Supplementary Information

Asymmetric cyclopropanation of electron-rich alkenes by the racemic diene rhodium catalyst: the chiral poisoning approach

Evgeniya A. Trifonova, Nikita M. Ankudinov, Denis A. Chusov, Yulia V. Nelyubina and Dmitry S. Perekalin*

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, Russia.

* Corresponding author, e-mail: dsp@ineos.ac.ru.

Table of contents

General information	2
Optimization of cyclopropanation reaction conditions	3
General procedure for Rh-catalyzed asymmetric alkene cyclopropanation	3
BH-insertion reactions	21
Crystallographic details	30
Computational details	32
Copies of NMR Spectra	35
References	54

General information

Unless stated otherwise, all reactions were carried out under argon in oven-dried glassware. The solvents used for the reactions were purified by distillation over the drying agents indicated and were stored under argon: hexane, THF, toluene, 1,4-dioxane – Na; CH_2Cl_2 (DCM), $C_2H_4Cl_2$ (DCE) – CaH_2 ; MeCN – P_2O_5 . Other solvents were purchased from the local suppliers and were used as received.

Racemic and enantiopure complexes rac-Rh, R, R-Rh, S, S-Rh,¹ S-Salox ligand sodium salt (L1)¹, S-N-(tert-butylsulfinyl)benzamide (L4H),² N-methylpyrrolidine-borane adduct 3,³ benzvl vinvl ether⁴ and diazo compounds **1a-e**^{5,6} were synthesized according to the literature procedures. All other reagents were obtained from commercial sources and used without further purification. Macherey-Nagel silica gel 60 (230-400 mesh) was used for column chromatography. Reactions were monitored by thin-layer chromatography on Macherey-Nagel POLYGRAM SIL G/UV254 pre-coated polyester TLC plates (0.2 mm) which were rendered visible by ultraviolet and spraying with solution of phosphomolybdic acid (10%) in ethanol followed by heating. The 3Å molecular sieves were pre-dried for 15 min in MW (750W), then dried in vacuo and stored under argon atmosphere. NMR spectra were measured on Bruker Avance 400 and Varian Inova 400 spectrometers. Chemical shifts (δ) are given in ppm relative to the internal solvent signal (¹H and ¹³C), CFCl₃ (¹⁹F) or BF₃·Et₂O (¹¹B). High-resolution mass spectra were recorded on Bruker microTOF II instrument using electrospray ionization (ESI). Enantiomeric excess values of the products were measured using Shimadzu HPLC equipped with Chiralpak IA-3 (4.6×150 mm), Chiralpak IB-3 (4.6 x 150 mm), or Chiralpak IJ-3 (4.6 x 150 mm) column and diode array detector. Unless stated otherwise, flow rate 1 mL/min was adjusted in all experiments.

Optimization of cyclopropanation reaction conditions

In a 10 ml Schlenk flask equipped with PTFE coated magnetic stir bar the racemic catalyst **Rh** was placed. The flask was subjected to a vacuum and refilled with argon five times. After that 1.0 ml of DCE and **L1** (sodium salt, 0.1085M stock solution in THF) or **L4** (freshly generated sodium salt, 0.0500M stock solution in THF, see details below) were added to the reaction vessel. The resulting mixture was stirred at ambient temperature for 1 hour. After that, the diazo compound **1a** (21.8 mg, 0.10 mmol, 1.0 eq.) and 1-vinyl-2-pyrrolidone (13.3 mg, 0.12 mmol, 1.2 eq.) were added to the reaction mixture. The resulting mixture was stirred at ambient temperature for a mbient temperature. After full consumption of the starting diazo compound **1a** (monitored by TLC) the minimum amount of SiO₂ was added to this mixture and the solvent was removed in vacuo. Subsequent purification on silica gel column afforded the desired cyclopropane product **6a**. Quantities of the racemic catalyst **Rh** (molar %, referring to a rhodium content) and the corresponding chiral additive are indicated in the Table S1.

entry	temperature	catalyst loading	additive	additive loading	yield, %	ee, %
1	r.t.	5 mol % Rh	L1	4 mol %	58	95
2	r.t.	4 mol % Rh	L1	3.2 mol %	68	95
3	r.t.	3 mol % Rh	L1	2 mol %	73	92
4 ^a	r.t.	2.5 mol % Rh	L1	2 mol %	69	96
5 ^b	50°C	3 mol % Rh	L1	2 mol %	77	85
6	r.t.	5 mol % Rh	L4	4 mol %	61	93
7	r.t.	4 mol % Rh	L4	3.2 mol %	66	94
8	r.t.	3 mol % Rh	L4	2 mol %	62	95
9 ^c	r.t.	2.5 mol % Rh	L4	2 mol %	66	85

All reactions were performed with 1.2 eq of N-vinyl pyrrolidone for 16 hours;^{a, c} reaction time of 113 hours was required for full consumption of **1a**; ^b 2.0 eq of N-vinylpyrrolidone were used

L4 sodium salt generation: in a 10 ml Schlenk flask equipped with PTFE coated magnetic stir bar NaH (60% dispersion in mineral oil, 2.4 mg, 0.06 mmol, 1.5 eq.) was placed. The flask was subjected to a vacuum and refilled with argon three times. Then 0.800 ml of THF was added via syringe. Under intensive stirring S-N-(tert-butylsulfinyl)benzamide (L4H) (9.0 mg, 0.04 mmol, 1.0 eq) was added to the reaction mixture. The resulting suspension was stirred for 30 minutes until the gas evolution was over, then the magnetic stirrer was turned off to allow the solids to settle for additional 30 minutes. The obtained solution was used immediately on the next step without any purification.

General procedure for Rh-catalyzed asymmetric alkene cyclopropanation

In a 10 ml Schlenk flask equipped with PTFE coated magnetic stir bar racemic catalyst **Rh** (2.0 mg, 2.25 mmol, 1.5 mol %) was placed. The flask was subjected to a vacuum and refilled with argon five times. After that 1.5 ml of DCE and stock solution of **L1** in THF (0.028 ml of 0.1085M solution, 0.003 mmol, 2.0 mol %) were added to the reaction vessel. The resulting mixture was stirred at ambient temperature for 1 hour. After that, diazo compound **1a-e** (0.15 mmol, 1.0 eq.) and corresponding alkene (0.3 mmol, 2.0 eq.) were added to the reaction mixture. The resulting mixture was stirred overnight at ambient temperature, unless stated otherwise. After full consumption of the starting diazo compound (monitored by TLC) the minimum amount of SiO₂ was added to this mixture and the solvent was removed in vacuo. Subsequent purification on silica gel column afforded the desired cyclopropane product **4b-7d**.

4b. **Yield** 28.0 mg, 53%, 77% *ee* (98% *ee* with enantiomerically pure *S*,*S*-**Rh** as a catalyst); white solid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.12 – 7.09 (m, 3H, CH^{Ph}), 7.06 (d, *J* = 8.0 Hz, 2H, CH^{Ar}), 7.03 – 7.01 (m, 2H, CH^{Ph}), 6.67 (d, *J* = 8.0 Hz, 2H, CH^{Ar}), 2.96 (dd, appears as t, *J* = 8.3, 8.3 Hz, 1H, CH), 2.05 (dd, *J*

= 9.4, 4.7 Hz, 1H, CH), 1.75 (dd, J = 7.2, 4.9 Hz, 1H, CH), 1.39 (s, 9H, CH³), 1.21 (s, 9H, CH₃). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.97, 149.08, 135.64, 133.94, 132.07, 127.76, 127.50, 126.69, 124.63, 80.86, 38.56, 34.39, 32.13, 31.40, 28.11, 20.05. HRMS (ESI-TOF, m/z) calcd for C₂₄H₃₀O₂ [M+H]⁺: 351.2319; Found: 351.2316.

HPLC conditions: IJ-3 (4.6 x 150 mm), Heptane/i-PrOH = 90/10, $t_R = 2.27$ min for *1R*,2S-4b, $t_R = 2.97$ min for *1S*,2*R*-4b.

🗖 🗘 Просмотр результатов - Таблица пиков

Таблица пиков	Соединения	Группа	Калибровочная кривая	
---------------	------------	--------	----------------------	--

Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	2.269	50.665	1488805	206428	2
2	2.972	49.335	1449751	74990	V
Общий		100.000	2938556	281418	

🗖 🗘 Просмотр результатов - Таблица пиков

Таблица пиков	Соединения	Группа	Калибровочная кривая
	соодинстини	. I pyrniu	палиоровочная кривая

Пик№	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	2.270	13.296	263259	37453	
2	2.977	86.704	1716766	88956	
Общий		100.000	1980025	126409	

Таблица п	иков Соединени	я Группа Калиб	бровочная кривая			
Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка	
1	2.283	0.890	14102	2355	м	1
2	2.972	99.110	1570734	83339	S	1
Общий		100.000	1584836	85694		1

4c. Reaction was performed on a 0.1 mmol scale. **Yield** 21.5 mg, 61%, 70% *ee* (96% *ee* with enantiomerically pure *S*,*S*-**Rh** as a catalyst); white solid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.13 – 7.10 (m, 3H, CH^{Ar}), 7.04 – 6.98 (m, 2H, CH^{Ar}), 6.80 – 6.72 (m, 4H, CH^{Ar}), 3.00 (dd, *J* = 9.3, 7.2 Hz, 1H, CH), 2.22 (s, 3H, CH₃), 2.06

(dd, J = 9.3, 4.9 Hz, 1H, CH), 1.76 (dd, J = 7.0, 5.0 Hz, 1H, CH), 1.39 (s, 9H, CH₃). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.08, 139.01, 135.24, 134.66, 131.96, 129.00, 127.68, 126.90, 120.80, 81.07, 38.67, 31.78, 28.10, 21.24, 20.01. **HRMS** (ESI-TOF, m/z) calcd for C₂₂H₂₄O₄ [M+H]⁺: 353.1753; found: 353.1748.

HPLC conditions: Chiralpak IB-3 (4.6 x 150 mm), Heptane/i-PrOH = 99/1, flow rate 0.5 mL/min, $t_R = 10.55$ min for *1S*,2*R*-4c, $t_R = 11.62$ min for *1R*,2*S*-4c.

🗖 🎸 Просмотр результатов - Таблица пиков

Таблица п	иков	Соединения	я Группа Ка	либровочная крива	я	
Пик №	Bp.	удерж.	Площадь%	Площадь	Высота	Метка
1		10.510	85.32	7 10438016	584264	
2		11.621	14.67	3 1794936	95857	V
Общий		1	100.00	0 12232952	680121	

	Пр	осмотр р	результат	ов - Т	аблица і	пиков
--	----	----------	-----------	--------	----------	-------

Таблица п	иков Соединени	я Группа Калиб	бровочная кривая		
Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	10.555	98.032	2347179	137881	М
2	11.639	1.968	47130	2197	VM
Общий		100.000	2394309	140078	

3H, OCH₃), 2.94 (dd, J = 9.3, 7.2 Hz, 1H, CH), 2.06 (dd, J = 9.4, 4.9 Hz, 1H, CH), 1.70 (dd, J = 7.0, 5.0 Hz, 1H, CH), 1.39 (s, 9H, CH₃). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 172.83, 148.10, 147.42, 135.66, 131.97, 129.56, 127.69, 126.76, 120.78, 110.71, 110.38, 80.94, 55.80, 55.58, 38.40, 32.12, 28.09, 20.39. HRMS (ESI-TOF, m/z) calcd for C₂₂H₂₆O₄ [M+Na]⁺: 377.1723; Found: 377.1721.

HPLC conditions: Chiralpak IB-3 (4.6 x 150 mm), Heptane/i-PrOH = 99/1, $t_R = 7.17$ min for *1S*, *2R*-4d, $t_R = 8.97$ min for *1R*, *2S*-4d.

🗖 🗘 Просмотр результатов - Таблица пиков

Таблица пиков	Соединения	Группа	Калибровочная кривая
---------------	------------	--------	----------------------

Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	7.174	50.025	210397	16126	
2	8.914	49.975	210183	14936	
Общий		100.000	420580	31062	

t-BuOOC

5a. Yield 33.6 mg, 76%, 81% *ee* (96% *ee* of the opposite enantiomer with the enantiomerically pure R,R-Rh as a catalyst); colorless oil. NMR spectra and the specific rotation angle match to the data reported S) product **5a**⁷

previously for (1R, 2S) product **5a**.⁷

Control experiment with enantiomerically pure (ee > 99%) catalyst: 10 ml Schlenk flask equipped with PTFE coated magnetic stir bar *R*,*R*-**Rh** (0.9 mg, 0.01 mmol, 2 mol % Rh) was placed. The flask was subjected to a vacuum and refilled with argon five times. After that 1.0 ml of DCE, diazo compound **1a** (21.8 mg, 0.1 mmol, 1.0 eq.) and vinyl ethyl ether (0.019 ml, 0.2 mmol, 2.0 eq.) were added to the reaction mixture. The resulting mixture was stirred overnight at ambient temperature. After full consumption of the starting diazo compound (monitored by TLC) the minimum amount of SiO₂ was added to this mixture and the solvent was removed in vacuo. Subsequent purification on silica gel column afforded the desired cyclopropane product **5a** with ee = 96%.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.28 (m, 4H, CH^{Ph}), 7.26 – 7.21 (m, 1H, CH^{Ph}), 3.86 (dd, J = 7.0, 4.5 Hz, 1H, CH), 3.55 (q, J = 7.0 Hz, 2H, CH₂), 1.70 (dd, J = 7.0, 5.7 Hz, 1H, CH), 1.56 (dd, J = 5.7, 4.5 Hz, 1H, CH), 1.38 (s, 9H, CH₃), 0.98 (t, J = 7.0 Hz, 3H, CH₃). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.19, 134.96, 131.47, 127.75, 126.93, 80.89, 66.56, 64.29, 36.20, 28.13, 20.17, 15.00. [α]²⁰_D = – 49.2 (c 0.37, CHCl₃).

HPLC conditions: Chiralpak IJ-3, Heptane/i-PrOH = 99/1, $t_R = 4.15$ min for *1S*,2*R*-5a, $t_R = 6.42$ min for *1R*,2*S*-5a.

Таблица п	иков	Соединения	а Группа Кали	бровочная кривая		
Пик №	Bp.	удерж.	Площадь%	Площадь	Высота	Метка
		4.122	11.233	785135	41776	
2		6.266	88.767	6204142	204052	
Общий			100.000	6989277	245828	

🗖 🗘 Просмотр результатов - Таблица пиков

Таблица пі	иков Соединени	я Группа Калиб	ровочная кривая		
Пик№	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	4.059	97.845	8067859	492410	
2	6.426	2.155	177673	4938	
Общий		100.000	8245532	497347	

t-BuOOC

5b. Yield 25.0 mg, 59%, 69% *ee* (88% *ee* with enantiomerically pure *S*,*S*-**Rh** as a catalyst); yellow oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.35 – 7.21 (m, 5H, Ph), 3.85 (dd, *J* = 6.9, 4.4 Hz, 1H, CH), 3.52 – 3.40 (m, 2H,

OCH₂), 1.69 (dd, J = 6.9, 5.7 Hz, 1H, CH), 1.58 (dd, J = 5.7, 4.5 Hz, 1H, CH), 1.38 (s, 9H), 1.35 – 1.25 (m, 2H, CH₂), 1.12 – 1.03 (m, 2H, CH₂), 0.75 (t, J = 7.3 Hz, 3H, CH₃).¹³C NMR (101 MHz, Chloroform-d) δ 172.22, 134.85, 131.49, 127.68, 126.88, 80.88, 70.86, 64.49, 36.25, 31.61, 28.13, 20.12, 19.10, 13.91. HRMS (ESI-TOF, m/z) calcd for C₁₈H₂₆O₃ [M+H]⁺: 291.1955; found: 291.1968.

HPLC conditions: Chiralpak IJ-3 (4.6 x 150 mm), Heptane/i-PrOH = 99/1, t_R = 2.97 min for *1S*,2*R*-**5b**, t_R = 4.53 min for *1R*,2*S*-**5b**.

🗖 🗘 Просмотр результатов - Таблица пиков

Таблица пі	иков Соединени	я Группа Калиб	бровочная кривая		
Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	2.968	51.697	1667723	77872	
2	4.562	48.303	1558221	68097	
Общий		100.000	3225944	145969	

🗖 💠 Просмотр результатов - Таблица пиков

Таблица п	иков Соединени	я Группа Калиб	бровочная кривая		
Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	2.966	17.318	1089459	49431	
2	4.500	82.682	5201602	238132	
Общий		100.000	6291061	287563	

Таблица пиков Соединения Группа Калибровочная кривая					
Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
	3.039	6.075	502924	19695	
2	4.537	93.925	7775119	315863	
Общий		100.000	8278043	335558	

11.3 Hz, 1H, OCH₂), 3.98 (dd, J = 6.9, 4.4 Hz, 1H, CH), 1.72 (t, J = 6.4 Hz, 1H, CH), 1.68 – 1.65 (m, 1H, CH), 1.39 (s, 9H, CH₃). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 172.04, 137.42, 134.69, 131.54, 128.40, 127.96, 127.85, 127.06, 81.05, 72.89, 64.02, 36.46, 28.14, 20.11. **HRMS** (ESI-TOF, m/z) calcd for C₂₁H₂₄O₃ [M+Na]⁺: 347.1618; found: 347.1616.

HPLC conditions: Chiralpak IB-3, Heptane/i-PrOH = 99/1, $t_R = 3.18$ min for *1S*,2*R*-5*c*, $t_R = 3.68$ min for *1R*,2*S*-5*c*.

Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
	3.184	17.034	696599	77534	
2	3.692	82.966	3392975	396330	
Эбщий		100.000	4089573	473864	

5d. **Yield** 24.1 mg, 62%, 83% *ee*, white solid. NMR spectra and the specific rotation angle match data reported previously for the (1S,6R) product.⁷ ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.38 – 7.26 (m, 5H, Ph), 4.46 (d, *J* = 5.7

Hz, 1H, CH), 3.76 (ddd, J = 10.1, 8.5, 3.5 Hz, 1H, CH₂), 2.56 (dd, appears as t, J = 5.9, 5.9 Hz, 1H, CH₂), 2.40 (ddd appears as q, J = 8.7, 8.7, 8.7 Hz, 1H, CH), 2.29 – 2.15 (m, 1H, CH₂), 1.84 (ddd, J = 12.6, 8.7, 3.5 Hz, 1H, CH₂), 1.32 (s, 9H, CH₃). ¹³C NMR (101 MHz, Chloroform-d) δ 170.60, 133.02, 131.43, 128.35, 127.20, 80.83, 70.09, 69.37, 39.18, 31.49, 28.08, 26.39. [α]²⁰_D = + 33.3 (c 0.33, CHCl₃).

HPLC conditions: Chiralpak IA-3 (4.6 x 150 mm), Heptane/i-PrOH = 99/1, $t_R = 3.35$ min for *1R*,6*S*-5d, $t_R = 3.87$ min for *1S*,6*R*-5d.

🗖 🗘 Просмотр результатов - Таблица пиков

Таблица пи	иков Соединени	я Группа Калиб	бровочная кривая		
Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	3.341	8.398	182578	16143	
2	3.851	91.602	1991402	209643	
Общий		100.000	2173979	225787	

6a. Yield 33.0 mg, 73%; 92% *ee*, white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.26 (m, 5H, Ph), 3.79 (dd, *J* = 8.9, 6.0 Hz, 1H, CH), 2.99 (td, *J* = 8.7, 5.4 Hz, 1H, CH₂), 2.32 – 2.08 (m, 3H, CH₂), 1.99 (dd, *J* = 8.8, 6.1 Hz, 1H, CH), 1.78 (t, *J* = 6.0 Hz, 1H, CH), 1.75 – 1.62 (m, 1H, CH₂), 1.50 – 1.42 (m, 1H, CH₂), 1.38 (s, 9H, CH₃). ¹³C NMR (101

MHz, Chloroform-*d*) δ 176.65, 171.48, 134.78, 131.33, 128.11, 127.46, 81.33, 46.77, 39.59, 34.33, 31.74, 28.08, 18.30, 17.80. **Anal. Calcd** for C₁₈H₂₃NO₃: C, 71.73; H, 7.69; N, 4.65. Found: C, 71.61; H, 7.54; N, 4.74.

HPLC conditions: Chiralpak IA-3 (4.6 x 150 mm), Heptane/i-PrOH = 90/10, t_R = 4.65 min for *1R*,2S-6a, t_R = 5.35 min for *1S*,2*R*-6a.

Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	4.674	96.079	2305415	232929	
2	5.402	3.921	94085	9250	V
Общий		100.000	2399500	242179	

2H, CH₂), 1.40 (s, 9H, CH₃), 1.32 – 1.21 (m, 2H, CH₂), 1.04 – 0.91 (m, 1H, CH₂), 0.37 – 0.20 (m, 1H, CH₂). ¹³C **NMR** (101 MHz, Chloroform-*d*) δ 177.83, 171.78, 135.05, 131.82, 127.76, 127.30, 81.11, 48.87, 46.39, 37.97, 37.11, 29.70, 28.07, 27.39, 22.52, 18.26. **HRMS** (ESI-TOF, m/z) calcd for C₂₀H₂₇NO₃ [M+Na]⁺: 352.1883; Found: 352.1875.

HPLC conditions: Chiralpak IJ-3 (4.6 x 150 mm), Heptane/i-PrOH = 90/10, $t_R = 3.20$ min for *1S*, *2R*-**6b**, $t_R = 4.88$ min for *1R*, *2S*-**6b**.

Просмотр результатов - Таблица пиков

Таблица пи	иков Соединени	ия Группа Калиб	бровочная кривая		
Пик№	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	3.198	2.883	81277	7603	1
2	4.877	97.117	2737440	45890	SV
Общий		100.000	2818717	53494	

6c. Yield 45.8 mg, 80%, 92% *ee*; white viscous oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (d, J = 7.7 Hz, 2H, CH^{Ar}), 7.57 (d, J = 8.2 Hz, 2H, CH^{Ar}), 7.40 (t, J = 7.7 Hz, 2H, CH^{Ar}), 7.17 (t, J = 7.5 Hz, 2H, CH^{Ar}), 7.11 (d, J = 7.5 Hz, 2H, CH^{Ph}), 6.91 – 6.82 (m, 3H, CH^{Ph}), 4.36 – 4.23 (m, 1H, CH), 2.82 (dd appears as t, J = 5.9 Hz, 1H, CH), 2.52 –

2.41 (m, 1H, CH), 1.56 (s, 9H, CH₃). ¹³C **NMR** (101 MHz, Chloroform-*d*) δ 171.60, 141.37, 132.99, 130.00, 127.34, 127.09, 125.60, 123.41, 120.18, 119.59, 110.27, 81.90, 40.61, 36.66, 28.23, 19.62. **HRMS** (ESI-TOF, m/z) calcd for C₂₆H₂₅NO₂ [M+H]⁺: 384.1964; found: 384.1958. HPLC conditions: Chiralpak IA-3 (4.6 x 150 mm), Heptane/i-PrOH = 99/1, t_R = 4.22 min for *1R*,2*S*-**6c**, t_R = 4.69 min for *1S*,2*R*-**6c**.

6d. Reaction was performed on a 0.1 mmol scale. Yield 18.2 mg, 50%; 48% *ee* (95% *ee* with the enantiomerically pure *S*,*S*-**Rh** as a catalyst); white solid. NMR spectra match data reported previously.⁷ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 – 7.54 (m, 2H, CH^{Ar}), 7.63 – 7.56 (m, 2H, CH^{Ar}), 7.26 – 7.25 (m, 2H, CH^{Ph}), 7.15 – 7.11 (m, 2H,

CH^{ph}), 7.08 – 7.04 (m, 1H, CH^{ph}), 3.84 – 3.67 (m, 1H, CH), 3.08 (dd, appears as t, J = 5.8, 5.8 Hz, 1H, CH), 2.17 – 2.03 (m, 1H, CH), 1.43 (s, 9H, CH₃). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.60, 168.49, 134.10, 133.55, 131.34, 131.22, 127.90, 127.49, 123.13, 81.68, 36.58, 35.38, 28.11, 16.21.

HPLC conditions: Chiralpak IA-3 (4.6 x 150 mm), Heptane/i-PrOH = 99/1, $t_R = 12.83$ min for *1R*,2S-**6b**, $t_R = 14.64$ min for *1S*,2*R*-**6b**.

Таблица п	иков Соединени	я Группа Калиб	бровочная кривая		
Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	12.856	73.998	2254871	112906	
2	14.665	26.002	792314	36720	V
Общий		100.000	3047185	149626	

Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	12.832	97.593	3997477	200907	
2	14.495	2.407	98611	4064	V
Общий		100.000	4096088	204971	042

7a. Yield 38.8 mg, 81%, 90% *ee*; white solid. ¹H **NMR** (400 MHz, Chloroform-*d*) δ 7.38 – 7.20 (m, 2H, CH^{Ar}), 7.10 – 6.91 (m, 2H, CH^{Ar}), 3.77 (dd, *J* = 8.9, 5.9 Hz, 1H, CH), 3.07 – 3.02 (m, 1H, CH₂), 2.30 (ddd, *J* = 15.6, 9.4, 6.3 Hz, 2H, CH₂), 2.16 (ddd, *J* = 16.8, 9.4, 7.0 Hz, 1H, CH₂), 2.01 (dd, *J* = 8.9, 6.1 Hz, 1H, CH), 1.82 – 1.69 (m, 2H, CH₂ and CH), 1.58 – 1.48 (m, 1H, CH₂), 1.39 (s, 9H, CH₃). ¹⁹F **NMR** (376 MHz, Chloroform-*d*) δ -114.79. ¹³C **NMR** (101 MHz, Chloroform-*d*) δ 176.70, 171.25,

162.15 (d, J = 246.9 Hz), 133.01 (d, J = 8.2 Hz), 130.67 (d, J = 2.6 Hz), 115.06 (d, J = 21.2 Hz), 81.51, 46.87, 39.64, 33.72, 31.69, 28.05, 18.31, 18.06. **Anal. Calcd** for C₁₈H₂₃NO₃: C, 67.69; H, 6.94; N, 4.39; found: C, 67.69; H, 7.01; N, 4.51.

HPLC conditions: Chiralpak IA-3 (4.6 x 150 mm), Heptane/i-PrOH = 95/5, $t_R = 7.95$ min for *1R*,2S-7a, $t_R = 8.66$ min for *1S*,2*R*-7a.

Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	7.973	49.813	3697608	270737	
2	8.628	50.187	3725365	249835	V
Общий		100.000	7422973	520572	

Таблица пиков	Соелинения	Группа	Калибровочная кривая

Пик№	Вр. удерж.	Площадь%	Площадь	Высота	Метка
	7.928	94.879	10469755	748704	
2	8.683	5.121	565152	37296	V
Общий		100.000	11034907	786000	

NMR (101 MHz, Chloroform-*d*) δ 176.76, 170.99, 133.46, 133.40, 132.75, 128.36, 81.66, 46.92, 39.74, 33.90, 31.68, 28.07, 18.33, 17.97. **HRMS** (ESI-TOF, m/z) calcd for C₁₈H₂₂ClNO₃ [M+H]⁺: 336.1366; found: 336.1363.

HPLC conditions: Chiralpak IA-3 (4.6 x 150 mm), Heptane/i-PrOH = 98/2, $t_R = 17.54$ min for *1R*,2S-7b, $t_R = 20.30$ min for *1S*,2R-7b.

Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	17.937	51.241	1288380	37229	
2	20.454	48.759	1225955	35025	SV
Общий		100.000	2514335	72254	

Просмотр результатов - Таблица пиков

Таблица пиков Соединения Группа Калибровочная кривая

Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
	17.142	98.092	18304673	479874	М
	20.154	1.908	356013	10281	
Эбщий		100.000	18660686	490155	

7c. Yield 34.7 mg, 73%, 95% *ee*, white solid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.14 (d, *J* = 7.8 Hz, 2H, CH^{tol}), 7.07 (d, *J* = 7.7 Hz, 2H, CH^{tol}), 3.75 (dd, *J* = 9.0, 5.9 Hz, 1H, CH), 3.01 – 2.95 (m, 1H CH₂), 2.31 (s, 3H, CH₃^{tol}), 2.27 – 2.22 (m, 2H, CH₂), 2.18 – 2.10 (m, 1H, CH₂), 1.95 (dd, *J* = 9.0, 6.0 Hz, 1H, CH), 1.75 – 1.71 (m, 1H, CH), 1.69 – 1.63 (m, 1H, CH₂), 1.54 – 1.43 (m, 1H, CH₂), 1.37 (s, 9H, CH₃). ¹³**C NMR** (101

MHz, Chloroform-*d*) δ 176.64, 171.64, 137.02, 131.60, 131.11, 128.83, 81.17, 46.77, 39.51, 33.92, 31.75, 28.06, 21.31, 18.30, 17.76. **HRMS** (ESI-TOF, m/z) calcd for C₁₉H₂₅NO₃ [M+H]⁺: 316.1907; found: 316.1906.

HPLC conditions: Chiralpak IA-3 (4.6 x 150 mm), Heptane/i-PrOH = 90/10, t_R = 4.40 min for *1R*,2S-7c, t_R = 5.31 min for *1S*,2*R*-7c.

🗖 🗘 Просмотр результатов - Таблица пиков

Таблица пиков Соединения Группа Калибровочная кривая

Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	4.476	50.243	32860	3615	
2	5.416	49.757	32542	3294	
Общий		100.000	65402	6909	

Просмотр результатов - Таблица пиков

Таблица пі	иков Соединени	я Группа Калиб	бровочная кривая		
Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	4.329	97.253	16083368	2059638	S
2	5.198	2.747	454345	45446	Т
Общий		100.000	16537713	2105083	

7d. Yield 22.4 mg, 68%, 97% *ee*, white solid; reaction was performed on a 0.1 mmol scale. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 (d, J = 8.3Hz, 2H, CH^{Ar}), 6.81 (d, J = 8.4 Hz, 2H, CH^{Ar}), 3.78 (s, 3H, OCH₃), 3.74 (dd, J = 8.7, 6.0 Hz, 1H, CH), 3.02 – 2.97 (m, 1H, CH₂), 2.31 – 2.21 (m, 2H, CH₂), 2.14 (ddd, J = 16.8, 9.4, 7.1 Hz, 1H, CH₂), 1.95 (dd, J = 8.9, 6.0 Hz, 1H, CH), 1.74 – 1.68 (m, 1H, CH and 1H, CH₂), 1.54 – 1.44 (m, 1H,

CH₂), 1.37 (s, 9H, CH₃). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.68, 171.75, 158.83, 132.39, 126.82, 113.52, 81.21, 55.30, 46.85, 39.59, 33.60, 31.77, 28.09, 18.35, 17.94. HRMS (ESI-TOF, m/z) calcd for C₁₉H₂₅NO₄ [M+Na]⁺: 354.1676; Found: 354.1672.

HPLC conditions: Chiralpak IA-3 (4.6 x 150 mm), Heptane/i-PrOH = 90/10, $t_R = 6.22$ min for *1R*,2S-7d, $t_R = 7.31$ min for *1S*,2R-7d.

Пик №	Вр. удерж.	Площадь%	Площадь	Высота	Метка
1	6.153	49.927	278567	23918	
2	7.152	50.073	279383	21685	
Общий		100.000	557950	45603	

BH-insertion reaction in the presence of L1

In a 10 ml Schlenk flask equipped with PTFE coated magnetic stir bar racemic catalyst **Rh** and a portion of dried 3Å molecular sieves were placed. The flask was subjected to a vacuum and refilled with argon five times. After that 1ml of DCM and indicated quantity of 0.1085M stock solution of **L1** in THF were added to the reaction vessel. The resulting mixture was stirred at ambient temperature for 0.5 hour, covered by aluminum foil. After that, diazo compound **1a** (21.8 mg, 0.10 mmol, 1.0 eq.) and amine-borane adduct **2** (14.9 mg, 0.15 mmol, 1.5 eq) were added to the reaction mixture. The resulting mixture was stirred at ambient temperature for 0.5 hour, covered by TLC) the reaction mixture was opened to air, molecular sieves were removed by filtration through a short celite layer in DCM. Subsequent purification on silica gel column (hexane/EA 10:1 \rightarrow hexane/EA 1:1) afforded the desired B-H insertion product **3**. See Table **S2** for details on the corresponding catalyst and chiral additive loadings.

entry	temperature	catalyst loading	L1 loading	yield, %	ee, %
1 ^a	r.t.	5 mol % Rh	4 mol %	90	94
2 ^a	r.t.	5 mol % Rh	3 mol %	87	90
3	r.t.	5 mol % Rh	3 mol %	93	87
4	r.t.	2.5 mol % Rh	2 mol %	79	88
5 ^b	r.t.	5 mol % Rh	4 mol %	97	96
6 ^b	r.t.	5 mol % Rh	3 mol %	94	96
7 ^c	r.t.	5 mol % Rh	3 mol %	88	87
8 ^{b,c}	r.t.	5 mol % Rh	3 mol %	98	87

Table S2

^a Racemic catalyst was stirred overnight with the additive **L1** before adding the substrates; ^b 0.010 ml of dry NEt₃ was added to the reaction mixture simultaneously with the solvent; ^c DCE was used instead of DCM

3. NMR spectra are consistent with the previously reported data.³

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.41 (d, *J* = 7.6 Hz, 2H, CH^{Ph}), 7.22 (t, *J* = 7.6 Hz, 2H, CH^{Ph}), 7.08 (t, *J* = 7.3 Hz, 1H, CH^{Ph}), 3.22 (dt, *J* = 11.7, 8.0 Hz, 1H, CH₂), 3.11 (t, appears as br.s, 1H, CH), 2.96 (dt, *J* = 12.0, 7.9 Hz, 1H,

CH₂), 2.82 (dt, J = 11.9, 6.5 Hz, 1H, CH₂), 2.60 – 2.52 (m, 1H, CH₂), 2.52 (s, 3H, CH₃), 2.35 – 1.70 (m, 6H, CH₂ and BH₂), 1.42 (s, 9H, CH₃); ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.98, 144.82, 129.33, 127.72, 124.57, 78.63, 61.73, 61.69, 47.95, 28.43, 22.51, 22.36. ¹¹B{¹H} NMR (128 MHz, Chloroform-*d*) δ -1.74.

BH-insertion reaction in the presence of L2

In a 10 ml Schlenk flask equipped with PTFE coated magnetic stir bar racemic catalyst **Rh** and a portion of dried 3Å molecular sieves were placed. The flask was subjected to a vacuum and refilled with argon five times. After that 1.0 ml of DCM and **L2** (freshly generated sodium salt, 0.0500M stock solution in THF) were added to the reaction vessel. The resulting mixture was stirred at ambient temperature for 30 minutes. After that, diazo compound **1a** (21.8 mg, 0.10 mmol, 1.0 eq.) and amine-borane adduct **2** (14.9 mg, 0.15 mmol, 1.5 eq) were added to the reaction mixture. The resulting mixture was stirred at ambient temperature. After full consumption of the starting diazo compound (monitored by TLC) the minimum amount of SiO₂ was added to this mixture and the solvent was removed in vacuo. Subsequent purification on silica gel column afforded the desired B-H insertion product **3**. See Table **S3** for details on the corresponding catalyst and chiral additive loadings.

Generation of the sodium salt of L2: in a 10 ml Schlenk flask equipped with PTFE coated magnetic stir bar NaH (60% dispersion in mineral oil, 2.4 mg, 0.06 mmol, 1.5 eq.) was placed. The flask was subjected to a vacuum and refilled with argon three times. Then 0.800 ml of THF was added via syringe. Upon strong stirring (R)-2-(phenyl((1-phenylethyl)imino)methyl)phenol $(L2H)^8$ (12.2 mg, 0.04 mmol, 1.0 eq) was added to the reaction mixture. The resulting suspension was stirred for 30 minutes until the gas evolution was over, then the magnetic stirrer was turned off to allow the solids to settle for additional 30 minutes. The obtained solution was used immediately on the next step without any purification.

Table S3

entry	temperature	catalyst loading	L2 loading	yield, % ee, %
1	r.t.	5 mol % Rh	4 mol %	93 12
2	r.t.	5 mol % Rh	3 mol %	96 8

BH-insertion reaction in the presence of L3.

In a 10 ml Schlenk flask equipped with PTFE coated magnetic stir bar racemic catalyst **Rh** and a portion of dried 3Å molecular sieves were placed. The flask was subjected to a vacuum and refilled with argon five times. After that 1.0 ml of DCM and **L3** (freshly generated sodium salt, 0.0500M stock solution in THF) were added to the reaction vessel. The resulting mixture was stirred at ambient temperature for 30 minutes. After that, diazo compound **1a** (21.8 mg, 0.10 mmol, 1.0 eq.) and amine-borane adduct **2** (14.9 mg, 0.15 mmol, 1.5 eq) were added to the reaction mixture. The resulting mixture was stirred at ambient temperature. After full consumption of the starting diazo compound (monitored by TLC) the minimum amount of SiO₂ was added to this mixture and the solvent was removed in vacuo. Subsequent purification on silica gel column afforded the desired B-H insertion product **3**. See Table **S4** for details on the corresponding catalyst and chiral additive loadings.

Generation of the sodium salt of L3⁹: in a 10 ml Schlenk flask equipped with PTFE coated magnetic stir bar NaH (60% dispersion in mineral oil, 2.4 mg, 0.06 mmol, 1.5 eq.) was placed. The flask was subjected to a vacuum and refilled with argon three times. Then 0.800 ml of THF was added via syringe. Upon strong stirring (S)-N-(2-hydroxybenzylidene)-2-methylpropane-2-sulfinamide (L3H) (9.0 mg, 0.04 mmol, 1.0 eq) was added to the reaction mixture. The resulting suspension was stirred for 30 minutes until the gas evolution was over, then the magnetic stirrer was turned off to allow the solids to settle for additional 30 minutes. The obtained solution was used immediately on the next step without any purification.

Table S4

entry	temperature	catalyst loading	L3 loading	yield, %	ee, %
1 ^a	r.t.	5 mol % Rh	4 mol %	80	- 8
2	r.t.	5 mol % Rh	4 mol %	78	- 60
3	r.t.	5 mol % Rh	3 mol %	86	- 62

^a (S)-N-(2-hydroxybenzylidene)-2-methylpropane-2-sulfinamide (**L3H**) (0.9 mg, 0.004 mmol) was used as a chiral additive in the presence of K_3PO_4 (0.8 mg, 0.004 mmol); **L3H** and K_3PO_4 were stirred together in the reaction vessel for 15 min prior to addition of the racemic catalyst.

BH-insertion reaction in the presence of L4.

In a 10 ml Schlenk flask equipped with PTFE coated magnetic stir bar racemic catalyst **Rh** and a portion of dried 3Å molecular sieves were placed. The flask was subjected to a vacuum and refilled with argon five times. After that 1.0 ml of DCM and **L4** (freshly generated sodium salt, 0.0500M stock solution in THF, see details below) were added to the reaction vessel. The resulting mixture was stirred at ambient temperature for 30 minutes. After that, diazo compound **1a** (21.8 mg, 0.10 mmol, 1.0 eq.) and amine-borane adduct **2** (14.9 mg, 0.15 mmol, 1.5 eq) were added to the reaction mixture. The resulting mixture was stirred at ambient temperature date at ambient temperature. After full consumption of the starting diazo compound (monitored by TLC) the minimum amount of SiO₂ was added to this mixture and the solvent was removed in vacuo. Subsequent purification on silica gel column afforded the desired B-H insertion product **3**. See Table **S5** for details on the corresponding catalyst and chiral additive loadings.

Generation of the sodium salt of L4: in a 10 ml Schlenk flask equipped with PTFE coated magnetic stir bar NaH (60% dispersion in mineral oil, 2.4 mg, 0.06 mmol, 1.5 eq.) was placed. The flask was subjected to a vacuum and refilled with argon three times. Then 0.800 ml of THF was added via syringe. Upon strong stirring S-N-(tert-butylsulfinyl)benzamide (L4H) (9.0 mg, 0.04 mmol, 1.0 eq) was added to the reaction mixture. The resulting suspension was stirred for 30 minutes until the gas evolution was over, then the magnetic stirrer was turned off to allow the solids to settle for additional 30 minutes. The obtained solution was used immediately on the next step without any purification.

Table S5

entry	temperature	catalyst loading	L4 loading	yield, % e	e, %
1	r.t.	5 mol % Rh	4 mol %	88 -9	95
2	r.t.	5 mol % Rh	3 mol %	98 -9	90

Nonlinear effect in B-H insertion reaction studies

In a 10 ml Schlenk flask equipped with PTFE coated magnetic stir bar the racemic catalyst **Rh** and the enantiomerically pure catalyst *S*,*S*-**Rh** (ee > 99%) were placed (total amount equals to 2 mol% Rh) and a portion of dried 3Å molecular sieves was added. The flask was subjected to a vacuum and refilled with argon five times. After that dry DCM was added to the reaction vessel, amount of the solvent adjusted to 0.1M concentration of the starting diazo compound **1a**. Then diazo compound **1a** (1.0 eq.) and amine-borane adduct **2** (1.5 eq) were added to the reaction mixture. The resulting mixture was stirred at ambient temperature. After full consumption of the starting diazo compound (monitored by TLC) the reaction mixture was opened to air, molecular sieves were removed by filtration through a short celite layer in DCM. Subsequent purification on silica gel column (hexane/EA 10:1 \rightarrow hexane/EA 1:1) afforded the desired insertion product **3**. Enantiomeric excesses data of the obtained products are provided in the table **S6**.

Table S6

Synthesis of the complex S,S-Rh-L3

In a 10 ml Schlenk flask equipped with PTFE coated magnetic stir bar racemic complex **Rh** (44.9 mg, 0.05 mmol, 0.05 eq), tBuOK (16.8 mg, 0.15 mmol, 1.5 eq), **L3H** (24.8 mg, 0.11 mmol, 1.1 eq) were placed. The flask was subjected to a vacuum and refilled with argon three times. Then THF (1.0 ml) was added via syringe and the reaction mixture was strirred overnight at r.t. After that the solvent was removed in vacuo. Subsequent purification on silica gel column (gradient elution with n-Hexane/EtOAc mixture with 1% NEt₃, from 20:1 to 10:1) afforded the desired complex *S*,*S*-**Rh-L3** as an orange solid. The product was additionally purified by recrystallization (slow gas diffusion of pentane into concentrated DCM solution of the product).

Yield 18.6 mg, 0.03 mmol, 30% (from max. 50% for 1 diastereomer). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.56 (s, 1H, CH=N), 7.45 – 7.31 (m, 2H, CH^{Ar}), 6.84 (d, *J* = 8.6 Hz, 1H, CH^{Ar}), 6.62 (t, *J* = 7.4 Hz, 1H, CH^{Ar}), 5.22 (t, *J* = 6.0 Hz, 2H, CH), 3.63 (d, *J* = 6.0 Hz, 1H, CH), 3.34 (d, *J* = 5.4 Hz, 1H, CH), 2.18 (hept, *J* = 6.8 Hz, 1H, CH), 1.81 (hept, *J* = 6.7 Hz, 1H, CH), 1.44 (s, 9H, CH₃), 1.41 (d, *J* = 6.8 Hz, 3H, CH₃), 1.35 (d, *J* = 6.8 Hz, 3H, CH₃), 0.69 (d, *J* = 6.8 Hz, 3H, CH₃). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.59, 136.87, 136.37, 122.70, 118.31, 115.41, 61.34, 54.31 (d, *J* = 9.2 Hz), 41.97 (d, *J* = 10.3 Hz), 41.36, 38.60, 38.56, 32.32, 31.50, 23.30, 20.94, 20.71, 20.58. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -147.09 (t, *J* = 18.5 Hz, 1F), -147.77 (t, *J* = 20.5 Hz, 1F), -159.55 – -159.74 (m, 2F). Anal. Calcd. for C₂₉H₃₂F₄NO₂RhS: C, 54.63; H, 5.06; N, 2.20; found C, 54,52; H, 5.21; N, 2.19.

Evaluation of diastereomeric products ratio in reaction of racemic complex Rh with L4

Figure S1. Representative ¹H NMR spectrum of the reaction mixture after treatment with L4 overnight.

Figure S2. Representative ¹⁹F NMR spectrum of the reaction mixture after treatment with L4 overnight.

B-H insertion reaction in the presence of an excess of L1

In a 10 ml Schlenk flask equipped with PTFE coated magnetic stir bar racemic catalyst **Rh** (2.2 mg, 0.0025 mmol, 0.025 eq) was placed. The flask was subjected to a vacuum and refilled with argon five times. After that 1ml of DCM and **L1** (0.092 ml of 1085M sodium salt stock solution in THF, 0.010 mmol, 0.10 eq) were added to the reaction vessel. The resulting mixture was stirred at ambient temperature for 0.5 hour. After that, diazo compound **1a** (21.8 mg, 0.10 mmol, 1.0 eq.) and amine-borane adduct **2** (14.9 mg, 0.15 mmol, 1.5 eq) were added to the reaction mixture. The resulting mixture was stirred at ambient temperature, covered with aluminum foil. After 5 days the reaction mixture was opened to air, the solvent was evaporated and the residue was analyzed by ¹H NMR (400 MHz, Chloroform-*d*, $T_1 = 15$ s) in the presence of 1,3,5-tribromobenzene (10.5 mg, 0.033 mmol) as internal standard. Product **3** signals were not present in the resulting spectrum.

Figure S3. Representative ¹H NMR spectrum of the reaction mixture. The product and starting compounds concentrations are determined relative to 1,3,5-tribromobenzene ¹H protons (7.59 ppm).

B-H insertion reaction in the presence of complex S,S-Rh-L3

In a 10 ml Schlenk flask equipped with PTFE coated magnetic stir bar complex *S,S*-**Rh-L3** (3.2 mg, 0.005 mmol, 0.05 eq) was placed. The flask was subjected to a vacuum and refilled with argon five times. After that 1ml of DCM, diazo compound **1a** (21.8 mg, 0.10 mmol, 1.0 eq.) and amineborane adduct **2** (14.9 mg, 0.15 mmol, 1.5 eq) were added to the reaction mixture. The resulting mixture was stirred at ambient temperature, covered with aluminum foil. After 24 hour the reaction mixture was opened to air, the solvent was evaporated and the residue was analyzed by ¹H NMR (400 MHz, Chloroform-*d*, $T_1 = 15$ s) in the presence of 1,3,5-tribromobenzene (10.5 mg, 0.033 mmol) as internal standard. Conversion of the starting diazo compound **1a** to the product **3** was ~65%.

Figure S4. Representative ¹H NMR spectrum of the reaction mixture. The product and starting compounds concentrations are determined relative to 1,3,5-tribromobenzene ¹H protons (7.60 ppm).

Crystallographic details

X-ray diffraction data for *S*,*S*-**Rh-L3** were collected at 100 K with a Bruker Quest D8 CMOS diffractometer, using graphite monochromated Mo-K α radiation ($l\lambda = 0.71073$ Å, ω -scans). X-ray diffraction data for **6a** were collected at 120 K at the protein station of urchatov Centre for Synchrotron radiation ($\lambda = 0.745$ Å). Structures were solved using Intrinsic Phasing with the ShelXT¹⁰ structure solution program in Olex2¹¹ and then refined with the XL¹² refinement package using Least-Squares minimization against F² in the anisotropic approximation for non-hydrogen atoms. Positions of hydrogen atoms were calculated, and they were refined in the isotropic approximation within the riding model. Crystal data and structure refinement parameters are given in Table S1. CCDC 2159993 and 2159992 contain the supplementary crystallographic data for *S*,*S*-**Rh-L3** and **6a**, respectively.

	<i>S,S</i> - Rh-L3	6a
Empirical formula	$C_{29}H_{32}F_4NO_2RhS$	$C_{18}H_{23}NO_3$
Formula weight	637.52	301.37
Т, К	100	120
Crystal system	Orthorhombic	Monoclinic
Space group	P2 ₁ 2 ₁ 2 ₁	P2 ₁
Ζ	4	2
a, Å	10.8702(10)	9.1340(18)
b, Å	14.0428(12)	6.2150(12)
c, Å	18.3564(16)	14.976(3)
α, °	90	90
β, °	90	106.66(3)
γ, °	90	90
V, Å ³	2802.1(4)	814.5(3)
$D_{\text{calc}} (\text{g cm}^{-1})$	1.511	1.229
Linear absorption, μ (cm ⁻¹)	7.37	0.92
F(000)	1304	324
20 _{max} , °	56	62
Reflections measured	34930	8466
Independent reflections	6771	4400
Observed reflections $[I > 2\sigma(I)]$	6433	4250
Parameters	350	206
R1	0.0250	0.0590
wR2	0.0631	0.1530
GOF	1.039	1.035
$\Delta ho_{ m max}$ / $\Delta ho_{ m min}$ (e Å ⁻³)	0.312/-0.374	0.474/-0.249

Table S7. Crystal data and structure refinement parameters for *S*,*S*-Rh-L3 and 6a.

Figure S5. Crystal structure of *S*,*S***-Rh-L3** with thermal ellipsoids at 50% probability level (CCDC 2159993).

Figure S6. Crystal structure of **6a** with thermal ellipsoids at 50% probability level (CCDC 2159992).

Computational details

Initial geometry optimizations were performed using Priroda 16 software¹³ (2016.10.30) at PBE/3z level, which gave appropriate coordinates for further calculations. Additional geometry optimizations and subsequent single-point and frequency calculations were carried out using Gaussian 09 package.¹⁴ For all Rh-containing structures and transition states M06L¹⁵ functional was employed with QZVP¹⁶ basis set for Rh and TZVP¹⁷ basis set for other atoms with the adjustment of corresponding ECP for Rh.¹⁸ For catalytic species, solvation energy corrections were calculated using the SMD solvation model with DCM as the solvent.¹⁹ Geometry optimizations and single-point energy calculations of alkenes were performed with the use of MP2²⁰ method with 6-311G+(d,p)²¹ basis set. The optimized geometries were verified to have no negative frequencies for all intermediates and only one negative frequency for transition states. Cartesian coordinates of the optimized structures are available through separate .xyz file in Supplementary section.

L3

12

tBu

L4

Complex	E + ZPE, a. u.	G, a. u.	ΔG , kcal mol ⁻¹	
<i>R</i> , <i>R</i> - Rh-L1	-1877.543026	-1877.609847	3 01	
<i>S,S</i> - Rh -L1	-1877.537884	-1877.603616	5.71	
<i>R</i> , <i>R</i> - Rh-L2	-2147.609406	-2147.680831	0.45	
<i>S,S</i> - Rh - L 2	-2147.608400	-2147.680120	- 0.15	
<i>R</i> , <i>R</i> - Rh-L3	-2237.581562	-2237.649711	-4 89	
<i>S,S</i> - Rh-L3	-2237.590079	-2237.657500		
<i>R</i> , <i>R</i> - Rh-L4	-2237.588916	-2237.657886	-2 79	
<i>S,S</i> - Rh-L4	-2237.593578	-2237.662331	2.19	

Proton affinity energies (E_{PA}) for the alkenes were calculated as follows:

$$\stackrel{H^+}{\models} \oplus \stackrel{\oplus}{\models} EDG EDG$$

 $E_{\rm PA} = -(E_{\rm protonated form} - E_{\rm alkene})$

Table S9. Electronic energies and calculated E_{PA} values for the alkenes (MP2/6-311G+(d,p)).

Name	Structure	Energy of alkene, a. u.	Energy of the protonated alkene, a. u.	$E_{\rm PA}$, kcal mol ⁻¹
styrene		-307.654223349	-308.001975828	218.214680573
4-tertutylstyrene	t-Bu	-463.825273601	-464.185435886	226.001833838
4-acetoxystyrene	AcO	-534.344679522	-534.709429399	228.880547818
3,4- dimethoxystyrene	MeO MeO	-535.467587045	-535.838727729	232.89077921
ethyl vinyl ether	<u></u>	-231.017516514	-231.375660351	224.735257718
butyl vinyl ether	~~^0 <i>/</i> /	-309.105199184	-309.466077290	226.451011515
benzyl vinyl ether		-421.562017492	-421.926907902	228.968732275
2,3-dihydrofuran	0	-229.848130342	-230.203427987	222.949272238
<i>N-</i> vinylpyrrolidone		-361.853121647	-362.216415990	227.967200232
<i>N</i> -vinylcaprolactam		-439.923575108	-440.294887036	232.99823482
N-vinylcarbazole		-591.129863303	-591.504690122	235.203828923
<i>N</i> - vinylphthalimide		-587.091046917	-587.437548744	217.429896442
vinyl acetate	AcO	-304.762551903	-305.088836656	204.743682508
hexene	C ₄ H ₉	-234.232284023	-234.549902908	199.305850338
isoprene		-194.006977282	-194.339973199	208.954937918
N-vinylimidazole	N N	-301.763834555	-302.104000782	213.454307442

We conducted a series of calculations in order to explain the observed stereoselectivity. Based on our previous studies and assuming that rhodium carbenoid C1 contributes >98% of the total products distribution, only transformations of this intermediate through four different transition states **TS1-TS4** were considered. As in our previous work,¹ all attempts to determine the exact structure of the following intermediates led to the formation of weakly coordinated η^2 -arene complexes [(*S*,*S*-iPr₂-TFB)RhCl(**5a**)] with the total free energy close to that of free *S*,*S*-**Rh**monomer and ethyl vinyl ether combined (these data are not included in Table S9).

Figure S7. The proposed mechanism for cyclopropanation of ethyl vinyl ether. **Table S10**. Free energies for the transition states (M06L/TZVP//QZVP(ECP)) in DCE.

Species	G, a.u.	ΔG , kcal mol ⁻¹	Imaginary frequency, cm ⁻¹
ethyl vinyl ether	-232.393351	-	-
C1 ^a	-2283.077129	-	-
TS1	-2515.446684	14.93	-390.4
TS2	-2515.442553	17.52	-414.6
TS3	-2515.442757	17.40	-411.6
TS4	-2515.439610	19.37	-244.9

^a The structure of the opposite enantiomer was previously calculated,¹ the exact same free energy of that species is provided here.

Copies of NMR Spectra

Figure S9. ¹³C spectrum of 4b.

Figure S15. ¹³C spectrum of 5a.

Figure S17. ¹³C spectrum of 5b.

Figure S19. ¹³C spectrum of 5c.

Figure S23. ¹³C spectrum of 6a.

SI47

Figure S27. ¹³C spectrum of 6c.

Figure S29. ¹³C spectrum of 6d.

SI50

Figure S33. ¹H spectrum of 7b.

SI52

Figure S37. ¹H spectrum of 7d.

Figure S39. ¹H spectrum of 3.

Figure S43. ¹³C spectrum of *S*,*S*-Rh-L3.

Figure S44. ¹⁹F spectrum of *S*,*S*-Rh-L3.

References

¹ N. M. Ankudinov, D. A. Chusov, Y. V. Nelyubina, D. S. Perekalin, *Angew. Chem. Int. Ed.* **2021**, *60*, 18712–18720.

² Y. Aota, T. Kano, K. Maruoka, Angew. Chem. Int. Ed. 2019, 58, 17661–17665.

³ D. Chen, X. Zhang, W.-Y. Qi, B. Xu, M.-H. Xu, J. Am. Chem. Soc. 2015, 137, 5268–5271. $BH_3 \cdot Me_2S$ adduct was used instead of $BH_3 \cdot THF$.

⁴ Y. Okimoto, S. Sakaguchi, Y. Ishii, J. Am. Chem. Soc. 2002, 124, 1590-1591.

⁵ L. J. Gooßen, A. Döhring, Synlett 2004, 2, 263–266.

⁶ Q.Wang, C. Ni, M. Hu, Q. Xie, Q. Liu, S. Pan, J. Hu, Angew. Chem. Int. Ed. 2020, 59, 8507–8511.

⁷ R. Sambasivan, Z.T. Ball, Angew. Chem. Int. Ed. 2012, 51, 8568–8572.

⁸ C. Cimarelli, G. Palmieri, E. Volpini, *Organic Preparations and Procedures International* **2001**, *33*, 369–371.

⁹ Z. Zhang, P. Rooshenas, H. Hausmann, P. R. Schreiner, Synthesis 2009, 9, 1531–1544.

¹⁰ G.M. Sheldrick. Acta Cryst. **2015**, A71, 3-8.

¹¹ O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann. J. Appl. Cryst. **2009**, 42, 339-341.

¹² G.M. Sheldrick. Acta Cryst. 2008, A64, 112-122.

¹³ D. N. Laikov, Yu. A. Ustynyuk, Russ. Chem. Bull. 2005, 54, 820–826.

¹⁴ Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M.

Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J.

V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi,

J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N.

Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,

T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J.

E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T.

Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.

Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin,

K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

¹⁵ Y. Zhao, D. G. Truhlar. J. Chem. Phys. 2006, 125, 194101–194118.

¹⁶ F. Weigend, R. Ahlrichs. *Phys. Chem. Chem. Phys.* 2005, 7, 3297–3305.

¹⁷ F. Weigend. *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057–1065.

¹⁸ D. G. Gusev. Organometallics, **2013**, *32*, 4239–4243.

¹⁹ A. V. Marenich, C. J. Cramer, D. G. Truhlar. J. Phys. Chem. B 2009, 113, 6378–6396.

²⁰ M. J. Frish, M. Head-Gordon, J. A. Pople. Chem. Phys. Lett. 1990, 166, 275–280.

²¹ A. D. McLean. J. Chem. Phys. **1980**, 72, 5639–5648.