CDCl₃ as solvent and TMS as internal standard. Anhydrous 1,4-dioxane and toluene were freshly distilled over Na and benzophenone. Anhydrous DCM, Et₃N, and DMF were freshly distilled over CaH₂. Melting points were measured on a Büchi Melting Point B-545 apparatus and uncorrected. Commercial reagents were used as received without further purification unless otherwise noticed. HRMS were recorded on Thermo Scientific LTQ Orbitrap XL. Optical rotations were determined using a Rudolph Autopol IV polarimeter. Chiral HPLC analyses were performed using Agilent 1260 chromatography. Column chromatography was carried out using silica gel (200-300 mesh). Ligands **L1-L9** were purchased from commercial sources, and ligands **L10-L17** were prepared according to the literature procedures and used directly as received.^[1,2]

2. Synthesis of 2-CF₃-indole 1

2.1 For compounds 1a-1o

Step 1:^[3]

To a three-neck bottom flask equipped with a condenser was charged with Ph₃P (7.86 g, 30 mmol), CCl₄ (40 mL), and CF₃COOH (10 mmol) at 0 $^{\circ}$ C under a nitrogen atmosphere. After stirring for 15 min, 2-aminobenzyl alcohol (10 mmol) and Et₃N (1.4 mL, 10 mmol) was then added respectively to the reaction mixture via a syringe. The resulting mixture was allowed to reflux for 2 h. When the reaction was completed, the solution was concentrated under reduced pressure. The residue was washed with EtOAc for three times, and the precipitate was removed by filtration. The filtrate was concentrated and purified by column chromatography on silica gel eluting with EtOAc/petroleum ether 1:50 (v/v) to afford compound **S1**.

Step 2:

To a 100 mL flask was charged with benzoic acid derivative (977 mg, 8 mmol), anhydrous DCM (20 mL), and catalytic amount of DMF at 0 $^{\circ}$ C. The mixture was stirred for 30 minutes. Then, (COCl)₂ (0.89 mL, 1.3 equiv) was added dropwise via a syringe. The resulting mixture was allowed to stir at room temperature for 4 h. The solution was concentrated under reduced pressure to afford the crude acid chloride **S2**,

which was used directly for the next step without further purification.

Step 3:

To a suspension of **S1** (1.0 equiv), sodium hydroxide (2.5 equiv), and TBAB (20 mol%) in DCM (0.5 M with respect to **S1**) was added a solution of **S2** (1.5 equiv, 2 M) in DCM dropwise at 0 °C. The reaction mixture was stirred at 0 °C for 30 minutes. After adding additional 0.5 equivalent of **S2** in DCM (2 M) dropwise, the resulting mixture was allowed to stir at room temperature overnight. The solution was extracted with DCM and the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with EtOAc/petroleum ether (1:100) to afford compounds **1a-1o**.

2.2 For compounds 1p-1t

Step 1:^[4]

To a flask equipped with a condenser was charged with Ph₃P (34.5 g, 132 mmol), Et₃N (7.3 mL, 53 mmol), CCl₄ (21.1 mL, 220 mmol), and CF₃CO₂H (44 mmol) at 0 °C under nitrogen atmosphere. After stirring for 10 min, a solution of *o*-methylaniline (44 mmol) in CCl₄ (21.1 mL, 220 mmol) was added dropwise to the reaction mixture. Upon completion of the addition, the reaction mixture was allowed to reflux for 3 h. The solution was then concentrated under reduced pressure and petroleum ether was then added. The precipitate was removed via filtration and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with EtOAc/petroleum ether (1:100) to afford compound **S3**.

Step 2:^[5]

To a flask was charged with Pd(dba)₂ (11.6 mg, 0.02 mmol, 1.0 mol%), SIPrHCl (8.6 mg, 0.022 mmol, 1.1 mol%), anhydrous KOAc (392 mg, 4.0 mmol, 2.0 equiv) and K₂CO₃ (884 mg, 6.4 mmol, 3.2 equiv) under N₂ atmosphere. Toluene (2 mL) was introduced via a syringe. The resulting mixture was stirred at room temperature for 10 min, then a solution of **S3** (2.0 mmol, 1.0 equiv) in 3 mL toluene were then added. After adding additional 3 mL of toluene, the reaction mixture was allowed to stir at 110 °C (oil bath) for 12 h. When the reaction was completed, the solution was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with EtOAc/petroleum (1:100) to afford compound **S4**.

Step 3:

To a suspension of S4 (1.0 equiv), sodium hydroxide (2.5 equiv), and TBAB (20 mol%) in DCM (0.5 M with respect to S4) was added a solution of 2-bromobenzoyl chloride (1.5 equiv, 2 M) in DCM dropwise at 0 °C. The reaction mixture was stirred at 0 °C for 30 minutes. After adding additional 0.5 equivalent of 2-bromobenzoyl chloride in DCM (2 M) dropwise, the resulting mixture was allowed to stir at room temperature overnight. The solution was extracted with DCM and the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with EtOAc/petroleum ether (1:100) to afford compounds **1p-1t**.

3. Preparation of sodium tetraarylborates

Sodium tetraarylborates were prepared according to the literature.^[6] To a suspension of Mg powder (6.6 equiv) in THF (20 mL) was added a grain of iodine, then a solution of aryl bromides (6.0 equiv) in THF (20 mL) was slowly added. The resulting mixture was stirred at room temperature for 3 h, giving a dark gray solution of the aryl Grignard reagent. Upon addition of NaBF₄ (1.0 equiv), the heterogeneous reaction mixture was stirred for additional 48-72 h. The reaction mixture was then poured into a solution of Na₂CO₃ in water and stirred for 20 min. After filtering, the filtrate was extracted with ethyl acetate, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was recrystallized from petroleum ether to afford sodium tetraarylborates.

(2-Bromophenyl)(2-(trifluoromethyl)-1H-indol-1-yl)methanone (1a):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); white solid, 95% yield (for the last step); m.p. 74-76 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.69 (dd, J = 7.8, 1.3 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.57 (dd, J = 7.4, 1.9 Hz, 1H), 7.54-7.43 (m, 2H), 7.31 (s, 1H), 7.29-7.22 (m, 1H), 7.18-7.08

(m, 1H), 6.44 (d, J = 8.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 165.5, 137.0, 136.6, 133.9, 133.0, 130.3, 128.1, 127.8, 127.2, 126.8, 123.9, 122.6, 120.7 (q, J = 267.0 Hz), 137.8, 115.1 (q, J = 4.5 Hz), 113.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.4 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₉BrF₃NONa⁺ (M+Na)⁺ 389.9716, found 389.9717.

(2-Bromo-4-methoxyphenyl)(2-(trifluoromethyl)-1H-indol-1-yl)methanone (1b):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); white solid 85% yield (for the last step); m.p. 81-83 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.7 Hz, 1H), 7.51 (d, J = 8.6 Hz, 1H), 7.28 (s, 1H), 7.23 (d, J = 7.3 Hz, 1H), 7.24-7.18 (m, 2H), 7.01 (dd, J = 8.6, 2.5 Hz,

1H), 6.58 (dd, J = 8.5, 1.3 Hz, 1H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 162.8, 137.2, 132.3, 128.3, 128.2, 127.8, 127.1, 126.6, 123.6, 122.5 (d, J = 5.0 Hz), 120.7 (q, J = 267.0 Hz), 122.0, 119.4 (d, J = 2.8 Hz), 114.2 (q, J = 5.0 Hz), 113.9 (d, J = 1.6 Hz), 55.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.1 ppm. HRMS m/z (ESI+): Calcd for C₁₇H₁₁BrF₃NO₂Na⁺ (M+Na)⁺ 419.9817, found 419.9815.

(2-Bromo-4-methylphenyl)(2-(trifluoromethyl)-1H-indol-1-yl)methanone (1c):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); white solid 88% yield (for the last step); m.p. 87-89 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.64 (d, *J* = 7.9 Hz, 1H), 7.54 (d, *J* = 8.9 Hz, 1H), 7.31 (s, 1H), 7.26 (d, *J* = 5.9 Hz, 1H), 7.19 (t, *J* = 7.9 Hz, 1H), 7.13 (d, *J* = 3.0 Hz,

1H), 7.03 (dd, J = 8.9, 3.1 Hz, 1H), 6.47 (d, J = 8.6 Hz, 1H), 3.84 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 165.7, 144.2, 137.1, 134.5, 133.6, 130.4, 128.8, 127.6 (q, J = 40.0 Hz), 127.2, 126.7, 123.7, 122.5, 120.71, 120.67 (q, J = 267.0 Hz), 114.6 (q, J = 5.0 Hz), 113.9, 21.3. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.2 ppm. HRMS m/z (ESI+): Calcd for C₁₇H₁₁BrF₃NONa⁺ (M+Na)⁺ 403.9868, found 403.9870.

(2-Bromo-4-chlorophenyl)(2-(trifluoromethyl)-1H-indol-1-yl)methanone (1d):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); white solid 77% yield (for the last step); m.p. 94-96 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.53-7.48 (m, 2H), 7.30 (t, *J* = 7.4 Hz, 2H), 7.21 (t, *J* = 8.4 Hz, 1H), 6.58 (d, *J* = 8.4 Hz, 1H). ¹³C

NMR (100 MHz, CDCl₃) δ 164.8, 138.7, 136.9, 134.9, 133.8, 131.3, 128.6, 128.3 (q, *J* = 40.0 Hz),127.2, 127.0, 124.1, 122.8, 121.5, 120.6 (q, *J* = 267.0 Hz), 115.2 (q, *J* = 5.0 Hz), 113.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.2 ppm. HRMS *m*/*z* (ESI+): Calcd for C₁₆H₈BrClF₃NONa⁺ (M+Na)⁺ 423.93221, found 423.9325.

(2-Bromo-4-fluorophenyl)(2-(trifluoromethyl)-1H-indol-1-yl)methanone (1e):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); white solid 79% yield (for the last step); m.p. 98-100 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.8 Hz, 1H), 7.60 (dd, J = 8.6, 5.7 Hz, 1H), 7.44 (dd, J = 8.1, 2.4 Hz, 1H), 7.30 (d, J = 13.1 Hz, 2H), 7.23-7.18 (m, 2H), 6.57 (d,

J = 8.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 164.1 (d, J = 257.0 Hz), 137.0, 132.8 (d, J = 4.0 Hz), 132.3 (d, J = 9.0 Hz), 127.2, 127.0, 124.1, 122.8, 122.0 (d, J = 11.0 Hz), 121.7, 121.4, 120.5 (q, J = 267.0 Hz), 115.8 (d, J = 22.0 Hz), 115.6 (q, J = 5.0 Hz), 113.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.2, -104.2 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₈BrF₄NONa⁺ (M+Na)⁺ 419.9818, found 419.9815.

(2-Bromo-4-trifluoromethylphenyl)(2-(trifluoromethyl)-1H-indol-1-yl)methanone (1f):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); white solid 62% yield (for the last step); m.p. 95-97 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.96 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.34 (s, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.21

(t, J = 7.9 Hz, 1H), 6.58 (d, J = 8.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 164.4, 140.0, 136.9, 134.7 (q, J = 34.5 Hz), 130.8 (q, J = 4.5 Hz), 130.6, 127.8 (q, J = 40.5 Hz), 127.3, 127.2, 125.1 (q, J = 3.0 Hz), 124.4, 122.9, 122.5 (q, J = 272.0 Hz), 121.1, 120.5 (q, J = 267.0 Hz), 115.8 (q, J = 4.5 Hz), 113.8. ¹⁹F NMR (377 MHz, CDCl₃) δ - 58.3, -63.1 ppm. HRMS *m*/*z* (ESI+): Calcd for C₁₇H₈BrF₆NONa⁺ (M+Na)⁺ 457.9586, found 457.9586.

(2-Bromo-5-methoxyphenyl)(2-(trifluoromethyl)-1H-indol-1-yl)methanone (1g):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); white solid 81% yield (for the last step); m.p. 106-108 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.64 (d, J = 7.8 Hz, 1H), 7.55 (d, J = 8.2 Hz, 1H), 7.38 (s, 1H), 7.30-7.28 (m, 2H), 7.24 (d, J = 7.2 Hz, 1H), 7.14 (t, J = 7.2 Hz,

1H), 6.46 (d, J = 8.0 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 138.5, 137.0, 136.3, 133.8 (d, J = 28.7 Hz), 130.6, 128.0 (q, J = 40.0 Hz), 127.3, 126.8, 123.9, 122.6, 120.7(q, J = 267.0 Hz), 119.4, 117.2, 115.0 (q, J = 5.0 Hz), 113.9, 20.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.4 ppm. HRMS m/z (ESI+): Calcd for C₁₇H₁₁BrF₃NO₂Na⁺ (M+Na)⁺ 419.9818, found 419.9818.

(2-Bromo-5-methylphenyl)(2-(trifluoromethyl)-1H-indol-1-yl)methanone (1h):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); white solid 90% yield (for the last step); m.p. 89-91 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.64 (d, *J* = 7.8 Hz, 1H), 7.55 (d, *J* = 8.2 Hz, 1H), 7.38 (s, 1H), 7.30-7.28 (m, 2H), 7.24 (d, *J* = 7.6 Hz, 1H), 7.14 (t, *J* = 7.9 Hz, 1H), 6.46 (d, *J* =

8.8 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 138.5, 137.0, 136.3, 133.9, 133.7, 130.7, 128.0 (q, *J* = 40.0 Hz), 127.3, 126.8, 123.9, 122.6, 120.7 (q, *J* = 267.0 Hz), 117.2, 115.0 (q, *J* = 5.0 Hz), 113.9, 20.9. ¹⁹F NMR (377 MHz, CDCl₃) δ - 58.4 ppm. HRMS *m*/*z* (ESI+): Calcd for C₁₇H₁₁BrF₃NONa⁺ (M+Na)⁺ 403.9868, found 403.9870.

(2-Bromo-5-chlorophenyl)(2-(trifluoromethyl)-1H-indol-1-yl)methanone (1i):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); white solid 79% yield (for the last step); m.p. 105-107 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 8.6 Hz, 1H), 7.55 (d, J = 2.5 Hz, 1H), 7.45 (dd, J = 8.6, 2.5 Hz, 1H), 7.32 (s, 1H), 7.28 (t, J = 7.5 Hz, 1H),

7.21 (t, J = 7.9 Hz, 1H), 6.59 (d, J = 8.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 164.2, 137.9, 136.9, 135.0, 134.4, 133.0, 130.1, 127.9 (q, J = 40.5 Hz), 127.3, 127.1, 124.2, 122.8, 120.5 (q, J = 267.0 Hz) 118.6, 115.5 (q, J = 4.5 Hz), 113.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.3 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₈BrClF₃NONa⁺ (M+Na)⁺ 423.9322, found 423.9321.

(2-Bromo-5-fluorophenyl)(2-(trifluoromethyl)-1H-indol-1-yl)methanone (1j):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); white solid 70% yield (for the last step); m.p. 53-55 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.67-7.64 (m, 2H), 7.32-7.30 (m, 2H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.23-7.18 (m, 2H), 6.56 (d, *J* = 8.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.3,

161.9 (d, J = 250.0 Hz), 137.9 (d, J = 7.0 Hz), 136.8, 135.6 (d, J = 8.0 Hz), 127.9 (d, J = 39.0 Hz), 127.3, 127.1, 124.2, 122.8, 120.5 (q, J = 267.0 Hz), 120.4 (d, J = 22.0 Hz), 117.6 (d, J = 24.0 Hz), 115.6 (q, J = 5.0 Hz), 115.0 (d, J = 3.0 Hz), 113.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.4, -111.9 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₈BrF₄NONa⁺ (M+Na)⁺ 407.9618, found 407.9621.

(2-Bromo-6-fluorophenyl)(2-(trifluoromethyl)-1H-indol-1-yl)methanone (1k):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); white solid 64% yield (for the last step); m.p. 94-96 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.65 (m, 1H), 7.51 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.45 (td, *J* = 8.1, 5.6 Hz, 1H), 7.32-7.27 (m, 2H), 7.24-7.19 (m, 2H), 6.80 (d, *J* = 7.3 Hz, 1H). ¹³C NMR (100

MHz, CDCl₃) δ 160.8, 159.9 (d, J = 255.0 Hz), 136.8, 133.4 (d, J = 9.0 Hz), 129.2 (d, J = 4.0 Hz), 127.9, 127.4 (d, J = 4.0 Hz), 126.3, 126.1, 124.4, 122.8, 121.1 (d, J = 3.0 Hz), 120.5 (q, J = 267.0 Hz), 116.5 (q, J = 5.0 Hz), 115.5 (d, J =21.0 Hz), 113.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.5, -110.9 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₈BrF₄NONa⁺ (M+Na)⁺ 407.9618, found 407.9621.

(2-Bromo-6-chlorophenyl)(2-(trifluoromethyl)-1H-indol-1-yl)methanone (11):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); white solid 66% yield (for the last step); m.p. 77-79 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 6.9 Hz, 1H), 7.38 (d, *J* = 29.1 Hz, 2H), 7.27 (d, *J* = 14.0 Hz, 1H), 7.14 (s, 1H), 6.20 (s, 1H). ¹³C NMR (150 MHz, CDCl₃)

δ 161.8, 159.0, 136.7, 136.10, 132.5 (d, J = 4.5 Hz), 131.9, 131.2, 129.3, 128.6, 127.7 (d, J = 4.0 Hz), 124.3, 122.9, 120.7 (q, J = 267 Hz), 116.4, 115.0 (q, J = 4.5 Hz), 112.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -59.2 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₈BrClF₃NONa⁺ (M+Na)⁺ 423.9322, found 423.9321.

(2-Bromo-4,5-dimethoxyphenyl)(2-(trifluoromethyl)-1H-indol-1-yl)methanone (1m):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); white solid 75% yield (for the last step); m.p. 115-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.8 Hz, 1H), 7.29 (s, 1H), 7.24 (dd, J = 7.8, 0.9 Hz, 1H), 7.17 (t, J = 7.4 Hz, 1H), 7.08 (d, J = 4.8 Hz, 2H), 6.57 (d,

J = 8.5 Hz, 1H), 3.97 (s, 3H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 152.4, 149.0, 137.1, 128.0 (q, J = 40.0 Hz), 127.98, 127.2, 126.7, 123.7, 122.5, 120.7 (q, J = 267.0 Hz), 116.3, 114.4 (q, J = 5.0 Hz), 113.8, 113.0, 112.7, 56.5, 56.4. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.2 ppm. HRMS m/z (ESI+): Calcd for C₁₈H₁₄BrF₃NO₃⁺ (M+H)⁺ 428.0104, found 428.0108.

(2-Bromo-4,5-difluorophenyl)(2-(trifluoromethyl)-1H-indol-1-yl)methanone (1n):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); white solid 59% yield (for the last step); m.p. 98-100 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, J = 7.8 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.45 (t, J = 8.5 Hz, 1H), 7.30 (t, J = 7.8 Hz, 2H), 7.26-7.23 (m, 1H), 6.68 (d, J = 8.5 Hz, 1H). ¹³C

NMR (150 MHz, CDCl₃) δ 163.7, 152.1 (dd, J = 259.5, 12.0 Hz), 149.9 (dd, J = 265.5, 12.0 Hz), 136.9, 133.0 (d, J = 4.5 Hz), 127.8 (q, J = 39.0 Hz), 127.3, 127.2, 124.3, 123.3, 123.1, 122.9, 120.5 (q, J = 267.0 Hz), 119.5 (d, J = 21.0 Hz), 115.5 (q, J = 4.5 Hz), 113.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.2, -127.9, -135.3 ppm. HRMS m/z (ESI+): calcd for C₁₆H₇BrF₅NONa⁺ (M+Na)⁺ 425.9523, found 425.9522.

(1-Bromonaphthyl)(2-(trifluoromethyl)-1H-indol-1-yl)methanone (10):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); reddish brown liquid 49% yield (for the last step). ¹H NMR (600 MHz, CDCl₃) δ 8.30 (s, 1H), 7.92 (d, *J* = 29.7 Hz, 2H), 7.65-7.52 (m, 4H), 7.32 (s, 1H), 7.17 (s, 1H), 6.98 (s, 1H), 6.35 (t, *J* = 6.0 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 166.1, 136.9, 135.2, 134.5, 132.0, 129.1, 128.8, 128.7, 128.6, 128.2

(q, J = 39.0 Hz), 128.1, 127.3, 127.0, 125.0, 124.0, 122.6, 122.0, 120.8 (q, J = 266.0 Hz), 115.4 (q, J = 4.5 Hz), 114.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.0 ppm. HRMS m/z (ESI+): Calcd for C₂₀H₁₁BrF₃NONa⁺ (M+Na)⁺ 439.9868, found 439.9871.

(2-Bromophenyl)(6-methoxy-2-(trifluoromethyl)-1H-indol-1-yl)methanone (1p):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); reddish brown solid 45% yield (for the last step); m.p. 116-118 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.8 Hz, 1H), 7.59 (dd, *J* = 7.5, 1.9 Hz, 1H), 7.55-7.46 (m, 3H), 7.23 (s, 1H), 6.87 (dd, *J* = 8.7, 2.2 Hz, 1H),

5.97 (d, J = 2.1 Hz, 1H), 3.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.3, 138.2, 136.9, 133.8, 132.8, 130.1, 128.1, 126.7, 123.1, 121.0, 120.7 (q, J = 267.7 Hz), 120.69, 115.2 (q, J = 5.0 Hz), 113.6, 98.0, 55.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -58.0 ppm. Calcd for C₁₇H₁₁BrF₃NO₂Na⁺ (M+Na)⁺ 419.9818, found 419.9818.

S34

(2-Bromophenyl)(6-fluoro-2-(trifluoromethyl)-1H-indol-1-yl)methanone (1q):

F CF3

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); light yellow solid 43% yield (for the last step); m.p. 79-81 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.70 (d, *J* = 7.7 Hz, 1H), 7.60-7.57 (m, 2H), 7.55-7.49 (m, 2H), 7.27 (s, 1H), 7.01 (t, *J* = 8.4 Hz, 1H), 6.19 (d, *J* = 10.5 Hz, 1H). ¹³C NMR

(150 MHz, CDCl₃) δ 165.4, 161.9 (d, J = 244.5 Hz), 137.4 (d, J = 12.0 Hz), 136.0, 134.0, 133.3, 130.3, 128.5, (d, J = 4.5 Hz), 128.2, 123.7, 123.6, 120.6, 120.4 (q, J = 267.0 Hz), 114.6 (q, J = 4.5 Hz), 112.9 (d, J = 24.0 Hz), 101.5 (d, J = 30.0 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -58.2, -112.0 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₈BrF₄NONa⁺ (M+Na)⁺ 407.9618, found 407.9619.

(2-Bromophenyl)(6-chloro-2-(trifluoromethyl)-1H-indol-1-yl)methanone (1r):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); white solid 41% yield (for the last step); m.p. 74-76 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, J = 7.1, 1.9 Hz, 1H), 7.61-7.51 (m, 4H), 7.26-7.23 (m, 2H), 6.48 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 137.3, 135.9, 134.0,

133.4, 132.9, 130.4, 128.7, 128.3, 125.7, 124.8, 124.4, 122.9, 120.4 (q, J = 267.0 Hz), 120.7, 114.5 (q, J = 5.0 Hz), 114.4, 77.4. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.3 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₈BrClF₃NONa⁺ (M+Na)⁺ 423.9322, found 423.9320.

S38

(2-Bromophenyl)(5-methoxy-2-(trifluoromethyl)-1H-indol-1-yl)methanone (1s):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); reddish brown liquid 44% yield (for the last step). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.5 Hz, 1H), 7.58-7.46 (m, 3H), 7.23 (s, 1H), 7.05 (s, 1H), 6.74 (d, J = 9.2 Hz, 1H), 6.27 (d, J = 9.2 Hz, 1H), 3.81 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 165.3, 156.4, 136.6, 133.8, 133.0, 131.6, 130.1, 128.3 (q, *J* = 40.0 Hz), 128.2, 128.1, 120.6, 120.5 (q, *J* = 266.0 Hz), 116.3, 115.1 (q, *J* = 5.0 Hz), 114.8, 104.1, 55.6. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.5 ppm. HRMS *m*/*z* (ESI+): Calcd for C₁₇H₁₁BrF₃NO₂Na⁺ (M+Na)⁺ 419.9818, found 419.9819.

(2-Bromophenyl)(2-(Difluoromethyl)-1H-indol-1-yl)methanone (1t):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:100 (v/v); reddish brown liquid 35% yield (for the last step). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.0 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.53-7.50 (m, 3H), 7.39 (s, 1H), 7.24-7.20 (m, 2H), 7.06 (t, J = 8.1 Hz, 1H), 6.26 (d, J = 8.5 Hz, 1H). ¹³C

NMR (100 MHz, CDCl₃) δ 166.6, 136.9, 136.5, 133. 9 (t, J = 29 Hz), 133.8, 132.8, 129.4, 128.7, 128.3, 126.0, 124.0, 122.4, 120.1, 113.8, 112.4 (t, J = 7 Hz), 109.80 (t, J = 235 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -114.09 (dd, J = 799.2, 293.0 Hz, 2F). HRMS m/z (ESI+): Calcd for C₁₆H₁₀BrF₂NONa⁺ (M+Na)⁺ 371.9806, found 371.9807.

4. Procedure for enantioselective dearomative reductive Heck of 1

To a dried Schlenk tube were charged with $Pd(OAc)_2$ (2.3 mg, 0.01 mmol) and (*R*)-Synphos (7.6 mg, 0.012 mmol) under N₂ atmosphere, 2.0 mL CH₃CN was then introduced via a syringe and the tube was sealed using Teflon cap. After stirring at 40 °C for 0.5 h, substrate **1** (0.2 mmol) and Et₃SiH (0.4 mmol) were added to the reaction mixture. The resulting mixture was then allowed to stir at 100 °C until the reaction was complete (monitored by TLC). The solution was then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel, eluting with ethyl/petroleum ether 1:50 (v/v) to afford the products **2**.

(R)-10b-(Trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (2a):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); white solid (68% yield), m.p. 99-101 °C. $[\alpha]_D^{20} = +196.1$ (c 0.5, CH₂Cl₂), 99% ee Chiralpak AD-H column (25 cm × 0.46 cm ID), *"hexane/i*PrOH = 80/20, 0.7 mL/min,

280 nm; $t_{major} = 13.4 \text{ min}$, $t_{minor} = 17.3 \text{ min}$]. ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, J = 6.6 Hz, 1H), 7.71-7.58 (m, 4H), 7.31-7.21 (m, 2H), 7.10 (t, J = 7.1 Hz, 1H), 3.72 (dd, J = 16.7, 4.9 Hz, 1H), 3.43 (dd, J = 16.4, 4.7 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 169.7, 142.7, 140.8, 133.7, 133.4, 133.2, 130.5, 128.3, 125.3 (q, J = 282.0 Hz) 125.4,

125.1, 124.8, 123.4, 116.7, 74.2 (q, J = 30.0 Hz), 34.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -79.9 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₁₀F₃NONa⁺ (M+Na)⁺ 312.0607, found 312.0606.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.386	BB	0.5518	2.51969e4	680.76855	99.6489
2	17.283	MM	0.3864	88.78711	3.82941	0.3511

(*R*)-9-Methoxy-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6one (2b):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); colorless oil (58% yield). $[\alpha]_D^{20} = +294.4$ (c 0.5, CH₂Cl₂), 99% ee [Daicel Chiralpak C1 column (25 cm × 0.46 cm ID), ^{*n*}hexane/^{*i*}PrOH = 90/10, 0.7

mL/min, 280 nm; $t_{major} = 11.7$ min, $t_{minor} = 13.0$ min]. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 9.2 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.29 (t, J = 7.9 Hz, 1H), 7.21 (d, J =7.4 Hz, 1H), 7.10-7.07 (m, 3H), 3.92 (s, 3H), 3.69 (d, J = 16.8 Hz, 1H), 3.42 (d, J =16.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 164.4, 145.1, 141.2, 132.9, 128.3, 127.0, 125.4, 125.3 (q, J = 282.0 Hz), 124.9, 124.8, 123.9, 116.68 (d, J = 12.0 Hz), 108.7, 73.8 (q, J = 30.0 Hz), 55.9, 34.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -80.0 ppm. HRMS m/z (ESI+): Calcd for C₁₇H₁₂F₃NONa⁺ (M+Na)⁺ 342.0712, found 342.0714.

(*R*)-9-Methyl-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (2c):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); colorless oil (50% yield). $[\alpha]_D^{20} = +264.4$ (c 0.5, CH₂Cl₂), 99% ee [Daicel Chiralpak AS column (25 cm × 0.46 cm ID), *"hexane/PrOH = 90/10*, 0.6

mL/min, 280 nm; $t_{major} = 8.1 \text{ min}$, $t_{minor} = 8.9 \text{ min}$]. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.8 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.40 (t, J = 8.0 Hz, 2H), 7.30 (t, J = 7.7 Hz, 1H), 7.22 (d, J = 7.5 Hz, 1H), 7.11-7.07 (m, 1H), 3.70 (d, J = 16.5 Hz, 1H), 3.41 (d, J = 16.5 Hz, 1H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 145.0, 143.1, 141.0, 133.2, 131.5, 130.7, 128.3, 125.3 (q, J = 282.0 Hz), 125.2, 125.0, 124.1, 124.8, 116.7, 74.0 (q, J = 30.1 Hz), 34.7, 22.1.¹⁹F NMR (377 MHz, CDCl₃) δ -79.9 ppm. HRMS m/z (ESI+): Calcd for C₁₇H₁₂F₃NONa⁺ (M+Na)⁺ 326.0763, found 326.0764.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.063	BB	0.2695	6533.57520	374.56882	99.2528
2	8.929	BB	0.2463	49.18355	3.07998	0.7472

(*R*)-9-chloro-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (2d):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); white solid (41% yield), m.p. 103-105 °C. [α]_D²⁰ = +177.3 (c 0.5, CH₂Cl₂), 99% ee [Daicel Chiralpak C4 column (25 cm × 0.46 cm ID), *n*hexane/*i*PrOH =

90/10, 0.7 mL/min, 280 nm; $t_{minor} = 7.8$ min, $t_{major} = 11.6$ min]. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 7.9 Hz, 1H), 7.63 (s, 1H), 7.59 (d, J = 8.2 Hz, 1H), 7.32 (t, J = 7.7 Hz, 1H), 7.26-7.23 (m, 1H), 7.13 (t, J = 7.8 Hz, 1H), 3.71 (d, J = 16.5 Hz, 1H), 3.44 (d, J = 16.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 144.0, 140.5, 140.3, 132.9, 131.9, 131.2, 128.5, 126.6, 125.3, 125.0 (q, J = 282.0 Hz), 124.9, 124.2, 116.7, 73.9 (q, J = 30.0 Hz), 34.6. ¹⁹F NMR (377 MHz, CDCl₃) δ -79.8 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₉ClF₃NONa⁺ (M+Na)⁺ 346.0217, found 346.0216.

(*R*)-9-fluoro-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (2e):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); white solid (48% yield), m.p. 118-120 °C. $[\alpha]_D^{20} = +137.4$ (c 0.5, CH₂Cl₂), 95% ee [Daicel Chiralpak C1 column (25 cm × 0.46 cm ID), "hexane/ⁱPrOH =

90/10, 0.7 mL/min, 280 nm; $t_{minor} = 8.7$ min, $t_{major} = 9.6$ min]. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 8.4, 5.0 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.33-7.27 (m, 3H), 7.23 (d, J = 7.5 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 3.71 (d, J = 16.5 Hz, 1H), 3.44 (d, J = 16.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 166.1 (d, J = 254.0 Hz), 145.1, 145.0, 140.7, 132.8, 129.4 (d, J = 10.0 Hz), 128.5, 127.7 (d, J = 40.0 Hz), 125.3 (d, J = 37.0 Hz), 125.0 (q, J = 283.0 Hz), 118.6 (d, J = 23.0 Hz), 116.7, 111.5 (d, J = 25.0 Hz), 74.8 (q, J = 30.0 Hz), 34.6. ¹⁹F NMR (377 MHz, CDCl₃) δ -79.9, -102.7 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₉F₄NONa⁺ (M+Na)⁺ 330.0513, found 330.0513.

(*R*)-9-Trifluoromethyl-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1a]indol-6-one (2f):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); white solid (51% yield), m.p. 111-113 °C. $[\alpha]_D^{20} = +164.5$ (c 0.5, CH₂Cl₂), 99% ee [Daicel Chiralpak OJ-H column (25 cm × 0.46 cm ID), *"hexane/i*PrOH

= 90/10, 0.6 mL/min, 280 nm; t_{major} = 9.2 min, t_{minor} = 11.1 min]. ¹H NMR (400 MHz,

CDCl₃) δ 8.04 (d, J = 8.3 Hz, 1H), 7.90-7.88 (m, 2H), 7.70 (d, J = 7.8 Hz, 1H), 7.33 (t, J = 7.7 Hz, 1H), 7.26 (d, J = 7.3 Hz, 1H), 7.14 (t, J = 7.4 Hz, 1H), 3.77 (d, J = 16.5 Hz, 1H), 3.48 (d, J = 16.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 142.9, 140.2, 136.8, 135.5 (q, J = 33.0 Hz), 133.0, 129.2, 128.6, 128.0 (q, J = 4.0 Hz), 126.1, 125.6, 125.0, 124.9 (q, J = 282.0 Hz), 123.3 (q, J = 271.0 Hz), 116.7, 74.5 (q, J = 30.0 Hz), 34.6. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.6, -79.7 ppm. HRMS *m*/*z* (ESI+): Calcd for C₁₇H₉F₆NONa⁺ (M+Na)⁺ 380.0481, found 380.0481.

(*R*)-8-methyl-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (2g):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); colorless oil (68% yield). $[\alpha]_D^{20} = +119.2$ (c 0.5, CH₂Cl₂), 91% ee [Daicel Chiralpak C1 column (25 cm × 0.46 cm ID), ^{*n*}hexane/^{*i*}PrOH = 90/10, 0.7

mL/min, 280 nm; $t_{minor} = 9.2 \text{ min}$, $t_{major} = 10.9 \text{ min}$]. ¹H NMR (400 MHz, CDCl₃) δ 7.68

(d, J = 8.0 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.36 (d, J = 2.8 Hz, 1H), 7.30 (t, J = 7.7 Hz, 1H), 7.22-7.18 (m, 2H), 7.10 (t, J = 7.2 Hz, 1H), 3.88 (s, 3H), 3.68 (d, J = 16.5 Hz, 1H), 3.40 (d, J = 16.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 161.7, 140.7, 135.0, 134.8, 133.5, 128.3, 125.3 (q, J = 282.0 Hz), 125.1, 124.9, 124.5, 121.7, 116.6, 108.1, 73.8 (q, J = 30.0 Hz), 55.9, 34.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -80.1 ppm. HRMS m/z (ESI+): Calcd for C₁₇H₁₂F₃NONa⁺ (M+Na)⁺ 342.0712, found 342.0714.

(*R*)-8-methyl-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (2h):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); colorless oil (71% yield). $[\alpha]_D^{20} = +179.0$ (c 0.5, CH₂Cl₂), 98% ee [Daicel Chiralpak C1 column (25 cm × 0.46 cm ID), *"hexane/iPrOH = 90/10, 0.7*

mL/min, 280 nm; $t_{minor} = 8.2 \text{ min}$, $t_{major} = 10.0 \text{ min}$]. ¹H NMR (600 MHz, CDCl₃) δ 7.69 (t, J = 7.8 Hz, 2H), 7.50 (d, J = 7.8 Hz, 1H), 7.47 (d, J = 7.8 Hz, 1H), 7.29 (t, J = 7.8 Hz, 1H), 7.20 (t, $J = 7.8 \text{$

Hz, 1H), 7.21 (d, J = 7.8 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 3.69 (d, J = 16.4 Hz, 1H), 3.40 (d, J = 16.4 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 141.0, 140.8, 140.0, 134.7, 133.5, 133.4, 128.3, 125.6, 125.3 (q, J = 282.0 Hz), 125.0, 124.8, 123.3, 116.6, 74.0 (q, J = 30.0 Hz), 34.8, 21.4. ¹⁹F NMR (377 MHz, CDCl₃) δ -80.0 ppm. HRMS m/z (ESI+): Calcd for C₁₇H₁₂F₃NONa⁺ (M+Na)⁺ 326.0763, found 326.0764.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.225	MM	0.2203	237.28329	17.95410	0.9909
2	10.042	BB	0.2288	2.37095e4	1601.03760	99.0091

(*R*)-8-chloro-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (2i):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); white solid (65% yield), m.p. 102-104 °C. $[\alpha]_D^{20} = +82.4$ (c 0.5, CH₂Cl₂), 99% ee [Daicel Chiralpak AD-H column (25 cm × 0.46 cm ID), "hexane/ⁱPrOH =

80/20, 0.6 mL/min, 280 nm; $t_{minor} = 10.5$ min, $t_{major} = 13.5$ min]. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.69-7.63 (m, 2H), 7.57 (d, J = 8.2 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.23 (d, J = 7.5 Hz, 1H), 7.12 (d, J = 7.5 Hz, 1H), 3.71 (d, J = 16.5 Hz, 1H), 3.43 (d, J = 16.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 140.7, 140.4, 137.1, 135.3, 133.9, 133.1, 128.5, 125.5, 125.4, 125.0 (q, J = 282.0 Hz), 124.9, 124.8, 116.7, 74.0 (q, J = 30.0 Hz), 34.6. ¹⁹F NMR (377 MHz, CDCl₃) δ -79.9 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₉ClF₃NONa⁺ (M+Na)⁺ 346.0217, found 346.0216.

S62

S63

(*R*)-8-Fluoro-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (2j):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); colorless oil (67% yield). $[\alpha]_D^{20} = +92.0$ (c 0.5, CH₂Cl₂), 98% ee [Daicel Chiralpak C1 column (25 cm × 0.46 cm ID), ^{*n*}hexane/^{*i*}PrOH = 90/10, 0.7

mL/min, 280 nm; $t_{minor} = 7.5$ min, $t_{major} = 9.3$ min]. ¹H NMR (600 MHz, CDCl₃) δ 7.68 (dd, J = 7.9, 1.0 Hz, 1H), 7.62-7.60 (m, 1H), 7.58 (dd, J = 7.2, 2.5 Hz, 1H), 7.38 (td, J = 8.5, 2.5 Hz, 1H), 7.33-7.30 (m, 1H), 7.13 (td, J = 7.5, 1.1 Hz, 1H), 3.72 (d, J = 16.4 Hz, 1H), 3.43 (d, J = 16.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4 (d, J = 3.0 Hz), 161.1 (d, J = 250.0 Hz), 140.5, 138.1 (d, J = 2.0 Hz), 135.9 (d, J = 8.0 Hz), 133.2, 128.4, 125.4, 125.3, 125.1 (q, J = 282.0 Hz), 124.9, 121.2 (d, J = 24.0 Hz), 116.7, 112.4 (d, J = 24.0 Hz), 74.4 (q, J = 30.0 Hz), 34.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -80.0, -108.9 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₉F₄NONa⁺ (M+Na)⁺ 330.0513, found 330.0513.

(*R*)-7-Fluoro-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (2k):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); white solid (57% yield), m.p. 105-107 °C. $[\alpha]_D^{20} = +117.5$ (c 0.5, CH₂Cl₂), 99% ee [Daicel Chiralpak C1 column (25 cm × 0.46 cm ID), *"hexane/PrOH = 90/10*, 0.7

mL/min, 280 nm; $t_{minor} = 10.3 \text{ min}$, $t_{major} = 11.8 \text{ min}$]. ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.64 (m, 2H), 7.42 (d, J = 7.6 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.24 (t, J = 8.0 Hz, 2H), 7.11 (t, J = 7.6 Hz, 1H), 3.73 (d, J = 16.5 Hz, 1H), 3.46 (d, J = 16.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3 (d, J = 3.0 Hz), 159.4 (d, J = 262.0 Hz), 144.9, 140.7, 135.9 (d, J = 8.0 Hz), 132.8, 128.4, 125.0 (q, J = 282.0 Hz), 125.3, 124.8, 120.6 (d, J = 14.0 Hz), 119.7 (d, J = 4.0 Hz), 118.1 (d, J = 19.0 Hz), 116.8, 74.0 (q, J = 30.0 Hz), 34.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -80.0, -114.2 ppm. HRMS *m*/*z* (ESI+): Calcd for C₁₆H₉F₄NONa⁺ (M+Na)⁺ 330.0513, found 330.0513.

S67

(*R*)-7-chloro-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (2l):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); colorless oil (61% yield), m.p. 138-140 °C. $[\alpha]_D^{20} = +165.5$ (c 0.5, CH₂Cl₂), 90% ee [Daicel Chiralpak C1 column (25 cm × 0.46 cm ID), "hexane/PrOH = 90/10,

 $0.7 \text{ mL/min}, 210 \text{ nm}; t_{\text{minor}} = 9.6 \text{ min}, t_{\text{major}} = 10.7 \text{ min}].$ ¹H NMR (400 MHz, CDCl₃) δ

7.70 (d, J = 7.9 Hz, 1H), 7.64-7.52 (m, 3H), 7.30 (t, J = 7.7 Hz, 1H), 7.22 (d, J = 7.5 Hz, 1H), 7.11 (td, J = 7.5, 1.1 Hz, 1H), 3.73 (d, J = 16.5 Hz, 1H), 3.43 (d, J = 16.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 144.9, 140.8, 134.4, 133.1 (q, J = 41.0 Hz), 132.3, 130.5, 129.3, 128.4 (d, J = 7.0 Hz), 125.3 (d, J = 36.0 Hz), 125.0 (q, J = 282.0 Hz), 124.7, 122.1 (d, J = 2.0 Hz), 116.8 (d, J = 24.0 Hz), 73.1 (q, J = 30.0 Hz), 34.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -79.8 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₉ClF₃NONa⁺ (M+Na)⁺ 346.0217, found 346.0218.

(*R*)-8,9-Dimethoxy-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (2m):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); colorless oil (72% yield). $[\alpha]_D^{20} = +196.0$ (c 0.5, CH₂Cl₂), 99% ee [Daicel Chiralpak AD-H column (25 cm × 0.46 cm ID), *"hexane/i*PrOH = 85/15, 0.6

mL/min, 254 nm; t_{minor} = 11.6 min, t_{major} = 12.7 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.8 Hz, 1H), 7.33-7.28 (m, 2H), 7.22 (d, J = 7.8 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 7.03 (s, 1H), 4.01 (s, 3H), 3.96 (s, 3H), 3.68 (d, J = 16.5 Hz, 1H), 3.43 (d, J = 16.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 154.2, 151.3, 141.1, 136.7, 133.1, 128.3, 125.3 (q, J = 282.0 Hz), 125.4, 124.9, 124.8, 116.6, 106.3, 105.2, 73.8 (q, J = 30.0 Hz), 56.5, 56.4, 34.7.¹⁹F NMR (377 MHz, CDCl₃) δ -79.9 ppm. HRMS m/z (ESI+): Calcd for C₁₈H₁₄F₃NO₃Na⁺ (M+Na)⁺ 372.0818, found 372.0817.

(*R*)-8,9-Difluoro-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6one (2n):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); white solid (50% yield), m.p. 135-137 °C. $[\alpha]_D^{20} = +107.4$ (c 0.5, CH₂Cl₂), 99% ee [Daicel Chiralpak AD-H column (25 cm × 0.46 cm ID), "hexane/ⁱPrOH =

80/20, 0.6 mL/min, 280 nm; $t_{major} = 8.6$ min, $t_{minor} = 10.9$ min]. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (t, J = 7.9 Hz, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.47 (t, J = 7.9 Hz, 1H),

7.33 (t, J = 7.7 Hz, 1H), 7.25 (d, J = 7.6 Hz, 2H), 7.14 (t, J = 7.5 Hz, 1H), 3.71 (d, J = 16.5 Hz, 1H), 3.44 (d, J = 16.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8 (d, J = 3.0 Hz), 154.6 (dd, J = 179.0, 14.0 Hz), 152.0 (dd, J = 175.0, 14.0 Hz), 140.4, 138.9 (d, J = 8.0 Hz), 132.8, 130.1 (dd, J = 7.0, 6.0 Hz), 128.6, 125.5, 125.0, 120.6 (q, J = 283.0 Hz), 116.7, 114.4 (dd, J = 19.3, 1.9 Hz) 113.2 (d, J = 20.0 Hz), 74.0 (q, J = 30.0 Hz), 34.6. ¹⁹F NMR (377 MHz, CDCl₃) δ -79.9, -125.7, -131.6 ppm. HRMS m/z (ESI+): Calcd for C16H9F5NO+ (M+H)+ 326.0599, found 326.0600.

(*R*)-13a-(*Trifluoromethyl*)-13,13a-dihydro-7H-benzo[6,7]isoindolo[2,1-a]indol-7one (20):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); colorless liquid (23% yield), $[\alpha]_D^{20} = +149.0$ (c 0.5, CH₂Cl₂), 89% ee [Daicel Chiralpak AD-H column (25 cm ×0.46 cm ID), *n*hexane/*i*PrOH = 80/20, 0.6 mL/min, 280 nm; t_{major} = 32.8 min, t_{minor} = 54.3 min]. ¹H NMR (600 MHz,

CDCl₃) δ 8.06 (t, J = 8.6 Hz, 2H), 8.02 (dd, J = 8.0, 1.5 Hz, 1H), 7.91 (d, J = 8.3 Hz,

1H), 7.76 (d, J = 7.9 Hz, 1H), 7.72-7.67 (m, 2H), 7.33 (t, J = 7.7 Hz, 1H), 7.27 (d, J = 7.5 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 4.02 (d, J = 16.3 Hz, 1H), 3.72 (d, J = 16.3 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 169.7, 141.6, 140.4, 136.4, 132.4, 132.3, 132.0, 129.5, 128.6, 128.4, 128.1, 127.5, 125.4 (q, J = 282.0 Hz), 124.92, 124.89, 124.87, 120.5, 116.0, 75.1 (q, J = 30.0 Hz), 34.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.1 ppm. HRMS m/z (ESI+): Calcd for C₂₀H₁₂F₃NONa⁺ (M+Na)⁺ 362.0763, found 362.0760.

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); white solid (62% yield), m.p. 140-142 °C. $[\alpha]_D^{20} = +300.0$ (c 0.5, CH₂Cl₂), 98% ee [Daicel Chiralpak AD-H column (25 cm × 0.46 cm ID), *n*hexane/*i*PrOH

 $= 90/10, 0.6 \text{ mL/min}, 210 \text{ nm}; t_{\text{minor}} = 15.9 \text{ min}, t_{\text{major}} = 23.2 \text{ min}].$ ¹H NMR (600 MHz,

CDCl₃) δ 7.91 (s, 1H), 7.63-7.60 (m, 3H), 7.30 (s, 1H), 7.11 (q, J = 4.1, 3.4 Hz, 1H), 6.65 (d, J = 7.2, 1H), 3.85 (s, 3H), 3.65 (d, J = 15.8 Hz, 1H), 3.37 (d, J = 15.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 169.6, 160.1, 142.8, 141.9, 133.7, 133.4, 130.5, 125.4, 125.3 (q, J = 282.0 Hz), 125.0, 124.7, 123.6, 111.0, 102.8, 75.0 (q, J = 30.0 Hz), 55.7, 34.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -79.9 ppm. HRMS m/z (ESI+): Calcd for C₁₇H₁₂F₃NONa⁺ (M+Na)⁺ 342.0712, found 342.0711.

(R)-3-fluoro-10b-(difluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (2q):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); white solid (47% yield), m.p. 83-85 °C. $[\alpha]_D^{20} = +175.9$ (c 0.5, CH₂Cl₂), 99% ee [Daicel Chiralpak OJ column (25 cm × 0.46 cm ID), *"hexane/ⁱ*PrOH =

80/20, 0.6 mL/min, 280 nm; $t_{major} = 9.5$ min, $t_{minor} = 10.9$ min]. ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, J = 7.6 Hz, 1H), 7.70 (t, J = 7.5 Hz, 1H), 7.64-7.61 (m, 2H), 7.43 (dd,

J = 8.7, 2.5 Hz, 1H), 7.17-7.14 (m, 1H), 6.82-6.78 (m, 1H), 3.69 (d, J = 16.3 Hz, 1H), 3.39 (d, J = 16.3 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 169.5, 162.8 (d, J = 244.5 Hz), 142.6, 142.0 (d, J = 12.0 Hz), 134.0, 133.0, 130.7, 128.5 (d, J = 3.0 Hz), 125.6, 125.3 (d, J = 10.5 Hz), 125.2 (q, J = 282.0 Hz), 123.6, 111.6 (d, J = 7.5 Hz), 105.1(d, J = 27.0 Hz), 75.0 (d, J = 30.0 Hz), 34.1. ¹⁹F NMR (377 MHz, CDCl₃) δ -80.0, -112.9 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₉F₄NONa⁺ (M+Na)⁺ 330.0513, found 330.0514.

(*R*)-3-chloro-10b-(difluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (2r):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); white solid (57% yield), m.p. 175-177 °C. $[\alpha]_D^{20} = +154.3$ (c 0.5, CH₂Cl₂), 97% ee [Daicel Chiralpak OJ column (25 cm × 0.46 cm ID), "hexane/ⁱPrOH =

80/20, 0.6 mL/min, 280 nm; t_{major} = 9.6 min, t_{minor} = 11.2 min]. ¹H NMR (600 MHz,

CDCl₃) δ 7.92 (d, *J* = 7.5 Hz, 1H), 7.72 (d, *J* = 7.7 Hz, 2H), 7.61 (dd, *J* = 13.0, 7.0 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 1H), 7.08 (d, *J* = 8.0 Hz, 1H), 3.70 (d, *J* = 16.6 Hz, 1H), 3.39 (d, *J* = 16.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 169.4, 142.5, 141.8, 134.0 (d, *J* = 30.0 Hz), 132.9, 131.7, 130.7, 129.9 (d, *J* = 4.5 Hz), 125.6, 125.5, 125.11, 125.09 (q, *J* = 282.0 Hz), 123.6, 117.2, 74.6 (q, *J* = 30.0 Hz), 34.34. ¹⁹F NMR (377 MHz, CDCl₃) δ -80.0 ppm. HRMS m/z (ESI+): Calcd for C₁₆H₉ClF₃NONa⁺ (M+Na)⁺ 346.0217, found 346.0219.

S81

Реак	Retlime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.661	BB	0.1875	1.05030e4	865.95343	98.6964
2	11.258	BB	0.2175	138.72108	9.89683	1.3036

(*R*)-2-Methoxy-10b-(difluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6one (2s):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); colorless oil (53% yield). $[\alpha]_D^{20} = +94.4$ (c 0.5, CH₂Cl₂), 99% ee [Daicel Chiralpak AD-H column (25 cm × 0.46 cm ID), *"hexane/iPrOH = 80/20*, 0.6

mL/min, 280 nm; $t_{major} = 26.2 \text{ min}$, $t_{minor} = 36.1 \text{ min}$]. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.5 Hz, 1H), 7.70-7.58 (m, 4H), 6.84-6.80 (m, 2H), 3.79 (s, 3H), 3.68 (d, J = 16.5 Hz, 1H), 3.41 (d, J = 16.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃)) δ 169.9, 157.4, 142.5, 134.9, 134.3, 133.6, 133.4, 130.5, 125.4, 125.3 (q, J = 283.0 Hz), 123.5, 117.1, 112.6, 111.5, 74.5 (q, J = 30.0 Hz), 55.7, 34.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -79.8 ppm. HRMS m/z (ESI+): Calcd for C₁₇H₁₂F₃NONa⁺ (M+Na)⁺ 342.0712, found 362.0713.

(R)-10b-(Difluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (2t):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); colorless liquid (51% yield). $[\alpha]_D^{20} = +206.5$ (c 0.5, CH₂Cl₂), 98% ee [Daicel Chiralpak OJ-H column (25 cm × 0.46 cm ID), ^{*n*}hexane/^{*i*}PrOH = 90/10, 0.6 mL/min,

280 nm; $t_{major} = 21.5 \text{ min}, t_{minor} = 26.3 \text{ min}].$ ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, J = 7.5 Hz, 1H), 7.69-7.61 (m, 3H), 7.57 (t, J = 7.4 Hz, 1H), 7.29 (t, J = 7.7 Hz, 1H), 7.23 (d, J = 7.4 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 5.76 (t, J = 55.8 Hz, 1H), 3.65 (d, J = 16.2 Hz, 1H), 3.31 (d, J = 16.2 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 169.4, 143.6 (d, J = 3.0 Hz), 140.4, 133.9 (d, J = 34.5.0 Hz), 133.4, 130.1, 128.3, 125.2, 125.1 (d, J = 13.5.0 Hz), 124.2, 117.1, 116.7, 115.4, 113.7, 74.1 (t, J = 24.0 Hz), 33.2. ¹⁹F NMR (565 MHz, CDCl₃) δ -128.67 (ddd, J = 706.6, 281.1, 55.6 Hz, 2F). HRMS m/z (ESI+): Calcd for C₁₆H₁₁F₂NONa⁺ (M+Na)⁺ 294.0701, found 294.0700.

S87

5. Procedure for enantioselective Heck-Suzuki reaction of 1 with Ar4BNa

To a dried Schlenk tube were charged with $Pd(dba)_2$ (5 mol%, 5.8 mg), chiral ligand L16 (10 mol%, 19.2 mg), substrate 1 (0.2 mmol), K₂CO₃ (0.4 mmol, 55.2 mg), and Ar₄BNa (0.4 mmol) under N₂ atmosphere. 1,4-Dioxane (2.0 mL) was then introduced via a syringe and the tube was sealed using Teflon cap. The resulting mixture was stirred at 100 °C until the reaction was completed (monitored by TLC). The solution was then concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether (v/v = 1/80) to afford product **3**.

(10bR,11S)-11-Phenyl-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1a]indol-6-one (3a):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); white solid (85% yield), m.p. 169-171 °C. $[\alpha]_D^{20} = +63.0$ (c 0.5, CH₂Cl₂), 95% ee [Daicel Chiralpak AD-H column (25 cm × 0.46 cm ID), *"hexane/iPrOH = 80/20*, 0.6 mL/min, 280 nm; t_{minor} = 7.5 min, t_{major} = 16.2 min]. ¹H NMR (400

MHz, CDCl₃) δ 7.85 (d, J = 7.9 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.43-7.35 (m, 2H), 7.29 (t, J = 7.8 Hz, 1H), 7.14 (q, J = 6.4, 5.3 Hz, 2H), 7.07 (d, J = 7.6 Hz, 1H), 7.02-7.00 (m, 3H), 6.65 (s, 2H), 4.98 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 140.5, 140.1, 139.0, 137.0, 133.3, 132.8, 130.0, 128.9, 128.6, 128.4, 127.6, 125.8, 125.6, 125.4 (q, J = 282.0 Hz), 124.9, 124.7, 116.5, 78.5 (q, J = 30.0 Hz), 51.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.7 ppm. HRMS m/z (ESI+): Calcd for C₂₂H₁₄F₃NONa⁺ (M+Na)⁺ 388.0919, found 388.0915.

S89

(10bR,11S)-9-Methoxy-11-phenyl-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (3b):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); white solid (68% yield), m.p. 124-126 °C. [α]_D²⁰ = +44.5 (c 0.5, CH₂Cl₂), 83% ee [Daicel Chiralpak OD-H column (25 cm × 0.46 cm ID), *"hexane/iPrOH* = 80/20, 0.6 mL/min, 280 nm; t_{minor} = 7.3 min, t_{major} = 8.3 min].

¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, J = 7.9 Hz, 1H), 7.66 (d, J = 8.5 Hz, 1H), 7.39 (ddd, J = 8.2, 6.9, 2.0 Hz, 1H), 7.13-7.09 (m, 2H), 7.04 (t, J = 2.9 Hz, 3H), 6.86 (dd, J = 8.5, 2.3 Hz, 1H), 6.68 (s, 2H), 6.46 (s, 1H), 4.95 (s, 1H), 3.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 163.4, 142.7, 141.0, 139.0, 136.5, 134.7, 128.9, 128.6, 128.5, 127.7, 126.1, 125.7, 125.5, 125.4 (q, J = 282.0 Hz), 125.3, 116.9, 116.4, 109.6, 77.9 (q, J = 30.0 Hz), 55.6, 51.1. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.7 ppm. HRMS m/z (ESI+): Calcd for C₂₃H₁₆F₃NO₂Na⁺ (M+Na)⁺ 418.1025, found 418.1025.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.281	BB	0.1528	321.30090	32.08439	8.7909
2	8.313	BB	0.1716	3333.60815	300.20120	91.2091

(10bR,11S)-9-Methyl-11-phenyl-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (3c):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); colorless liquid (74% yield). $[\alpha]_D{}^{20} = +22.2$ (c 0.5, CH₂Cl₂), 94% ee [Daicel Chiralpak AD-H column (25 cm × 0.46 cm ID), *"hexane/iPrOH = 80/20*, 0.6 mL/min, 254 nm; t_{minor} = 7.2 min, t_{major} = 13.7 min]. ¹H NMR

(600 MHz, CDCl₃) δ 7.83 (d, J = 7.9 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.41-7.38 (m, 1H), 7.16-7.12 (m, 3H), 7.01 (t, J = 2.5 Hz, 2H), 6.83 (s, 1H), 6.64 (s, 2H), 4.95 (s, 1H), 2.20 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.2, 143.8, 140.8, 140.5, 139.0, 136.8, 130.8, 130.7, 128.8, 128.6, 128.5, 128.4, 125.7, 125.5, 125.4, 125.37 (q, J = 282.0 Hz), 124.5, 116.5, 78.2 (q, J = 30.0 Hz), 51.0, 21.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.7 ppm. HRMS m/z (ESI+): Calcd for C₂₃H₁₆F₃NONa⁺ (M+Na)⁺ 402.1076, found 402.1077.

(10bR,11S)-9-Phenyl-11-Phenyl-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (3d):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); white solid (80% yield). $[\alpha]_D^{20} = -36.8$ (c 0.5, CH₂Cl₂), 99% ee [Daicel Chiralpak A2 column (25 cm × 0.46 cm ID), *n*hexane/*i*PrOH = 90/10, 0.6 mL/min, 210 nm; t_{minor} = 9.8 min, t_{major} = 14.3 min]. ¹H NMR

(600 MHz, CDCl₃) δ 7.99 (d, J = 1.7 Hz, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.52 (dt, J = 8.1, 1.6 Hz, 3H), 7.43-7.41 (m, 3H), 7.37-7.35 (m, 1H), 7.16-7.11 (m, 3H), 7.05-7.01 (m, 3H), 6.68 (s, 2H), 5.00 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) ¹³C NMR (150 MHz, CDCl₃) δ 167.0, 143.0, 140.5, 139.1, 139.0, 138.8, 136.9, 134.1, 131.6, 129.0, 128.9, 128.6, 128.5, 128.2, 127.7, 127.2, 125.8, 125.6, 125.3 (q, J = 282 Hz), 125.2, 122.9, 116.53, 78.4 (q, J = 30 Hz), 51.05. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.7 ppm. HRMS m/z (ESI+): Calcd for C₂₈H₁₈F₃NONa⁺ (M+Na)⁺ 464.1233, found 464.1233.

(10bR,11S)-9-Fluoro-11-phenyl-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (3e):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); white solid (56% yield), m.p. 150-152 °C. $[\alpha]_D^{20} = +67.8$ (c 0.5, CH₂Cl₂), 77% ee [Daicel Chiralpak C2 column (25 cm × 0.46 cm ID), "hexane/PrOH = 95/05, 0.5 mL/min, 280 nm; t_{minor} = 9.2 min, t_{major} = 10.1 min]. ¹H

NMR (600 MHz, CDCl₃) δ 7.82 (d, *J* = 7.9 Hz, 1H), 7.76 (dd, *J* = 8.4, 4.9 Hz, 1H), 7.41 (t, *J* = 8.2 Hz, 1H), 7.20-7.10 (m, 2H), 7.06 (m, 4H), 6.75 (d, *J* = 7.7 Hz, 2H), 6.65 (s, 2H), 4.96 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 168.9, 165.3 (d, *J* = 253.5 Hz), 142.7 (d, *J* = 10.5 Hz), 140.5, 138.5, 136.6, 129.4 (d, *J* = 1.5 Hz), 129.0, 128.7, 128.3, 127.9, 126.8 (d, *J* = 10.5 Hz), 125.8 (d, *J* = 7.5 Hz), 125.0 (q, *J* = 282 Hz), 117.9, 117.80, 116.5, 112.7, 112.5, 78.1 (q, *J* = 30.0 Hz), 51.06. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.7, -103.9 ppm. HRMS m/z (ESI+): Calcd for C₂₂H₁₃F₄NONa⁺ (M+Na)⁺ 406.0826, found 406.0826.

(10bR,11S)-8,9-Dimethoxy-11-phenyl-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one(3f):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); white solid (51% yield), m.p. 150-152 °C. $[\alpha]_D^{20} = +93.0$ (c 0.5, CH₂Cl₂), 82% ee [Daicel Chiralpak OD-H column (25 cm × 0.46 cm ID), *n*hexane/*i*PrOH = 80/20, 0.6 mL/min, 280 nm; t_{minor} = 8.0 min, t_{major} = 9.0 min].

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.9 Hz, 1H), 7.40 (ddd, J = 8.3, 6.5, 2.2 Hz, 1H), 7.19 (s, 1H), 7.15-7.10 (m, 2H), 7.07-7.05 (m, 3H), 6.70 (s, 2H), 6.38 (s, 1H), 4.96 (s, 1H), 3.87 (s, 3H), 3.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 153.2, 150.8, 141.0, 139.3, 136.4, 134.5, 128.9, 128.7, 128.5, 127.7, 125.8, 125.5, 125.4 (q, J = 282.0 Hz), 125.3, 116.4, 106.7, 105.6, 78.9 (q, J = 30.0 Hz), 56.2, 50.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -79.0 ppm. HRMS m/z (ESI+): Calcd for C₂₄H₁₈F₃NO₃Na⁺ (M+Na)⁺ 448.1131, found 448.1130.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.985	BB	0.1542	455.26437	44.95000	9.1564
2	9.035	BB	0.1805	4516.83936	386.17456	90.8436

(10bR,11S)-8-Methoxy-11-phenyl-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (3g):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); colorless liquid (76% yield). $[\alpha]_D^{20} = +62.7$ (c 0.5, CH₂Cl₂), 92% ee [Daicel Chiralpak A2 column (25 cm × 0.46 cm ID), *"hexane/iPrOH = 90/10*, 0.6 mL/min, 280 nm; t_{minor} = 12.3 min, t_{major} = 14.7 min]. ¹H NMR

(400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.9 Hz, 1H), 7.40 (ddd, *J* = 8.3, 6.4, 2.3 Hz, 1H), 7.23 (d, *J* = 2.4 Hz, 1H), 7.16-7.11 (m, 2H), 7.05-7.02 (m, 3H), 6.95 (d, *J* = 8.5 Hz, 1H), 6.83 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.65 (s, 2H), 4.95 (s, 1H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 161.1, 140.5, 139.2, 137.1, 134.9, 132.3, 128.9, 128.6, 128.4, 127.6, 125.8, 125.7, 125.5, 125.4 (q, *J* = 282.0 Hz), 121.0, 116.4, 107.3, 78.2 (q, *J* = 30.0 Hz), 55.6, 50.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.9 ppm. HRMS *m*/*z* (ESI+): Calcd for C₂₃H₁₆F₃NO₂Na⁺ (M+Na)⁺ 418.1025, found 418.1025.

(10bR,11S)-8-Methyl-11-phenyl-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (3h):

0.4020 1467.31445

2 14.659 BB

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); white solid (83% yield), m.p. 142-144 °C. $[\alpha]_D^{20} = +48.8$ (c 0.5, CH₂Cl₂), 96% ee [Daicel Chiralpak OD-H column (25 cm × 0.46 cm ID), *"hexane/"PrOH* = 80/20, 0.6 mL/min, 280 nm; t_{minor} = 7.2 min, t_{major} = 13.1 min].

54.87431 95.9640

¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, J = 7.9 Hz, 1H), 7.56 (s, 1H), 7.41-7.38 (m, 1H), 7.14-7.08 (m, 3H), 7.03 (dd, J = 5.0, 2.0 Hz, 3H), 6.94 (d, J = 7.9 Hz, 1H), 6.65 (s, 2H), 4.95 (s, 1H), 2.31 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 170.2, 140.6, 140.3, 139.1, 137.4, 137.0, 133.8, 133.5, 128.8, 128.5, 127.7, 127.5, 125.8, 125.44, 125.38 (q, J = 282.0 Hz), 124.9, 124.6, 116.5, 78.3 (q, J = 30.0 Hz), 50.9, 21.3. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.9 ppm. HRMS m/z (ESI+): Calcd for C₂₃H₁₆F₃NONa⁺ (M+Na)⁺ 402.1076, found 402.1075.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.222	BB	0.2382	72.41095	4.44114	2.0983
2	13.082	BB	0.4391	3378.59888	110.99972	97.9017

S107
(10bR,11S)-8-Phenyl-11-phenyl-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (3i):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); white solid (72% yield). $[\alpha]_D^{20} = -89.6$ (c 0.5, CH₂Cl₂), 90% ee [Daicel Chiralpak C1 column (25 cm × 0.46 cm ID), *n*hexane/*i*PrOH = 90/10, 0.6 mL/min, 254 nm; t_{minor} = 7.9 min, t_{major} = 10.8 min]. ¹H NMR

(600 MHz, CDCl₃) δ 7.99 (d, J = 1.2 Hz, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.52 (dd, J = 8.1, 1.7 Hz, 3H), 7.42 (t, J = 7.5 Hz, 3H), 7.36 (t, J = 7.2 Hz, 1H), 7.17-7.11 (m, 3H), 7.05-7.01 (m, 3H), 6.69 (s, 2H), 5.00 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 170.0, 143.2, 140.5, 139.1, 139.0, 138.8, 136.9, 134.1, 131.6, 129.0, 128.9, 128.6, 128.4, 128.2, 127.7, 127.1, 125.8, 125.6, 125.2, 125.4 (q, J = 282.0 Hz), 122.9, 116.5, 78.2 (q, J = 30.0 Hz), 51.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.7 ppm. HRMS m/z (ESI+): Calcd for C₂₈H₁₈F₃NONa⁺ (M+Na)⁺ 464.1233, found 464.1233.

(10bR,11S)-11-(Benzo[d] [1,3]dioxa-5-yl)-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]Indole-6-one (3j):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); white solid (57% yield). $[\alpha]_D^{20} = +21.9$ (c 0.5, CH₂Cl₂), 80% ee [Daicel Chiralpak AS column (25 cm × 0.46 cm ID), *"*hexane/^{*i*}PrOH = 90/10, 0.6 mL/min, 280 nm; t_{minor} = 10.9 min, t_{major} = 12.2 min]. ¹H NMR (600 MHz, CDCl₃) δ 7.82 (d, *J* = 7.9 Hz, 1H), 7.79 (d, *J* = 7.2 Hz, 1H), 7.43-7.36 (m, 3H), 7.16-7.11 (m, 3H), 6.49 (d, *J* = 8.4 Hz, 1H), 6.23 (s, 1H), 6.01 (s, 1H), 5.76 (dd,

J = 13.7, 1.5 Hz, 2H), 4.90 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 170.0, 147.8, 146.9, 140.3, 140.1, 136.9, 133.4, 132.9, 132.9, 130.0, 128.9, 125.7, 125.5, 125.4 (q, J = 282.0 Hz), 124.9, 124.8, 122.0, 116.5, 108.7, 108.1, 101.0, 78.4 (q, J = 30.0 Hz), 50.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.8 ppm. HRMS m/z (ESI+): calcd for C₂₃H₁₄F₃NO₃Na⁺ (M+Na)⁺ 432.0818, found 432.0818.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.950	BB	0.2862	323.06879	17.43327	10.2962
2	12.159	BB	0.3674	2814.68701	115.04078	89.7038

(10bR,11S)-11-(3-Methoxyphenyl)-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (3k):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); colorless liquid (90% yield). $[\alpha]_D^{20} = +62.2$ (c 0.5, CH₂Cl₂), 79% ee [Daicel Chiralpak A2 column (25 cm × 0.46 cm ID), *n*hexane/*i*PrOH = 95/05, 0.6 mL/min, 210 nm; t_{minor} = 17.5 min, t_{major} = 27.9 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 7.9 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.42-

7.36 (m, 2H), 7.31 (td, J = 7.5, 1.3 Hz, 1H), 7.14-7.11 (m, 3H), 6.92 (t, J = 7.9 Hz, 1H), 6.54 (ddd, J = 8.3, 2.6, 0.9 Hz, 1H), 6.21 (d, J = 29.7 Hz, 2H), 4.93 (s, 1H), 3.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 159.6, 140.5, 140.4, 140.1, 136.8, 133.3, 132.8, 130.0, 129.6, 128.9, 125.8, 125.6, 125.4 (q, J = 282.0 Hz), 124.9, 124.6, 120.8, 116.5, 114.1, 113.0, 78.5 (q, J = 30.0 Hz), 55.1, 50.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.7 ppm. HRMS m/z (ESI+): Calcd for C₂₃H₁₆F₃NO₂Na⁺ (M+Na)⁺ 418.1025, found 418.1025.

(10bR,11S)-11-(3-Methylphenyl)-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (3l):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); white solid (86% yield), m.p. 188-190 °C. $[\alpha]_D^{20} = +79.9$ (c 0.5, CH₂Cl₂), 87% ee [Daicel Chiralpak A2 column (25 cm × 0.46 cm ID), *n*hexane/*i*PrOH = 90/10, 0.6 mL/min, 280 nm; t_{minor} = 11.3 min, t_{major} = 16.7 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.9 Hz, 1H), 7.68 (d, *J* = 7.8 Hz, 1H), 7.42-7.35

(m, 2H), 7.30 (t, J = 7.8 Hz, 1H), 7.14 (d, J = 6.3 Hz, 2H), 7.07 (d, J = 7.6 Hz, 1H), 6.68 (t, J = 7.5 Hz, 1H), 6.82 (d, J = 7.5 Hz, 1H), 6.44 (d, J = 32.4 Hz, 2H), 4.93 (s, 1H), 2.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 140.5, 140.2, 138.9, 138.2, 137.0, 133.3, 132.7, 129.9, 129.1, 128.8, 128.4, 128.3, 125.8, 125.5, 125.4 (q, J = 282.0 Hz), 124.9, 124.6, 116.5, 78.5 (q, J = 30.0 Hz), 51.0, 21.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.7 ppm. HRMS m/z (ESI+): Calcd for C₂₃H₁₆F₃NONa⁺ (M+Na)⁺ 402.1076, found 402.1076.

S116

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.275	BB	0.4046	306.05478	11.35109	6.5259
2	16.731	BB	0.4681	4383.76611	142.04189	93.4741

S117

(10bR,11S)-11-(4-Methoxyphenyl)-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (3m):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); colorless liquid (82% yield). $[\alpha]_D^{20} = +119.1$ (c 0.5, CH₂Cl₂), 89% ee [Daicel Chiralpak A2 column (25 cm × 0.46 cm ID), *n*hexane/*i*PrOH = 80/20, 0.6 mL/min, 280 nm; t_{minor} = 10.5 min, t_{major} = 17.0 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.9 Hz, 1H), 7.77 (d, *J* = 7.8 Hz, 1H), 7.38 (q, *J* = 6.9 Hz, 2H), 7.32 (t, *J* = 7.8 Hz, 1H), 7.15-7.08 (m, 3H), 6.55 (s,

4H), 4.94 (s, 1H), 3.62 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 158.8, 140.3, 140.2, 137.3, 133.3, 132.9, 131.3, 129.9, 129.5, 128.8, 125.7, 125.5, 125.4 (q, *J* = 282.0 Hz), 125.0, 124.7, 116.5, 113.8, 78.5 (q, *J* = 30.0 Hz), 55.1, 50.3. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.7 ppm. HRMS *m*/*z* (ESI+): Calcd for C₂₃H₁₆F₃NO₂Na⁺ (M+Na)⁺ 418.1025, found 418.1023.

(10bR,11S)-11-(4-Ethylphenyl)-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (3n):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); white solid (79% yield). $[\alpha]_D^{20} =$ +27.8 (c 0.5, CH₂Cl₂), 91% ee [Daicel Chiralpak A2 column (25 cm × 0.46 cm ID), *"*hexane/^{*i*}PrOH = 90/10, 0.6 mL/min, 280 nm; t_{minor} = 9.9 min, t_{major} = 15.0 min]. ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, *J* = 7.9 Hz, 1H), 7.76 (d, *J* = 7.8 Hz, 1H), 7.36 (dt, *J* = 20.9, 6.6 Hz, 2H), 7.26 (dd, *J* = 15.3, 7.8 Hz, 1H), 7.14-7.10 (m, 2H), 7.06 (d, *J* =

7.8 Hz, 1H), 6.82 (d, J = 8.4 Hz, 2H), 6.54 (d, J = 7.7 Hz, 2H), 4.94 (s, 1H), 2.41 (q, J = 7.6 Hz, 2H), 1.03 (t, J = 7.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 170.1, 143.7, 140.5, 140.3, 137.2, 136.3, 133.3, 132.7, 129.8, 128.8, 128.3, 127.9, 125.8, 125.5, 125.4 (q, J = 282.0 Hz), 125.0, 124.6, 116.5, 78.5 (q, J = 30.0 Hz), 50.7, 28.3, 15.3. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.7 ppm. HRMS m/z (ESI+): Calcd for C₂₄H₁₈F₃NONa⁺ (M+Na)⁺ 416.1233, found 416.1232.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.941	MM	0.2430	359.25497	24.63819	4.6568
2	15.021	BB	0.3509	7355.41992	314.46463	95.3432

S122

(10bR,11S)-11-([[1,1'-Biphenyl]-4-yl])-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indole Dol-6-one (30):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); colorless liquid (51% yield). $[\alpha]_D^{20} = +20.8$ (c 0.5, CH₂Cl₂), 93% ee [Daicel Chiralpak A2 column (25 cm × 0.46 cm ID), *n*hexane/*i*PrOH = 90/10, 0.6 mL/min, 254 nm; t_{minor} = 15.7 min, t_{major} = 31.5 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.9 Hz, 1H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.43-7.33 (m, 6H), 7.35-7.23 (m, 4H), 7.16 (d, *J* = 4.2 Hz, 2H), 7.12 (d, *J* = 7.8 Hz, 1H),

6.71 (d, J = 7.2 Hz, 2H), 5.02 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 140.5, 140.3, 140.08, 140.06, 138.0, 136.9, 133.3, 132.9, 130.0, 129.0, 128.9, 128.8, 127.5, 127.1, 126.8, 125.8, 125.6, 125.4 (q, J = 282.0 Hz), 125.0, 124.8, 116.6, 78.5 (q, J = 30.0 Hz), 50.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.7 ppm. HRMS m/z (ESI+): Calcd for C₂₈H₁₈F₃NONa⁺ (M+Na)⁺ 464.1233, found 464.1234.

(10bR,11S)-11-(4-fluorophenyl)-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (3p):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); white solid (45% yield), m.p. 216-218 °C. [α]_D²⁰ = +58.8 (c 0.5, CH₂Cl₂), 77% ee [Daicel Chiralpak A2 column (25 cm × 0.46 cm ID), *n*hexane/*i*PrOH = 90/10, 0.6 mL/min, 280 nm; t_{minor} = 9.7 min, t_{major} = 13.5 min]. ¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, *J* = 7.9 Hz, 1H), 7.78 (d, *J* = 7.2 Hz, 1H), 7.41 (dd, *J* = 7.5, 1.2 Hz, 2H), 7.34 (t, *J* = 8.0 Hz, 1H), 7.15 (t, *J* = 7.4 Hz, 1H),

7.11 (d, J = 7.4 Hz, 1H), 7.07 (d, J = 7.7 Hz, 1H), 6.72 (t, J = 8.5 Hz, 2H), 6.62 (s, 2H), 4.97 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 169.9, 161.9 (d, J = 244.5 Hz), 140.4, 139.9, 136.7, 134.9 (d, J = 4.5 Hz), 133.3, 132.9, 130.1 (d, J = 9.0 Hz), 130.0, 129.1, 125.7 (d, J = 7.5 Hz), 125.3 (q, J = 282.0 Hz), 124.8, 116.6, 115.6, 115.4, 78.4 (q, J =30.0 Hz), 50.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.7, -114.0 ppm. HRMS m/z (ESI+): Calcd for C₂₂H₁₃F₄NONa⁺ (M+Na)⁺ 406.0826, found 406.0824.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.709	BB	0.2956	544.62036	28.41247	11.7068
2	13.533	BB	0.3974	4107.53760	157.93803	88.2932

(10bR,11S)-3-fluoro-11-phenyl-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (3q):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:80 (v/v); white solid (58% yield), m.p. 155-157 °C. $[\alpha]_D^{20} = +89.1$ (c 0.5, CH₂Cl₂), 90% ee [Daicel Chiralpak OD-H column (25 cm × 0.46 cm ID), ^{*n*}hexane/^{*i*}PrOH = 90/10, 0.6 mL/min, 230 nm; t_{major} = 7.3 min, t_{minor} = 7.7 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.5

Hz, 1H), 7.57 (dd, J = 8.8, 2.5 Hz, 1H), 7.37 (td, J = 7.5, 1.0 Hz, 1H), 7.30 (td, J = 7.6, 1.3 Hz, 1H), 7.13-6.96 (m, 5H), 6.83 (td, J = 8.7, 2.5 Hz, 1H), 6.67-6.55 (m, 2H), 4.94 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 163.1 (d, J = 245.0 Hz), 141.7 (d, J = 13.0 Hz), 140.1, 138.8, 133.0, 132.9, 132.4 (d, J = 3.0 Hz), 130.1, 128.6, 128.4, 127.8, 126.6 (d, J = 7.0 Hz), 124.9, 124.8, 125.2 (q, J = 282.0 Hz), 112.4 (d, J = 23.0 Hz), 104.7 (d, J = 27.0 Hz), 79.2 (q, J = 30.0 Hz), 50.44. ¹⁹F NMR (377 MHz, CDCl₃) δ - 78.8, -111.9 ppm. HRMS m/z (ESI+): Calcd for C₂₂H₁₄F₄NO⁺ (M+H)⁺ 384.1006, found 384.1011.

(10bR,11S)-2-methoxy-11-phenyl-10b-(trifluoromethyl)-10b,11-dihydro-6Hisoindolo[2,1-a]indol-6-one (3r):

8.1, 4.0 Hz, 2H), 7.39-7.32 (m, 1H), 7.31-7.22 (m, 1H), 7.13-6.97 (m, 4H), 6.93 (dd, J = 8.6, 2.6 Hz, 1H), 6.66 (dd, J = 9.6, 4.7 Hz, 3H), 4.92 (s, 1H), 3.73 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 157.8, 140.0, 138.7, 138.4, 134.1, 133.5, 132.5, 129.9, 128.5, 128.4, 127.6, 125.3 (q, J = 282.0 Hz), 124.8, 124.6, 117.1, 114.0, 111.7, 78.7 (q, J = 282.0 Hz), 55.6, 51.3. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.8, -111.9 ppm. HRMS m/z (ESI+): Calcd for C₂₃H₁₇F₃NO₂⁺ (M+H)⁺ 396.1206, found 396.1210.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.783	BB	0.1362	18.48601	2.07053	2.6851
2	8.691	BB	0.1539	669.97699	67.43826	97.3149

6 Synthetic transformations

6.1 Bromination of 2a

A reported procedure in the literature was followed for the synthesis of $4^{[7]}$. To a suspension of 2a (0.2 mmol, 99% ee) in AcOH (2 mL) was added Br₂ (160 mg, 2 mmol) at room temperature, and the mixture was stirred for 0.5 h. CH₂Cl₂ (4 mL) was then introduced via a syringe. The resulting mixture was allowed to stir at room temperature overnight. The reaction was then quenched with saturated Na₂S₂O₃ and extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v), to afford 4 (80% yield, 98% ee).

(*R*)-2-bromo-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indol-6-one (4):

Br CF₃

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); white solid (80% yield), m.p. 106-108 °C. $[\alpha]_D^{20} = +171.2$ (c 0.5, CH₂Cl₂), 98% ee [Daicel Chiralpak C1 column (25 cm × 0.46 cm ID), "hexane/ⁱPrOH =

90/10, 0.6 mL/min, 280 nm; t_{minor} = 10.3 min, t_{major} = 10.7 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.5 Hz, 1H), 7.76-7.67 (m, 1H), 7.65-7.53 (m, 3H), 7.43 (d, J = 8.3 Hz, 1H), 7.37 (s, 1H), 3.71 (d, J = 16.7 Hz, 1H), 3.43 (d, J = 16.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 142.3, 139.9, 135.5, 134.0, 133.0, 131.3, 130.7, 128.0, 125.6, 125.1 (q, *J* = 282.0 Hz), 123.68, 123.61, 117.9, 78.4 (q, *J* = 30.0 Hz), 34.56. ¹⁹F NMR (377 MHz, CDCl₃) δ -79.1 ppm. HRMS *m*/*z* (ESI+): Calcd for C₁₆H₁₀BrF₃NO⁺ (M+H)⁺ 369.9862, found 369.9865.

S134

A reported procedure in the literature was followed for the synthesis of $5^{[8]}$ To a solution of 2a (0.2 mmol, 1 equiv) in THF (2 mL) was added BH₃·DMS (45.5 μ L, 0.4

mol, 2 equiv) dropwise. The resulting mixture was refluxed for 1 hour until the starting material was all comsumed. The mixture was cooled to 0 °C and MeOH (1 mL) was added. After the evolution of gas ceased, the solution was concentrated under reduced pressure, the residue was purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v), to afford **5** (94% yield, 98% ee).

(R)-10b-(trifluoromethyl)-10b,11-dihydro-6H-isoindolo[2,1-a]indole (5):

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:50 (v/v); white solid (94% yield), m.p. 77-79 °C. $[\alpha]_D^{20} = +212.0$ (c 0.5, CH₂Cl₂), 98% ee [Daicel Chiralpak A2 column (25 cm × 0.46 cm ID), *n*hexane/*i*PrOH = 90/10, 0.6 mL/min, 230 nm; t_{major} = 6.4 min, t_{minor} = 6.7 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.31 (m, 1H), 7.25-7.18 (m, 2H), 7.16-7.10 (m, 1H), 7.07 (t, J = 7.6 Hz, 1H), 6.98 (d, J = 6.8 Hz, 1H), 6.79-6.68 (m, 2H), 4.72 (d, J = 14.7 Hz, 1H), 4.34 (d, J = 14.6 Hz, 1H), 3.64 (d, J = 16.4 Hz, 1H), 3.44 (d, J = 16.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 141.0, 138.3, 129.5, 128.3, 128.0, 127.9, 126.6 (q, *J* = 282.0 Hz), 124.7, 123.8, 122.9, 121.5, 112.6, 80.4 (q, *J* = 30.0 Hz), 59.97, 37.26. ¹⁹F NMR (377 MHz, CDCl₃) δ -79.9 ppm. HRMS *m/z* (ESI+): Calcd for C₁₆H₁₃F₃N⁺ (M+H)⁺ 276.0990, found 276.0993.

7 Crystal report of compounds 2f and 3a

7.1 Crystal report of compound 2f (grown in a mixed solvent of DCM and n-hexane)

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) cu_210317_cjf_1_4_cf3_0m

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: cu_210317_cjf_1_4_cf3_0m

Bond precision:	C-C = 0.0032 A		Wavelength=	=1.54178		
Cell:	a=10.5776(5) alpha=90	b=6.1725 (beta=107.	(3) .532 (2)	c=12.0797(6) gamma=90		
Temperature:	170 K					
	Calculated		Reported			
Volume	752.05(6)		752.05(6)			
Space group	P 21		P 1 21 1			
Hall group	P 2vb		P 2vb			
Moiety formula	C17 H9 F6 N O		C17 H9 F6	NO		
Sum formula	C17 H9 F6 N O		C17 H9 F6	NO		
Mr	357.25		357.25			
Dx.g cm-3	1.578		1.578			
Z	2		2			
Mu (mm-1)	1.329		1.329			
F000	360.0		360.0			
F000'	361.60					
h,k,lmax	12,7,14		12,7,14			
Nref	2748[1513]		2740			
Tmin, Tmax	0.625,0.671		0.589,0.75	53		
Tmin'	0.567					
Correction metho	od= # Reported T	Limits: T	min=0.589 1	max=0.753		
AbsCorr = MULTI-	-SCAN					
Data completeness= 1.81/1.00 Theta(max)= 68.124						
R(reflections) =	0.0317(2694)	wR2(ref	flections)=	0.0790(2740)		
S = 1.075	Npar=	226				
The following MIRDER ware generated Reab MIRDE has the format						
The following ALERTS were generated, Each ALERT has the format						

test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

```
Alert level G
PLAT242_ALERT_2_G Low
                        'MainMol' Ueq as Compared to Neighbors of
                                                                         C16 Check
PLAT242 ALERT 2 G Low
                       'MainMol' Ueq as Compared to Neighbors of
                                                                         C17 Check
PLAT432 ALERT 2 G Short Inter X...Y Contact 01
                                                                        2.94 Ang.
                                                     ..C9
                                            1-x,-1/2+y,1-z =
                                                                   2 646 Check
PLAT791_ALERT_4_G Model has Chirality at C7
                                                    (Sohnke SpGr)
                                                                           R Verify
PLAT909_ALERT_3_G Percentage of I>2sig(I) Data at Theta(Max) Still
                                                                         97% Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600
                                                                          2 Note
PLAT978 ALERT 2 G Number C-C Bonds with Positive Residual Density.
                                                                           2 Info
  0 ALERT level A = Most likely a serious problem - resolve or explain
  0 ALERT level B = A potentially serious problem, consider carefully
  1 ALERT level C = Check. Ensure it is not caused by an omission or oversight
  7 ALERT level G = General information/check it is not something unexpected
  0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
  4 ALERT type 2 Indicator that the structure model may be wrong or deficient
  2 ALERT type 3 Indicator that the structure quality may be low
  2 ALERT type 4 Improvement, methodology, query or suggestion
  0 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

7.2 Crystal report of compound 3a (grown in a mixed solvent of DCM and n-hexane)

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) cu_210316_cjf_2_bd_0m

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: cu_210316_cjf_2_bd_0m

Bond precision:	C-C = 0.0026 A	Wavelength	n=1.54178			
Cell:	a=9.7165(13) alpha=90	b=11.402(2) beta=90	c=15.962(2) gamma=90			
Temperature:	170 K					
	Calculated	Reported				
Volume	1768.4(4)	1768.5(5)				
Space group	P 21 21 21	P 21 21 2	21			
Hall group	P 2ac 2ab	P 2ac 2ab	,			
Moiety formula	C22 H14 F3 N O	C22 H14 F	73 N O			
Sum formula	C22 H14 F3 N O	C22 H14 F	73 N O			
Mr	365.34	365.34				
Dx,g cm-3	1.372	1.372				
Z	4	4				
Mu (mm-1)	0.895	0.895				
F000	752.0	752.0				
F000'	754.68					
h,k,lmax	11,13,19	11,13,19				
Nref	3237[1863]	3236				
Tmin, Tmax	0.777,0.814	0.664,0.7	753			
Tmin'	0.696					
Correction metho AbsCorr = MULTI-	od= # Reported T Lim -SCAN	its: Tmin=0.664	Tmax=0.753			
Data completeness= 1.74/1.00 Theta(max)= 68.256						
R(reflections) = 0.0290(3217) wR2(reflections) = 0.0729(3236)						
S = 1.072	Npar= 244	l				
The following ALERTS were generated. Each ALERT has the format						

Click on the hyperlinks for more details of the test.

```
Alert level C
PLAT230_ALERT_2_C Hirshfeld Test Diff for
                                                  C20
                                                            --C21
                                                                                  6.2 s.u.
Alert level G
                           'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_G Low
                                                                                  C16 Check
PLAT791 ALERT 4 G Model has Chirality at C7
PLAT791 ALERT 4 G Model has Chirality at C8
                                                         (Sohnke SpGr)
                                                                                    R Verify
                                                           (Sohnke SpGr)
                                                                                    S Verify
PLAT978 ALERT 2 G Number C-C Bonds with Positive Residual Density.
                                                                                    0 Info
   0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully
   1 ALERT level C = Check. Ensure it is not caused by an omission or oversight
   4 ALERT level G = General information/check it is not something unexpected
   0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
   3 ALERT type 2 Indicator that the structure model may be wrong or deficient
   O ALERT type 3 Indicator that the structure quality may be low
   2 ALERT type 4 Improvement, methodology, query or suggestion
   O ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 05/12/2020; check.def file version of 05/12/2020

7. References

- [1] K. Aikawa, T. Okamoto, K. Mikami, J. Am. Chem. Soc., 2012, 134, 10329.
- [2] F. Verdugo, L. Villarino, J. Durán, M. Gulás, J. L. Mascareñas, F. López, ACS Catal., 2018, 8, 6100.
- [3] T.-F. Zhang, Q.-W. Ma, W.-G. Ni, Z.-X. Wang, Synthesis, 2014, 46, 3309.
- [4] Z.-X. Wang, F.-L. Ge, W. Wen, H.-Z. Jiang, H. Jian, J. Org. Chem., 2007, 128, 1143.
- [5] J. Pedroni, N. Cramer, Org. Lett., 2016, 18, 1932.
- [6] W.-J. Zhou, K.-H. Wang, J.-X. Wang, Z.-R. Gao, Tetrahedron, 2010, 66, 7633.
- [7] C. Shen, R.-R. Liu, Y.-X. Jia, J. Am. Chem. Soc., 2015, 137, 4936.
- [8] D. A. Petrone, M. Kondo, M. Lautens, Chem. Eur. J., 2016, 22, 5684.