Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Table of Contents

General Information	2
Scheme S1. Plausible enantiomeric determining model	3
Synthesis of substrates 5	4
Asymmetric synthesis of products 6	24
Control Experiments	
Study of the configurational stability of the planar-chiral macrocycles	40
X-Ray structures	42
HPLC traces	44
NMR spectrum	65

General Information

Unless otherwise noted, all commercial reagents were used without further purification. Dichloromethane, toluene, ether, THF were purified by passage through an activated alumina column under argon. Thin-layer chromatography (TLC) analysis of reaction mixtures were performed using Huanghai silica gel HSGF254 TLC plates, and visualized under UV or by staining with ceric ammonium molybdate or potassium permanganate. Flash column chromatography was carried out on Huanghai Silica Gel HHGJ-300, 300-400 mesh. Nuclear magnetic resonance (NMR) spectra were recorded using Bruker Avance III HD spectrometer (FT, 500 MHz or 400 MHz for ¹H, 126 MHz or 101 MHz for ¹³C, 471 MHz for ¹⁹F, 202 MHz for ³¹P). Data for ¹H NMR were reported as follows: chemical shift (δ ppm downfield from tetramethylsilane and referenced to residual solvent peaks), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad resonance), integration, coupling constant (Hz). Data for ¹³C NMR were reported in terms of chemical shift. Mass spectral data were obtained from the Agilent Technologies 6230 TOF LC/MS spectrometer in electrospray ionization (ESI⁺) mode. Optical rotations were measured with an Autopol V Plus/VI digital polarimeter. X-Ray structure analyses were performed using a Bruker D8 Venture X-ray single crystal diffractometer. Enantiomeric excesses were determined on an Agilent 1260 Chiral HPLC using IA, IB, IC, ID and IG columns.

Scheme S1. Plausible enantiomeric determining model

A plausible enantiomeric determining model was proposed based on previous studies (Scheme S1). Activation of the allenamide moiety would generate the α , β -unsaturated iminium group, which could form close ion-pair with the chiral phosphate anion. On the other hand, the P=O moiety of the phosphate would activate the hydroxy group through the hydrogen bonding interaction. Through this bifunctional activation model, the intramolecular conjugate addition of the hydroxy group with the α , β -unsaturated iminium group through an asymmetric manner would give access to the enantioenriched planar-chiral macrocycles. We proposed that the bulky size of the N-acyl groups may increase the energy difference between the favored transition state and the unflavored transition state by steric repulsion, and therefore afforded the products with better enantioselectivities.

Synthesis of substrates 5

Method A:

General procedure of method A:

Synthesis of S1 (if **S1** is not commercial available): To a solution of carboxylic acid (1.0 equiv.) in MeOH was added SOCl₂ (1.5 equiv.) at 0 °C. The mixture was stirred at room temperature overnight. As the TLC analysis showed the completion of the reaction, the reaction mixture was concentrated under vacuum to give a residue, which was purified by column chromatography (petroleum ether:EtOAc = 20:1) to afford the corresponding ester **S1**.

Allenamide **1** was synthesized by following steps.

Step 1: To a solution of 4-aminophenol (1.0 equiv.), TEA (2.0 equiv.) in DCM was added acyl chloride (1.1 equiv.) at 0 °C. After stirring at 0 °C for 0.5 h, the reaction mixture was quenched with H₂O and then extracted with DCM for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated to afford a residue, which was triturated with PE:EtOAc = 10:1. The precipitate was filtered to afford S2 as white solid.

Step 2: To a solution of phenol S2 (1.0 equiv.), K₂CO₃ (2.0 equiv.), NaI (0.5 equiv)

in DMF was added ester **S1** (1.2 equiv.) at rt. After stirring at 60 °C overnight, the reaction mixture was poured into H_2O and then extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and concentrated to give a residue, which was purified by column chromatography (petroleum ether:EtOAc = 6:1) to afford **S3** as a white solid.

Methyl 9-(4-pivalamidophenoxy)nonanoate (2a)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.43-7.36 (m, 2H), 7.22 (s, 1H), 6.87-6.81 (m, 2H), 3.92 (t, J = 6.6 Hz, 2H), 3.66 (s, 3H), 2.30 (t, J = 7.5 Hz, 2H), 1.80-1.71 (m, 2H), 1.67 -1.60 (m, 2H), 1.48-1.32 (m, 8H), 1.30 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.5, 174.4, 155.9, 131.1, 122.0, 114.8, 68.3, 51.5, 39.5, 34.2, 29.3, 29.2, 29.1, 27.7, 26.0, 25.0. m/z HRMS (ESI) found [M+H]⁺ 364.2482, C₂₁H₃₄NO₄⁺ requires 364.2482.

Step 3: To a solution of **S3** (1.0 equiv.) in CHCl₃ was added Br₂ (3.0 equiv.) at rt. After stirring overnight, the reaction mixture was quenched with Na₂SO₃ at 0 °C, and extracted with DCM for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated to give a residue, which was purified by column chromatography (petroleum ether:EtOAc = 15:1) to afford **S4** as colorless oil.

Methyl 9-(2,5-dibromo-4-pivalamidophenoxy)nonanoate (3a)

¹H NMR (400 MHz, Chloroform-*d*) δ 8.57 (s, 1H), 7.73 (s, 1H), 7.03 (s, 1H), 3.96 (t, J = 6.4 Hz, 2H), 3.66 (s, 3H), 2.30 (t, J = 7.5 Hz, 2H), 1.84-1.77 (m, 2H), 1.66-1.58 (s, 2H), 1.51-1.44 (s, 2H), 1.37-1.32 (s, 15H). ¹³C NMR (101 MHz, Chloroform-*d*) δ

176.6, 174.4, 152.4, 129.9, 126.5, 116.5, 112.8, 112.0, 70.0, 51.6, 40.1, 34.2, 29.2, 29.2, 29.0, 27.7, 26.0, 25.0. m/z HRMS (ESI) found $[M+H]^+$ 520.0698, $C_{21}H_{32}Br_2NO_4^+$ requires 520.0693.

Step 4: To a solution of S4 (1.0 equiv.) in anhydrous THF was added MeMgBr (1.0 M in THF, 3.5 equiv.) under N₂ atmosphere at 0 °C. After stirring at rt for 3 h, the reaction mixture was quenched with saturated NH₄Cl solution at 0 °C and then extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated to afford S5 as yellow oil.

N-(2,5-dibromo-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)pivalamide (4a)

¹H NMR (400 MHz, Chloroform-*d*) δ 8.58 (s, 1H), 7.73 (s, 1H), 7.03 (s, 1H), 3.97 (t, J = 6.4 Hz, 2H), 1.85-1.78 (m, 2H), 1.52-1.42 (m, 4H), 1.36-1.32 (m, 17H), 1.21-1.20 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.6, 152.4, 129.9, 126.5, 116.5, 112.8, 111.9, 71.1, 70.0, 44.1, 40.1, 30.2, 29.6, 29.4, 29.3, 29.1, 27.7, 26.0, 24.4. m/z HRMS (ESI) found [M-H₂O]⁺ 502.0956, C₂₂H₃₆Br₂NO₃⁺requires 520.1056.

Step 5: To a solution of **S5** (1.0 equiv.) in anhydrous DMF was added NaH (60% dispersion in mineral oil, 2.2 equiv.) at 0 °C. After stirring at rt for 1 h, 3-bromopropyne (1.2 equiv.) was added in one portion. After stirring at RT for another 2 h, the reaction mixture was quenched with saturated NH₄Cl solution at 0 °C, and extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated to give a residue, which was purified by column chromatography (petroleum ether:EtOAc = 5:1) to afford **S6** as brown oil.

Step 6: To a solution of **S6** (1.0 equiv.) in THF was added t-BuOK (0.4 equiv.) at 0 °C. After stirring at rt for 1 h, the reaction mixture was concentrated under vacuum to give a residue, which was purified by column chromatography (petroleum ether:EtOAc = 5:1) to afford **6** as yellow oil.

Method B:

General procedure of **method B**:

Step 1: To a solution of **S4** (1.0 equiv.), alkyne (4.0 equiv.), PPh₃ (0.2 equiv.) and piperidine in TEA was added CuI (0.2 equiv.), Pd(PPh₃)₄ (0.1 equiv.) under N₂ atmosphere. After stirring at 90 °C overnight, the reaction mixture was cooled to rt, poured into H₂O and then extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated to give a residue, which was purified by column chromatography (petroleum ether:EtOAc = 20:1) to afford **S7** as brown oil.

Step 2: To a solution of **S7** (1.0 equiv.) in anhydrous THF was added MeMgBr (1.0 M in THF, 3.5 equiv.) under N₂ atmosphere. After stirring at rt for 3 h, the reaction mixture was quenched with saturated NH₄Cl solution at 0 $^{\circ}$ C and then extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated to afford **S8** as brown oil.

Step 3: To a solution of **S8** (1.0 equiv.) in anhydrous DMF was added NaH (60% dispersion in mineral oil, 2.2 equiv.) at 0 °C. After stirring at rt for 1 h, 3-bromopropyne (1.2 equiv.) was added at rt. After stirring at rt for another 2 h, the reaction mixture was quenched with saturated NH₄Cl solution at 0 °C and then

extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and concentrated to give a residue, which was purified by column chromatography (petroleum ether:EtOAc = 5:1) to afford **S9** as brown oil.

Step 4: To a solution of **S9** (1.0 equiv.) in THF was added t-BuOK (0.4 equiv.) at 0 °C. After stirring at rt for 1 h, the reaction mixture was concentrated to give a residue, which was purified by column chromatography (petroleum ether:EtOAc = 5:1) to afford **6** as yellow solid.

Method C:

General procedure of **method C**:

Step 1: To a solution of **S4** (1.0 equiv.), alkyne (4.0 equiv.), PPh₃ (0.2 equiv.), piperidine in TEA was added CuI (0.2 equiv.) and Pd(PPh₃)₄ (0.1 equiv.) under N₂ atmosphere. After stirring at 90 °C overnight, the reaction mixture was poured into H₂O and then extracted with EtOAc for three times. The combined organic layers were then washed with brine, dried over Na₂SO₄, filtered and concentrated to give a residue, which was purified by column chromatography (petroleum ether:EtOAc = 20:1) to afford **S10** as brown oil.

Step 2: To a solution of S10 (1.0 equiv.) in anhydrous THF was added DIBAL-H (1.0 M in hexane, 4.0 equiv.) under N_2 atmosphere at 0 °C. After stirring at this

temperature for 0.5 h, the reaction mixture was quenched with adding seignette salt solution and then extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and concentrated to afford **S11** as yellow oil.

Step 3: To a solution of **S11** (1.0 equiv.), imidazole (1.3 equiv.) and DMAP (0.2 equiv.) in DCM was added TBSCl (1.2 equiv.) at rt. After stirring at rt for 2 h, the reaction mixture was poured into H₂O, and then extracted with DCM for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under vacuum to give a residue, which was purified by column chromatography (petroleum ether:EtOAc = 20:1) to afford **S12** as brown oil.

Step 4: To a solution of **S12** (1.0 equiv.) in anhydrous DMF was added NaH (60% dispersion in mineral oil, 1.2 equiv.) at 0 °C. After stirring at rt for 1 h, 3-bromopropyne (1.2 equiv.) was added. After stirring at rt for another 2 h, the reaction mixture was quenched with adding saturated NH₄Cl solution at 0 °C, and then extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under vacuum to give a residue, which was purified by column chromatography (petroleum ether:EtOAc = 20:1) to afford **S13** as brown oil.

Step 5: To a solution of **S13** (1.0 equiv.) in THF was added t-BuOK (0.4 equiv.) at 0 $^{\circ}$ C. After stirring at rt for 1 h, the reaction mixture was concentrated under vacuum to give a residue, which was purified by column chromatography (petroleum ether:EtOAc = 40:1) to afford **S14** as yellow oil.

Step 6: To a solution of **S14** (1.0 equiv.) in THF was added TBAF (1.0 M in THF, 5.0 equiv) at rt. After stirring at rt for 3 h, the reaction mixture was quenched with saturated NH₄Cl solution and then extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under vacuum to give a residue, which was purified by column chromatography (petroleum ether:EtOAc = 5:1) to afford **1** as yellow oil.

N-(2,5-dibromo-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)-N-(propa-1,2-dien-1-yl)pi

valamide (5a)

This reaction was performed on 3.19 mmol scale of **S1** according to **method A**, which gave the product **5a** (230 mg, 12.9% yield for 5 steps) as yellow oil. ¹H NMR (400 MHz, Chloroform-d) δ 7.53 (t, *J* = 6.3, 1H), 7.44 (s, 1H), 7.07 (s, 1H), 5.04-4.95 (m, 2H), 4.03 - 4.00 (m, 2H), 1.87-1.84 (m, 2H), 1.55-1.43 (m, 4H), 1.41-1.28 (m, 9H), 1.21 (s, 6H), 1.16 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 202.2, 175.8, 155.8, 135.3, 133.3, 124.3, 116.8, 110.4, 102.8, 77.4, 71.2, 70.0, 44.1, 41.1, 30.2, 29.6, 29.4, 29.4, 29.0, 28.9, 26.1, 24.5. m/z HRMS (ESI) found [M+H]⁺ 560.1191, C₂₅H₃₈Br₂NO₃⁺ requires 560.1192

N-(2,5-dibromo-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)-2,2-dimethyl-N-(propa-1, 2-dien-1-yl)butanamide (**5b**)

This reaction was performed on 3.19 mmol scale of **S1** according to **method A**, which gave the product **5b** (300 mg, 16.4% yield for 5 steps) as yellow oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (t, 1H), 7.40 (s, 1H), 7.07 (s, 1H), 5.01-4.97 (m, 2H), 4.01 (t, *J* = 6.6 Hz, 2H), 1.89-1.82 (m, 2H), 1.71-1.62 (m, 1H), 1.51–1.44 (m, 4H), 1.36-1.33 (m, 9H), 1.21 (s, 6H), 1.10 (s, 3H), 1.05 (s, 3H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.2, 175.0, 155.7, 135.0, 133.3, 124.2, 116.7, 110.4, 102.6, 86.6, 71.2, 69.8, 45.1, 44.1, 35.0, 30.2, 29.6, 29.3, 29.0, 26.5, 26.2, 26.0, 24.4, 9.7. m/z HRMS (ESI) found [M+H]⁺ 574.1344, C₂₆H₄₀Br₂NO₃⁺ requires 574.1349

N-(2,5-dibromo-4-((8-ethyl-8-hydroxydecyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)piva lamide (**5**c)

This reaction was performed on 3.0 mmol scale of **S1** according to **method A**. Give the product **5c** (259 mg, 15.1% yield for 5 steps) as yellow oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (t, *J* = 6.4 Hz, 1H), 7.43 (s, 1H), 7.07 (s, 1H), 5.04-4.95 (m, 2H), 4.02 (t, *J* = 6.1 Hz, 2H), 1.90-1.81 (m, 2H), 1.56–1.49 (m, 2H), 1.46 (q, *J* = 7.5 Hz, 4H), 1.42-1.38 (m, 4H), 1.37-1.30 (m, 4H), 1.16 (s, 9H), 0.86 (t, *J* = 7.5 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.2, 175.8, 155.8, 135.2, 133.2, 124.3, 116.7, 110.4, 102.8, 86.6, 74.7, 69.9, 41.1, 38.3, 31.2, 30.3, 29.4, 29.0, 28.8, 26.1, 23.4, 7.9. m/z HRMS (ESI) found [M+H]⁺ 574.1353, C₂₆H₄₀Br₂NO₃⁺ requires 574.1349.

N-(4-((9-hydroxy-9-methyldecyl)oxy)-2,5-bis(phenylethynyl)phenyl)-*N*-(propa-1,2-di en-1-yl)pivalamide (**5d**)

This reaction was performed on 1.07 mmol scale of **S4** according to **method B**, which gave the product **5d** (300 mg, 46.7% yield for 4 steps) as yellow solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (t, *J* = 6.3 Hz, 1H), 7.55-7.50 (m, 2H), 7.50-7.48 (m, 2H), 7.39-7.34 (m, 7H), 7.03 (s, 1H), 5.00 (d, *J* = 6.3 Hz, 2H), 4.10 (t, *J* = 6.4 Hz, 2H), 1.93-1.87 (m, 2H), 1.61-1.55 (m, 2H), 1.44-1.40 (m, 4H), 1.38-1.32 (m, 6H), 1.20 (s, 6H), 1.16 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 202.9, 176.4, 159.1, 135.1, 134.7, 131.9, 131.7, 129.0, 128.6, 128.6, 128.5, 125.6, 123.3, 122.7,

114.7, 113.4, 103.7, 95.9, 95.8, 86.4, 86.2, 85.0, 77.4, 71.1, 69.1, 44.1, 41.5, 30.3, 29.7, 29.5, 29.4, 29.3, 29.3, 26.2, 24.5. m/z HRMS (ESI) found $[M+H]^+$ 602.3628, $C_{41}H_{48}NO_3^+$ requires 602.3629.

N-(2,5-bis(cyclopropylethynyl)-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)pivalamide (**5e**)

This reaction was performed on 0.87 mmol scale of **S4** according to **method B**. Give the product **5e** (228 mg, 43% yield for 4 steps) as yellow oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (t, *J* = 6.3 Hz, 1H), 7.11 (s, 1H), 6.80 (s, 1H), 4.97-4.88 (m, 2H), 3.96 (t, *J* = 6.5 Hz, 2H), 1.84-1.79 (m, 2H), 1.53-1.43 (m, 5H), 1.42-1.30 (m, 9H), 1.21 (s, 6H), 1.09 (s, 9H), 0.91-0.79 (m, 6H), 0.75-0.73 (m, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 202.8, 176.2, 159.0, 134.9, 134.65, 125.4, 114.7, 113.0, 103.4, 100.2, 99.8, 86.1, 72.4, 71.2, 71.0, 68.9, 44.1, 41.3, 30.2, 29.7, 29.5, 29.4, 29.2, 29.1, 26.1, 24.5, 9.00, 0.7, 0.5. m/z HRMS (ESI) found [M+H]⁺ 530.3619, C₃₅H₄₈NO₃⁺ requires 530.3629.

N-(2,5-di(hex-1-yn-1-yl)-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)-N-(propa-1,2-die n-1-yl)pivalamide (**5f**)

This reaction was performed on 1 mmol scale of **S4** according to **method B**. Give the product **5f** (180 mg, 32% yield for 4 steps) as yellow oil.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.61 (t, J = 6.4 Hz, 1H), 7.13 (s, 1H), 6.83 (s, 1H), 4.95-4.93 (m, 2H), 3.98 (t, J = 6.6 Hz, 2H), 2.45 (t, J = 6.8 Hz, 2H), 2.37 (t, J = 7.0 Hz, 2H), 1.86-1.80 (m, 2H), 1.40-1.55 (m, 11H), 1.39-1.31 (m, 9H), 1.21 (s, 6H), 1.10 (s, 9H), 0.93 (m, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.9, 176.1, 158.9, 134.7, 134.6, 125.5, 114.8, 113.3, 103.5, 96.7, 86.0, 75.9, 71.2, 68.9, 44.1, 41.3, 30.8, 30.7, 30.3, 29.7, 29.5, 29.4, 29.3, 29.1, 26.1, 24.5, 22.0, 22.0, 19.6, 19.3, 13.8, 13.7. m/z HRMS (ESI) found [M+H]⁺ 562.4243, C₃₇H₅₆NO₃⁺ requires 562.4255.

N-(2,5-bis(cyclohex-1-en-1-ylethynyl)-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)pivalamide (**5**g)

This reaction was performed on 1.72 mmol scale of **S4** according to **method B**. Give the product **5g** (320 mg, 30.9% yield for 4 steps) as yellow solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (t, J = 6.3 Hz, 1H), 7.17 (s, 1H), 6.86 (s, 1H), 6.27-6.14 (m, 2H), 5.01-4.90 (m, 2H), 4.00 (t, J = 6.5 Hz, 2H), 2.27-2.20 (m,

2H), 2.14 (q, J = 7.4, 6.3 Hz, 6H), 1.84 (t, J = 7.4 Hz, 2H), 1.72-1.60 (m, 7H), 1.53-1.43 (m, 4H), 1.41-1.27 (m, 9H), 1.21 (s, 6H), 1.11 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.9, 176.2, 158.7, 136.6, 135.8, 134.7, 134.4, 125.5, 120.9, 120.6, 114.5, 113.3, 103.6, 97.7, 97.6, 86.2, 83.7, 82.4, 71.2, 68.9, 44.1, 41.4, 30.2, 29.8, 29.7, 29.5, 29.3, 29.3, 29.2, 29.2, 29.0, 26.1, 25.9, 24.5, 22.4, 22.3, 21.6, 21.5. m/z HRMS (ESI) found [M+H]⁺ 610.4247, C₄₁H₅₆NO₃⁺ requires 610.4255.

N-(2,5-dibromo-4-((8-hydroxy-8-methylnonyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)pi valamide (**5h**)

This reaction was performed on 3.19 mmol scale of **S1** according to **method A**. Give the product **5h** (300 mg, 17.2% yield for 5 steps) as yellow oil.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.53 (t, *J* = 6.3 Hz, 1H), 7.43 (s, 1H), 7.07 (s, 1H), 5.02-4.99 (m, 2H), 4.01 (t, *J* = 6.0 Hz, 2H), 1.88-1.83 (m, 2H), 1.53-1.49 (m, 2H), 1.49-1.45 (m, 2H), 1.42-1.33 (m, 6H), 1.21 (s, 6H), 1.16 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.2, 175.8, 155.8, 135.2, 133.2, 124.3, 116.7, 110.4, 102.7, 96.2, 71.1, 69.8, 44.0, 41.1, 30.1, 29.4, 29.0, 28.8, 26.0, 24.4. m/z HRMS (ESI) found [M+H]⁺ 546.1025, C₂₄H₃₆Br₂NO₃⁺ requires 546.1036.

N-(2,5-dibromo-4-((9-ethyl-9-hydroxyundecyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)pi valamide (**5i**)

This reaction was performed on 3.94 mmol scale of **S1** according to **method A**. Give the product **5i** (300 mg, 12.9% yield for 5 steps) as yellow oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (t, *J* = 6.4 Hz, 1H), 7.44 (s, 1H), 7.07 (s, 1H), 5.04-4.95 (m, 2H), 4.02(t, *J* = 6.1 Hz, 2H), 1.89-1.82 (m, 2H), 1.49-1.43 (m, 6H), 1.41-1.30 (m, 10H), 1.16 (s, 9H), 0.86 (t, *J* = 7.5 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 202.2, 175.8, 155.8, 135.3, 133.3, 124.3, 116.7, 110.4, 102.8, 86.6, 74.8, 70.0, 41.1, 38.3, 31.2, 30.3, 29.6, 29.4, 29.1, 28.9, 26.1, 23.5, 7.9. m/z HRMS (ESI) found [M+H]⁺ 588.1500, C₂₇H₄₂Br₂NO₃⁺ requires 588.1505.

N-(4-((8-hydroxy-8-methylnonyl)oxy)-2,5-bis(phenylethynyl)phenyl)-*N*-(propa-1,2-di en-1-yl)pivalamide (**5**j)

This reaction was performed on 1.72 mmol scale of **S4** according to **method B**. Give the product **5j** (302 mg, 29.8% yield for 4 steps) as yellow solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (t, J = 6.3 Hz, 1H), 7.55-7.52 (m, 2H), 7.50-7.48 (m, 2H), 7.37-7.34 (m, 7H), 7.03 (s, 1H), 5.00 (d, J = 6.3 Hz, 2H), 4.10 (t, J = 6.4 Hz, 2H), 1.95-1.88 (m, 2H), 1.61-1.57 (s, 2H), 1.46-1.44 (m, 4H), 1.37-1.34 (m, 4H), 1.19 (s, 6H), 1.16 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 202.9, 176.4, 159.0, 135.2, 134.7, 131.9, 131.7, 129.0, 128.6, 128.6, 128.5, 125.6, 123.3, 122.7, 114.7, 113.4, 103.7, 95.9, 95.9, 86.4, 86.2, 85.0, 71.1, 69.1, 44.1, 41.5, 30.3, 29.6, 29.4, 29.3, 29.2, 26.2, 24.4. m/z HRMS (ESI) found [M+H]⁺ 588.3465, C₄₀H₄₆NO₃⁺ requires 588.3472.

N-(2,5-bis(cyclopropylethynyl)-4-((8-hydroxy-8-methylnonyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)pivalamide (**5**k)

This reaction was performed on 1.8 mmol scale of **S4** according to **method B**. Give the product **5k** (400 mg, 43.1% yield for 4 steps) as yellow oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (t, *J* = 6.3 Hz, 1H), 7.11 (s, 1H), 6.80 (s, 1H), 4.98-4.89 (m, 2H), 3.96 (t, *J* = 6.5 Hz, 2H), 1.84-1.81 (m, 2H), 1.52-1.45 (m, 5H), 1.42-1.35 (m, 7H), 1.21 (s, 6H), 1.09 (s, 9H), 0.92-0.79 (m, 6H), 0.78-0.71 (m, 2H).¹³C NMR (126 MHz, Chloroform-*d*) δ 202.8, 176.2, 134.9, 134.6, 125.4, 114.7, 113.0, 103.4, 100.2, 99.8, 86.1, 72.4, 71.1, 71.0, 68.8, 66.0, 44.1, 41.3, 30.3, 29.5, 29.4, 29.2, 29.1, 26.1, 24.4, 15.4, 9.0. m/z HRMS (ESI) found [M+H]⁺ 516.3481, C₃₄H₄₆NO₃⁺ requires 516.3472.

N-(4-((8-hydroxy-8-methylnonyl)oxy)-2,5-bis(p-tolylethynyl)phenyl)-*N*-(propa-1,2-di en-1-yl)pivalamide (**5**I)

This reaction was performed on 1.8 mmol scale of **S4** according to **method B**. Give the product **51** (360 mg, 32.5% yield for 4 steps) as yellow solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (t, *J* = 6.3 Hz, 1H), 7.43 (d, *J* = 7.9 Hz, 2H), 7.38 (d, *J* = 7.9 Hz, 2H), 7.33 (s, 1H), 7.17-7.14 (m, 4H), 7.01 (s, 1H), 4.98 (d, *J*

= 6.3 Hz, 2H), 4.08 (t, J = 6.4 Hz, 2H), 2.37 (d, J = 3.7 Hz, 6H), 1.94-1.87 (m, 2H), 1.60-1.58 (m, 2H), 1.47-1.42 (m, 4H), 1.37-1.33 (m, 4H), 1.19 (s, 6H), 1.15 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.9, 176.4, 159.0, 139.3, 138.8, 135.0, 134.6, 131.8, 131.6, 129.4, 129.3, 125.6, 120.3, 119.7, 114.6, 113.4, 103.7, 96.2, 96.0, 86.3, 85.7, 84.4, 71.1, 69.1, 44.1, 41.5, 30.3, 29.6, 29.4, 29.3, 29.3, 26.2, 24.5, 21.7. m/z HRMS (ESI) found [M+H]⁺ 616.3753, C₄₂H₅₀NO₃⁺ requires 616.3785.

N-(4-((10-hydroxy-10-methylundecyl)oxy)-2,5-bis(phenylethynyl)phenyl)-*N*-(propa-1,2-dien-1-yl)pivalamide (**5m**)

This reaction was performed on 1.8 mmol scale of **S4** according to **method B**. Give the product **5m** (430 mg, 41.3% yield for 4 steps) as yellow solid.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.72 (t, *J* = 6.5 Hz, 1H), 7.55-7.53 (m, 2H), 7.50-7.48 (m, 2H), 7.37-7.34 (m, 7H), 7.03 (s, 1H), 5.00 (d, *J* = 6.3 Hz, 2H), 4.09 (t, *J* = 6.5 Hz, 2H), 1.92-1.89 (m, 2H), 1.45-1.39 (m, 5H), 1.36-1.30 (m, 9H), 1.20 (s, 6H), 1.16 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.8, 176.4, 159.0, 135.1, 134.7, 131.8, 131.7, 129.0, 128.6, 128.6, 128.5, 125.6, 123.3, 122.7, 114.6, 113.4, 103.7, 95.9, 86.4, 86.2, 85.0, 71.2, 69.1, 44.1, 41.5, 30.3, 29.7, 29.6, 29.4, 29.3, 29.2, 26.2, 24.5. m/z HRMS (ESI) found [M+H]⁺ 616.3774, C₄₂H₅₀NO₃⁺ requires 616.3785. *N*-(4-((10-hydroxy-10-methylundecyl)oxy)-2,5-bis(p-tolylethynyl)phenyl)-*N*-(propa-1, 2-dien-1-yl)pivalamide (**5n**)

This reaction was performed on 1.8 mmol scale of **S4** according to **method B**. Give the product **5n** (350 mg, 30.2% yield for 4 steps) as yellow solid.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.71 (t, *J* = 6.3 Hz, 1H), 7.43 (d, *J* = 7.8 Hz, 2H), 7.38 (d, *J* = 7.8 Hz, 2H), 7.33 (s, 1H), 7.17-7.15 (m, 4H), 7.01 (s, 1H), 4.98 (d, *J* = 6.3 Hz, 2H), 4.08 (t, *J* = 6.4 Hz, 2H), 2.38 (s, 3H), 2.37 (s, 3H), 1.95-1.85 (m, 2H), 1.45-1.41 (m, 4H), 1.35-1.30 (m, 10H), 1.20 (s, 6H), 1.15 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.9, 176.3, 158.9, 139.2, 138.7, 135.0, 134.5, 131.7, 131.6, 129.3, 129.2, 125.6, 120.2, 119.6, 114.5, 113.4, 103.7, 96.1, 96.0, 86.3, 85.7, 84.3, 71.1, 69.1, 44.1, 41., 30.30, 30.3, 29.7, 29.5, 29.3, 29.3, 29.2, 26.1, 24.4, 21.7, 21.6. m/z HRMS (ESI) found [M+H]⁺ 644.4067, C₄₄H₅₄NO₃⁺ requires 644.4098.

N-(4-((10-ethyl-10-hydroxydodecyl)oxy)-2,5-bis(phenylethynyl)phenyl)-*N*-(propa-1,2 -dien-1-yl)pivalamide (**5**0)

This reaction was performed on 1.8 mmol scale of **S4** according to **method B**. Give the product **50** (400 mg, 34.5% yield for 4 steps) as yellow solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (t, *J* = 6.3 Hz, 1H), 7.57-7.52 (m, 2H), 7.52-7.48 (m, 2H), 7.35-7.34 (m, 7H), 7.03 (s, 1H), 5.00 (d, *J* = 6.4 Hz, 2H), 4.10 (t, *J*

= 6.5 Hz, 2H), 1.95-1.87 (m, 2H), 1.49-1.37 (m, 9H), 1.35-1.24 (m, 9H), 1.16 (s, 9H), 0.85 (t, J = 7.5 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.8, 176.3, 159.0, 135.1, 134.7, 131.8, 131.7, 129.0, 128.6, 128.6, 128.5, 128.4, 125.6, 123.3, 122.7, 114.6, 113.4, 103.7, 95.9, 86.4, 86.2, 84.9, 74.7, 69.1, 41.4, 38.3, 31.1, 30.4, 29.7, 29.5, 29.3, 29.2, 27.1, 26.2, 23.5, 7.9. m/z HRMS (ESI) found [M+H]⁺ 644.4105, C₄₄H₅₄NO₃⁺ requires 644.4098.

N-(4-((10-hydroxydecyl)oxy)-2,5-bis(phenylethynyl)phenyl)-*N*-(propa-1,2-dien-1-yl) pivalamide (**5p**)

This reaction was performed on 1.8 mmol scale of **S4** according to **method C**. Give the product **5p** (280 mg, 26.5% yield for 6 steps) as yellow solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (t, J = 6.4 Hz, 1H), 7.55-7.48 (m, 4H), 7.36 -7.34 (m, 7H), 7.03 (s, 1H), 5.00 (d, J = 6.3 Hz, 2H), 4.10 (t, J = 6.4 Hz, 2H), 3.63 (t, J = 6.7 Hz, 2H), 1.92-1.89 (m, 2H), 1.59-1.52 (m, 4H), 1.43-1.39 (m, 2H), 1.39-1.25 (m, 8H), 1.16 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.8, 176.4, 159.0, 135.1, 134.7, 131.8, 131.7, 129.0, 128.6, 128.6, 128.5, 125.6, 123.3, 122.7, 114.6, 113.4, 103.7, 95.9, 86., 86.21, 85.0, 69.1, 63.2, 41.5, 32.9, 29.7, 29.7, 29.6, 29.5, 29.3, 29.2, 26.2, 25.9. m/z HRMS (ESI) found [M+H]⁺ 588.3477, C₄₀H₄₆NO₃⁺ requires 588.3472.

N-(4-((11-hydroxy-11-methyldodecyl)oxy)-2,5-bis(phenylethynyl)phenyl)-*N*-(propa-1,2-dien-1-yl)pivalamide (**5**q)

This reaction was performed on 1.3 mmol scale of **S4** according to **method B**. Give the product **5q** (200 mg, 24.4% yield for 4 steps) as yellow solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.72 (t, *J* = 6.3 Hz, 1H), 7.55-7.48 (m, 4H), 7.40-7.32 (m, 7H), 7.03 (s, 1H), 5.00 (d, *J* = 6.3 Hz, 2H), 4.09 (t, *J* = 6.4 Hz, 2H), 1.96-1.87 (m, 2H), 1.46-1.36 (m, 4H), 1.36-1.24 (m, 12H), 1.20 (s, 6H), 1.16 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.8, 176.4, 159.0, 135.1, 134.7, 131.8, 131.7, 129.0, 128.6, 128.6, 128.5, 125.6, 123.3, 122.7, 114.7, 113.4, 103.7, 95.9, 86.4, 86.2, 85.0, 71.1, 69.1, 44.1, 41.4, 30.3, 29.8, 29.7, 29.7, 29.5, 29.3, 29.3, 29.2, 26.2, 24.5. m/z HRMS (ESI) found [M+H]⁺ 630.3931, C₄₃H₅₂NO₃⁺ requires 630.3942.

N-(4-((11-hydroxy-11-methyldodecyl)oxy)-2,5-bis((3-methoxyphenyl)ethynyl)-*N*-(pr opa-1,2-dien-1-yl)pivalamide (**5r**)

This reaction was performed on 1.8 mmol scale of **S4** according to **method B**. Give the product **5r** (380 mg, 30.6% yield for 4 steps) as yellow solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (t, *J* = 6.3 Hz, 1H), 7.36 (s, 1H), 7.28-7.27 (m, 1H), 7.24-7.24 (m, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 7.10-7.05 (m, 2H), 7.03-7.02 (m, 2H), 6.92-6.89 (m, 2H), 4.99 (d, *J* = 6.3 Hz, 2H), 4.09 (t, *J* = 6.4 Hz, 2H), 3.83 (s, 6H), 1.94-1.87 (m, 2H), 1.48-1.39 (m, 4H), 1.39-1.25 (s, 12H), 1.20 (s, 6H), 1.16 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 201.8, 175.4, 158.5, 158.5, 158.1, 134.2, 133.7, 128.7, 128.6, 124.6, 123.4, 123.3, 123.3, 122.7, 115.5, 114.7, 114.2, 113.7, 112.4, 102.7, 94.9, 94.8, 85.4, 85.1, 83.8, 70.2, 68.2, 54.5, 54.4, 43.1, 40.5, 29.3, 28.8, 28.8, 28.7, 28.6, 28.4, 28.3, 28.2, 25.2, 23.5.

m/z HRMS (ESI) found $[M+H]^+$ 690.4144, $C_{45}H_{56}NO_5^+$ requires 690.4153.

N-(4-((12-hydroxy-12-methyltridecyl)oxy)-2,5-bis(phenylethynyl)phenyl)-*N*-(propa-1,2-dien-1-yl)pivalamide (**5**s)

This reaction was performed on 1.8 mmol scale of **S4** according to **method B**. Give the product **5s** (360 mg, 31% yield for 4 steps) as yellow solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (t, *J* = 6.3 Hz, 1H), 7.55-7.53 (m, 2H), 7.49-7.48 (m, 2H), 7.40-7.30 (m, 7H), 7.03 (s, 1H), 5.00 (d, *J* = 6.3 Hz, 2H), 4.09 (t, *J* = 6.4 Hz, 2H), 1.97-1.85 (m, 2H), 1.47-1.41 (m, 5H), 1.36-1.25 (m, 13H), 1.20 (s, 6H), 1.16 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 202.8, 176.4, 159.0, 135.1, 134.7, 131.8, 131.2, 129.0, 128.6, 128.6, 128.5, 125.6, 123.3, 122.7, 114.6, 113.4, 103.7, 95.9, 86.49, 86.2, 85.0, 71.2, 69.1, 44.1, 41.5, 30.3, 29.8, 29.8, 29.7, 29.6, 29.3, 29.3, 29.2, 27.8, 26.2, 24.5. m/z HRMS (ESI) found [M+H]⁺ 644.4113, C₄₄H₅₄NO₃⁺ requires 644.4098.

N-(2,5-dibromo-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)is obutyramide (**5**t)

This reaction was performed on 3.2 mmol scale of **S1** according to **method A**, which gave the product **5t** (197 mg, 11% yield for 5 steps) as yellow oil.

¹H NMR (400 MHz, Chloroform-d) δ 7.60 (t, J = 6.4 Hz, 1H), 7.44 (s, 1H), 7.12 (s, 1H), 5.05-5.03 (m, 2H), 4.05-4.01 (m, 2H), 2.31 (hept, J = 6.7 Hz, 1H), 1.90-1.83 (m, 2H), 1.54-1.44 (m, 4H), 1.42-1.30 (m, 8H), 1.21 (s, 6H), 1.12 (d, J = 6.6 Hz, 3H), 1.04 (d, J = 6.8 Hz, 3H).¹³C NMR (101 MHz, Chloroform-d) δ 202.6, 175.6, 156.1, 134.3, 132.0, 123.5, 116.9, 111.1, 100.2, 86.9, 71.2, 69.9, 44.1, 32.4, 30.2, 29.6, 29.4, 29.3, 29.0, 26.1, 24.45, 20.2, 19.4. m/z HRMS (ESI) found [M+H]⁺ 544.1051, C₂₄H₃₆Br₂NO₃⁺ requires 544.1056

N-(2,5-dibromo-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)be nzamide (**5u**)

This reaction was performed on 3.2 mmol scale of **S1** according to **method A**, which gave the product **5u** (310 mg, 17% yield for 5 steps) as yellow oil.

¹H NMR (400 MHz, Chloroform-d) δ 7.69-7.26 (m, 5H), 7.26-6.93 (m, 3H), 5.13-5.10 (m, 2H), 3.94-3.91 (m, 2H), 1.83-1.79 (m, 2H), 1.53-1.42 (m, 4H), 1.40-1.29 (m, 8H), 1.21 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 202.6, 168.6, 155.6, 134.96, 132.7, 130.4, 128.3, 128.0, 123.0, 116.6, 110.7, 101.0, 87.4, 71.2, 69.8, 44.1, 30.2, 29.6, 29.36, 29.3, 29.0, 26.0, 24.4. m/z HRMS (ESI) found [M+H]⁺ 578.0921, C₂₇H₃₄Br₂NO₃⁺ requires 578.0900

Asymmetric synthesis of products 6

General procedure for the asymmetric synthesis of products 2:

A flask containing a magnetic stir bar was added (*S*)-**A7** (18.2 mg, 0.02 mmol, 0.1 equiv.) and activated 4 Å MS (250 mg) under N₂ atmosphere. Then a solution of **5** (0.2 mmol, 1.0 equiv.) in dry CCl₄ (20 mL) was added using a syringe. After stirring at 20 °C for 18 h, the reaction mixture was filtered and concentrated to give a residue, which was purified by Preparative Thin-Layer Chromatography (petroleum ether/EtOAc = 10:1) to afford the product **6**.

 (R_p, E) -1- $(1^2, 1^5$ -dibromo-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclohexadeca p- pan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6a**)

The reaction was performed on 0.2 mmol scale under the standard conditions at 20 $^{\circ}$ C for 17 h. Purification by Preparative Thin-Layer Chromatography (petroleum ether/EtOAc=10:1) afforded **6a** as a white solid (40 mg, 35.7% yield.)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (s, 1H), 7.41 (d, J = 14.0 Hz, 1H), 7.22 (s, 1H), 4.36-4.30 (m, 2H), 4.17-4,10 (m, 1H), 3.93-3.84 (m, 2H), 1.79-1.72 (m, 2H), 1.55-1.51 (m, 1H), 1.47-1.39 (m, 1H), 1.36-1.25 (m, 3H), 1.21 (s, 9H), 1.17-1.12 (m, 3H), 1.10 (s, 3H), 1.09 (s, 3H), 1.07-0.99 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.9, 155.6, 135.8, 133.2, 131.5, 119.3, 112.3, 111.7, 77.4, 75.8, 24

70.0, 61.2, 41.0, 39.1, 30.0, 29.5, 28.7, 27.9, 27.0, 26.3, 24.6, 24.1. $[\alpha]^{25}{}_{D} = -31.4$ (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found $[M+H]^+$ 560.1210, C₂₅H₃₈Br₂NO₃⁺ requires 560.1192. HPLC: Chiralpak IC column, 95:5 hexanes/isopropanol, 1 ml/min; t_R = 16.82 min (major), 23.49 min (minor); 92:8 er.

 (R_p, E) - $(1-(1^2, 1^5-dibromo-7, 7-dimethyl-6, 16-dioxa-2-aza-1(1, 4)-benzenacyclohexadec ap-han-3-en-2-yl)$ -2,2- dimethylbutan-1-one (**6b**)

The reaction was performed on 0.2 mmol scale under the standard conditions at 20 $^{\circ}$ C for 36 h. Purification by Preparative Thin-Layer Chromatography (petroleum ether/EtOAc=10:1) to afford **6b** as a white solid (40 mg, 34.8% yield.)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.46 (s, 1H), 7.40 (d, J = 14.1 Hz, 1H), 7.20 (s, 1H), 4.33-4.30 (m, 2H), 4.14-4.08 (m, 1H), 3.88-3.61 (m, 2H), 1.76-1.71 (m, 2H), 1.69-1.65 (m, 2H), 1.56-1.50 (m, 2H), 1.45-1.41 (m, 1H), 1.35-1.18 (m, 4H), 1.18-1.11 (m, 4H), 1.10-1,02 (m, 12H), 1.05-0.99 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 175.2, 155.5, 135.6, 133.2, 131.4, 123.9, 119.2, 112.2, 111.7, 75.7, 69.9, 61.2, 45.0, 39.0, 34.7, 29.9, 29.5, 27.8, 27.0, 26.9, 26.5, 26.2, 26.2, 24.6, 24.1, 9.6. [α]²⁵_D = -28 (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found [M+H]⁺ 574.1344, C₂₆H₄₀Br₂NO₃⁺ requires 574.1349. HPLC: Chiralpak IC column, 95:5 hexanes/isopropanol, 1 ml/min; t_R = 13.81 min (major), 19.18 min (minor); 92:8 er.

 (R_p, E) -1- $(1^2, 1^5$ -dibromo-7,7-diethyl-6,15-dioxa-2-aza-1(1,4)-benzenacyclopentadecap h- an-3-en-2-yl)-2,2-dimethylpropan-1-one (**6c**)

The reaction was performed on 0.2 mmol scale under the standard conditions at 10 $^{\circ}$ C for 27 h. Purification by Preparative Thin-Layer Chromatography (petroleum ether/EtOAc=10:1) afforded **6c** as white solid (35 mg, 30.5% yield.).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 (s, 1H), 7.40 (d, J = 13.7 Hz, 1H), 7.31 (s, 1H), 4.51-4.46 (m, 1H), 4.43-4.38 (m, 1H), 4.01-3.95 (m, 1H), 3.85-3.82 (m, 1H), 3.79-3.74 (m, 1H), 1.81-1.71 (m, 2H), 1.45-1.39 (m, 2H), 1.35-1.25 (m, 5H), 1.22 (s, 9H), 1.18-1.10 (m, 3H), 1.02-0.97 (m, 4H), 0.76 (t, J = 7.5 Hz, 3H), 0.73 (t, J = 7.5 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 175.8, 156.0, 135.9, 133.1, 131.3, 123.8, 120.0, 112.7, 111.2, 80.5, 70.8, 59.9, 41.0, 34.3, 30.5, 29.5, 28.9, 28.7, 26.7, 26.6, 26.5, 22.8, 8.2, 7.8. [α]²⁵_D = -17.4 (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found [M+H]⁺ 574.1357, C₂₆H₄₀Br₂NO₃⁺ requires 574.1349. HPLC: Chiralpak IC column, 95:5 hexanes/isopropanol, 1 ml/min; t_R = 15.95 min (major), 18.20 min (minor); 80:20 er.

 (R_p, E) -1-(7,7-dimethyl-1²,1⁵-bis(phenylethynyl)-6,16-dioxa-2-aza-1(1,4)-benzenacycl o-hexadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6d**)

The reaction was performed on 0.2 mmol scale under the standard conditions at 20 $^{\circ}$ C for 21 h. Purification by Preparative Thin-Layer Chromatography (petroleum ether/EtOAc=10:1) afforded **6d** as white solid (40 mg, 33.3% yield.)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (d, *J* = 14.2 Hz, 1H), 7.56-7.54 (m, 2H), 7.50-7.43 (m, 3H), 7.40 -7.31 (m, 6H), 7.16 (s, 1H), 4.40-4.37 (m, 2H), 4.28- 4.21 (m, 1H), 3.93-3.82 (m, 2H), 1.89-1.75 (m, 2H), 1.72-1.65 (m, 1H), 1.51-1.44 (m, 1H),

1.39 -1.24 (m, 3H), 1.19 (s, 9H), 1.17-1.10 (m, 5H), 1.07 (s, 3H), 1.06 (s, 3H), 1.05-0.95 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.5, 158.9, 135.6, 135.0, 132.9, 131.9, 131.8, 129.0, 128.6, 128.6, 128.5, 125.5, 123.3, 122.6, 118.0, 115.5, 111.8, 96.0, 95.9, 86.1, 84.9, 75.6, 69.5, 61.4, 41.4, 39.2, 30.0, 29.6, 29.1, 27.8, 27.4, 27.2, 26.1, 24.7, 24.1. $[\alpha]^{25}_{D} = 8.4$ (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found [M+H]⁺ 602.3614, C₄₁H₄₈NO₃⁺ requires 602.3629. HPLC: Chiralpak IC column, 95:5 hexanes/isopropanol, 1 ml/min; t_R = 12.74 min (minor), 19.05 min (major); 92:8 er.

 (R_p, E) -1- $(1^2, 1^5$ -bis(cyclopropylethynyl)-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzen ac- yclohexadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6e**)

The reaction was performed on 0.2 mmol scale under the standard conditions at 20 $^{\circ}$ C for 21 h. Purification by Preparative Thin-Layer Chromatography (petroleum ether/EtOAc=10:1) to afford **6e** as white solid (30 mg, 28.3% yield.)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.46 (d, J = 14.1 Hz, 1H), 7.19 (s, 1H), 6.93 (s, 1H), 4.32-4.19 (m, 2H), 4.14-4.08 (m, 1H), 3.90-3.79 (m, 2H), 1.75-1.67 (m, 2H), 1.62 -1.52 (m, 1H), 1.49-1.46 (m, 1H), 1.42-1.36 (m, 3H), 1.28-1.15 (m, 3H), 1.13-1.04 (m, 19H), 1.03-0.94 (m, 2H), 0.91-0.76 (m, 6H), 0.76- -0.69 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 176.3, 158.8, 135.5, 134.8, 132.7, 125.2, 118.1, 115.4, 111.4, 100.0, 75.6, 72.4, 71.1, 69.3, 61.5, 41.3, 39.2, 30.0, 29.4, 29.0, 27.8, 27.2, 27.2, 26.2, 24.6, 24.1, 9.0, 8.9, 0.7, 0.5. $[\alpha]^{25}_{\text{ D}} = -1.6$ (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found $[M+H]^+$ 530.3621, C₃₅H₄₈NO₃⁺ requires 530.3629. HPLC: Chiralpak IC column, 95:5 hexanes/isopropanol, 1 ml/min; t_R = 19.19 min (minor), 27.43 min (major); 85:15 er.

 (R_p, E) -1- $(1^2, 1^5$ -di(hex-1-yn-1-yl)-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclo he-

xadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (6f)

The reaction was performed on 0.2 mmol scale under the standard conditions at 20 °C for 12 h. Purification by Preparative Thin-Layer Chromatography (petroleum ether/EtOAc=10:1) afforded **6f** as colorless oil (34 mg, 30.2% yield.) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.51 (d, *J* = 14.1 Hz, 1H), 7.23 (s, 1H), 6.97 (s, 1H), 4.30-427 (m, 2H), 4.17-4.12 (m, 1H), 3.89-3.85 (m, 2H), 2.45 (t, *J* = 6.9 Hz, 2H), 2.34 (t, *J* = 7.0 Hz, 2H), 1.75-1.67 (m, 2H), 1.63-1.58 (m, 2H), 1.55-1.47 (m, 4H), 1.42-1.36(m, 3H), 1.34-1.20 (m, 4H), 1.18-1.11 (m, 13H), 1.09 (s, 3H), 1.08 (s, 3H), 1.05-0.95 (m, 3H), 0.95-0.89 (m, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 176.2, 158.6, 135.5, 134.6, 132.7, 125.4, 118.2, 115.6, 111.4, 97.0, 77.3, 76.0, 75.6, 69.3, 61.5, 41.3, 39.2, 30.8, 30.6, 29.9, 29.4, 29.0, 27.8, 27.3, 27.1, 26.2, 24.6, 24.1, 22.1, 22.0, 19.6, 19.3, 13.8, 13.69. [α]²⁵_D = -7 (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found [M+H]⁺ 562.4247, C₃₇H₅₆NO₃⁺ requires 562.4255. HPLC: Chiralpak IC column, 95:5

 (R_p, E) -1- $(1^2, 1^5$ -bis(cyclohex-1-en-1-ylethynyl)-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclohexadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6g**)

hexanes/isopropanol, 1 ml/min; $t_R = 9.56 \text{ min (minor)}$, 10.92 min (major); 82:18 er.

The reaction was performed on 0.25 mmol scale under the standard conditions at 30 $\,^\circ C$

for 5 h. Purification by Preparative Thin-Layer Chromatography (petroleum ether/EtOAc=5:1) to afford **6g** as a white solid (25 mg, 16% yield.) and recovered **5g** as yellow oil (45 mg, 30% yield).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.51 (d, J = 14.1 Hz, 1H), 6.99 (s, 1H), 6.28-6.09 (m, 2H), 4.33-4.24 (m, 2H), 4.19-4.13 (m, 1H), 3.91-3.76 (m, 2H), 2.23-2.20 (m, 2H), 2.17-2.11 (m, 6H), 1.78-1.62 (m, 8H), 1.44-1.40 (m, 2H), 1.37-1.30 (m, 2H), 1.29-1.21 (m, 3H), 1.19-1.11 (m, 14H), 1.08 (s, 3H), 1.07 (s, 3H), 1.04-0.99 (m, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 176.3, 158.6, 136.7, 135.7, 135.3, 134.6, 132.8 125.4, 121.0, 120.6, 117.9, 115.5, 111.6, 97.7, 83.7, 82.3, 75.6, 69.4, 61.5, 41.4, 39.2, 30.0, 29.5, 29.2, 29.1, 29.0, 27.8, 27.4, 27.2, 26.2, 26.0, 25.9, 24.6, 24.1, 22.5, 22.3, 21.6, 21.5. [α]²⁵_D = -3.2 (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found [M+H]⁺ 610.4246, C₄₁H₅₆NO₃⁺ requires 610.4255. HPLC: Chiralpak IC column, 95:5 hexanes/isopropanol, 1 ml/min; t_R = 11.71 min (minor), 23.10 min (major); 91:9 er.

 (R_p, E) -1- $(1^2, 1^5$ -dibromo-7,7-dimethyl-6,15-dioxa-2-aza-1(1,4)-benzenacyclopentadec ap- han-3-en-2-yl)-2,2-dimethylpropan-1-one (**6h**)

The reaction was performed on 0.2 mmol scale under the standard conditions at 20 $^{\circ}$ C for 22 h. Purification by Preparative Thin-Layer Chromatography (petroleum ether/EtOAc=10:1) afforded **6h** as a white solid (33 mg, 30.2% yield.).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 (s, 1H), 7.40 (d, J = 14.0 Hz, 1H), 7.31 (s, 1H), 4.50-4.46 (m, 1H), 4.43-4.38 (m, 1H), 4.02-3.97 (m, 1H), 3.88-3.78 (m, 2H), 1.76-1.73 (m, 2H), 1.40-1.32 (m, 1H), 1.30-1.24 (m, 3H), 1.22 (s, 9H), 1.20-1.16 (m, 2H), 1.10 (s, 3H), 1.08 (s, 3H), 1.06-0.97 (m, 4H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 175.8, 156.0, 135.9, 133.2, 131.2, 123.9, 120.1, 112.8, 111.5, 75.6, 70.8, 60.8, 38.5, 41.0, 30.2, 29.5, 29.0, 28.7, 27.0, 26.7, 26.4, 23.5. [α]²⁵_D = -27.8 (c =

1.0, CH₂Cl₂). m/z HRMS (ESI) found $[M+H]^+$ 546.1028, C₂₄H₃₆Br₂NO₃⁺ requires 546.1036. HPLC: Chiralpak IC column, 95:5 hexanes/isopropanol, 1 ml/min; t_R = 19.16 min (major), 22.86 min (minor); 88:12 er.

 (R_p, E) -1- $(1^2, 1^5$ -dibromo-7,7-diethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclohexadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6i**)

The reaction was performed on 0.2 mmol scale under the standard conditions at 10 $^{\circ}$ C for 21 h. Purification by Preparative Thin-Layer (petroleum ether/EtOAc=10:1) to afford **6i** as white solid (45 mg, 38.4% yield.).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 (s, 1H), 7.41 (d, J = 13.9 Hz, 1H), 7.21 (s, 1H), 4.33 (t, J = 5.6 Hz, 2H), 4.14-4.09 (m, 1H), 3.89-3.75 (m, 2H), 1.81-1.71 (m, 2H), 1.61-1.54 (m, 1H), 1.46-1.40 (m, 3H), 1.36-1.30 (m, 2H), 1.30-1.25 (m, 2H), 1.21 (s, 9H), 1.15-0.91 (m, 8H), 0.77 (t, J = 5.9 Hz, 3H), 0.73 (t, J = 5.9 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.9, 155.5, 135.7, 133.1, 131.8, 123.9, 119.2, 112.2, 111.2, 80.4, 69.9, 60.2, 41.0, 34.3, 30.2, 29.8, 29.7, 28.7, 27.8, 26.8, 26.8, 24.5, 23.4, 8.1, 7.8. [α]²⁵_D = -26.2 (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found [M+H]⁺ 588.1499, C₂₇H₄₂Br₂NO₃⁺ requires 588.1505. HPLC: Chiralpak IC column, 95:5 hexanes/isopropanol, 1 ml/min; t_R = 14.81 min (major), 19.30 min (minor); 84:16 er.

 (R_p, E) -1-(7,7-dimethyl-1²,1⁵-bis(phenylethynyl)-6,15-dioxa-2-aza-1(1,4)-benzenacycl op- entadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6j**)

The reaction was performed on 0.2 mmol scale under the standard conditions at 20 $\,^\circ C$

for 21 h. Purification by Preparative Thin-Layer (petroleum ether/EtOAc=10:1) afforded **6j** as a white solid (32 mg, 27% yield).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.61-7.54 (m, 3H), 7.49-7.46 (m, 2H), 7.44 (s, 1H), 7.39-7.32 (m, 6H), 7.24 (s, 1H), 4.56-4.51 (m, 1H), 4.49-4.44 (m, 1H), 4.13-4.11 (m, 1H), 3.89-3.78 (m, 2H), 1.81-1.75 (m, 2H), 1.43-1.32 (m, 3H), 1.26-1.23 (m, 1H), 1.21-1.14 (m, 10H), 1.18-1.12 (m, 1H), 1.08-1.06 (m, 10H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 176.4, 159.2, 135.8, 135.1, 132.6, 131.9, 131.8, 129.0, 128.7, 128.59, 128.5, 123.3, 122.6, 118.9, 115.9, 111.7, 96.2, 86.1, 85.0, 75.6, 70.5, 61.1, 41.4, 38.7, 30.3, 29.4, 29.1, 29.1, 27.1, 26.5, 26.4, 23.6. [α]²⁵_D = 18.2 (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found [M+H]⁺ 588.3464, C₄₀H₄₆NO₃⁺ requires 588.3472. HPLC: Chiralpak IC column, 95:5 hexanes/isopropanol, 1 ml/min; t_R = 15.02 min (minor), 25.01 min (major); 93:7 er.

 (R_p, E) -1- $(1^2, 1^5$ -bis(cyclopropylethynyl)-7,7-dimethyl-6,15-dioxa-2-aza-1(1,4)-benzen ac- cyclopentadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6k**)

The reaction was performed on 0.2 mmol scale under the standard conditions at 20 $^{\circ}$ C for 23 h. Purification by Preparative Thin-Layer (petroleum ether/EtOAc=10:1) afforded **6k** as a white solid (26 mg, 25.2% yield.).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.45 (d, J = 14.1 Hz, 1H), 7.18 (s, 1H), 7.01 (s, 1H), 4.43-4.32 (m, 2H), 4.00-3.95 (m, 1H), 3.85-3.77 (m, 2H), 1.72-1.63 (m, 2H), 1.50-1.47 (m, 1H), 1.38-1.32 (m, 2H), 1.32-1.25 (m, 3H), 1.18-1.08 (s, 11H), 1.08 (s, 3H), 1.07 (s, 3H), 1.05-0.99 (m, 4H), 0.89-0.85 (m, 2H), 0.86-0.78 (m, 4H), 0.76-0.70 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 176.3, 159.2, 135.7, 134.9, 132.3, 119.1, 115.8, 111.4, 100.2, 75.5, 72.4, 71.2, 61.1, 41.3, 38.7, 30.3, 29.8, 29.4, 29.1,

29.0, 27.1, 26.6, 26.2, 23.6, 9.1, 9.0, 9.0, 0.7, 0.5. $[\alpha]^{25}{}_{D} = 5$ (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found $[M+H]^+$ 516.3483, C₃₄H₄₆NO₃⁺ requires 516.3472. HPLC: Chiralpak IC column, 80:20 hexanes/isopropanol, 1 ml/min; t_R = 7.76 min (minor), 19.04 min (major); 86:14 er.

 (R_p, E) -1-(7,7-dimethyl-1²,1⁵-bis(p-tolylethynyl)-6,15-dioxa-2-aza-1(1,4)-benzenacycl op-entadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6**)

The reaction was performed on 0.4 mmol scale under the standard conditions at 40 °C for 9 h. Purification by Preparative Thin-Layer (petroleum ether/EtOAc=5:1) afforded **61** as a white solid (45 mg, 18% yield.) and recovered **51** as yellow oil (50 mg, 20% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (d, J = 14.1 Hz, 1H), 7.48-7.40 (m, 3H), 7.36 (d, J = 7.9 Hz, 2H), 7.22 (s, 1H), 7.18-7.13 (m, 4H), 4.57-4.40 (m, 2H), 4.14-4.07 (m, 1H), 3.86-3.80 (m, 2H), 2.38 (s, 3H), 2.36 (s, 3H), 1.40-1.32 (m, 5H), 1.28-1.16 (m, 13H), 1.06 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 176.4, 159.2, 139.3, 138.8, 135.6, 135.0, 132.5, 131.8, 131.7, 129.3, 129.3, 125.5, 120.2, 119.6, 118.9, 115.9, 111.7, 96.4, 96.1, 85.6, 84.4, 75.5, 70.5, 61.1, 41.4, 38.7, 30.2, 29.4, 29.2, 29.1, 27.1, 26.5, 26.3, 23.6, 21.7, 21.7. $[\alpha]^{25}_{D} = 21.6$ (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found $[M+H]^+$ 616.3770, C₄₂H₅₀NO₃⁺ requires 616.3785. HPLC: Chiralpak IC column, 90:10hexanes/isopropanol, 1 ml/min; t_R = 10.58 min (minor), 19.63 min (major); 91:9 er.

 (R_p, E) -1-(7,7-dimethyl-1²,1⁵-bis(phenylethynyl)-6,17-dioxa-2-aza-1(1,4)-benzenacycl

oh- eptadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (6m)

The reaction was performed on 0.2 mmol scale under the standard conditions at 20 °C for 24 h. Purification by Preparative Thin-Layer (petroleum ether/EtOAc=10:1) afforded **6m** as a yellow solid (47 mg, 38.1% yield.).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 14.2 Hz, 1H), 7.57-7.55 (m, 2H), 7.48-.46 (m, 3H), 7.40-7.32 (m, 6H), 7.15 (s, 1H), 4.49-4.45 (m, 1H), 4.35-4.24 (m, 2H), 3.84-3.76 (m, 2H), 1.91-1.84 (m, 1H), 1.71-1.59 (m, 2H), 1.47-1.36 (m, 3H), 1.26-1.22 (m, 2H), 1.17-1.13 (s, 17H), 1.09 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 176.5, 157.8, 135.7, 134.5, 133.1, 131.9, 131.8, 129.0, 128.6, 128.59, 128.5, 125.3, 123.3, 122.6, 116.9, 115.3, 110.2, 96.0, 86.2, 84.9, 75.1, 68.8, 61.2, 41.5, 38.7, 30.3, 29.4, 29.1, 28.3, 28.2, 27.2, 26.8, 26.4, 24.9, 23.3. [α]²⁵_D = -8.2 (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found [M+H]⁺ 616.3778, C₄₂H₅₀NO₃⁺ requires 616.3785. HPLC: Chiralpak IC column, 95:5 hexanes/isopropanol, 1 ml/min; t_R = 11.70 min (minor), 15.58 min (major); 88:12 er.

 (R_p, E) -1-(7,7-dimethyl-1²,1⁵-bis(p-tolylethynyl)-6,17-dioxa-2-aza-1(1,4)-benzenacycl oh- eptadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6n**)

The reaction was performed on 0.3 mmol scale under the standard conditions at 20 °C for 12 h. Purification by Preparative Thin-Layer (petroleum ether/EtOAc=5:1) afforded **6n** as a yellow solid (45 mg, 23% yield.) and recovered **5n** as yellow oil (70

mg, 36% yield).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.65 (d, J = 14.2 Hz, 1H), 7.45-7.44 (m, 3H), 7.38-7.34 (m, 2H), 7.19-7.10 (m, 5H), 4.46-4.43 (m, 1H), 4.35-4.22 (m, 2H), 3.81-3.79 (m, 2H), 2.38 (s, 3H), 2.36 (s, 3H), 1.93-1.81 (m, 1H), 1.71-1.64 (m, 1H), 1.45-1.35 (m, 3H), 1.30-1.21 (m, 2H), 1.20-1.10 (m, 16H), 1.09-1.03 (s, 8H). ¹³C NMR (126 MHz, Chloroform-d) δ 176.5, 157.8, 139.3, 138.7, 135.5, 134.5, 133.0, 131.7, 131.7, 129.3, 129.2, 125.3, 120.3, 119.6, 116.9, 115.3, 110.3, 96.1, 85.7, 84.4, 75.0, 68.8, 61.2, 41.5, 38.7, 30.2, 29.4, 29.1, 28.2, 28.2, 27.2, 26.9, 26.3, 24.9, 23.3, 21.7, 21.6. $[\alpha]^{25}_{D} = -4.4$ (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found $[M+H]^+$ 644.4109, $C_{44}H_{54}NO_{3}^{+}$ requires 644.4098. HPLC: Chiralpak IC column. 90:10 hexanes/isopropanol, 1 ml/min; $t_R = 8.41 \text{ min (minor)}$, 12.09 min (major); 88:12 er.

 (R_p, E) -1-(7,7-diethyl-1²,1⁵-bis(phenylethynyl)-6,17-dioxa-2-aza-1(1,4)-benzenacyclo he- ptadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**60**)

The reaction was performed on 0.2 mmol scale under the standard conditions at 20 °C for 24 h. Purification by Preparative Thin-Layer (petroleum ether/EtOAc=10:1) afforded **60** as a yellow solid (55 mg, 43% yield.).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 (d, J = 14.1 Hz, 1H), 7.57-7.54 (m, 2H), 7.51-7.44 (m, 3H), 7.39-7.32 (m, 6H), 7.26 (s, 1H), 4.54-4.43 (m, 1H), 4.35-4.24 (m, 2H), 3.86-3.67 (m, 2H), 1.98-1.84 (m, 1H), 1.73-1.65 (m, 1H), 1.49-1.32 (m, 5H), 1.30-1.20 (m, 5H), 1.20-0.93 (m, 17H), 0.76 (t, J = 7.3 Hz, 3H), 0.72 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.5, 157.8, 135.6, 134.5, 133.3, 131.8, 131.8, 129.0, 128.6, 128.5, 125.2, 123.4, 122.6, 116.8, 115.2, 110.1, 95.9, 95.8, 86.2, 84.9, 79.8, 68.7, 60.2, 41.5, 33.9, 30.5, 29.4, 29.1, 28.2, 26.8, 26.7, 26.7, 24.8, 22.6, 8.4, 7.6. [α]²⁵_D = -11.8 (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found [M+H]⁺ 644.4106,

 $C_{44}H_{54}NO_3^+$ requires 644.4098. HPLC: Chiralpak IC column, 95:5 hexanes/isopropanol, 1 ml/min; $t_R = 9.20$ min (minor), 11.50 min (major); 84:16 er.

 (S_p, E) -1- $(1^2, 1^5$ -bis(phenylethynyl)-6, 17-dioxa-2-aza-1(1,4)-benzenacycloheptadecaph an-3-en-2-yl)-2, 2-dimethylpropan-1-one (**6p**)

The reaction was performed on 0.2 mmol scale under the standard conditions using catalyst (*R*)-**A4** (0.1 equiv.) at 40 °C for 12 h. Purification by Preparative Thin-Layer (petroleum ether/EtOAc=10:1) afforded **6p** as a yellow solid (40 mg, 34% yield.). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 14.3 Hz, 1H), 7.50-7.46 (m, 2H), 7.40-7.37 (m, 2H), 7.35 (s, 1H), 7.32-7.27 (m, 6H), 7.08 (s, 1H), 4.32-4.25 (m, 3H), 4.03-3.98 (m, 1H), 3.86-3.81 (m, 1H), 3.28-3.155 (m, 2H), 1.83-1.57 (m, 3H), 1.41-1.28 (m, 4H), 1.24-1.04 (m, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 176.6, 158.3, 135.4, 134.6, 133.6, 131.8, 131.7, 129.1, 128.7, 128.6, 128.5, 125.5, 123.2, 122.5, 116.7, 115.2, 111.3, 96.0, 86.3, 84.8, 69.4, 68.6, 67.9, 41.4, 30.0, 29.1, 29.1, 29.0, 27.9, 27.6, 26.6, 26.2, 24.3. [α]²⁵_D = -5 (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found [M+H]⁺ 588.3479, C₄₀H₄₆NO₃⁺ requires 588.3479. HPLC: Chiralpak IC column, 95:5 hexanes/isopropanol, 1 ml/min; t_R = 11.88 min (major), 16.04 min (minor); 80:20 er.

 (R_p, E) -1-(7,7-dimethyl-12,15-bis(phenylethynyl)-6,18-dioxa-2-aza-1(1,4)-benzenacyc lo- octadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6q**)

The reaction was performed on 0.2 mmol scale under the standard conditions at 40 °C for 11 h. Purification by Preparative Thin-Layer (petroleum ether/EtOAc=5:1) to afford **6q** as a white solid (44 mg, 35% yield.) and recovered **5q** as yellow oil (38 mg, 30% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (d, J = 14.2 Hz, 1H), 7.57-7.51 (m, 2H), 7.49 -7.43 (m, 3H), 7.38-7.32 (m, 6H), 7.11 (s, 1H), 4.40-4.27 (m, 2H), 4.22-4.19 (m, 1H), 3.86-3.80 (m, 2H), 2.05-2.03 (m, 1H), 1.85-1.70 (m, 2H), 1.46-1.32 (m, 5H), 1.25 (s, 3H), 1.17 (s, 13H), 1.13-1.07 (m, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 176.6, 159.1, 135.4, 134.5, 133.345, 131.9, 131.7, 129.0, 128.6, 128.5, 125.4, 123.4, 122.6, 115.6, 114.4, 110.7, 95.9, 86.2, 84.9, 75.2, 68.6, 61.3, 41.5, 39.2, 29.9, 29.4, 29.2, 28.9, 28.4, 28.3, 27.3, 27.2, 26.2, 25.1, 24.1. $[\alpha]^{25}_{D} = -3.8$ (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found $[M+H]^+$ 630.3933, C₄₃H₅₂NO₃⁺ requires 630.3942. HPLC: Chiralpak IC column, 95:5 hexanes/isopropanol, 1 ml/min; t_R = 11.32 min (minor), 13.62 min (major); 90:10 er.

 (R_p, E) -1- $(1^2, 1^5$ -bis((3-methoxyphenyl)ethynyl)-7,7-dimethyl-6,18-dioxa-2-aza-1(1,4)-benzenacyclooctadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6r**)

The reaction was performed on 0.2 mmol scale under the standard conditions at 40 °C for 11 h. Purification by Preparative Thin-Layer (petroleum ether/EtOAc=5:1)
afforded **6r** as a yellow solid (35 mg, 25% yield.) and recovered **5r** as yellow oil (45 mg, 33% yield).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.63 (d, J = 14.1 Hz, 1H), 7.48 (s, 1H), 7.29-7.26 (m, 1H), 7.24-7.23 (m, 1H), 7.14 (d, J = 7.6 Hz, 1H), 7.10 (s, 1H), 7.08-7.04 (m, 2H), 7.03-6.97 (m, 1H), 6.92-6.89 (m, 2H), 4.37-4.29 (m, 2H), 4.21-4.16 (m, 1H), 3.88-3.79 (m, 8H), 2.05-2.02 (m, 1H), 1.80-1.75 (m, 2H), 1.45-1.36 (m, 3H), 1.35-1.21 (m, 8H), 1.17-1.12 (s, 13H), 1.10 (s, 3H), 1.09 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 176.6, 159.5, 159.5, 159.1, 135.4, 134.6, 133.4, 129.7, 129.6, 125.4, 124.4, 124.3, 123.6, 116.5, 116.4, 115.8, 115.5, 115.3, 114.4, 110.6, 95.9, 86.0, 84.7, 75.2, 68.6, 61.3, 55.5, 55.4, 41.5, 39.2, 29.9, 29.4, 29.2, 28.9, 28.4, 28.3, 27.3, 27.2, 26.2, 25.1, 24.1. $[\alpha]^{25}{}_{D} = -11.2$ (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found [M+H]⁺ 690.4143, C₄₅H₅₆NO₅⁺ requires 690.4153. HPLC: Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 11.43 min (major), 15.63 min (minor); 91:9 er.

 (R_p, E) -1-(7,7-dimethyl-1²,1⁵-bis(phenylethynyl)-6,19-dioxa-2-aza-1(1,4)-benzenacycl o- nonadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6s**)

The reaction was performed on 0.2 mmol scale under the standard conditions at 20 °C for 16 h. Purification by Preparative Thin-Layer (petroleum ether/EtOAc=5:1) afforded **6s** as a white solid (45 mg, 35% yield.) and recovered **5s** as yellow oil (40 mg, 31% yield).

¹H NMR (500 MHz, Chloroform-*d*) δ 7.67 (d, *J* = 14.2 Hz, 1H), 7.56-7.54 (m, 2H), 7.48-7.44 (m, 3H), 7.39-7.31 (m, 6H), 7.11 (s, 1H), 4.38-4.32 (m, 1H), 4.29-4.25 (m, 1H), 4.18-4.13 (m, 1H), 3.83-3.80 (m, 2H), 2.06-2.03 (m, 1H), 1.92-1.82 (m, 1H),

1.76-1.73 (m, 1H), 1.50-1.36 (m, 3H), 1.36-1.19 (m, 8H), 1.16-1.13 (m, 15H), 1.11 (s, 3H), 1.10 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 176.6, 158.9, 135.3, 134.3, 133.1, 131.8, 131.7, 129.0, 128.6 128.6, 128.5, 125.3, 123.3, 122.6, 115.6, 114.4, 110.2, 96.0, 86.2, 84.9, 75.0, 67.8, 61.4, 41.5, 39.2, 30.3, 29.9, 29.1, 28.7, 28.6, 28.2, 27.9, 27.0, 26.5, 26.1, 24.5, 23.5. [α]²⁵_D = -8.4 (c = 1.0, CH₂Cl₂).m/z HRMS (ESI) found [M+H]⁺ 644.4105, C₄₄H₅₄NO₃⁺ requires 644.4098. HPLC: Chiralpak IA column, 95:5 hexanes/isopropanol, 1 ml/min; t_R = 4.48 min (major), 4.85 min (minor); 85:15 er.

Control Experiments

 (R_p, E) -1- $(1^2, 1^5$ -dibromo-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclohexadeca phan-3-en-2-yl)-2-methylpropan-1-one (**6t**)

The reaction was performed on 0.1 mmol scale under the standard conditions at 20 °C for 43 h. Purification by Preparative Thin-Layer Chromatography (petroleum ether/EtOAc=10:1) to afford **6t** as a white solid (17 mg, 31% yield.) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.55-7.45 (m, 2H), 7.28 (s, 1H), 4.36 (t, *J* = 5.6 Hz, 2H), 4.21-4.15 (m, 1H), 3.92-3.85 (m, 2H), 2.38 (hept, *J* =6.8 Hz, 1H), 1.78-1.73(m, 2H), 1.58-1.49 (m, 1H), 1.47-1.43 (m, 1H), 1.35-1.16 (m, 6H), 1.14 (d, *J* = 6.8 Hz, 3H), 1.09 (s, 9H), 1.05 (d, *J* = 6.9 Hz, 3H), 1.01-0.99 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 175.5, 155.8, 134.9, 131.8, 129.2, 123.5, 119.6, 112.9, 112.2, 75.8, 70.2, 61.1, 39.0, 32.7, 30.0, 29.6, 27.9, 27.0, 26.9, 26.3, 24.7, 24.1, 20.2, 19.2. [α]²⁵_D = -28.2 (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found [M+H]⁺ 544.1079,

 $C_{24}H_{36}Br_2NO_3^+$ requires 544.1056. HPLC: Chiralpak IC column, 95:5 hexanes/isopropanol, 1 ml/min; $t_R = 19.04$ min (major), 21.94 min (minor); 69:31 er.

 (R_p, E) -(12,15-dibromo-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclohexadecap han-3-en-2-yl)(phenyl)methanone (**6u**)

The reaction was performed on 0.2 mmol scale under the standard conditions at 20 °C for 69 h. Purification by Preparative Thin-Layer Chromatography (petroleum ether/EtOAc=10:1) to afford **6u** as a white solid (50 mg, 43% yield.)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.77-7.33 (m, 5H), 7.26-6.47 (m, 3H), 4.52-4.19 (m, 3H), 4.05-3.64 (m, 2H), 1.89-1.59 (m, 3H), 1.53-1.36 (m, 3H), 1.27 (m, 4H), 1.10-0.98 (m, 10H). ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 135.7, 134.9, 130.4, 130.0, 129.4, 129.2, 128.2, 127.9, 127.4, 119.2, 113.7, 75.8, 69.9, 60.8, 39.0, 29.9, 29.4, 27.9, 26.8, 26.6, 26.3, 24.6, 24.1. $[\alpha]^{25}_{D} = 6.6$ (c = 1.0, CH₂Cl₂). m/z HRMS (ESI) found [M+H]⁺ 578.0921, C₂₇H₃₄Br₂NO₃⁺ requires 578.0900. HPLC: Chiralpak IA column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 9.09 min (major), 14.82 min (minor); 75:25 er.

Study of the configurational stability of the planar-chiral macrocycles

6a

Dissolve 2.0 mg of **6a** (92:8 er) in toluene (2 mL) and then heated the solution to 100 $^{\circ}$ C. The er value were then determined to be 92:8 by chiral HPLC analysis after 24 h.

A flask containing a magnetic stir bar was added (*R*)-**A5** (0.005 mmol) and activated 4 Å MS (25 mg) under N₂ atmosphere. Then a solution of **5v** (0.05 mmol, 1.0 equiv.) in dry CCl₄ (2 mL) was added using a syringe. After stirring at 40 °C for 18 h, the reaction mixture was filtered and concentrated to give a residue, which was purified by Preparative Thin-Layer Chromatography (petroleum ether/EtOAc = 10:1) to afford the product **6v** as a racemic mixture (50:50 er). Interestingly, monitoring the er values of 6v in the reaction mixture suggested the rapid diminishment of the er values overtime (2 h, 80:20 er; 3.5 h, 75:25 er; 6.5 h, 66:34 er).

Dissolve 2.0 mg of 6q (90:10 er) in toluene (2 mL) and then heated the solution to 80 °C. The er value were then determined to be 90:10 by chiral HPLC analysis after 48 h. Heating of 6q at 100 °C (in toluene) led to the partial decomposition of 6q.

X-Ray structures

X-ray structure of 6m (CCDC number 2160358)

Single crystal data of **6m**

Identification code	
Empirical formula	C42H49NO3
Formula weight	615.82
Temperature/K	150.0
Crystal system	orthorhombic
Space group	P212121
a/Å	10.9530(2)
b/Å	11.3417(2)
c/Å	28.7781(5)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å3	3574.98(11)
Z	4
pcalcg/cm3	1.144
μ/mm-1	0.547
F(000)	1328.0
Crystal size/mm3	$0.25 \times 0.2 \times 0.1$
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2Θ range for data collection/°	6.142 to 158.926
Index ranges	$-13 \le h \le 13, -13 \le k \le 14, -35 \le l \le 36$
Reflections collected	72241
Independent reflections	7699 [Rint = 0.0319, Rsigma = 0.0185]
Data/restraints/parameters	7699/0/420
Goodness-of-fit on F2	1.059
Final R indexes [I>= 2σ (I)]	R1 = 0.0283, wR2 = 0.0738
Final R indexes [all data]	R1 = 0.0286, $wR2 = 0.0740$
Largest diff. peak/hole / e Å-3	0.22/-0.14
Flack parameter	0.03(3)

HPLC traces

 (R_p, E) -1- $(1^2, 1^5$ -dibromo-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclohexadeca p- pan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6a**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	16.824	MM	16772.2	552.4	0.506	92.146	0.778
2	23.486	MM	1429.5	34.3	0.6951	7.854	0.857

 (R_p, E) - $(1-(1^2, 1^5-dibromo-7, 7-dimethyl-6, 16-dioxa-2-aza-1(1, 4)-benzenacyclohexadec ap-han-3-en-2-yl)$ -2,2- dimethylbutan-1-one (**6b**)

#	Time	Type	Area	Height	Width	Area%	Symmetry
1	13.862	MM	784.3	31,1	0.4202	50.003	0.812
2	18.664	MM	784.2	12.7	1.0281	49,997	0.68

 (R_p, E) -1- $(1^2, 1^5$ -dibromo-7,7-diethyl-6,15-dioxa-2-aza-1(1,4)-benzenacyclopentadecap h- an-3-en-2-yl)-2,2-dimethylpropan-1-one (**6c**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	16.198	MM	1519.5	48.6	0.5214	50.013	0.782
2	18.505	MM	1518.7	40.7	0.622	49.987	0.853

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	15.948	MM	289.2	9.8	0.4905	79.991	0.788
2	18.203	MM	72.3	1.7	0.7008	20.009	1.025

 (R_p, E) -1-(7,7-dimethyl-1²,1⁵-bis(phenylethynyl)-6,16-dioxa-2-aza-1(1,4)-benzenacycl o- hexadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (6d)

 (R_p, E) -1- $(1^2, 1^5$ -bis(cyclopropylethynyl)-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzen ac- yclohexadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6e**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	19.096	MM	5316.6	103.1	0.8591	49.913	0.711
2	27.162	MM	5335.1	80.9	1.0991	50.087	0.746

 (R_p, E) -1- $(1^2, 1^5$ -di(hex-1-yn-1-yl)-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclo hexadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6f**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	9.611	MF	1923.4	88.9	0.3605	20.554	0.736
2	10.972	FM	7434.4	293.4	0.4223	79.446	0.725

 (R_p, E) -1- $(1^2, 1^5$ -bis(cyclohex-1-en-1-ylethynyl)-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclohexadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6g**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	11.684	MM	563.9	19.4	0.4834	50.220	0.697
2	23.121	MM	558.9	7.6	1.2278	49.780	0.699

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	11.707	MM	257.6	9.2	0.4665	9.351	0.783
2	23.098	MM	2497.4	33.4	1.2464	90.649	0.695

 (R_p, E) -1- $(1^2, 1^5$ -dibromo-7,7-dimethyl-6,15-dioxa-2-aza-1(1,4)-benzenacyclopentadec ap- han-3-en-2-yl)-2,2-dimethylpropan-1-one (**6h**)

 (R_p, E) -1- $(1^2, 1^5$ -dibromo-7,7-diethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclohexadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6i**)

 (R_p, E) -1- $(7, 7-\text{dimethyl-1}^2, 1^5-\text{bis}(\text{phenylethynyl})$ -6,15-dioxa-2-aza-1(1, 4)-benzenacycl op- entadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6j**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	15.375	MM	1357.5	36.5	0.6197	50.217	0.747
2	25.726	MM	1345.8	18.1	1.2398	49.783	0.721

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	15.02	MM	260.1	7.2	0.6018	6.886	0.718
2	25.006	MM	3517.7	46.6	1.2584	93.114	0.681

 (R_p, E) -1- $(1^2, 1^5$ -bis(cyclopropylethynyl)-7,7-dimethyl-6,15-dioxa-2-aza-1(1,4)-benzen ac- cyclopentadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6k**)

 (R_p, E) -1- $(7, 7-\text{dimethyl-1}^2, 1^5-\text{bis}(p-\text{tolylethynyl})$ -6,15-dioxa-2-aza-1(1, 4)-benzenacycl op-entadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6**)

2

19.825

MM

14411.5

239.3

1.0038

49.995

0.689

 (R_p, E) -1- $(7, 7-\text{dimethyl-1}^2, 1^5-\text{bis}(\text{phenylethynyl})$ -6,17-dioxa-2-aza-1(1, 4)-benzenacycl oh- eptadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (6m)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	11.7	MM	1333.7	47.2	0.4711	11.874	0.742
2	15.583	MM	9897.9	224.6	0.7345	88.126	0.666

 (R_p, E) -1- $(7, 7-\text{dimethyl-1}^2, 1^5-\text{bis}(p-\text{tolylethynyl})$ -6,17-dioxa-2-aza-1(1, 4)-benzenacycl oh- eptadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6n**)

 (R_p, E) -1-(7, 7-diethyl-1², 1⁵-bis(phenylethynyl)-6, 17-dioxa-2-aza-1(1,4)-benzenacyclo

he- ptadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (60)

 (S_p, E) -1- $(1^2, 1^5$ -bis(phenylethynyl)-6,17-dioxa-2-aza-1(1,4)-benzenacycloheptadecaph an-3-en-2-yl)-2,2-dimethylpropan-1-one (**6p**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	11.878	MM	1128.2	44.6	0.4218	79.702	0.763
2	16.042	MM	287.3	7.5	0.6414	20.298	0.802

 (R_p, E) -1-(7,7-dimethyl-12,15-bis(phenylethynyl)-6,18-dioxa-2-aza-1(1,4)-benzenacyc lo- octadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6q**)

 (R_p, E) -1- $(1^2, 1^5$ -bis((3-methoxyphenyl)ethynyl)-7,7-dimethyl-6,18-dioxa-2-aza-1(1,4)-benzenacyclooctadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one **(6r)**

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	11.507	MM	1892.9	55.7	0.5661	50.083	0.723
2	15.926	MM	1886.6	49.2	0.6395	49.917	0.787

 (R_p, E) -1-(7,7-dimethyl-1²,1⁵-bis(phenylethynyl)-6,19-dioxa-2-aza-1(1,4)-benzenacycl o- nonadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6s**)

 (R_p, E) -1- $(1^2, 1^5$ -dibromo-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclohexadeca phan-3-en-2-yl)-2-methylpropan-1-one (**6t**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	18.835	MF	2429.5	60.5	0.6695	49.614	0
2	21.681	FM	2467.3	53.6	0.7671	50.386	0.869

 $(R_p, E) - (12, 15 - dibromo - 7, 7 - dimethyl - 6, 16 - dioxa - 2 - aza - 1(1, 4) - benzenacyclohexadecap han - 3 - en - 2 - yl)(phenyl) methanone ($ **6u**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	9.087	MM	1163.4	87.3	0.2221	74.460	0.837
2	14.82	MM	399.1	17.9	0.3707	25.540	0.86

NMR spectrum

Methyl 9-(4-pivalamidophenoxy)nonanoate (2a)

Methyl 9-(2,5-dibromo-4-pivalamidophenoxy)nonanoate (3a)

N-(2,5-dibromo-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)pivalamide (4a)

N-(2,5-dibromo-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)pi valamide (**5a**)

N-(2,5-dibromo-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)-2,2-dimethyl-N-(propa-1, 2-dien-1-yl)butanamide (**5b**)

N-(2,5-dibromo-4-((9-ethyl-9-hydroxyundecyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)pi valamide (**5c**)

N-(4-((9-hydroxy-9-methyldecyl)oxy)-2,5-bis(phenylethynyl)phenyl)-*N*-(propa-1,2-di en-1-yl)pivalamide (**5d**)

N-(2,5-bis(cyclopropylethynyl)-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)pivalamide (**5e**)

N-(2,5-di(hex-1-yn-1-yl)-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)-N-(propa-1,2-die n-1-yl)pivalamide (**5f**)

N-(2,5-bis(cyclohex-1-en-1-ylethynyl)-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)pivalamide (**5g**)

SGS-1-13-3.2.fid 7.55 7.53 7.53 7.43 7.726 7.07 5.02 5.02 4.98 4.98 4.97 13000 -12000 -11000 -10000 $\|$ 11 1 9000 -8000 -7000 -6000 Łон -5000 4000 -3000 -2000 1000 -0 227-I 2.00-F 888 232 586 586 586 900 -1000 5.0 4.5 f1 (ppm) 4.0 0.0 9.5 9.0 8.5 7.5 7.0 6.5 2.0 1.5 1.0 0.5 8.0 6.0 3.0 2.5 0.0 5.5 3.5

N-(2,5-dibromo-4-((8-hydroxy-8-methylnonyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)pi valamide (**5h**)

N-(2,5-dibromo-4-((8-ethyl-8-hydroxydecyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)piva lamide (**5i**)

N-(4-((8-hydroxy-8-methylnonyl)oxy)-2,5-bis(phenylethynyl)phenyl)-*N*-(propa-1,2-di en-1-yl)pivalamide (**5**j)

N-(2,5-bis(cyclopropylethynyl)-4-((8-hydroxy-8-methylnonyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)pivalamide (**5**k)

N-(4-((8-hydroxy-8-methylnonyl)oxy)-2,5-bis(p-tolylethynyl)phenyl)-*N*-(propa-1,2-di en-1-yl)pivalamide (**5**l)

N-(4-((10-hydroxy-10-methylundecyl)oxy)-2,5-bis(phenylethynyl)phenyl)-*N*-(propa-1,2-dien-1-yl)pivalamide (**5m**)

N-(4-((10-hydroxy-10-methylundecyl)oxy)-2,5-bis(p-tolylethynyl)phenyl)-*N*-(propa-1,2-dien-1-yl)pivalamide (**5n**)

N-(4-((10-ethyl-10-hydroxydodecyl)oxy)-2,5-bis(phenylethynyl)phenyl)-*N*-(propa-1,2 -dien-1-yl)pivalamide (**50**)

N-(4-((10-hydroxydecyl)oxy)-2,5-bis(phenylethynyl)phenyl)-*N*-(propa-1,2-dien-1-yl) pivalamide (**5p**)

N-(4-((11-hydroxy-11-methyldodecyl)oxy)-2,5-bis(phenylethynyl)phenyl)-*N*-(propa-1 ,2-dien-1-yl)pivalamide (**5q**)

N-(4-((11-hydroxy-11-methyldodecyl)oxy)-2,5-bis((3-methoxyphenyl)ethynyl)-*N*-(pr opa-1,2-dien-1-yl)pivalamide (**5r**)

N-(4-((12-hydroxy-12-methyltridecyl)oxy)-2,5-bis(phenylethynyl)phenyl)-*N*-(propa-1,2-dien-1-yl)pivalamide (**5s**)

N-(2,5-dibromo-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)isobutyramide **(5t)**

N-(2,5-dibromo-4-((9-hydroxy-9-methyldecyl)oxy)phenyl)-*N*-(propa-1,2-dien-1-yl)be nzamide (**5u**)

-11000000 -10000000 -9000000 []] 1 11 8000000 7000000 -6000000 (CH2)8 -5000000 (19) 4000000 Br Piv -3000000 2000000 1000000 192 191 × 196 × 2:00 4 153 4 2:00 4 -1000000 7. 5 4.0 2.0 1.5 1. 0 0.5 0.0 10.5 10.0 9.5 9.0 8.5 8.0 7.0 6.5 6.0 5.5 5.0 f1 (ppm) 4.5 3.5 3.0 2.5

 (R_p, E) -1- $(1^2, 1^5$ -dibromo-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclohexadeca p- pan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6a**)

 (R_p, E) - $(1-(1^2, 1^5-dibromo-7, 7-dimethyl-6, 16-dioxa-2-aza-1(1, 4)-benzenacyclohexadec ap-han-3-en-2-yl)$ -2,2- dimethylbutan-1-one (**6b**)

 (R_p, E) -1- $(1^2, 1^5$ -dibromo-7,7-diethyl-6,15-dioxa-2-aza-1(1,4)-enzenacyclopentadecap h- an-3-en-2-yl)-2,2-dimethylpropan-1-one (**6c**)

 (R_p, E) -1-(7,7-dimethyl-1²,1⁵-bis(phenylethynyl)-6,16-dioxa-2-aza-1(1,4)-benzenacycl o- hexadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6d**)

 (R_p, E) -1- $(1^2, 1^5$ -bis(cyclopropylethynyl)-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzen ac- yclohexadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6e**)

 (R_p, E) -1- $(1^2, 1^5$ -di(hex-1-yn-1-yl)-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclo he-xadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6f**)

 (R_p, E) -1- $(1^2, 1^5$ -bis(cyclohex-1-en-1-ylethynyl)-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclohexadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6g**)

 (R_p, E) -1- $(1^2, 1^5$ -dibromo-7,7-dimethyl-6,15-dioxa-2-aza-1(1,4)-benzenacyclopentadec ap- han-3-en-2-yl)-2,2-dimethylpropan-1-one **(6h)**

 (R_p, E) -1- $(1^2, 1^5$ -dibromo-7,7-diethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclohexadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6i**)

 (R_p, E) -1-(7,7-dimethyl-1²,1⁵-bis(phenylethynyl)-6,15-dioxa-2-aza-1(1,4)-benzenacycl op- entadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6j**)

 (R_p, E) -1- $(1^2, 1^5$ -bis(cyclopropylethynyl)-7,7-dimethyl-6,15-dioxa-2-aza-1(1,4)-benzen ac- cyclopentadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6k**)

 (R_p, E) -1-(7,7-dimethyl-1²,1⁵-bis(p-tolylethynyl)-6,15-dioxa-2-aza-1(1,4)-benzenacycl op-entadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6**l)

 (R_p, E) -1-(7,7-dimethyl-1²,1⁵-bis(phenylethynyl)-6,17-dioxa-2-aza-1(1,4)-benzenacycl oh- eptadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6m**)

 (R_p, E) -1-(7,7-dimethyl-1²,1⁵-bis(p-tolylethynyl)-6,17-dioxa-2-aza-1(1,4)-benzenacycl oh- eptadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6n**)

 (R_p, E) -1-(7,7-diethyl-1²,1⁵-bis(phenylethynyl)-6,17-dioxa-2-aza-1(1,4)-benzenacyclo he- ptadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**60**)

 (S_p, E) -1- $(1^2, 1^5$ -bis(phenylethynyl)-6,17-dioxa-2-aza-1(1,4)-benzenacycloheptadecaph an-3-en-2-yl)-2,2-dimethylpropan-1-one (**6p**)

 (R_p, E) -1-(7,7-dimethyl-12,15-bis(phenylethynyl)-6,18-dioxa-2-aza-1(1,4)-benzenacyc lo- octadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6q**)

 (R_p, E) -1- $(1^2, 1^5$ -bis((3-methoxyphenyl)ethynyl)-7,7-dimethyl-6,18-dioxa-2-aza-1(1,4)-benzenacyclooctadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6r**)

 (R_p, E) -1- $(7, 7-\text{dimethyl-1}^2, 1^5-\text{bis}(\text{phenylethynyl})$ -6,19-dioxa-2-aza-1(1, 4)-benzenacycl o- nonadecaphan-3-en-2-yl)-2,2-dimethylpropan-1-one (**6s**)

 (R_p,E) -(12,15-dibromo-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclohexadecap han-3-en-2-yl)(phenyl)methanone (**6t**)

(R_p,E) -(12,15-dibromo-7,7-dimethyl-6,16-dioxa-2-aza-1(1,4)-benzenacyclohexadecap han-3-en-2-yl)(phenyl)methanone (**6u**)

