Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Ir(III)-catalyzed quadruple C-H activation of *N*-arylimidazolium and diaryliodonium salts: facile access to polysubstituted

imidazo[1,2-f]phenanthridiniums

Zheng Liu, Qian Li, Chengyong Yang, Xuesong Zheng, Di Wu,* Ge Gao, Jingbo Lan*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China

Table of contents

I. General remarks	S1
II. General procedure for the synthesis of N-([1,1':3',1"-terphenyl]-2'-yl)-N-methyli	midazo-
lium	S2
III. Optimization of the NHC-directed cascade C-H arylation/annulation	S6
IV. NHC-directed cascade C-H arylation/annulation of N-arylimidazolium sat	lts with
diaryliodoniums	S7
V. Scale-up synthesis	S23
VI. Arylation/annulation of 1-(3-methoxyphenyl)-3-methyl-1 <i>H</i> -imidazol-3-ium with 2	aS24
VII. Arylation/annulation of unsymmetrical diaryliodonium salts	S26
VIII. Mechanistic study	S29
IX. Dequaternization of 1-methylimidazo[1,2- <i>f</i>]phenanthridin-1-ium salts	S35
X. Single crystal X-ray structures of 4a	S36
XI. References	S38
XII. Copies of ¹ H and ¹³ C NMR spectra	S39

I. General remarks

NMR spectra were recorded on an Agilent 400-MR DD2 spectrometer. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ or DMSO- d_6 as the internal reference (DMSO- d_6 : $\delta = 2.50$ ppm; CDCl₃: $\delta = 7.26$ ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ or DMSO- d_6 as the internal standard (DMSO- d_6 : $\delta = 39.52$ ppm; CDCl₃: $\delta = 77.16$ ppm). High-resolution mass spectra (HRMS) were obtained with a Shimadzu LCMS-ITTOF (ESI). X-Ray single-crystal diffraction data were collected on an Agilent Technologies Gemini single-crystal diffractometer.

All reagents were obtained from commercial suppliers and used without further purification unless otherwise stated. IrCl₃·3H₂O was purchased from Shanxi Kaida Chemical Engineering (China) CO., Ltd. AgSbF₆ was purchased from Alfa Aesar, 2,2,2-trifluoroethanol was purchased from Shanghai Energy Chemical CO., Ltd. Ag₂CO₃ was purchased from Beijing Ou He Chemical Engineering (china) CO., Ltd.

Scheme S1 List of *N*-arylimidazolium salts 1.

Scheme S2 List of diaryliodonium salts 2.

 $[Cp*IrCl_2]_2$,¹ *N*-substituted aryl imidazole,² imidazolium salts iodide substrates,³ 3-methyl-1-(pentadeuteriophenyl)-1*H*-imidazolium iodide ($[D_5]$ -1a),³ diaryliodonium trifluoromethanesulfonate,^{4,5,6} duteriodiphenyliodonium trifluoromethanesulfonate ($[D_{10}]$ -4a)^{4,7} were prepared according to the literatures.

II.Generalprocedureforthesynthesisof1-([1,1':3',1''-terphenyl]-2'-yl)-3-methyl-1H-imidazolium iodide

Synthesis of 1-([1,1':3',1''-terphenyl]-2'-yl)-1H-imidazole

+
$$\binom{H}{N}$$
 $\stackrel{Cul, L-Proline}{\xrightarrow{}}$ $\stackrel{N}{\xrightarrow{}}$ $\stackrel{N}{\xrightarrow{}}$ $\stackrel{N}{\xrightarrow{}}$

A 100 mL three-necked flask equipped with a magnetic stir bar was charged with CuI (92.5 mg, 0.5 mmol), *L*-proline (115.1 mg, 1.0 mmol), 2'-iodo-1,1':3',1"-terphenyl (1.83 g, 5.1 mmol), imidazole (340 mg, 5.0 mmol), K₂CO₃ (1.38 g, 10.0 mmol), DMSO (5.0 mL), and the reaction mixture was heated at 150 °C in oil bath for 24 h. After cooling to room temperature, EtOAc (30 mL) was added to that solution and washed with water (2 \times 30 mL). Then the whole organic solution was dried over

 Na_2SO_4 and filtrate was evaporated under reduced pressure. Final product (963 mg, 3.25 mmol, 65% yield) was separated by silica gel column chromatography using EtOAc and hexane (1:2, v/v) solvent mixture as an eluting solvent.

Synthesis of 1-([1,1':3',1''-terphenyl]-2'-yl)-3-methyl-1H-imidazolium iodide 6

A 25 mL single-necked flask equipped with a magnetic stir bar was charged with 1-([1,1':3',1"-terphenyl]-2'-yl)-1*H*-imidazole (889.0 mg, 3.0 mmol) and iodomethane (852.0 mg, 6.0 mmol), THF (5.0 mL), and the reaction mixture was stirred for 24 h at room temperature. The resultant precipitate (1.24 g, 2.83 mmol, 94% yield) was collected by filtration and washed with hexane and then dried in vacuo. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.16-9.15 (m, 1H), 7.83 (t, *J* = 8.0, 1H), 7.71 (t, *J* = 1.7 Hz, 1H), 7.64 (d, *J* = 7.7 Hz, 2H), 7.59 (t, *J* = 1.7 Hz, 1H), 7.39-9.35 (m, 6H), 7.24-7.22 (m, 4H), 3.68 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 139.5, 138.2, 136.5, 131.1, 130.5, 128.7, 128.3, 128.2, 125.8, 123.3, 36.0 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₉N₂⁺: [M-I]⁺, 311.1543, found: 311.1541.

Synthesis of 4,4,5,5-tetramethyl-2-(phenyl-d5)-1,3,2-dioxaborolane

A flame dried 100 mL three-necked flask equipped with a magnetic stir bar was charged with bromobenzene- d_5 (4.9 g, 30.0 mmol) and THF (40 mL). The solution was cooled to -78 °C and *n*-BuLi (2.5 mol/L in hexane, 36.0 mmol, 1.2 equiv) was added dropwise. After stirring for 0.5 h at the temperature, bis(pinacolato)diboron (36.0 mmol, 1.2 equiv) in THF (5 mL) was added. The mixture was allowed to warm to room temperature and stirred overnight, and saturated aqueous NH₄Cl solution was added. The organic layer was separated, washed with H₂O and aqueous NaHCO₃

solution, dried over Na₂SO₄, and concentrated in vacuo. Final product (2.8 g, 13.3 mmol, 44% yield) was separated by silica gel column chromatography using DCM and hexane (1:40, v/v) solvent mixture as an eluting solvent.

Synthesis of [1,1':3',1''-terphenyl]-2,2'',3,3'',4,4'',5,5'',6,6''-d10-2'-amine

A 100 mL three-necked flask equipped with a magnetic stir bar was charged with 4,4,5,5-tetramethyl-2-(phenyl- d_5)-1,3,2-dioxaborolane (2.8 g, 13.3 mmol), 2,6-dibromoaniline (1.3 g, 5.3 mmol), Pd(PPh₃)₄ (580 mg, 0.5 mmol), Na₂CO₃ (5.3 g, 50 mmol), toluene (25 mL), EtOH (5 mL), H₂O (10 mL), and the reaction mixture was heated at 100 °C in oil bath for 24 h. After cooling to room temperature, DCM (30 mL) was added to that solution and washed with water (2 × 30 mL). Then the whole organic solution was dried over Na₂SO₄ and filtrate was evaporated under reduced pressure. Final product (1.1 g, 4.3 mmol, 81% yield) was separated by silica gel column chromatography using EtOAc and hexane (1:30, v/v) solvent mixture as an eluting solvent.

Synthesis of 2'-iodo-1,1':3',1"-terphenyl-2,2",3,3",4,4",5,5",6,6"-d10

A 100 mL single-necked flask equipped with a magnetic stir bar was charged with [1,1':3',1"-terphenyl]-2,2",3,3",4,4",5,5",6,6"- d_{10} -2'-amine (1.1 g, 4.3 mmol), toluene and HOAc, The solution was cooled to -0 °C and NaNO₂ (840 mg, 12.2 mmol, 2.8 equiv) in H₂O (2 mL) was added dropwise. After stirring for 0.5 h at the temperature, KI (3.0 g, 18.0 mmol, 4.2 equiv) in H₂O (5 mL) was added. The mixture was allowed to warm to room temperature and stirred overnight, and saturated aqueous NaHSO₃

solution was added. The organic layer was separated, washed with H₂O, dried over Na₂SO₄, and concentrated in vacuo. Final product (1.35 g, 3.7 mmol, 86% yield) was separated by silica gel column chromatography using DCM and hexane (1:50, v/v) solvent mixture as an eluting solvent.

Synthesis of 1-([1,1':3',1''-terphenyl]-2'-yl-2,2'',3,3'',4,4'',5,5'',6,6''-*d*₁₀)-1Himidazole

A 100 mL three-necked flask equipped with a magnetic stir bar was charged with CuI (70.5)mg, 0.37 mmol), *L*-proline (85.2 mg, 0.74 mmol), 2'-iodo-1,1':3',1"-terphenyl-2,2",3,3",4,4",5,5",6,6"- d_{10} (1.35 g, 3.7 mmol), imidazole (252 mg, 3.7 mmol), K₂CO₃ (1.02 g, 7.4 mmol), DMSO (5.0 mL), and the reaction mixture was heated at 150 °C in oil bath for 24 h. After cooling to room temperature, EtOAc (30 mL) was added to that solution and washed with water (2×30 mL). Then the whole organic solution was dried over Na₂SO₄ and filtrate was evaporated under reduced pressure. Final product (674 mg, 2.2 mmol, 59% yield) was separated by silica gel column chromatography using EtOAc and hexane (1:2, v/v) solvent mixture as an eluting solvent.

Synthesis of 1-([1,1':3',1''-terphenyl]-2'-yl-2,2'',3,3'',4,4'',5,5'',6,6''-*d*₁₀)-3-methyl -1*H*-imidazol-3-ium iodide D₁₀-6

A 25 mL single-necked flask equipped with a magnetic stir bar was charged with 1-([1,1':3',1"-terphenyl]-2'-yl)-1*H*-imidazole (674 mg, 2.2 mmol) and iodomethane (625 mg, 4.4 mmol), THF (5.0 mL), and the reaction mixture was stirred for 24 h at room temperature. The resultant precipitate (897 mg, 2.0 mmol, 91% yield) was

collected by filtration and washed with hexane and then dried in vacuo. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.16$ (s, 1H), 7.83 (t, J = 7.7 Hz, 1H), 7.71 (s, 1H), 7.64 (d, J = 7.7 Hz, 2H), 7.59 (s, 1H), 3.68 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 139.4$, 138.2, 136.3, 131.1, 130.5, 128.0-128.3 (m), 128.2-128.1 (m), 127.9-127.8 (m), 127.6-127.5 (m), 125.8, 123.3, 36.0 ppm. HRMS (ESI⁺): calcd for C₂₂H₉D₁₀N₂⁺: [M-I]⁺, 321.2170, found: 321.2172.

III. Optimization of the NHC-directed cascade C-H arylation/annulation

А Schlenk tube with а magnetic stir bar was charged with 3-methyl-1-phenyl-1*H*-imidazol-3-ium iodide **(1a**, 57.2 0.2 mg, mmol), diphenyliodonium trifluoromethanesulfonate (2a, 215.0 mg, 0.5 mmol), the catalyst, oxidant, and solvent (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and then diluted with 10 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 10-25 mL of CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel ($CH_2Cl_2/acetonitrile = 3/1$) to provide the desired product.

Table S1	Optin	nization	of NHC-	directed	cascade	С-Н	arylation	n/annulation ^a .
							2	

	$H \rightarrow H + H \rightarrow H$ $1a \qquad 2$	× –	Catalyst, Oxidant Additive, Solvent	NO S	
entry	$catalyst^b$	oxidant	additive	solvent	yield(%) ^c
1	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ O	—	TFE	66%
2	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ O	_	Toluene	29%
3	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ O	_	DCE	50%
4	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ O	_	1,4-dioxane	N.D.
5	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ O	_	MeOH	N.D.
6	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ O	_	t-BuOH	N.D.
7	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ O	_	HFIP	42%
8	_	Ag ₂ O	_	TFE	N.D.

9	IrCl ₃ ·3H ₂ O	Ag ₂ O	—	TFE	N.D.
10	[Cp*RhCl ₂] ₂ /AgSbF ₆	Ag ₂ O	_	TFE	22%
11	Pd(OAc) ₂	Ag ₂ O	_	TFE	Trace
12	$[Ru(p-cymene)Cl_2]_2$	Ag ₂ O	_	TFE	N.D.
13	[Cp*IrCl ₂] ₂ /AgSbF ₆	—	_	TFE	Trace
14	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ CO ₃	_	TFE	76
15^{d}	[Cp*IrCl ₂] ₂ /AgSbF ₆	AgOAc	_	TFE	65
16 ^e	[Cp*IrCl ₂] ₂ /AgSbF ₆	Cu(OAc) ₂	_	TFE	Trace
17 ^f	[Cp*IrCl ₂] ₂ /AgSbF ₆	CuO	_	TFE	N.D.
18	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ CO ₃	PivOH	TFE	33%
19	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ CO ₃	TfOH	TFE	35%
20	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ CO ₃	K_2CO_3	TFE	25%
21	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ CO ₃	NaOAc	TFE	38%
22	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ CO ₃	AgOTf	TFE	75%
23 ^g	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ CO ₃	_	TFE	51%
24^h	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ CO ₃	_	TFE	17%
25^{i}	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ CO ₃	_	TFE	N.D.
26 ^j	[Cp*IrCl ₂] ₂ /AgSbF ₆	Ag ₂ CO ₃	—	TFE	N.D.

^{*a*}Reaction conditions: 3-methyl-1-phenyl-1*H*-imidazolium iodide **1a** (57.2 mg, 0.2 mmol), diphenyliodonium trifluoromethanesulfonate **2a** (215.0 mg, 0.5 mmol), catalyst (2.5 mol%), oxidant (2.0 equiv), additive (1.0 equiv), and solvent (1.0 mL) at 120 °C for 24 h under the nitrogen atmosphere. ^{*b*}AgSbF₆ (10 mol%) was used. ^{*c*}Yield of isolated products. ^{*d*}AgOAc (4.0 equiv) was used. ^{*e*}Cu(OAc)₂ (4.0 equiv) was used. ^{*f*}CuO (4.0 equiv) was used. ^{*g*}Ph₂IBF₄ (**2b**, 0.5 mmol, 2.5 equiv) was used. ^{*h*}Ph₂IFF₆ (**2c**, 0.5 mmol, 2.5 equiv) was used. ^{*f*}Ph₂ITFA (**2e**, 0.5 mmol, 2.5 equiv) was used. N.D. = not detected, TFE = 2,2,2-trifluoroethanol, DCE = 1,2-dichloroethane, HOAc = glacial acetic acid, HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol, MeOH = methanol, PivOH = pivalic acid.

IV. NHC-directed cascade C–H arylation/annulation of *N*-arylimidazolium salts with diaryliodoniums

A Schlenk tube with a magnetic stir bar was charged with $[Cp*IrCl_2]_2$ (3.9 mg, 2.5 mol%), AgSbF₆ (6.9 mg, 10 mol%), Ag₂CO₃ (110.5 mg, 2.0 equiv), *N*-arylimidazolium salts (1, 0.2 mmol), diaryliodonium salts (2, 0.5 mmol, 2.5 equiv), and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and then diluted with 10 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 10-25 mL of CH₂Cl₂. The filtrate was

concentrated under vacuum and the residue was purified by column chromatography on silica gel (CH₂Cl₂/acetonitrile) to provide the desired product.

1-Methyl-5-phenylimidazo[1,2-*f*]phenanthridinium trifluoromethanesulfonate (3a)

Synthesized from 3-methyl-1-phenyl-1*H*-imidazol-3-ium iodine (**1a**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 3/1, v/v) afforded the desired product **3a** as a yellow solid (69.7 mg, 76% yield).

Synthesized from 1-([1,1'-biphenyl]-2-yl)-3-methyl-1*H*-imidazolium iodide (**1b**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.3 mmol, 1.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 3/1, v/v) afforded the desired product **3a** as a yellow solid (71.5 mg, 78% yield).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.06-9.00 (m, 2H), 8.79 (d, *J* = 8.4 Hz, 1H), 8.14-8.10 (m, 1H), 8.02-7.97 (m, 1H), 7.95 (d, *J* = 2.4 Hz, 1H), 7.93-7.88 (m, 1H), 7.76 (dd, *J* = 7.4, 1.3 Hz, 1H), 7.64-7.60 (m, 3H), 7.56-7.53 (m, 2H), 7.06 (d, *J* = 2.3 Hz, 1H), 4.42 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 138.8, 137.9, 134.1, 132.6, 132.5, 130.2, 129.7, 129.1, 129.0, 127.8, 127.1, 125.6, 125.4, 124.4, 124.4, 123.6, 119.1, 117.2, 117.1 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₇N₂⁺: [M-OTf]⁺, 309.1386, found: 309.1381.

1,7-Dimethyl-5-phenylimidazo[1,2-*f*]phenanthridinium trifluoromethanesulfonate (3b) Synthesized from 3-methyl-1-(*p*-tolyl)-1*H*-imidazol-3-ium iodine (**1c**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **3b** as a white solid (68.8 mg, 73% yield).

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.04$ (d, J = 8.3 Hz, 1H), 8.84 (s, 1H), 8.77 (d, J = 8.3 Hz, 1H), 8.10 (t, J = 7.8 Hz, 1H), 7.98 (t, J = 7.8 Hz, 1H), 7.93 (d, J = 2.3 Hz, 1H), 7.66-7.57 (m, 4H), 7.56-7.49 (m, 2H), 7.02 (d, J = 1.6 Hz, 1H), 4.40 (s, 3H), 2.62 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 138.8$, 137.7, 137.6, 135.2, 132.4, 132.4, 130.2, 129.7, 129.6, 129.0, 125.6, 125.4, 125.2, 124.4, 124.2, 123.5, 117.2, 116.9, 20.7 ppm. HRMS (ESI⁺): calcd for C₂₃H₁₉N₂⁺: [M-OTf]⁺, 323.1543, found: 323.1543.

7-(*tert*-Butyl)-1-methyl-5-phenylimidazo[1,2-*f*]phenanthridinium trifluoromethanesulfonate (3c)

Synthesized from 1-(4-(*tert*-butyl)phenyl)-3-methyl-1*H*-imidazol-3-ium iodine (**1d**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **3c** as a white solid (64.7 mg, 63% yield).

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.18$ (d, J = 8.4 Hz, 1H), 8.87 (s, 1H), 8.77 (d, J = 8.5 Hz, 1H), 8.11 (t, J = 7.8 Hz, 1H), 7.98 (t, J = 7.7 Hz, 1H), 7.93 (s, 1H), 7.72 (s, 1H), 7.64-7.59 (m, 3H), 7.58-7.51 (m, 2H), 7.00 (d, J = 1.6 Hz, 1H), 4.41 (s, 3H), 1.49 (s, 9H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 150.5$, 139.0, 137.7, 132.44, 132.41, 131.4, 130.3, 129.7, 129.6, 129.2, 129.1, 125.6, 125.4, 125.2, 124.7, 123.4, 120.6, 117.2, 116.9, 35.1, 31.0 ppm. HRMS (ESI⁺): calcd for C₂₆H₂₅N₂⁺: [M-OTf]⁺, 365.2012, found: 365.2011.

7-Acetoxy-1-methyl-5-phenylimidazo[1,2-f]phenanthridinium trifluoromethanesulfonate (3d)

Synthesized from 1-(4-acetoxyphenyl)-3-methyl-1*H*-imidazol-3-ium iodine (**1e**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 3/1, v/v) afforded the desired product **3d** as a yellow solid (80.4 mg, 78% yield).

¹H NMR (400 MHz, DMSO-*d*₆): 9.41 (s, 1H), 9.13 (d, J = 8.3 Hz, 1H), 8.82 (d, J = 8.3 Hz, 1H), 8.22-8.10 (m, 2H), 8.04 (t, J = 7.7 Hz, 1H), 7.98 (d, J = 2.0 Hz, 1H), 7.64-7.59 (m, 5H), 7.11 (d, J = 1.9 Hz, 1H), 4.43 (s, 3H), 3.99 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 165.1$, 138.5, 138.1, 133.4, 133.3, 132.9, 130.3, 130.0, 129.9, 129.7, 129.5, 129.0, 128.5, 126.0, 125.5, 125.0, 124.7, 124.0, 117.5, 117.4, 52.9 ppm. HRMS (ESI⁺): calcd for C₂₄H₁₉N₂O₂⁺: [M-OTf]⁺, 367.1441, found: 367.1446.

1-Methyl-5,7-diphenylimidazo[1,2-f]phenanthridinium

trifluoromethanesulfonate (3e)

Synthesized from 1-([1,1'-biphenyl]-4-yl)-3-methyl-1*H*-imidazol-3-ium iodine (**1f**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **3e** as a white solid (56.7 mg, 53% yield).

¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.31$ (d, J = 8.2 Hz, 1H), 9.21 (s, 1H), 8.80 (d, J = 8.5 Hz, 1H), 8.13 (t, J = 7.9 Hz, 1H), 8.08-7.99 (m, 4H), 7.96 (d, J = 1.6 Hz, 1H),

7.64 (s, 5H), 7.58 (t, J = 7.5 Hz, 2H), 7.50 (t, J = 7.3 Hz, 1H), 7.06 (d, J = 2.2 Hz, 1H), 4.43 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 139.3$, 138.7, 138.0, 137.9, 133.3, 132.5, 132.2, 130.3, 129.8, 129.7, 129.2, 129.2, 128.6, 127.6, 126.5, 125.7, 125.4, 125.1, 124.3, 121.8, 117.4, 117.1 ppm. HRMS (ESI⁺): calcd for C₂₈H₂₁N₂⁺: [M-OTf]⁺, 385.1699, found: 385.1693.

7-Fluoro-1-methyl-5-phenylimidazo[1,2-f]phenanthridinium

trifluoromethanesulfonate (3f)

Synthesized from 1-(4-fluorophenyl)-3-methyl-1*H*-imidazol-3-ium iodine (**1g**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **3f** as a white solid (51.5 mg, 54% yield).

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.05$ (d, J = 8.2 Hz, 1H), 8.93 (dd, J = 10.1, 2.5 Hz, 1H), 8.79 (d, J = 8.4 Hz, 1H), 8.12 (t, J = 7.9 Hz, 1H), 8.03 (t, J = 7.7 Hz, 1H), 7.94 (d, J = 2.1 Hz, 1H), 7.73 (dd, J = 8.3, 2.6 Hz, 1H), 7.66-7.60 (m, 3H), 7.58-7.56 (m, 2H), 7.00 (d, J = 2.2 Hz, 1H), 4.41 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 160.0$ (d, $J_{CF} = 245.6$ Hz), 137.7 (d, $J_{CF} = 3.6$ Hz), 135.4 (d, $J_{CF} = 9.2$ Hz), 132.6, 130.4, 129.8, 129.7 (d, $J_{CF} = 3.4$ Hz), 129.5, 129.0, 126.0 (d, $J_{CF} = 9.3$ Hz), 125.6 (d, $J_{CF} = 22.8$ Hz), 125.0, 124.1 (d, $J_{CF} = 2.9$ Hz), 121.6, 121.3, 117.7, 117.5, 117.2, 110.3 (d, $J_{CF} = 24.8$ Hz) ppm. HRMS (ESI⁺): calcd for C₂₂H₁₆FN₂⁺: [M-OTf]⁺, 327.1292, found: 327.1290.

7-Chloro-1-methyl-5-phenylimidazo[1,2-f]phenanthridinium

trifluoromethanesulfonate (3g)

Synthesized from 1-(4-chlorophenyl)-3-methyl-1*H*-imidazol-3-ium iodine (**1h**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **3g** as a white solid (75.8 mg, 77% yield).

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.11$ (d, J = 8.5 Hz, 2H), 8.79 (d, J = 8.2 Hz, 1H), 8.12 (t, J = 7.8 Hz, 1H), 8.02 (t, J = 7.7 Hz, 1H), 7.95 (d, J = 1.2 Hz, 1H), 7.83 (s, 1H), 7.63-7.62 (m, 3H), 7.61-7.55 (m, 2H), 7.00 (s, 1H), 4.41 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 138.0$, 137.5, 134.6, 133.2, 132.6, 132.5, 130.4, 129.8, 129.6, 129.3, 129.0, 126.2, 125.8, 125.5, 125.0, 123.8, 117.6, 117.2 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₆³⁵ClN₂⁺: [M-OTf]⁺, 343.0997, found: 343.0995; calcd for C₂₂H₁₆³⁷ClN₂⁺: [M-OTf]⁺, 345.0968, found: 345.0975.

7-Bromo-1-methyl-5-phenylimidazo[1,2-*f*]phenanthridinium trifluoromethanesulfonate (3h)

Synthesized from 1-(4-bromophenyl)-3-methyl-1*H*-imidazol-3-ium iodine (**1i**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **3h** as a white solid (68.8 mg, 64% yield).

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.23$ (s, 1H), 9.12 (d, J = 8.3 Hz, 1H), 8.79 (d, J = 8.2 Hz, 1H), 8.11 (t, J = 7.7 Hz, 1H), 8.02 (t, J = 7.6 Hz, 1H), 7.94 (d, J = 5.5 Hz, 2H), 7.62 (d, J = 3.4 Hz, 3H), 7.59-7.53 (m, 2H), 7.00 (s, 1H), 4.41 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 138.0$, 137.5, 134.6, 133.2, 132.6, 132.5, 130.4, 129.8, 129.6, 129.3, 129.0, 126.2, 125.8, 125.5, 125.0, 123.8, 117.6, 117.2 ppm.

HRMS (ESI⁺): calcd for $C_{22}H_{16}^{79}BrN_2^+$: [M-OTf]⁺, 387.0492, found: 387.0491; calcd for $C_{22}H_{16}^{81}BrN_2^+$: [M-OTf]⁺, 389.0491, found: 389.0484.

1-Methyl-5-phenyl-7-(trifluoromethyl)imidazo[1,2-*f*]phenanthridinium trifluoromethanesulfonate (3i)

Synthesized from 3-methyl-1-(4-(trifluoromethyl)phenyl)-1*H*-imidazol-3-ium iodine (**1j**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 3/1, v/v) afforded the desired product **3i** as a yellow solid (63.0 mg, 60% yield).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.36 (s, 1H), 9.27 (d, *J* = 8.4 Hz, 1H), 8.83 (d, *J* = 8.3 Hz, 1H), 8.15 (t, *J* = 7.8 Hz, 1H), 8.10-8.03 (m, 2H), 7.98 (d, *J* = 2.1 Hz, 1H), 7.66-7.62 (m, 5H), 7.09 (d, *J* = 2.2 Hz, 1H), 4.44 (s, 3H). ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 138.6, 137.6, 134.1, 132.8, 130.6, 129.8, 129.6, 129.56 (q, *J*_{CF} = 3.1 Hz), 129.52, 129.1, 128.0 (q, *J*_{CF} = 32.8 Hz), 125.9, 125.5, 125.1, 124.6, 123.6 (q, *J*_{CF} = 271.7 Hz), 121.8 (q, *J*_{CF} = 3.7 Hz), 117.6, 117.5 ppm. HRMS (ESI⁺): calcd for C₂₃H₁₆F₃N₂⁺: [M-OTf]⁺, 377.1260, found: 377.1263.

7-(Methoxycarbonyl)-1-methyl-5-phenylimidazo[1,2-*f*]phenanthridin-1-ium trifluoromethanesulfonate (3j)

Synthesized from 1-(4-(methoxycarbonyl)phenyl)-3-methyl-1*H*-imidazol-3-ium iodine (**1k**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.5

mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **3j** as a white solid (63.1 mg, 61% yield).

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.34$ (s, 1H), 9.07 (d, J = 8.4 Hz, 1H), 8.80 (d, J = 8.2 Hz, 1H), 8.15-8.08 (m, 2H), 8.03 (t, J = 7.7 Hz, 1H), 7.99 (s, 1H), 7.68-7.62 (m, 3H), 7.60 (d, J = 4.6 Hz, 2H), 7.11 (s, 1H), 4.43 (s, 3H), 3.99 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 165.0$, 138.5, 138.0, 133.4, 133.3, 132.9, 130.3, 129.9, 129.9, 129.6, 129.5, 129.0, 128.4, 126.0, 125.5, 124.9, 124.6, 124.0, 117.4, 117.4, 52.9 ppm. HRMS (ESI⁺): calcd for C₂₄H₁₉N₂O₂⁺: [M-OTf]⁺, 367.1441, found: 367.1438.

7-Acetyl-1-methyl-5-phenylimidazo[1,2-f]phenanthridin-1-ium

trifluoromethanesulfonate (3k)

Synthesized from 1-(4-acetylphenyl)-3-methyl-1*H*-imidazol-3-ium iodine (**11**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **3k** as a white solid (53.3 mg, 53% yield).

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.34$ (s, 1H), 9.07 (d, J = 8.4 Hz, 1H), 8.80 (d, J = 8.2 Hz, 1H), 8.15-8.08 (m, 2H), 8.03 (t, J = 7.7 Hz, 1H), 7.99 (s, 1H), 7.68-7.62 (m, 3H), 7.60 (d, J = 4.6 Hz, 2H), 7.11 (s, 1H), 4.43 (s, 3H), 3.99 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 197.3$, 138.5, 138.3, 135.1, 133.1, 132.7, 132.5, 130.2, 130.0, 129.82, 129.81, 129.4, 129.1, 126.0, 125.5, 124.9, 124.3, 124.0, 117.5, 117.3, 27.4 ppm. HRMS (ESI⁺): calcd for C₂₄H₁₉N₂O⁺: [M-OTf]⁺, 351.1492, found: 351.1488.

1-Methyl-7-nitro-5-phenylimidazo[1,2-f]phenanthridin-1-ium

trifluoromethanesulfonate (3l)

Synthesized from 3-methyl-1-(4-nitrophenyl)-1*H*-imidazol-3-ium iodine (**1m**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **3l** as a white solid (35.2 mg, 35% yield).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.72 (s, 1H), 9.25 (d, *J* = 8.4 Hz, 1H), 8.84 (d, *J* = 8.2 Hz, 1H), 8.42 (s, 1H), 8.18 (t, *J* = 7.8 Hz, 1H), 8.09 (t, *J* = 7.7 Hz, 1H), 7.99 (s, 1H), 7.66 (s, 5H), 7.12 (s, 1H), 4.44 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 145.6, 137.3, 134.3, 133.0, 130.9, 130.9, 129.94, 129.86, 129.4, 129.0, 127.3, 126.1, 125.6, 125.3, 124.9, 119.5, 117.8, 117.6 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₆N₃O₂⁺: [M-OTf]⁺, 354.1237, found: 354.1234.

6-(tert-Butyl)-1-methylimidazo[1,2-f]phenanthridinium

trifluoromethanesulfonate (3m)

Synthesized from 1-(3-(*tert*-butyl)phenyl)-3-methyl-1*H*-imidazol-3-ium iodine (**1n**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.3 mmol, 1.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **3m** as a white solid (63.1 mg, 72% yield).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.42 (d, *J* = 2.0 Hz, 1H), 8.97 (d, *J* = 8.3 Hz, 1H), 8.87 (d, *J* = 8.7 Hz, 1H), 8.79 (d, *J* = 8.4 Hz, 1H), 8.48 (s, 1H), 8.40 (d, *J* = 2.0 Hz, 1H), 8.07 (t, *J* = 7.8 Hz, 1H), 7.93 (dd, *J* = 17.9, 8.5 Hz, 2H), 4.50 (s, 3H), 1.47 (s, 3H), 1.47 (s, 3H), 1.47 (s, 3H)

9H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 154.6$, 136.6, 132.3, 129.7, 129.3, 129.2, 127.3, 125.9, 125.4, 124.6, 124.0, 119.3, 117.0, 114.5, 113.7, 35.5, 31.0 ppm. HRMS (ESI⁺): calcd for C₂₀H₂₁N₂⁺: [M-OTf]⁺, 289.1699, found: 289.1695.

5-Chloro-1-methylimidazo[1,2-*f*]phenanthridin-1-ium trifluoromethanesulfonate (3n)

Synthesized from 1-(2-chlorophenyl)-3-methyl-1*H*-imidazol-3-ium iodine (**10**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.3 mmol, 1.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **3n** as a white solid (35.1 mg, 42% yield).

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.65$ (d, J = 2.1 Hz, 1H), 9.00 (d, J = 8.3 Hz, 2H), 8.81 (d, J = 8.3 Hz, 1H), 8.35 (d, J = 2.1 Hz, 1H), 8.14-8.05 (m, 2H), 8.00 (t, J = 7.7 Hz, 1H), 7.84 (t, J = 8.0 Hz, 1H), 4.51 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 138.2$, 133.8, 132.7, 130.2, 129.6, 128.7, 126.7, 126.3, 125.5, 125.4, 124.6, 124.5, 122.6, 117.9, 117.3 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₂³⁵ClN₂⁺: [M-OTf]⁺, 267.0684, found: 267.0683; calcd for C₁₆H₁₂³⁷ClN₂⁺: [M-OTf]⁺, 269.0655, found: 269.0650.

1,2-Dimethyl-5-phenylimidazo[1,2-f]phenanthridinium

trifluoromethanesulfonate (30)

Synthesized from 3,4-dimethyl-1-phenyl-1H-imidazol-3-ium iodine (**1p**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **3o** as a white solid (42.5 mg, 45% yield).

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.02$ (dd, J = 16.2, 8.3 Hz, 2H), 8.83 (d, J = 8.4 Hz, 1H), 8.10 (t, J = 7.7 Hz, 1H), 7.98 (t, J = 7.7 Hz, 1H), 7.89 (t, J = 7.9 Hz, 1H), 7.76 (d, J = 7.3 Hz, 1H), 7.65-7.58 (m, 3H), 7.57-7.49 (m, 2H), 6.88 (s, 1H), 4.24 (s, 3H), 2.29 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 138.7$, 138.1, 134.1, 132.6, 132.4, 132.3, 130.2, 129.7, 129.1, 129.0, 127.7, 126.8, 125.4, 124.4, 124.3, 123.5, 117.0, 114.7, 35.7, 9.8 ppm. HRMS (ESI⁺): calcd for C₂₃H₁₉N₂⁺: [M-OTf]⁺, 323.1543, found: 323.1541.

9-Methyl-1-phenylbenzo[4,5]imidazo[1,2-*f*]phenanthridinium trifluoromethanesulfonate (3p)

Synthesized from 3-methyl-1-phenyl-1*H*-benzo[*d*]imidazol-3-ium iodine (**1q**, 0.2 mmol) and diphenyliodonium trifluoromethanesulfonate (**2a**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **3p** as a white solid (55.8 mg, 55% yield).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.05 (t, J = 8.5 Hz, 2H), 8.99 (d, J = 7.9 Hz, 1H), 8.21 (t, J = 8.6 Hz, 2H), 8.09-7.97 (m, 3H), 7.59-7.56 (m, 3H), 7.26 (d, J = 8.6 Hz, 4H), 7.13 (d, J = 7.9 Hz, 1H), 4.58 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 138.9, 134.2, 134.0, 133.1, 132.9, 132.4, 131.0, 130.2, 129.6, 129.2, 129.1, 128.5, 128.4, 128.1, 127.6, 126.8, 125.7, 124.4, 124.2, 123.5, 117.4, 116.7, 112.6, 35.5 ppm. HRMS (ESI⁺): calcd for C₂₆H₂₉N₂⁺: [M-OTf]⁺, 359.1543, found: 359.1543.

1,11-Dimethyl-5-(*p*-tolyl)imidazo[1,2-*f*]phenanthridinium trifluoromethanesulfonate (4a) Synthesized from 3-methyl-1-phenyl-1*H*-imidazol-3-ium iodide (**1a**, 0.2 mmol) and mesityl(*p*-tolyl)iodonium trifluoromethanesulfonate (**2f**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **4a** as a yellow solid (60.4 mg, 62% yield).

Synthesized from 3-methyl-1-phenyl-1*H*-imidazol-3-ium iodide (**1a**, 0.2 mmol) and di-*p*-tolyliodonium trifluoromethanesulfonate (**2m**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **4a** as a yellow solid (58.4 mg, 60% yield).

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.93$ (t, J = 7.8 Hz, 2H), 8.55 (s, 1H), 8.00 (s, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.86 (t, J = 7.8 Hz, 1H), 7.68 (d, J = 7.3 Hz, 1H), 7.41 (s, 4H), 7.11 (d, J = 2.0 Hz, 1H), 4.44 (s, 3H), 2.66 (s, 3H), 2.45 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 140.3$, 138.9, 138.1, 136.3, 134.2, 134.1, 133.0, 130.6, 129.3, 128.5, 128.3, 128.1, 127.2, 126.0, 125.2, 124.7, 124.4, 124.0, 117.6, 117.5, 21.6, 21.4 ppm. HRMS (ESI⁺): calcd for C₂₄H₂₁N₂⁺: [M-OTf]⁺, 337.1699, found: 337.1699.

11-(*tert*-Butyl)-5-(4-(*tert*-butyl)phenyl)-1-methylimidazo[1,2-*f*]phenanthridinium trifluoromethanesulfonate (4b)

Synthesized from 3-methyl-1-phenyl-1*H*-imidazol-3-ium iodide (**1a**, 0.2 mmol) and (4-(*tert*-butyl)phenyl)(mesityl)iodonium trifluoromethanesulfonate (**2g**, 0.5 mmol, 2.5 equiv), and purification*via*silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product**4b**as a yellow solid (60.5 mg, 53% yield).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.99-8.92 (m, 2H), 8.56 (s, 1H), 8.20 (d, *J* = 8.8 Hz, 1H), 7.98 (s, 1H), 7.87 (t, *J* = 7.8 Hz, 1H), 7.73 (d, *J* = 7.4 Hz, 1H), 7.62 (d, *J* = 7.9 Hz, 2H), 7.45 (d, *J* = 7.8 Hz, 2H), 7.06 (s, 1H), 4.46 (s, 3H), 1.49 (s, 9H), 1.39 (s, 9H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 152.4, 151.6, 138.0, 135.9, 133.8, 132.6, 130.6, 128.7, 128.1, 127.8, 127.0, 126.5, 125.6, 124.4, 124.0, 123.5, 121.0,

117.1, 117.0, 35.3, 34.6, 31.2, 30.8 ppm. HRMS (ESI⁺): calcd for $C_{30}H_{33}N_2^+$: [M-OTf]⁺, 421.2638, found: 421.2631.

11-Methoxy-5-(4-methoxyphenyl)-1-methylimidazo[1,2-*f*]phenanthridinium trifluoromethanesulfonate (4c)

Synthesized from 3-methyl-1-phenyl-1*H*-imidazol-3-ium iodide (**1a**, 0.2 mmol) and mesityl(4-methoxyphenyl)iodonium trifluoromethanesulfonate (**2h**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **4c** as a yellow solid (52.8 mg, 51% yield).

Synthesized from 3-methyl-1-phenyl-1*H*-imidazol-3-ium iodide (**1a**, 0.2 mmol) and bis(4-methoxyphenyl)iodonium trifluoromethanesulfonate (**2n**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **4c** as a yellow solid (57.0 mg, 55% yield).

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.94$ (d, J = 9.2 Hz, 1H), 8.86 (d, J = 7.6 Hz, 1H), 8.06 (d, J = 2.0 Hz, 1H), 7.94 (d, J = 2.0 Hz, 1H), 7.82 (t, J = 8.0 Hz, 1H), 7.72 (dd, J = 9.2, 2.4 Hz, 1H), 7.64 (d, J = 7.3 Hz, 1H), 7.44 (d, J = 8.7 Hz, 2H), 7.21-7.09 (m, 3H), 4.47 (s, 3H), 4.07 (s, 3H), 3.87 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 159.6$, 159.5, 137.4, 133.1, 132.4, 130.8, 130.2, 129.5, 127.7, 126.4, 126.3, 125.7, 123.7, 123.6, 123.4, 120.7, 118.3, 117.2, 115.0, 114.0, 107.8, 56.0, 55.3 ppm. HRMS (ESI⁺): calcd for C₂₄H₂₁N₂O₂⁺: [M-OTf]⁺, 369.1598, found: 369.1594.

1-Methyl-11-phenoxy-5-(4-phenoxyphenyl)imidazo[1,2-*f*]phenanthridinium trifluoromethanesulfonate (4d)

Synthesized from 3-methyl-1-phenyl-1*H*-imidazol-3-ium iodide (**1a**, 0.2 mmol) and mesityl(4-phenoxyphenyl)iodonium trifluoromethanesulfonate (**2i**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 3/1, v/v) afforded the desired product **4d** as a yellow solid (51.4 mg, 40% yield).

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.04$ (d, J = 9.3 Hz, 1H), 8.91 (d, J = 8.1 Hz, 1H), 8.29 (d, J = 2.3 Hz, 1H), 7.99 (d, J = 2.2 Hz, 1H), 7.88 (t, J = 7.8 Hz, 1H), 7.74 (d, J = 7.3 Hz, 1H), 7.70 (dd, J = 9.2, 2.2 Hz, 1H), 7.55-7.46 (m, 6H), 7.30 (t, J = 7.4 Hz, 1H), 7.27 (d, J = 2.2 Hz, 1H), 7.21 (m, 7H), 4.34 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 157.5$, 157.3, 156.0, 155.5, 137.3, 133.7, 133.3, 132.1, 130.8, 130.6, 130.3, 127.9, 127.0, 126.7, 126.0, 125.7, 124.8, 124.2, 124.0, 122.9, 119.4, 119.4, 119.2, 118.6, 113.5 ppm. HRMS (ESI⁺): calcd for C₃₄H₂₅N₂O₂⁺: [M-OTf]⁺, 493.1911, found: 493.1907.

5-([1,1'-Biphenyl]-4-yl)-1-methyl-11-phenylimidazo[1,2-*f*]phenanthridinium trifluoromethanesulfonate (4e)

Synthesized from 3-methyl-1-phenyl-1*H*-imidazol-3-ium iodide (**1a**, 0.2 mmol) and [1,1'-biphenyl]-4-yl(mesityl)iodonium trifluoromethanesulfonate (**2j**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **4e** as a yellow solid (59.8 mg, 49% yield).

¹H NMR (400 MHz, DMSO-*d*₆): δ 9.13 (d, J = 8.8 Hz, 1H), 9.06 (d, J = 8.3 Hz, 1H), 8.89 (s, 1H), 8.43 (d, J = 8.7 Hz, 1H), 8.05-7.99 (m, 3H), 7.94 (t, J = 7.2 Hz, 3H), 7.83 (t, J = 7.2 Hz, 3H), 7.67-7.60 (m, 4H), 7.58-7.51 (m, 3H), 7.44 (t, J = 7.3 Hz, 1H), 7.29 (d, J = 1.8 Hz, 1H), 4.58 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 141.0, 140.4, 139.0, 138.3, 137.8, 137.8, 134.1, 132.3, 131.0, 129.7, 129.4, 129.3, 129.2, 128.8, 128.1, 127.9, 127.8, 127.5, 127.1, 126.8, 125.9, 125.3, 124.5, 123.5, 122.7, 117.9, 117.5 ppm. HRMS (ESI⁺): calcd for C₃₄H₂₅N₂⁺: [M-OTf]⁺, 461.2012, found: 461.2010.

11-Fluoro-5-(4-fluorophenyl)-1-methylimidazo[1,2-*f*]phenanthridinium trifluoromethanesulfonate (4f)

Synthesized from 3-methyl-1-phenyl-1*H*-imidazol-3-ium iodide (**1a**, 0.2 mmol) and (4-fluorophenyl)(mesityl)iodonium trifluoromethanesulfonate (**2k**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 3/1, v/v) afforded the desired product **4f** as a yellow solid (50.4 mg, 51% yield).

Synthesized from 3-methyl-1-phenyl-1*H*-imidazol-3-ium iodide (**1a**, 0.2 mmol) and bis(4-fluorophenyl)iodonium trifluoromethanesulfonate (**2o**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 3/1, v/v) afforded the desired product **4f** as a yellow solid (62.3 mg, 63% yield).

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.14$ (dd, J = 9.2, 5.4 Hz, 1H), 8.99 (d, J = 8.3 Hz, 1H), 8.56 (d, J = 9.9 Hz, 1H), 8.05 (t, J = 8.4 Hz, 1H), 7.97 (s, 1H), 7.90 (t, J = 7.8 Hz, 1H), 7.75 (d, J = 7.4 Hz, 1H), 7.62-7.58 (m, 2H), 7.46 (t, J = 8.5 Hz, 1H), 7.19 (s, 1H), 4.44 (s, 3H). ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 162.5$ (d, $J_{CF} = 245.5$ Hz), 161.8 (d, $J_{CF} = 246.7$ Hz), 137.1 (d, $J_{CF} = 2.9$ Hz), 134.9 (d, $J_{CF} = 3.1$ Hz), 134.2, 131.7, 131.3 (d, $J_{CF} = 8.3$ Hz), 127.9, 127.7 (d, $J_{CF} = 9.2$ Hz), 127.1 (d, $J_{CF} = 2.4$ Hz), 127.0, 126.1, 124.5, 123.3, 120.8 (d, $J_{CF} = 22.6$ Hz), 118.6 (d, $J_{CF} = 9.8$ Hz), 117.8, 116.7 (d, $J_{CF} = 21.4$ Hz), 111.4 (d, $J_{CF} = 25.6$ Hz) ppm. HRMS (ESI⁺): calcd for C₂₂H₁₅F₂N₂⁺: [M-OTf]⁺, 345.1198, found: 345.1195.

10-Isopropyl-5-(3-isopropylphenyl)-1-methylimidazo[1,2-*f*]phenanthridinium trifluoromethanesulfonate (4g)

Synthesized from 3-methyl-1-phenyl-1*H*-imidazol-3-ium iodide (**1a**, 0.2 mmol) and (3-isopropylphenyl)(mesityl)iodonium trifluoromethanesulfonate (**2l**, 0.5 mmol, 2.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **4g** as a yellow solid (44.5 mg, 41% yield).

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.09$ (d, J = 8.3 Hz, 1H), 8.88 (s, 1H), 8.70 (d, J = 8.7 Hz, 1H), 7.94-7.84 (m, 3H), 7.76 (d, J = 7.2 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.37 (d, J = 6.8 Hz, 2H), 6.99-6.94 (m, 1H), 4.39 (s, 3H), 3.32-3.27 (m, 1H), 2.99-2.89 (m, 1H), 1.41 (d, J = 6.9 Hz, 6H), 1.22 (d, J = 6.8 Hz, 6H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 153.7$, 150.0, 138.7, 138.1, 133.9, 132.8, 130.5, 129.8, 128.2, 127.6, 127.2, 127.0, 126.4, 125.6, 125.2, 124.5, 123.6, 121.9, 116.8, 115.3, 34.1, 33.5, 23.8, 23.6 ppm. HRMS (ESI⁺): calcd for C₂₈H₂₉N₂⁺: [M-OTf]⁺, 393.2325, found: 393.2318.

6-(*tert*-Butyl)-11-methoxy-1-methylimidazo[1,2-*f*]phenanthridinium trifluoromethanesulfonate (4h)

Synthesized from 1-(3-(*tert*-butyl)phenyl)-3-methyl-1*H*-imidazol-3-ium iodide (**1n**, 0.2 mmol) and mesityl(4-methoxyphenyl)iodonium trifluoromethanesulfonate (**2h**, 0.3 mmol, 1.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **4h** as a white solid (45.2 mg, 48% yield).

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.38 (d, *J* = 1.6 Hz, 1H), 8.89 (d, *J* = 9.2 Hz, 1H), 8.77 (d, *J* = 8.7 Hz, 1H), 8.43 (s, 1H), 8.36 (s, 1H), 8.07 (d, *J* = 2.3 Hz, 1H), 7.87 (d, *J* = 8.7 Hz, 1H), 7.70 (dd, *J* = 9.1, 2.1 Hz, 1H), 4.55 (s, 3H), 4.06 (s, 3H), 1.46 (s, 9H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 159.3, 153.3, 136.2, 128.4, 127.4, 126.0, 125.9, 124.2, 123.3, 120.5, 119.4, 118.1, 114.5, 113.6, 107.8, 56.0, 35.4, 31.1 ppm. HRMS (ESI⁺): calcd for C₂₁H₂₃N₂O⁺: [M-OTf]⁺, 319.1805, found: 319.1805.

6-(*tert*-Butyl)-1,11-dimethylimidazo[1,2-*f*]phenanthridin-1-ium trifluoromethanesulfonate (4i)

Synthesized from 1-(3-(*tert*-butyl)phenyl)-3-methyl-1*H*-imidazol-3-ium iodide (**1n**, 0.2 mmol) and mesityl(p-tolyl)iodonium trifluoromethanesulfonate (**2f**, 0.3 mmol, 1.5 equiv), and purification *via* silica gel column chromatography (CH₂Cl₂/acetonitrile = 4/1, v/v) afforded the desired product **4i** as a white solid (57.8 mg, 64% yield).

¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.36$ (d, J = 1.8 Hz, 1H), 8.82 (dd, J = 13.9, 8.6 Hz, 2H), 8.52 (s, 1H), 8.44 (s, 1H), 8.35 (d, J = 2.1 Hz, 1H), 7.89 (dd, J = 8.4, 4.8 Hz, 2H), 4.50 (s, 3H), 2.64 (s, 3H), 1.47 (s, 9H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 154.1$, 139.3, 133.6, 129.0, 127.5, 127.3, 125.8, 124.7, 124.5, 123.9, 119.3, 117.0, 114.4, 113.6, 31.0, 30.6, 21.3 ppm. HRMS (ESI⁺): calcd for C₂₁H₂₃N₂⁺: [M-OTf]⁺, 303.1856, found: 303.1852.

V. Scale-up synthesis

Scheme S3 Scale-up synthesis of 3a and 3m.

A 100 mL Schlenk tube with a magnetic stir bar was charged with *N*-methyl-*N*-phenylimidazolium iodide **1a** or **1n** (2.0 mmol), diphenyliodonium trifluoromethanesulfonate **2a**, $[Cp*IrCl_2]_2$ (40.0 mg, 0.05 mmol, 2.5 mol%), AgSbF₆

(69.0 mg, 0.20 mmol, 10 mol%), Ag₂CO₃ (1.11 g, 4.0 mmol, 2.0 equiv) and TFE (5.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and then diluted with 20 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 80-100 mL of CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (CH₂Cl₂/acetonitrile = 3/1, v/v) to provide **3a** in 70% yield or **3m** in 80% yield.

VI. Arylation/annulation of 1-(3-methoxyphenyl)-3-methyl-1*H*-imidazol-3-ium iodide with 2a

Scheme S4 Arylation/annulation of 1r with 2a.

A Schlenk tube with a magnetic stir bar was charged with [Cp*IrCl₂]₂ (3.9 mg, 2.5 mol%), $AgSbF_6$ (6.9 mg, 10 mol%), Ag₂CO₃ (110.5 mg, 2.0 equiv), 1-(3-methoxyphenyl)-3-methyl-1*H*-imidazol-3-ium iodide 0.2 (1r, mmol), diphenyliodonium trifluoromethanesulfonate (2a, 0.5 mmol, 2.5 equiv), and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and then diluted with 10 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 10-25 mL of CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel $(CH_2Cl_2/acetonitrile = 4/1, v/v)$ to provide mixture of 3q and 3q' as a white solid (45.7 mg, 47% yield), the product ratio is 1:0.7. ¹H NMR (400 MHz, DMSO- d_6): $\delta =$ 9.66 (d, J = 8.8 Hz, 0.7H), 9.04 (d, J = 9.2 Hz, 1H), 8.97 (d, J = 8.4 Hz, 1H), 8.73 (t, J = 8.4 Hz, 1.7H), 8.06 (t, J = 8.0 Hz, 1.7H), 7.95 (t, J = 8.0 Hz, 0.7H), 7.91-7.87 (m, 2.4H), 7.76 (d, J = 8.8 Hz, 0.7H), 7.72 (d, J = 9.6 Hz, 1H), 7.62-7.60 (m, 3H), 7.57-7.54 (m, 1.7H), 7.52-7.50 (m, 1.4H), 7.42-7.40 (m, 1.7H), 7.35-7.30 (m, 1H), 7.17 (t, J = 7.6 Hz, 0.7H), 7.09 (d, J = 2.0 Hz, 0.7H), 6.74 (d, J = 2.0 Hz, 1H), 4.38 (s, 3H), 4.37 (s, 2.1H), 4.22 (s, 2.1H), 3.89 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 158.6, 139.0, 138.5, 134.2, 134.2, 132.5, 132.3, 131.0, 130.6, 130.4, 130.1, 129.7, 129.5, 129.2, 129.1, 128.7, 128.6, 128.52, 128.47, 128.4, 128.2, 126.1 125.6, 125.5, 125.4, 125.3, 124.6, 123.6, 119.9, 117.6, 116.9, 116.4, 116.4, 116.0, 113.6, 112.6, 111.0, 57.0, 56.8 ppm. HRMS (ESI⁺): calcd for <math>C_{23}H_{19}N_2O^+$: [M-OTf]⁺, 339.1492, found: 339.1486.

VII. Arylation/annulation of unsymmetrical diaryliodonium salts

A Schlenk tube with a magnetic stir bar was charged with [Cp*IrCl₂]₂ (3.9 mg, 2.5 10 mol%), Ag₂CO₃ (110.5 mol%), $AgSbF_6$ (6.9 mg, mg, 2.0 equiv), 1-(3-(tert-butyl)phenyl)-3-methyl-1H-imidazol-3-ium iodide (10,0.2 mmol), (4-methoxyphenyl)(phenyl)iodonium trifluoromethanesulfonate (2p, 0.3 mmol, 1.5 equiv), and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and then diluted with 10 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 10-25 mL of CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (CH₂Cl₂/acetonitrile = 4/1, v/v) to provide 58.7 mg white solid, The ratio of **3m** and **4h** was determined to be 0.4:1 by ¹H NMR spectrum, and the yields of **3m** and **4h** were 18% and 46%, respectively.

A Schlenk tube with a magnetic stir bar was charged with [Cp*IrCl₂]₂ (3.9 mg, 2.5 10 mol%), Ag₂CO₃ (110.5 mol%), $AgSbF_6$ (6.9 mg, 2.0 mg, equiv), 1-(3-(*tert*-butyl)phenyl)-3-methyl-1*H*-imidazol-3-ium iodide (10, 0.2 mmol), phenyl(p-tolyl)iodonium trifluoromethanesulfonate (2q, 0.3 mmol, 1.5 equiv), and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and then diluted with 10 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 10-25 mL of CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (CH₂Cl₂/acetonitrile = 4/1, v/v) to provide 55.4 mg white solid, The ratio of **3m** and **4i** was determined to be 0.6:1 by ¹H NMR spectrum, and the yields of **3m** and 4i were 23% and 39%, respectively.

A Schlenk tube with a magnetic stir bar was charged with [Cp*IrCl₂]₂ (3.9 mg, 2.5 10 mol%), Ag₂CO₃ (110.5 mol%), $AgSbF_6$ (6.9 mg, mg, 2.0 equiv), 1-(3-(*tert*-butyl)phenyl)-3-methyl-1*H*-imidazol-3-ium iodide (10,0.2 mmol), phenyl(4-(trifluoromethyl)phenyl)iodonium trifluoromethanesulfonate (2r, 0.3 mmol, 1.5 equiv), and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and then diluted with 10 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 10-25 mL of CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (CH₂Cl₂/acetonitrile = 4/1, v/v) to provide **3m** (36.9 mg, 42%).

A Schlenk tube with a magnetic stir bar was charged with $[Cp*IrCl_2]_2$ (3.9 mg, 2.5 mol%), AgSbF₆ (6.9 mg, 10 mol%), Ag₂CO₃ (110.5 mg, 2.0 equiv), 1-(3-(*tert*-butyl)phenyl)-3-methyl-1*H*-imidazol-3-ium iodide (**1o**, 0.2 mmol), (4-nitrophenyl)(phenyl)iodonium trifluoromethanesulfonate (**2s**, 0.3 mmol, 1.5 equiv), and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and then diluted with 10 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 10-25 mL of CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (CH₂Cl₂/acetonitrile = 4/1, v/v) to provide **3m** (30.5 mg, 35%).

VIII. Mechanistic study

Scheme S5 Mechanistic studies.

i) Stoichiometric reaction of Cp*-Ir(III) cyclometalated complex 5 with 2a

The Cp*-Ir(III) cyclometalated complex (5) was prepared by the synthesis steps reported previously.³ A Schlenk tube with a magnetic stir bar was charged with Cp*-Ir(III) cyclometalated complex 5 (104.4 mg, 0.2 mmol), diphenyliodonium trifluoromethanesulfonate 2a (215.0 mg, 0.5 mmol), AgOTf (51.4 mg, 0.2 mmol),

Ag₂CO₃ (110.5 mg, 2.0 equiv) and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and then diluted with 10 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 10-25 mL of CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (CH₂Cl₂/acetonitrile = 3/1, v/v) to provide **3a** in 80% yield.

ii) Cascade reaction using NHC-cyclometalated Ir(III) intermediate 5 as a catalyst

Schlenk tube with magnetic charged А а stir bar was with 3-methyl-1-phenyl-1H-imidazolium iodide (57.2)0.2 mmol), **1**a mg, diphenyliodonium trifluoromethanesulfonate 2a (215.0 mg, 0.5 mmol), The Cp*-Ir(III) cyclometalated complex 5 (5.2 mg, 5.0 mol%), AgSbF₆ (6.90 mg, 10 mol%), Ag₂CO₃ (110.5 mg, 2.0 equiv) and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and then diluted with 10 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 10-25 mL of CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (CH₂Cl₂/acetonitrile = 3/1, v/v) to provide **3a** in a 74% yield.

iii) Intramolecular cyclization of diarylation intermediate 6

A Schlenk tube with a magnetic stir bar was charged with 1-([1,1':3',1"-terphenyl]-2'-yl)-3-methyl-1*H*-imidazolium iodide **6** (87.7 mg, 0.2

mmol), $[Cp*IrCl_2]_2$ (3.9 mg, 2.5 mol%), AgSbF₆ (6.90 mg, 10 mol%), AgOTf (51.4 mg, 1.0 equiv), Ag₂CO₃ (110.5 mg, 2.0 equiv) and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and then diluted with 10 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 10-25 mL of CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (CH₂Cl₂/acetonitrile = 3/1, v/v) to provide **3a** in a 40% yield.

Schlenk А tube with а magnetic stir bar charged with was 1-([1,1':3',1"-terphenyl]-2'-yl)-3-methyl-1*H*-imidazolium iodide 6 (87.7 mg, 0.2 mmol), AgSbF₆ (6.90 mg, 10 mol%), AgOTf (51.4 mg,1.0 equiv), Ag₂CO₃ (110.5 mg, 2.0 equiv) and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and no production of 3a was detected by TLC monitoring.

iv) Intramolecular cyclization of 1b

Α Schlenk tube with а magnetic stir bar was charged with 1-([1,1'-biphenyl]-2-yl)-3-methyl-1H-imidazolium iodide 1b (72.4 mg, 0.2 mmol), [Cp*IrCl₂]₂ (3.9 mg, 2.5 mol%), AgSbF₆ (6.90 mg, 10 mol%), AgOTf (51.4 mg, 1.0 equiv), Ag₂CO₃ (110.5 mg, 2.0 equiv) and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and no production of 7 was detected by TLC monitoring.

v) Cascade reaction using 1b as a substrate

Α Schlenk tube with a magnetic stir bar charged with was 1-([1,1'-biphenyl]-2-yl)-3-methyl-1H-imidazolium iodide 1b (72.4 mg, 0.2 mmol),diphenyliodonium trifluoromethanesulfonate 2a (129.0 mg, 0.3 mmol), [Cp*IrCl₂]₂ (3.9 mg, 2.5 mol%), AgSbF₆ (6.90 mg, 10 mol%), Ag₂CO₃ (110.5 mg, 2.0 equiv) and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and then diluted with 10 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 10-25 mL of CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (CH₂Cl₂/acetonitrile = 3/1, v/v) to provide **3a** in a 78% yield.

vi) H/D exchange experiment

A Schlenk tube with a magnetic stir bar was charged with $[Cp*IrCl_2]_2$ (3.9 mg, 2.5 mol%), AgOTf (51.4 mg, 0.2 mmol), Ag₂CO₃ (110.5 mg, 2.0 equiv), 3-methyl-1-phenyl-1*H*-imidazolium iodide **1a** (57.2 mg, 0.2 mmol), D₂O (0.5 mL) and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 4 h and then diluted with 10 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 10-25 mL of CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel to provide the designed product. The deuterated ratio was calculated from ¹H NMR analysis.

According to the ¹H NMR spectrum, the 11% deuteration at the phenyl *ortho*-C–H of **1a** was observed, the 69% deuteration, 68% deuteration and 68% deuteration at the imidazole C2–H, C4–H and C5–H of **1a** was observed respectively.

Scheme S6 H/D exchange experiment.

vii) Determination of intermolecular kinetic isotope effect (KIE)

Scheme S7 Determination of intermolecular kinetic isotope effect.

A Schlenk tube with a magnetic stir bar was charged with $[Cp*IrCl_2]_2$ (3.9 mg, 2.5 mol%), AgSbF₆ (6.9 mg, 10 mol%), Ag₂CO₃ (110.5 mg, 2.0 equiv), 3-methyl-1-phenyl-1*H*-imidazolium iodide **1a** (57.2 mg, 0.2 mmol) or $[D_5-1a]$ (58.2 mg, 0.2 mmol), diphenyliodonium trifluoromethanesulfonate **2a** (215.0 mg, 0.5 mmol, 2.5 equiv), and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 4 h and then diluted with 5 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 10-25 mL of CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (CH₂Cl₂/acetonitrile = 3/1) to provide the desired product, the KIE value was found to be 1.00.

A Schlenk tube with a magnetic stir bar was charged with [Cp*IrCl₂]₂ (3.9 mg, 2.5 mol%), AgSbF₆ (6.9 mg, 10 mol%), Ag₂CO₃ (110.5 mg, 2.0 equiv), 3-methyl-1-phenyl-1*H*-imidazolium iodide (57.2 0.2 **1**a mg, mmol), diphenyliodonium trifluoromethanesulfonate 2a (215.0 mg, 0.5 mmol, 2.5 equiv) or [D₁₀-2a] (220.1 mg, 0.5 mmol, 2.5 equiv), and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 4 h and then diluted with 5 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 10-25 mL of CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (CH₂Cl₂/acetonitrile = 3/1) to provide the desired product, the KIE value was found to be 1.82.

with А Schlenk tube magnetic stir bar charged with а was 1-([1,1':3',1"-terphenyl]-2'-yl)-3-methyl-1*H*-imidazolium iodide 6 (87.7 mg, 0.2 mmol) 1-([1,1':3',1"-terphenyl]-2'-yl-2,2",3,3",4,4",5,5",6,6"-d₁₀)-3-methyl or -1H-imidazol-3-ium iodide D₁₀-6 (89.7 mg, 0.2 mmol), [Cp*IrCl₂]₂ (3.9 mg, 2.5 mol%), AgSbF₆ (6.90 mg, 10 mol%), AgOTf (51.4 mg, 1.0 equiv), Ag₂CO₃ (110.5 mg, 2.0 equiv) and TFE (1.0 mL) under the N₂ atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 8 h and then diluted with 5 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 10-25 mL of CH₂Cl₂. The filtrate was concentrated under vacuum and the residue was purified by column

chromatography on silica gel ($CH_2Cl_2/acetonitrile = 3/1$) to provide the desired product, the KIE value was found to be 1.91.

IX. Dequaternization of 1-methylimidazo[1,2-f]phenanthridin-1-ium salts

Schlenk with А tube magnetic stir bar charged with а was imidazo[1,2-f]phenanthridinium trifluoromethanesulfonates (3, 3.0 mmol), $P(^{n}Bu)_{3}$ (10 equiv, 7.5 mL) and DMF (15 mL) under the N₂ atmosphere. The resulting mixture was stirred at 160 °C in oil bath for 24 h and then concentrated under vacuum and the residue was purified by column chromatography on silica gel (petroleum ether/CH₂Cl₂/ethyl acetate = 10/10/1, v/v/v) to provide the desired product.

5-Phenylimidazo[1,2-*f*]phenanthridine (8a)

Purification *via* silica gel column chromatography (petroleum ether/CH₂Cl₂/ethyl acetate = 10/10/1, v/v/v) afforded the desired product **8a** as a white solid (538.6 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.69-8.65 (m, 1H), 8.54 (dd, *J* = 8.1, 1.3 Hz, 1H), 8.45-8.41 (m, 1H), 7.68-7.64 (m, 2H), 7.57-7.50 (m, 4H), 7.46 (dd, *J* = 7.4, 1.5 Hz, 1H), 7.42-7.39 (m, 2H), 7.20 (d, *J* = 1.4 Hz, 1H), 6.75 (d, *J* = 1.4 Hz, 1H) ppm. ¹³C NMR (400 MHz, CDCl₃): δ = 143.4, 141.0, 132.5, 132.4, 130.1, 129.8, 129.4, 129.2, 128.8, 128.8, 128.4, 127.8, 124.4, 124.3, 124.0, 123.7, 123.4, 122.7,

117.6 ppm. HRMS (ESI⁺): calcd for $C_{21}H_{15}N_2^+$: [M+Na]⁺, 317.1049, found: 317.1047.

6-(*tert*-Butyl)imidazo[1,2-*f*]phenanthridine (8b)

Purification *via* silica gel column chromatography (petroleum ether/CH₂Cl₂/Ethyl acetate = 10/10/1, v/v/v) afforded the desired product **8b** as a white solid (493.7 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.68-8.61 (m, 1H), 8.42-8.31 (m, 2H), 8.04 (s, 1H), 7.84 (s, 1H), 7.69-7.59 (m, 3H), 7.58-7.55 (m, 1H), 1.46 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 152.7, 142.8, 131.7, 131.5, 128.7, 128.3, 127.6, 124.2, 124.1, 123.5, 123.1, 122.3, 119.4, 112.4, 112.0, 35.3, 31.4 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₉N₂⁺: [M+Na]⁺, 297.1362, found: 297.1352

X. Single crystal X-ray structure of 4a

Compound **4a** (0.2 mmol) was dissolved in acetonitrile, sodium trifluoroacetate (544.0 mg, 20.0 equiv) were added, and the mixture was stirred at room temperature for 20 h. The reaction system was concentrated under vacuum and the residue was purified by column chromatography on silica gel (CH₂Cl₂/acetonitrile = 3/1) to provide **4a**.TFA. Single crystal of **4a**.TFA was grown from saturated dichloromethane/heptane (v/v, 1/2) solutions.

Table S2 Crystal data and structure refinement for 4a.TFA.

Identification code	zxs-ag2o
Empirical formula	$C_{26}H_{23}F_3N_2O_3$
Formula weight	468.46

Temperature/K	297.4(3)
Crystal system	triclinic
Space group	P-1
a/Å	7.9876(4)
b/Å	10.9369(6)
c/Å	13.1476(7)
α/°	84.081(5)
β/°	83.827(5)
γ/°	81.200(5)
Volume/Å ³	1124.07(11)
Z	2
$\rho_{calc}g/cm^3$	1.384
μ/mm^{-1}	0.908
F(000)	488.0
Crystal size/mm3	0.5 imes 0.3 imes 0.05
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
20 range for data collection/°	8.212 to 142.66
Index ranges	$-9 \le h \le 7, -13 \le k \le 13, -15 \le l \le 16$
Reflections collected	12035
Independent reflections	4283 [$R_{int} = 0.0433$, $R_{sigma} = 0.0327$]
Data/restraints/parameters	4283/0/323
Goodness-of-fit on F2	1.066
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0811, wR_2 = 0.2433$
Final R indexes [all data]	$R_1 = 0.0968, wR_2 = 0.2704$
Largest diff. peak/hole / e Å ⁻³	0.44/-0.38

XI. References

- (1) R. G. Ball, W. A. G. Graham, D. M. Heinekey, J. K. Hoyano, B. M. McMaster and S. T. Michel, *Inorg. Chem.*, **1990**, *29*, 2023-2025
- (2) A. K. Verma, J. Singh, V. K. Sankar, R. Chaudhary and R. Chandra, *Tetrahedron Lett.*, 2007, **48**, 4207-4210.
- (3) R. Thenarukandiyil, S. K. Gupta and J. Choudhury, ACS Catal., 2016, 6, 5132-5137.
- (4) M. Bielawski, M. Zhu and B. Olofsson, Adv. Synth. Catal., 2007, 349, 2610-2618.
- (5) A. Bigot, A. Williamson and M. Gaunt, J. Am. Chem. Soc., 2011, 133, 13778-13781.
- (6) M. Bielawski and B. Olofsson, Chem. Commun., 2007, 2521-2523.
- (7) P. P. Kaishap, G. Duarah, B. Sarma, Chetia, D. and S. Gogoi, *Angew. Chem., Int. Ed.*, **2018**, *57*, 456-460.

XII. Copies of ¹H and ¹³C NMR spectra

S41

S42

S47

¹H NMR (400 MHz) spectrum of 3j in DMSO- d_6

¹H NMR (400 MHz) spectrum of **3l** in DMSO- d_6

¹H NMR (400 MHz) spectrum of **3m** in DMSO-*d*₆

S60

¹H NMR (400 MHz) spectrum of **4h** in DMSO- d_6

¹H NMR (400 MHz) spectrum of **4i** in DMSO-*d*₆

¹H NMR (400 MHz) spectrum of **D**₁₀-6 in DMSO- d_6

