Copper-catalyzed [4 + 2] oxidative annulation of α,β -unsaturated

ketoxime acetates with ethyl trifluoropyruvate

Huan Yan, Gaochen Xu, Meng Gu, Qinghuan Wu, Sai Zhang, Jingjing Meng, Ning Zhu, Zheng Fang,* Jindian Duan,* and Kai Guo*

College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China. *E-mail: fzcpu@163.com; duanjd@njtech.edu.cn; guok@njtech.edu.cn

Supporting Information

Contents

Experimental section	S2
General	S2
General procedure for the synthesis of 3	S2
General procedure for the synthesis of 4	S2
Scale-up synthesis of compound 3a	S2
Scale-up synthesis of compound 3f	S3
Control experiments	S3
Compounds characterization	S4
References	S10
NMR Spectra of compounds	S11
Crystal structure and data for compound 30	S59
HRMS (ESI-TOF) analysis of the reaction mixture	S61

Experimental section

General

Unless otherwise noted, all experiments were performed under N₂ atmosphere. Commercial solvents and reagents were used without further purification. Thin-layer chromatography (TLC) was performed on silica gel plates (60F-254) using UV-light (254 nm). Flash chromatography was conducted on silica gel (200-300 mesh). NMR (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR) spectra were recorded in CDCl₃ with TMS as the internal standard. Chemical shifts are reported in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; m, multiplet), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer using ESI-TOF (electrospray ionization-time of flight). The α , β -unsaturated ketoxime acetates were all known compounds and synthesized according to previously reported literature procedures.¹ Ethyl trifluoropyruvate **2a** was purchased and used without additional purification.

General procedure for the synthesis of 3

1 (0.3 mmol), **2a** (1.2 mmol), CuI (6 mg, 10 mol%), DDQ (102 mg, 0.45 mmol), DMAP (7 mg, 20 mol%) and NiF₂ (29 mg, 0.3 mmol) were loaded into a 25 mL Schlenk tube equipped with a Teflon-coated magnetic stir bar. The Schlenk tube was placed under vacuum for 1 min and then N₂ was pumped into it. The solvent toluene (3 mL, 0.1 M) was added into the Schlenk tube by syringe. The reaction mixture was stirred at 120 °C for 12 h. After completion of the reaction (detected by TLC), the reaction tube was allowed to cool to room temperature and the reaction solution was concentrated under vacuum. The crude products were purified by column chromatography on silica gel (Petroleum Ether/EtOAc) to give the products **3**.

General procedure for the synthesis of 4

1 (0.3 mmol), **2a** (1.2 mmol), CuI (6 mg, 10 mol%), DDQ (102 mg, 0.45 mmol), DMAP (7 mg, 20 mol%) and NiF₂ (29 mg, 0.3 mmol) were loaded into a 25 mL Schlenk tube equipped with a Teflon-coated magnetic stir bar. The Schlenk tube was placed under vacuum for 1 min and then N₂ was pumped into it. The solvent toluene (3 mL, 0.1 M) was added into the Schlenk tube by syringe. The reaction mixture was stirred at 120 °C (oil bath) for 12 h. After completion of the reaction (detected by TLC), the reaction tube was allowed to cool to room temperature and the reaction solution was concentrated under vacuum. The crude products were purified by column chromatography on silica gel (Petroleum Ether/EtOAc) to give the products **4**.

Scale-up synthesis of compound 3a

1a (1.355 g, 5 mmol), ethyl trifluoropyruvate **2a** (3.402 g, 20 mmol), CuI (0.952 g, 10 mol%), DDQ (1.703 g, 7.5 mmol), DMAP (0.112 g, 20 mol%) and NiF₂ (0.484 g, 5 mmol) were loaded into

a Schlenk tube equipped with a Teflon-coated magnetic stir bar. The Schlenk tube was placed under vacuum for 1 min and then N₂ was pumped into it. The solvent toluene (15 mL) was added into the Schlenk tube by syringe. The reaction mixture was stirred at 120 °C (oil bath) for 12 h. Then the reaction tube was allowed to cool to room temperature and the reaction solution was concentrated under reduced pressure. The crude products were purified by column chromatography on silica gel (Petroleum Ether/EtOAc= 10:1) to give the product **3a** 1.207 g (65% yield).

Scale-up synthesis of compound 3f

1f (1.376 g, 5 mmol), ethyl trifluoropyruvate **2a** (3.402 g, 20 mmol), CuI (0.952 g, 10 mol%), DDQ (1.703 g, 7.5 mmol), DMAP (0.112 g, 20 mol%) and NiF₂ (0.484 g, 5mmol) were loaded into a Schlenk tube equipped with a Teflon-coated magnetic stir bar. The Schlenk tube was placed under vacuum for 1 min and then N₂ was pumped into it. The solvent toluene (15 mL) was added into the Schlenk tube by syringe. The reaction mixture was stirred at 120 °C (oil bath) for 12 h. Then the reaction tube was allowed to cool to room temperature and the reaction solution was concentrated under reduced pressure. The crude products were purified by column chromatography on silica gel (Petroleum Ether/EtOAc= 10:1) to give the product **3f** 1.060 g (55% yield).

Control experiments

1a (78 mg, 0.3 mmol), ethyl trifluoropyruvate **2a** (204 mg, 1.2 mmol), CuI (6 mg, 10 mol%), DMAP (7 mg, 20 mol%) and NiF₂ (29 mg, 0.3 mmol) were loaded into a Schlenk tube equipped with a Teflon-coated magnetic stir bar. The Schlenk tube was placed under vacuum for 1 min and then N₂ was pumped into it. The solvent toluene (3 mL) was added into the Schlenk tube by syringe. The reaction mixture was stirred at 120 °C (oil bath) for 12 h. Then the reaction tube was allowed to cool to room temperature and the reaction solution was concentrated under reduced pressure. The crude products were purified by column chromatography on silica gel (Petroleum Ether/EtOAc= 10:1) to give the product **5a** (84 mg, 75% yield).

1a (78 mg, 0.3 mmol), ethyl trifluoropyruvate **2a** (204 mg, 1.2 mmol), CuI (6 mg, 10 mol%), DDQ (102 mg, 0.45 mmol), DMAP (7 mg, 20 mol%), NiF₂(29 mg, 0.3 mmol) and radical scavenger (0.3–1.2 mmol) were loaded into a Schlenk tube equipped with a Teflon-coated magnetic stir bar. The Schlenk tube was placed under vacuum for 1 min and then N₂ was pumped into it. The solvent toluene (3 mL) was added into the Schlenk tube by syringe. The reaction mixture was stirred at 120 °C (oil bath) for 12 h. Then the reaction tube was allowed to cool to room temperature and the reaction solution was concentrated under reduced pressure. The crude products were purified by column chromatography on silica gel (Petroleum Ether/EtOAc= 10:1) to give the product **3a** or **5a**.

Compounds characterization

Diethyl 4-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3a)

84 mg, 75% yield; White solid; Mp 78–79 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 7.1 Hz, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 6.94 (s, 1H), 4.42–4.27 (m, 4H), 1.39 (t, *J* = 7.1 Hz, 3H), 1.30 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 162.9, 160.4, 150.2, 134.4, 132.4, 128.9, 127.4, 121.0 (q, *J* = 284.9 Hz), 102.1,

92.2 (q, J = 32.0 Hz), 63.5, 62.7, 14.2, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₁₇H₁₇F₃NO₅ [M+H]⁺ 372.1053, found 372.1053.

Diethyl 4-(4-fluorophenyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3b)

55 mg, 47% yield; Brown solid; Mp 63–65 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97–7.94 (m, 2H), 7.15 (t, *J* = 8.6 Hz, 2H), 6.89 (s, 1H), 4.42–4.27 (m, 4H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.30 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 165.5 (d, *J* = 253.7 Hz), 163.5, 161.8, 160.4, 150.2, 130.7 (d, *J* = 2.9 Hz), 129.9, 129.8, 121.0 (q, *J* = 284.9 Hz),

116.2, 116.0, 101.8, 92.2 (q, J = 32.0 Hz), 63.6, 62.8, 14.2, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.4, -106.6 ppm; HRMS (ESI-TOF): m/z calcd for C₁₇H₁₆F₄NO₅ [M+H]⁺ 390.0959, found 390.1010.

Diethyl 4-(4-chlorophenyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3c)

61 mg, 50% yield; White oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 8.7 Hz, 2H), 6.88 (s, 1H), 4.42–4.27 (m, 4H), 1.38 (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 161.9, 160.3, 150.3, 138.9, 132.8, 129.2, 128.8, 121.0 (q, J = 284.8 Hz), 101.6, 92.2 (q, J = 32.1 Hz), 63.6, 62.8, 14.2,

14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₁₇H₁₆ClF₃NO₅ [M+H]⁺ 406.0644, found 406.0658.

Diethyl 4-(4-bromophenyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3d)

62 mg, 46% yield; White oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 8.6 Hz, 2H), 7.60 (d, J = 8.5 Hz, 2H), 6.87 (s, 1H), 4.42 –4.27 (m, 4H), 1.38 (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 162.1, 160.3, 150.3, 133.3, 132.2, 129.0, 127.4, 120.9 (q, J = 284.9 Hz), 101.6, 92.2 (q, J = 32.1 Hz), 63.6, 62.9,

14.2, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₁₇H₁₆BrF₃NO₅ [M+H]⁺ 450.0158, found 450.0152.

Diethyl 4-(4-cyanophenyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3e)

48 mg, 40% yield; Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 8.5 Hz, 2H), 7.77 (d, *J* = 8.4 Hz, 2H), 6.88 (s, 1H), 4.42– 4.27 (m, 4H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.30 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 161.9, 160.0, 150.8, 138.2, 132.7, 128.0, 120.8 (q, *J* = 285.8Hz), 118.1, 115.8, 101.3, 92.2 (q, *J* = 32.5

Hz), 63.8, 63.0, 14.2, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.2 ppm; HRMS (ESI-TOF): m/z calcd for C₁₈H₁₆F₃N₂O₅ [M+H]⁺ 397.1006, found 397.1003.

Diethyl 4-(p-tolyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3f)

70 mg, 60% yield; Purple oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 8.1 Hz, 2H), 7.19 (d, *J* = 7.9 Hz, 2H), 6.84 (s, 1H), 4.34 – 4.18 (m, 4H), 2.33 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.22 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 162.5, 160.5, 149.9, 143.2, 131.7, 129.6, 127.4, 121.1 (q, *J* = 284.8 Hz), 102.1, 92.3 (q, *J* =

31.9 Hz), 63.4, 62.7, 21.7, 14.2, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.4 ppm; HRMS (ESI-TOF): m/z calcd for C₁₈H₁₉F₃NO₅ [M+H]⁺ 386.1210, found 386.1211.

Diethyl 4-(4-methoxyphenyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3g)

77 mg, 64% yield; Purple oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 8.9 Hz, 2H), 6.96–6.91 (m, 3H), 4.40–4.28 (m, 4H), 3.85 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.28 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 163.2, 161.7, 160.5, 149.7, 129.3, 126.9, 121.1 (q, *J* = 284.9 Hz), 114.2, 102.0, 92.2 (q, *J* = 31.9 Hz),

 $63.4,\,62.6,\,55.5,\,14.1,\,14.0\text{ ppm};\,{}^{19}\text{F NMR}\,(376\text{ MHz},\text{CDCl}_3)\,\delta\,\text{-}79.4\text{ ppm};\,\text{HRMS}\,(\text{ESI-TOF}):\,\text{m/z}\,\text{calcd}\,for\,C_{18}H_{19}F_3NO_6\,[\text{M}+\text{H}]^+\,402.1159,\,found\,402.1155.$

Diethyl 4-(3-methoxyphenyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3h)

65 mg, 54% yield; Purple oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48–7.46 (m, 2H), 7.37 (t, J = 7.9 Hz, 1H), 7.09–7.06 (m, 1H), 6.90 (s, 1H), 4.41–4.24 (m, 4H), 3.85 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 162.8, 160.4, 160.1, 145.0, 135.8, 130.0, 121.0 (q, J = 286.8 Hz), 120.0,

118.4, 112.3, 102.2, 92.2 (q, *J* = 32.0 Hz), 63.5, 62.7, 55.5, 14.1, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for $C_{18}H_{19}F_3NO_6$ [M+H]⁺ 402.1159, found 402.1156.

Diethyl 4-(3-bromophenyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3i)

54 mg, 40% yield; Yellow solid; Mp 72–73 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (s, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.67 (d, *J* = 9.9 Hz, 1H), 7.35 (t, *J* = 7.9 Hz, 1H), 6.86 (s, 1H), 4.43–4.28 (m, 4H), 1.39 (t, *J* = 7.1 Hz, 3H), 1.31 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 161.9, 160.2, 150.4, 136.4, 135.4, 130.42, 130.40, 126.1, 123.3,

120.9 (q, J = 285.9 Hz), 101.7, 92.2 (q, J = 32.6 Hz), 63.7, 62.9, 14.2, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₁₇H₁₆BrF₃NO₅ [M+H]⁺ 450.0158, found 450.0147.

Diethyl 4-(2-methoxyphenyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3j)

84 mg, 70% yield; Purple oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 7.7 Hz, 1H), 7.44 (t, *J* = 7.0 Hz, 1H), 7.05–6.90 (m, 3H), 4.38–4.31 (m, 4H), 3.86 (s, 3H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.30 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 163.7, 160.7, 158.5, 147.6, 133.1, 130.4, 124.8, 121.2, 121.0 (q, *J* = 285.8 Hz), 111.5, 107.0, 91.6 (q, *J* = 32.0

Hz), 63.4, 62.4, 55.7, 14.1, 14.0 ppm; ^{19}F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₁₈H₁₉F₃NO₆ [M+H]⁺ 402.1159, found 402.1157.

Diethyl 4-(2-fluorophenyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3k)

49 mg, 42% yield; Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (t, *J* = 8.6 Hz, 1H), 7.53–7.48 (m, 1H), 7.25 (t, *J* = 7.7 Hz, 1H), 7.17–7.12 (m, 1H), 6.92 (d, *J* = 2.9 Hz, 1H), 4.41–4.30 (m, 4H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.32 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 161.9, 161.7 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2, 149.2 (d, *J* = 1.8 Hz), 133.9 (d, *J* = 254.5 Hz), 160.2 Hz), 160.2 Hz = 1.8 Hz = 1.8 Hz), 160.2 Hz = 1.8 Hz =

8.8 Hz), 130.5 (d, J = 2.5 Hz), 124.9 (d, J = 3.5 Hz), 123.3 (d, J = 10.8 Hz), 120.9 (q, J = 285.8 Hz), 116.6 (d, J = 22.3 Hz), 105.4 (d, J = 10.1 Hz), 91.6 (q, J = 32.2 Hz), 63.6, 62.7, 14.2, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3, -112.7 ppm; HRMS (ESI-TOF): m/z calcd for C₁₇H₁₆F₄NO₅ [M+H]⁺ 390.0959, found 390.0957.

Diethyl 4-([1,1'-biphenyl]-4-yl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (31)

89 mg, 66% yield; Purple oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (d, *J* = 8.2 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 7.4 Hz, 2H), 7.50–7.46 (m, 2H), 7.42–7.39 (m, 1H), 6.99 (s, 1H), 4.44–4.30 (m, 4H), 1.41 (t, *J* = 7.1 Hz, 3H), 1.32 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 162.4, 160.5, 150.0, 145.2, 134.0, 133.2, 129.1, 128.3, 128.0, 127.5, 127.3, 121.1 (q, *J* = 285.0 Hz),

102.0, 92.3 (q, J = 32.0 Hz), 63.5, 62.8, 14.2, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₂₃H₂₁F₃NO₅ [M+H]⁺ 448.1366, found 448.1360.

Diethyl 4-(naphthalen-2-yl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3m)

57 mg, 45% yield; White solid; Mp 77–78 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 (s, 1H), 8.13–8.11 (m, 1H), 7.97–7.87 (m, 3H), 7.61–7.53 (m, 2H), 7.11 (s, 1H), 4.46–4.30 (m, 4H), 1.42 (t, *J* = 7.1 Hz, 3H), 1.32 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 162.7, 160.6, 150.0, 135.3, 132.8, 131.8, 129.3, 128.9, 128.6,

128.3, 127.9, 127.0, 121.1 (q, J = 285.8 Hz), 123.6, 102.1, 92.4 (q, J = 32.0 Hz), 63.6, 62.8, 14.3, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.2 ppm; HRMS (ESI-TOF): m/z calcd for C₂₁H₁₉F₃NO₅ [M+H]⁺ 422.1210, found 422.1202.

Diethyl 4-(thiophen-2-yl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3n)

52 mg, 46% yield; Purple oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (d, J = 3.8 Hz, 1H), 7.59 (d, J = 5.0 Hz, 1H), 7.14–7.12 (m, 1H), 6.81 (s, 1H), 4.42–4.27 (m, 4H), 1.39 (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 160.4, 157.3, 149.6, 140.4, 132.7, 130.8, 128.2, 121.0 (q, J = 285.1 Hz), 101.8, 91.8 (q, J = 32.1 Hz), 63.5,

62.8, 14.2, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.4 ppm; HRMS (ESI-TOF): m/z calcd for C₁₅H₁₅F₃NO₅S [M+H]⁺ 378.0618, found 378.0614.

2-Ethyl 6-methyl 4-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (30)

68 mg, 63% yield; White solid; Mp 91–93 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (d, J = 7.3 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 6.96 (s, 1H), 4.39–4.27 (m, 2H), 3.93 (s, 3H), 1.30 (t, J =7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 162.8, 160.9, 149.7, 134.3, 132.5, 128.9, 127.4, 121.0 (q, J = 284.9 Hz), 102.3, 92.3 (q,

J = 32.1 Hz), 63.6, 53.3, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₁₆H₁₅F₃NO₅ [M+H]⁺ 358.0897, found 358.0893.

2-Ethyl 6-isopropyl 4-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3p)

58 mg, 50% yield; Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 7.2 Hz, 2H), 7.56–7.45 (m, 3H), 6.90 (s, 1H), 5.26–5.20 (m, 1H), 4.38–4.27 (m, 2H), 1.38–1.36 (m, 6H), 1.30 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 163.0, 159.9, 150.3, 134.5, 132.4, 128.9, 127.4, 121.1 (q, *J* = 284.9 Hz), 101.9, 92.2 (q, *J* = 32.0 Hz), 70.9, 63.4,

21.8, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₁₈H₁₉F₃NO₅ [M+H]⁺ 386.1210, found 386.1204.

Ethyl 4,6-diphenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4a)

90 mg, 80% yield; White solid; Mp 74–76 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, *J* = 7.1 Hz, 2H), 7.92 (d, *J* = 7.0 Hz, 2H), 7.56–7.47 (m, 6H), 6.63 (s, 1H), 4.37–4.27 (m, 2H), 1.28 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 164.5, 160.7, 135.8, 132.0, 131.7, 131.2, 128.9, 128.8, 127.4, 127.0, 121.6 (q, *J* = 284.2 Hz), 95.1, 91.7 (q, *J* = 31.7 Hz),

63.3, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₂₀H₁₇F₃NO₃ [M+H]⁺ 376.1155, found 376.1152.

Ethyl 6-(4-nitrophenyl)-4-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4b)

79 mg, 63% yield; Yellow solid; Mp 137–138 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 (d, J = 8.6 Hz, 2H), 8.07 (d, J = 8.6 Hz, 2H), 7.98 (d, J = 7.4 Hz, 2H), 7.57–7.47 (m, 3H), 6.73 (s, 1H), 4.39–4.27 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 163.6, 158.0, 149.6, 137.0, 135.1, 132.1, 128.9, 127.6, 127.4, 124.0, 121.3 (q, J

= 285.8 Hz), 97.2, 91.9 (q, J = 32.0 Hz), 63.6, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₂₀H₁₆F₃N₂O₅ [M+H]⁺ 421.1006, found 421.1009.

Ethyl 6-(4-methoxyphenyl)-4-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4c)

97 mg, 80% yield; Yellow solid; Mp 105–106 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, J = 8.6 Hz, 2H), 7.91 (d, J = 6.9 Hz, 2H), 7.53–7.47 (m, 3H), 6.97 (d, J = 8.5 Hz, 2H), 6.60 (s, 1H), 4.35–4.25 (m, 2H), 3.86 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 163.4, 162.6, 160.4, 131.9, 131.4, 129.2, 128.9, 128.3, 126.9,

121.6 (q, J = 284.3 Hz), 114.0, 94.9, 91.7 (q, J = 31.6 Hz), 63.2, 55.5, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.4 ppm; HRMS (ESI-TOF): m/z calcd for C₂₁H₁₉F₃NO₄ [M+H]⁺ 406.1261, found 406.1258.

Ethyl 6-(3-bromophenyl)-4-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4d)

61 mg, 45% yield; Yellow solid; Mp 104–106 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08–7.92 (m, 3H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.65 (d, *J* = 6.8 Hz, 1H), 7.56–7.47 (m, 3H), 7.36 (t, *J* = 7.9 Hz, 1H), 6.59 (s, 1H), 4.37–4.26 (m, 2H), 1.29 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 164.1, 159.1, 135.5, 134.8, 133.3, 131.9, 130.5, 129.7, 128.8, 127.4,

125.5, 123.1, 121.4 (q, J = 284.8 Hz), 95.8, 91.8 (q, J = 31.9 Hz), 63.4, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₂₀H₁₆BrF₃NO₃ [M+H]⁺ 454.0260, found 454.0251.

Ethyl 4-phenyl-6-(m-tolyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4e)

84 mg, 72% yield; Yellow solid; Mp 61–63 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, J = 6.4 Hz, 2H), 7.85 (s, 1H), 7.77 (d, J = 7.2 Hz, 1H), 7.54–7.49 (m, 3H), 7.40–7.34 (m, 2H), 6.63 (s, 1H), 4.38–4.27 (m, 2H), 2.45 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 164.7, 160.5, 138.6, 135.7, 132.5, 132.0, 131.2, 128.9,

128.6, 127.9, 126.9, 124.6, 121.6 (q, J = 285.8 Hz), 95.3, 91.7 (q, J = 31.7 Hz), 63.2, 21.5, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₂₁H₁₉F₃NO₃ [M+H]⁺ 390.1312, found 390.1311.

Ethyl 6-(2-methoxyphenyl)-4-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4f)

45 mg, 37% yield; Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (d, J = 9.6 Hz, 1H), 7.98 (d, J = 6.6 Hz, 2H), 7.52–7.46 (m, 4H), 7.16–7.06 (m, 2H), 7.00 (d, J = 7.4 Hz, 1H), 4.34–4.23 (m, 2H), 3.97 (s, 3H), 1.24 (d, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 165.1, 159.1, 157.2, 135.9, 133.1, 131.8, 130.4, 130.1, 130.0, 128.8, 127.8, 121.5 (q, J = 285.8 Hz), 121.2,

119.5, 111.4, 100.9, 90.7 (q, J = 31.6 Hz), 63.3, 56.0, 14.1 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.2 ppm; HRMS (ESI-TOF): m/z calcd for C₂₁H₁₉F₃NO₅ [M+H]⁺ 406.1261, found 406.1257.

Ethyl 4-(4-chlorophenyl)-6-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4g)

CO₂Et 69 mg, 56% yield; Yellow solid; Mp 134–135 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95–7.90 (m, 4H), 7.54–7.44 (m, 5H), 6.57 (s, 1H), 4.36– 4.26 (m, 2H), 1.27 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 163.4, 161.1, 137.6, 133.6, 132.2, 131.0, 129.0, 129.0, 128.8, 127.0, 121.5 (q, *J* = 284.2 Hz), 94.6, 91.7 (q, *J* = 31.9 Hz), 63.3, 14.0 ppm; ¹⁹F

NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₂₀H₁₆ClF₃NO₃ [M+H]⁺ 410.0765, found 410.0761.

Ethyl 4-(4-nitrophenyl)-6-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4h)

96 mg, 76% yield; Orange solid; Mp 136–138 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.31 (d, *J* = 8.6 Hz, 2H), 8.07 (d, *J* = 8.6 Hz, 2H), 7.98 (d, *J* = 7.3 Hz, 2H), 7.57–7.47 (m, 3H), 6.73 (s, 1H), 4.39–4.27 (m, 2H), 1.29 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 163.6, 158.0, 149.6, 137.0, 135.1, 132.1, 128.9, 127.6, 127.4, 124.0, 121.3 (q, *J* = 285.8 Hz), 97.2, 91.9 (q, *J* = 32.0 Hz), 63.6, 14.0 ppm; ¹⁹F NMR (376

MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₂₀H₁₆F₃N₂O₅ [M+H]⁺ 421.1006, found 421.1001.

Ethyl 4-(4-methoxyphenyl)-6-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4i)

106 mg, 87% yield; Yellow solid; Mp 103–105 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (d, *J* = 6.5 Hz, 2H), 7.87 (d, *J* = 8.8 Hz, 2H), 7.52–7.45 (m, 3H), 6.99 (d, *J* = 8.8 Hz, 2H), 6.52 (s, 1H), 4.35–4.25 (m, 2H), 3.87 (s, 3H), 1.27 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 164.8, 162.8, 160.7, 136.0, 131.5, 128.9, 128.7, 127.4, 123.5,

121.6 (q, J = 284.8 Hz), 114.3, 93.9, 91.6 (q, J = 31.7 Hz), 63.2, 55.6, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₂₁H₁₉F₃NO₄ [M+H]⁺ 406.1261, found 406.1258.

Ethyl 6-phenyl-4-(m-tolyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4j)

84 mg, 72% yield; Yellow solid; Mp 90–91 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 6.8 Hz, 2H), 7.73 (s, 2H), 7.54–7.47 (m, 3H), 7.41–7.34 (m, 2H), 6.62 (s, 1H), 4.38–4.27 (m, 2H), 2.45 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 164.5, 160.9, 138.7, 135.8, 132.9, 131.7, 131.1, 128.8, 128.7, 127.4, 127.4, 124.2, 121.6

 $(q, J = 284.8 \text{ Hz}), 95.0, 91.7 (q, J = 31.7 \text{ Hz}), 63.2, 21.5, 14.0 \text{ ppm}; {}^{19}\text{F} \text{ NMR} (376 \text{ MHz}, \text{CDCl}_3) \delta$ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₂₁H₁₉F₃NO₃ [M+H]⁺ 390.1312, found 390.1311.

Ethyl 4-(3-bromophenyl)-6-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4k)

80 mg, 55% yield; Yellow solid; Mp 108–110 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (t, J = 1.9 Hz, 1H), 7.97–7.82 (m, 3H), 7.65 (d, J = 7.9 Hz, 1H), 7.55–7.48 (m, 3H), 7.36 (t, J = 7.9 Hz, 1H), 6.54 (s, 1H), 4.36–4.25 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 163.4, 161.2, 137.7, 134.6, 132.3, 130.9, 130.4, 130.3,

128.9, 127.0, 126.0, 123.0, 118.6 (q, J = 284.9 Hz), 94.7, 91.6 (q, J = 31.9 Hz), 63.4, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₂₀H₁₆BrF₃NO₃ [M+H]⁺ 454.0260, found 454.0251.

Ethyl 6-phenyl-4-(o-tolyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4l)

53 mg, 45% yield; Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 7.0 Hz, 2H), 7.54–7.43 (m, 4H), 7.36–7.25 (m, 3H), 6.29 (s, 1H), 4.38–4.30 (m, 2H), 2.51 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 164.9, 159.8, 137.0, 136.6, 132.1, 131.4, 130.9, 130.0, 129.0, 128.2, 127.0, 126.1, 121.4 (q, *J* = 284.8 Hz), 98.5, 91.3 (q, *J* = 31.7 Hz), 63.3, 20.3,

14.1 ppm; ^{19}F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for $C_{21}H_{19}F_3NO_3$ [M+H]+ 390.1312, found 390.1307.

Ethyl 6-phenyl-4-(thiophen-2-yl)-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4m)

86 mg, 75% yield; Yellow solid; Mp 83–84 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (d, J = 7.1 Hz, 2H), 7.68 (d, J = 3.7 Hz, 1H), 7.55–7.41 (m, 4H), 7.14 (t, J = 4.4 Hz, 1H), 6.54 (s, 1H), 4.31 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 160.4, 158.8, 141.2, 132.0, 131.4, 131.0, 129.5, 128.9, 127.9, 126.8, 121.4 (q, J = 284.4 Hz), 94.5, 91.4 (q,

J = 31.8 Hz), 63.3, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.4 ppm; HRMS (ESI-TOF): m/z calcd for C₁₈H₁₅F₃NO₃S [M+H]⁺ 382.0719, found 382.0716.

Ethyl 4-phenyl-6-(thiophen-2-yl)-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4n)

95 mg, 83% yield; Yellow solid; Mp 63–65 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (d, J = 7.6 Hz, 2H), 7.74 (d, J = 3.7 Hz, 1H), 7.56–7.46 (m, 4H), 7.20–7.13 (m, 1H), 6.48 (s, 1H), 4.37–4.27 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 164.3, 155.7, 135.6, 134.7, 131.7, 130.4, 129.5, 128.7, 128.4, 127.4, 121.4 (q, J = 284.3 Hz), 93.9, 91.6 (q,

J = 31.7 Hz), 63.3, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₁₈H₁₅F₃NO₃S [M+H]⁺ 382.0719, found 382.0714.

Ethyl (E)-4-phenyl-6-styryl-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (40)

75 mg, 62% yield; Yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, J = 6.8 Hz, 2H), 7.59–7.54 (m, 3H), 7.52–7.45 (m, 3H), 7.42–7.36 (m, 3H), 6.65 (d, J = 15.9 Hz, 1H), 6.17 (s, 1H), 4.41–4.26 (m, 2H), 1.30 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 164.2, 158.8, 137.5,

135.7, 135.3, 131.6, 129.8, 129.0, 128.7, 127.9, 127.3, 121.6 (q, J = 284.8 Hz), 119.3, 98.4, 91.4 (q, J = 31.4 Hz), 63.2, 14.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -79.3 ppm; HRMS (ESI-TOF): m/z calcd for C₂₂H₁₉F₃NO₃ [M+H]⁺ 402.1312, found 402.1310.

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-phenyl-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (5a)

White oil; dr 15:1; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 7.4 Hz, 2H), 7.51–7.47 (m, 1H), 7.41 (t, *J* = 7.3 Hz, 2H), 5.96 (dd, *J* = 7.6, 3.8 Hz, 1H), 4.27 (q, *J* = 7.0 Hz, 2H), 4.10 (q, *J* = 7.0 Hz, 2H), 2.89–2.78 (m, 2H), 1.28 (t, CO₂Et *J* = 7.0 Hz, 3H), 1.17 (t, *J* = 7.0 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 169.5, 164.2, 132.9, 129.1, 128.8, 121.6 (q, *J* = 285.9 Hz), 106.6 (q, *J* = 7.0 Hz, 2H), 2.89–2.78 (m, 2H), 2.89–2.78 (m, 2H), 2.89–2.78 (m, 2H), 1.28 (

30.8 Hz), 85.5, 63.0, 61.3, 39.1, 14.0, 13.9 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.6 ppm; HRMS (ESI-TOF): m/z calcd for C₁₇H₁₉F₃NO₅ [M+H]⁺ 374.1215, found 374.1230.

References

(1) (a) Zhang, L.; Duan, J.; Xu, G.; Ding, X.; Mao, Y.; Rong, B.; Zhu, N.; Fang, Z.; Li, Z.; Guo, K. J. Org. Chem. 2020, 85, 2532. (b) Duan, J.; Zhang, L.; Xu, G.; Chen, H.; Ding, X.; Mao, Y.; Rong, B.; Zhu, N.; Guo, K. J. Org. Chem. 2020, 85, 8157. (c) Rong, B.; Xu, G.; Yan, H.; Zhang, S.; Wu, Q.; Zhu, N.; Fang, Z.; Duan, J.; Guo, K. Org. Chem. Front. 2021, 8, 2939.

NMR Spectra of compounds Diethyl 4-phenyl-2-(trifluoromethyl)-2*H*-1,3-oxazine-2,6-dicarboxylate (3a)

Diethyl 4-(4-fluorophenyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3b)

Diethyl 4-(4-chlorophenyl)-2-(trifluoromethyl)-2*H*-1,3-oxazine-2,6-dicarboxylate (3c)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 f1 (ppm)

Diethyl 4-(4-bromophenyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3d)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -14(f1 (ppm)

Diethyl 4-(4-cyanophenyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3e)

Diethyl 4-(4-methoxyphenyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3g)

f1 (ppm)

Diethyl 4-(2-methoxyphenyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3j)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 f1 (ppm)

Diethyl 4-(2-fluorophenyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3k)

4 -	イア	00	0	N 00	0	m - m
NO	N 00	00 00	4	O V	-	70
00	00 50	40	N	7 10	-	ດ ດ
ファ	アア	NN	N	ファ	~	ω ώ
5	- 1.	12	-			

^{0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140} f1 (ppm)

Diethyl 4-(naphthalen-2-yl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3m)

Diethyl 4-(thiophen-2-yl)-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3n)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 f1 (ppm)

2-Ethyl 6-methyl 4-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (30)

2-Ethyl 6-isopropyl 4-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2,6-dicarboxylate (3p)

Ethyl 6-(4-nitrophenyl)-4-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4b)

 $Ethyl \ 6-(3-bromophenyl)-4-phenyl-2-(trifluoromethyl)-2H-1, 3-oxazine-2-carboxylate \ (4d)$

Ethyl 4-phenyl-6-(m-tolyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4e)

Ethyl 6-(2-methoxyphenyl)-4-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4f)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 f1 (ppm)

Ethyl 4-(4-nitrophenyl)-6-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4h)

^{0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -14} f1 (ppm)

Ethyl 4-(4-methoxyphenyl)-6-phenyl-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4i)

Ethyl 6-phenyl-4-(m-tolyl)-2-(trifluoromethyl)-2H-1,3-oxazine-2-carboxylate (4j)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 f1 (ppm)

S51

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 f1 (ppm)

Ethyl 4-phenyl-6-(thiophen-2-yl)-2-(trifluoromethyl)-2*H*-1,3-oxazine-2-carboxylate (4n)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 f1 (ppm)

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-phenyl-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (5a)

7.839 7.595 7.576 7.576 7.558 7.478 7.471	6.059 6.050 6.041 6.031	4.151 4.151 4.151	2.860	(1.380 1.362 1.362 1.269 1.252 1.234
			1 (

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 f1 (ppm)

Crystal structure and data for compound 3o

Table 1. Crystal data and structure refinement for	2105130246_0m.	
Identification code	2105130246_0m	
Empirical formula	$C_{16}H_{14}F_3NO_5$	
Formula weight	357.28	
Temperature	172.99 K	
Wavelength	1.34139 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 12.9185(2) Å	a= 85.1240(10)°.
	b = 14.1732(2) Å	b= 79.5830(10)°.
	c = 14.4149(2) Å	g = 67.9670(10)°.
Volume	2405.81(6) Å ³	
Z	6	
Density (calculated)	1.480 Mg/m ³	
Absorption coefficient	0.740 mm ⁻¹	
F(000)	1104	
Crystal size	0.05 x 0.03 x 0.03 mm ³	
Theta range for data collection	2.927 to 54.928°.	
Index ranges	-15<=h<=15, -17<=k<=16, -15	5<=l<=17
Reflections collected	31488	
Independent reflections	9074 [R(int) = 0.0311]	
Completeness to theta = 53.594°	98.9 %	
Absorption correction	Semi-empirical from equivaler	nts
Max. and min. transmission	0.7508 and 0.6553	
Refinement method	Full-matrix least-squares on F ²	2
Data / restraints / parameters	9074 / 0 / 682	
Goodness-of-fit on F ²	1.026	
Final R indices [I>2sigma(I)]	R1 = 0.0345, wR2 = 0.0914	
R indices (all data)	R1 = 0.0367, wR2 = 0.0935	
Extinction coefficient Largest diff. peak and hole 0.287 and -0.218 e.	n/a Å ⁻³	

HRMS (ESI-TOF) analysis of the reaction mixture

