Supporting Information for

Copper-Catalyzed Asymmetric Propargylic Substitution with

Salicylaldehyde-Derived Imine Esters
Ruo-Qing Wang, ${ }^{\ddagger a, b}$ Chong Shen, ${ }^{\ddagger a}$ Xiang Cheng, ${ }^{\ddagger a}$ Xiu-Qin Dong,*a, ${ }^{*}$ and Chun-Jiang Wang**a,b${ }^{a}$ Engineering Research Center of Organosilicon Compounds \& Materials, Ministry of Education, College ofChemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei,430072, P. R. China.
${ }^{b}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai,230021, China
${ }^{c}$ Suzhou Institute of Wuhan University, Suzhou, Jiangsu, 215123, P. R. China

* These authors contributed equally.
E-mail address: cjwang@whu.edu.cn, xiuqindong@ whu.edu.cn
Table of Contents
I. General Remarks S2
II. General Procedure for the synthesis of $\mathbf{3}$ S2
III. Synthetic Transformation S10
IV. Determination of Absolute Configuration of 3a S13
V. Reference S15
VI. NMR and HPLC Spectra S16

I. General Remarks

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl_{3}. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 100 MHz spectrometer in CDCl_{3}. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker 376 MHz spectrometer in CDCl_{3}. Chemical shifts are reported in ppm with the internal $\mathrm{CF}_{3} \mathrm{COOH}$ signal at -76.55 ppm . The data are reported as $(\mathrm{s}=\operatorname{single}, \mathrm{d}=$ double, $\mathrm{t}=$ triple, $\mathrm{q}=$ quarter, $\mathrm{m}=$ multiple or unresolved, $\mathrm{br} \mathrm{s}=$ broad single, coupling constant(s) in Hz , integration). Commercially obtained reagents were used without further purification. Solvents were purified prior to use according to the standard methods. Unless otherwise noted, all reactions were carried out under nitrogen atmosphere. The enantiomeric excesses (ee) of the products were determined by high-performance liquid chromatography (HPLC) analysis performed on Agilent 1260 Series chromatographs using a Diacel chiral column (25 cm). Optical rotations were measured on a Rudolph Research Analytical Autopol VI polarimeter with [α]D values reported in degrees; concentration (c) is in $\mathrm{g} / 100 \mathrm{~mL}$. All reactions were reacted under Ar_{2} atmosphere. The absolute configuration of $\mathbf{9}$ was determined by comparing the result of previous report ${ }^{1}$, and absolute configurations of other adducts were deduced on the basis of these results.

II. General Procedure for the synthesis of 3

In a 10 mL Schlenk tube was placed $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}(0.01 \mathrm{mmol})$ and $\mathbf{L 4}(0.01 \mathrm{mmol})$ under Ar. Anhydrous DCM (1.0 mL) was added, and the mixture was magnetically stirred at room temperature for 30 min . Then the reaction flask was placed in a cool bath of $-10{ }^{\circ} \mathrm{C}$, followed by the addition of $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathbf{2}(0.2 \mathrm{mmol})$, 4-methylmorpholine (0.2 mmol) and anhydrous DCM (1.0 mL) sequentially, and monitored by TLC analysis. After completion, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. The aqueous layer was extracted three times with ethyl acetate $(6 \mathrm{~mL} \times 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatile solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel to afford pure 3 .

3a
diethyl (R,E)-2-((2-hydroxybenzylidene)amino)-2-(1-phenylprop-2-yn-1-yl)malonate (3a): $67.4 \mathrm{mg}, 86 \%$ yield, yellow oil; $[\alpha]^{32} \mathrm{D}=-48.77\left(c 1.06, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 13.06(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.02(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~m}, 1 \mathrm{H}), 4.87$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.03(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,166.9,166.5$, 161.1, 135.1, 133.3, 132.6, 129.6, 128.21, 128.17, 118.9, 118.7, 117.4, 81.9, 78.7, 74.3, 62.7, 62.4, 44.7, 14.0, 13.8; HRMS (ESI+) Calcd. For $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 394.1649$, found: 394.1652. The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (Chiralpak IE, i-propanol/hexane $=2 / 98$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=19.12$ and 21.61 min .

diethyl (R, E)-2-(1-(4-chlorophenyl)prop-2-yn-1-yl)-2-((2-hydroxybenzylidene)amino)malonate (3b): $68.4 \mathrm{mg}, 80 \%$ yield, yellow oil; $[\alpha]^{32}{ }_{\mathrm{D}}=-76.92\left(c \quad 1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.96(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.24$ $(\mathrm{m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.27(\mathrm{~m}, 2 \mathrm{H})$, $4.17-3.98(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.4,166.6,166.4,161.1,134.2,133.7,133.4,132.7,131.0$, $128.4,118.84,118.76,117.4,81.5,78.5,74.6,62.8,62.5,44.1,13.9,13.8$; HRMS (ESI+) Calcd. For $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClNO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 428.1259$, found: 428.1259 . The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (Chiralpak AD-H, i-propanol/hexane $=5 / 95$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=262 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=15.49$ and 17.68 min .

diethyl (R,E)-2-(1-(4-bromophenyl)prop-2-yn-1-yl)-2-((2-hydroxybenzylidene)amino)malonate (3c): $78.4 \mathrm{mg}, 83 \%$ yield, yellow oil; $[\alpha]^{32}{ }_{\mathrm{D}}=-87.46\left(c 1.34, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.96(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.05(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.4,166.6,166.4,161.0,134.2,133.5$, $132.7,131.33,131.31,122.4,118.9,118.7,117.4,81.4,78.4,74.6,62.9,62.5,44.1,13.9,13.8 ;$ HRMS (ESI+) Calcd. For $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrNO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 472.0574$, found: 472.0566. The product was analyzed by HPLC to determine the enantiomeric excess: 90% ee (Chiralpak AD-H, i propanol $/$ hexane $=5 / 95$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=16.91$ and 18.45 min .

diethyl (R, E)-2-(1-(3-chlorophenyl)prop-2-yn-1-yl)-2-((2-hydroxybenzylidene)amino)-
malonate (3d): $68.3 \mathrm{mg}, 80 \%$ yield, yellow oil; $[\alpha]^{32} \mathrm{D}=-65.74\left(c \quad 1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.91(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.02$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.17$ $-4.09(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.5,166.6,166.4,161.1,137.1,133.9,133.5,132.7,129.8,129.5$, $128.3,127.9,118.82,118.77,117.4,81.2,78.5,74.7,62.9,62.6,44.3,14.0,13.8$; Calcd. For $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClNO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 428.1258$, found: 428.1259. The product was analyzed by HPLC to determine the enantiomeric excess: 87% ee (Chiralpak AD-H, i-propanol/hexane $=5 / 95$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=264 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=13.89$ and 20.14 min .

diethyl (R,E)-2-(1-(3-bromophenyl)prop-2-yn-1-yl)-2-((2-hydroxybenzylidene)amino)-
malonate (3e): $79.1 \mathrm{mg}, 84 \%$ yield, yellow oil; $[\alpha]^{32}{ }_{\mathrm{D}}=-60.40\left(c 1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.91(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.16$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.29(\mathrm{~m}$, 2H), $4.17-4.09(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.5,166.6,166.3,161.1,137.3,133.5,132.70,132.67$, $131.2,129.8,128.3,122.0,118.82,118.75,117.4,81.2,78.5,74.7,62.9,62.6,44.3,14.0,13.8 ;$ HRMS (ESI+) Calcd. For $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrNO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 472.0571$, found: 472.0566. The product was analyzed by HPLC to determine the enantiomeric excess: 87% ee (Chiralpak AD-H, i propanol $/$ hexane $=5 / 95$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=14.14$ and 22.15 min .

diethyl (R, E)-2-(1-(4-fluorophenyl)prop-2-yn-1-yl)-2-((2-hydroxybenzylidene)amino)malonate (3f): $72.3 \mathrm{mg}, 88 \%$ yield, yellow oil; $[\alpha]^{32}{ }_{\mathrm{D}}=-48.81\left(c 1.18, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.00(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.89(\mathrm{~m}, 3 \mathrm{H}), 4.85(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.06$ $(\mathrm{m}, 2 \mathrm{H}), 2.43(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,166.7,166.5,162.5(\mathrm{~d}, J=245.9 \mathrm{~Hz}), 161.1,133.4,132.7$, 131.3 $(\mathrm{d}, J=8.1 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 118.9(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 117.4,115.3,115.0,81.7,78.6$, $74.5,62.8,62.5,43.9,14.0,13.8 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.82; HRMS (ESI+) Calcd. For $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FNO}_{5}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 412.1555$, found: 412.1553 . The product was analyzed by HPLC
to determine the enantiomeric excess: 90% ee (Chiralpak IE, i-propanol/hexane $=5 / 95$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=11.28$ and 12.72 min .

diethyl (R,E)-2-((2-hydroxybenzylidene)amino)-2-(1-(4-(trifluoromethyl)phenyl)prop-2$\mathbf{y n}-1$-yl)malonate (3g): $82.9 \mathrm{mg}, 90 \%$ yield, yellow oil; $[\alpha]{ }^{32}{ }_{\mathrm{D}}=-57.19\left(c \quad 1.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 12.92$ (s, 1H), 8.48 (s, 1H), 7.56 - 7.47 (m, 4H), 7.42 - 7.37 (m, $1 \mathrm{H}), 7.31(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.05(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.6, 166.6, 166.4, 161.1, 139.3, 133.6, 132.7, $130.4(\mathrm{q}, J=32.3 \mathrm{~Hz}), 130.1,125.1(\mathrm{q}, J=4.0 \mathrm{~Hz}), 123.9(\mathrm{q}, J=272.7$ Hz), 118.9, 118.7, 117.4, 81.1, 78.5, 74.9, 63.0, 62.6, 44.4, 13.9, 13.7; ${ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-62.66$; HRMS (ESI+) Calcd. For $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 462.1523$, found: 462.1522. The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (Chiralpak IE, i-propanol/hexane $=5 / 95$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=7.52$ and 8.27 min.

3h
diethyl ($\boldsymbol{R}, \boldsymbol{E}$)-2-((2-hydroxybenzylidene)amino)-2-(1-(p-tolyl)prop-2-yn-1-yl)malonate (3h): $65.2 \mathrm{mg}, 80 \%$ yield, yellow oil; $[\alpha]^{32} \mathrm{D}=-56.79\left(c 1.12, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 13.10(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.19$ (m, 2H), 7.07 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.38-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.04(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.2,166.9,166.5$,
161.1, 137.9, 133.2, 132.6, 132.0, 129.4, 128.9, 118.9, 118.7, 117.4, 82.1, 78.7, 74.1, 62.7, 62.3, 44.4, 21.1, 14.0, 13.8; HRMS (ESI+) Calcd. For $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 408.1805$, found: 408.1811. The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (Chiralpak AD-H, i-propanol $/$ hexane $=5 / 95$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=262 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=17.79$ and 20.48 min .

diethyl (R,E)-2-((2-hydroxybenzylidene)amino)-2-(1-(4-methoxyphenyl)prop-2-yn-1yl)malonate (3i): 80.1 mg , 95% yield, yellow oil; $[\alpha]^{32} \mathrm{D}=-90.80\left(c \quad 1.38, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.11(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.02$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,166.9,166.6,161.1$, $159.4,133.3,132.6,130.7,127.1,118.9,118.7,117.4,113.6,82.2,78.8,74.1,62.7,62.4,55.2$, 44.0, 14.0, 13.9; HRMS (ESI+) Calcd. For $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 424.1755$, found: 424.1753. The product was analyzed by HPLC to determine the enantiomeric excess: 92\% ee (Chiralpak $\mathrm{AD}-\mathrm{H}, i$-propanol $/$ hexane $=2 / 98$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=38.30$ and 46.27 min .

3j
diethyl (R, E)-2-((2-hydroxybenzylidene)amino)-2-(1-(m-tolyl)prop-2-yn-1-yl)malonate (3j): $69.3 \mathrm{mg}, 85 \%$ yield, yellow oil; $[\alpha]^{32} \mathrm{D}=-54.85\left(c \quad 1.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 13.05(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.40-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.04(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9,166.9,166.6,161.2$, $137.8,134.9,133.2,132.6,130.4,128.9,128.1,126.6,118.9,118.7,117.4,82.0,78.7,74.2$, 62.7, 62.3, 44.7, 21.3, 14.0, 13.8; HRMS (ESI+) Calcd. For $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 408.1805$, found: 408.1806. The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (Chiralpak AD-H, i-propanol/hexane $=5 / 95$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=$ 14.09 and 17.76 min .

diethyl (R,E)-2-((2-hydroxybenzylidene)amino)-2-(1-(o-tolyl)prop-2-yn-1-yl)malonate (3k): $61.1 \mathrm{mg}, 75 \%$ yield, yellow oil; $[\alpha]^{32} \mathrm{D}=-50.00\left(c 1.17, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 13.16(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{ddd}, J=8.6,7.3,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95-6.91(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.06-3.87(\mathrm{~m}, 2 \mathrm{H}), 2.39$ $(\mathrm{s}, 3 \mathrm{H}), 2.38(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 168.9,167.1,166.8,161.1,135.9,134.3,133.3,132.6,130.3,129.5$, 127.9, 126.3, 118.9, 118.8, 117.4, 82.4, 78.0, 73.9, 62.8, 62.3, 39.4, 19.7, 13.9, 13.5; HRMS (ESI+) Calcd. For $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 408.1805$, found: 408.1802. The product was analyzed by HPLC to determine the enantiomeric excess: 76\% ee (Chiralpak AD-H, i-propanol $/$ hexane $=5 / 95$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=13.02$ and 14.71 min .

31
diethyl ($\boldsymbol{R}, \boldsymbol{E})$-2-((2-hydroxybenzylidene)amino)-2-(1-(naphthalen-2-yl)prop-2-yn-1yl)malonate (31): $80.7 \mathrm{mg}, 91 \%$ yield, yellow oil; $[\alpha]^{32} \mathrm{D}=-90.87\left(c 1.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.11(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.30$ - $7.26(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-$ $4.30(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.05$ ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,166.9,166.5,161.2,133.3,133.0$, 132.9, 132.7, 132.6, 129.0, 127.93, 127.90, 127.6, 127.1, 126.2, 126.1, 118.9, 118.8, 117.4, 81.9, 78.9, 74.5, 62.8, 62.4, 44.9, 14.0, 13.7; HRMS (ESI+) Calcd. For $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 444.1805, found: 444.1805. The product was analyzed by HPLC to determine the enantiomeric excess: 91% ee (Chiralpak AD-H, i-propanol $/$ hexane $=5 / 95$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}) ; \mathrm{t}_{\mathrm{r}}=27.07$ and 28.87 min .

3m
diethyl (S,E)-2-(1-(furan-2-yl)prop-2-yn-1-yl)-2-((2-hydroxybenzylidene)amino)-
malonate (3m): 66.6 mg , 87% yield, yellow oil; $[\alpha]^{32}{ }_{\mathrm{D}}=-33.00\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.90(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{dt}, J=3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.39-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.3,166.3,166.2,161.1,148.7$, $142.5,133.2,132.7,119.0,118.7,117.3,110.7,110.1,79.2,77.2,73.6,62.9,62.8,39.1,14.0$, 13.9; HRMS (ESI+) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 384.1442$, found: 384.1440. The product was analyzed by HPLC to determine the enantiomeric excess: 93\% ee (Chiralpak IE, i-propanol/hexane $=5 / 95$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=18.62$ and 21.27 min .

diethyl (S,E)-2-((2-hydroxybenzylidene)amino)-2-(1-(thiophen-2-yl)prop-2-yn-1-yl)malonate (3n): $70.3 \mathrm{mg}, 88 \%$ yield, yellow oil; $[\alpha]^{32}{ }_{\mathrm{D}}=-45.98\left(c 1.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.92(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.22-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.29$ (m, 2H), $4.25-4.13(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,166.4,166.2,161.0,137.2,133.3,132.8,128.2$, 126.3, 118.9, 118.7, 117.3, 81.3, 78.4, 74.1, 62.9, 62.7, 40.2, 13.9, 13.8; HRMS (ESI+) Calcd. For $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 400.1213$, found: 400.1209 . The product was analyzed by HPLC to determine the enantiomeric excess: 90% ee (Chiralpak AD-H, i-propanol/hexane $=5 / 95$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=26.81$ and 33.63 min .

III. Synthetic Transformation

A mixture of 3a ($0.2 \mathrm{mmol}, 92 \% \mathrm{ee}$), iodobenzene (0.40 mmol$), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.02 \mathrm{mmol})$, and $\mathrm{CuI}(0.04 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL})$ was stirred at $25{ }^{\circ} \mathrm{C}$ for $20 \mathrm{~h} .{ }^{2,3}$ After the reaction was completed, the crude reaction mixture was filtrated with celite and washed with EtOAc. The solvents were removed under reduced pressure. Then the residue was purified by silica gel column chromatography to afford the desired product 4 .

To a solution of $\mathbf{3 a}(0.20 \mathrm{mmol})$ in $\mathrm{EtOH}(2 \mathrm{~mL})$ under nitrogen, then $10 \mathrm{mg} \mathrm{Pd}-\mathrm{CaCO}_{3}$ was added. The reaction mixture was stirred under H_{2} atmosphere (1 atm) at $25^{\circ} \mathrm{C}$ for $3 \mathrm{~d} .{ }^{2} \mathrm{After}$ the reaction was completed (monitored by TLC), the crude reaction mixture was filtered over a short pad of celite and washed with EtOAc. The solvents were removed under reduced pressure. Then the residue was purified by silica gel column chromatography to afford the desired product 5.

To a solution of $\mathbf{3 a}(0.30 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$, then 1 mL 2 M HCl was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . After the reaction was complete (monitored by TLC), THF was removed under reduced pressure. The crude reaction mixture was extracted with $\operatorname{EtOAc}(3 \times 3 \mathrm{~mL})$ and the aqueous solution was added with $10 \% \mathrm{NaOH}$ until $\mathrm{pH}=10$, then the crude reaction mixture was extracted with DCM $(3 \times 3 \mathrm{~mL})$, the organics were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum and purified by silica-gel flash chromatography to afford the desired product 6 .

A mixture of $6(0.20 \mathrm{mmol})$, copper(I) thiophene-2-carboxylate ($\mathrm{CuTc}, 0.02 \mathrm{mmol})$ in anhydrous toluene (1.5 mL) was cooled in an ice-water bath. Subsequently, the tosyl azide (0.24 mmol) was added slowly, then the reaction mixture was allowed to warm to room temperature and stir until complete (monitored by TLC). ${ }^{2,3}$ The reaction was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution (3 mL) and extracted into EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. Then the residue was purified by silica gel column chromatography to afford the desired product 7.

diethyl (S,E)-2-(1,3-diphenylprop-2-yn-1-yl)-2-((2-hydroxybenzylidene)amino)malonate (4): $93.0 \mathrm{mg}, 99 \%$ yield, yellow oil; $[\alpha]^{32} \mathrm{D}=-8.59\left(c \quad 0.92, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 13.18(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.03(\mathrm{dd}$, $J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.42-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.05(\mathrm{~m}$, $2 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ $168.8,167.0,166.8,161.3,135.6,133.2,132.5,131.7,129.7$, 128.2, 128.13, 128.07, 122.9, 118.9, 118.7, 117.4, 87.4, 86.4, 79.2, 62.6, 62.3, 45.6, 14.0, 13.8.; HRMS (ESI+) Calcd. For $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 470.1962$, found: 470.1960 . The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (Chiralpak IE, i-propanol/hexane $=5 / 95$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=11.88$ and 14.01 min .

5
diethyl ($\boldsymbol{R}, \boldsymbol{E}$)-2-((2-hydroxybenzylidene)amino)-2-(1-phenylallyl)malonate (5): 71.2 mg , 90% yield, yellow oil; $[\alpha]^{32} \mathrm{D}=14.3\left(c 1.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ $13.12(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.02$ $-6.99(\mathrm{dd}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.35-6.26(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{ddd}, J=10.2$, $1.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{ddd}, J=17.0,1.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.21(\mathrm{~m}$, $2 \mathrm{H}), 4.11-3.99(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 169.3,167.6,167.3,161.1,137.8,136.4,133.2,132.5,130.0,128.1,127.4$, 118.94, 118.85, 118.8, 117.3, 79.1, 62.4, 62.1, 55.1, 14.0, 13.8; HRMS (ESI+) Calcd. For $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 396.1805$, found: 396.1805. The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (Chiralpak IE, i-propanol/hexane $=5 / 95$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=8.83$ and 10.33 min .

diethyl (R)-2-amino-2-(1-phenylprop-2-yn-1-yl)malonate (6): $69.4 \mathrm{mg}, 80 \%$ yield, yellow oil; ${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 7.50-7.43$ (m, 2H), $7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 4.79$ (d, J $=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.02(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12$ (brs, $2 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ $169.4,168.6,135.2,129.5,128.2,128.0,82.0,72.7,70.1,62.5,62.3,43.5,14.0,13.8$. HRMS (ESI+) Calcd. For $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 290.1388$, found: 290.1385.

diethyl (R)-2-amino-2-(phenyl(1-tosyl-1H-1,2,3-triazol-4-yl)methyl)malonate (7): 69.1 mg , 71% yield, white solid, $\mathrm{mp} 88-90{ }^{\circ} \mathrm{C} ;[\alpha]^{32} \mathrm{D}=77.00\left(c 0.90, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.00-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H})$, $5.35(\mathrm{~s}, 1 \mathrm{H}), 4.12-4.01(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 169.6,169.5,147.2,147.1,136.4,133.1,130.3,129.7$, 128.6, 128.4, 127.8, 122.6, 69.8, 62.5, 62.4, 47.6, 21.8, 13.9, 13.6. HRMS (ESI+) Calcd. For $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 487.1646$, found: 487.1646. The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (Chiralcel AS-H, i-propanol/hexane $=10 / 90$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=21.99$ and 25.66 min .

IV. Determination of Absolute Configuration of 3a'

In a 10 mL Schlenk flask was placed $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}(0.01 \mathrm{mmol})$ and $\mathbf{L 4}(0.01 \mathrm{mmol})$ under Ar. Anhydrous DCM (1.0 mL) was added, and the mixture was magnetically stirred at room temperature for 30 min . Then the reaction flask was placed in a cool bath of $-10{ }^{\circ} \mathrm{C}$,
 Anhydrous DCM (1.0 mL) sequentially, and monitored by TLC analysis. After completion, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. The aqueous layer was extracted three times with ethyl acetate $(6 \mathrm{~mL} \times 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatile solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel to afford pure 3a'.

To a solution of $\mathbf{3 a}{ }^{\prime}(0.30 \mathrm{mmol})$ in $\mathrm{EtOH}(3 \mathrm{~mL})$ under nitrogen, then $10 \mathrm{mg} \mathrm{Pd}-\mathrm{CaCO}_{3}$ was added. The reaction mixture was stirred under H_{2} atmosphere (1 atm) at $25^{\circ} \mathrm{C}$ for $3 \mathrm{~d} .{ }^{2} \mathrm{After}$ the reaction was completed (monitored by TLC), the crude reaction mixture was filtered over a short pad of celite and washed with EtOAc. The solvents were removed under reduced pressure. Then the residue was purified by silica gel column chromatography to afford the desired product

8.

To a solution of $\mathbf{8}(0.20 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$, then 1 mL 2 M HCl was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . After the reaction was complete (monitored by TLC), THF was removed under reduced pressure. The crude reaction mixture was extracted with EtOAc (3 $\times 3 \mathrm{~mL}$) and the aqueous solution was added with $10 \% \mathrm{NaOH}$ until $\mathrm{pH}=10$, then the crude reaction mixture was extracted with $\mathrm{DCM}(3 \times 3 \mathrm{~mL})$, the organics were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum and purified by silica-gel flash chromatography to afford the desired product $9 ;[\alpha]^{32}{ }_{\mathrm{D}}=-50.6\left(c 0.89, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Compared with the results in the literature ${ }^{1}$, the absolute configuration of $\mathbf{9}$ is determined to be R.

diisopropyl (R,E)-2-((2-hydroxybenzylidene)amino)-2-(1-phenylprop-2-yn-1-yl)malonate (3a'): 71% yield, yellow liquid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 13.12(\mathrm{~s}, 1 \mathrm{H}), 8.45$ (s, $1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 1 \mathrm{H}), 5.24$ - $5.15(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 169.0,166.4,166.0,161.1,135.2,133.2,132.5,129.8,128.2$, $128.1,118.9,118.7,117.4,82.2,78.4,74.1,70.7,70.5,44.5,21.6,21.5,21.4,21.3$. The product was analyzed by HPLC to determine the enantiomeric excess: 65% ee (Chiralpak AD-H, i propanol $/$ hexane $=5 / 95$ flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=262 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=16.01$ and 19.99 min .

V. Reference

1. R.-Q. Wang, C. Shen, X. Cheng, Z.-F. Wang, H.-Y. Tao, X.-Q. Dong, C.-J. Wang, Chin. J. Chem. 2020, 38, 807.
2. W. Shao, H. Li, C. Liu, C.-J. Liu, S.-L. You, Angew. Chem. Int. Ed. 2015, 54, 7684.
3. Q. Zhu, B. Meng, C. Gu, Y. Xu, J. Chen, C. Lei, X. Wu, Org. Lett. 2019, $21,9985$.

VI. NMR and HPLC Spectra

Data File E: \DATA $\backslash W R Q \backslash W R Q-04-94 \backslash W R Q-04-94-I E-98 \quad 2019-10-1612-56-55 \backslash W R Q-04-94 . D$ Sample Name: WRQ-04-94


```
Acq. Operator : SYSTEM Seq. Line : 1
Acq. Instrument : 1260 Location : 55
Injection Date : 10/16/2019 12:58:31 PM Inj : 1
    Inj Volume : 10.000 \mul
Acq. Method : E:\DATA\WRQ\WRQ-04-94\WRQ-04-94-IE-98 2019-10-16 12-56-55\WRQ-4-IE-98-2-DAD
                    -1ML.M
Last changed : 10/16/2019 12:56:55 PM by SYSTEM
Analysis Method : E:\DATA\WRQ\WRQ-04-94\WRQ-04-94-IE-98 2019-10-16 12-56-55\WRQ-4-IE-98-2-DAD
                    -1ML.M (Sequence Method)
Last changed : 7/21/2020 9:28:42 PM bY SYSTEM
    (modified after loading)
```

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with IsTDs
Signal l: DADl A, Sig=220, 4 Ref $=360,100$

Data File E: \DATA $\mathrm{WRQ} \backslash \mathrm{WRQ}-04-109 \backslash \mathrm{WRQ}-04-109-1$ 2019-10-31 16-48-56\WRQ-04-109.D Sample Name: WRQ-04-109-1

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with IsTDs

Signal l: DADl A, Sig=220, 4 Ref=360, 100

Peak \#	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [maU]	Area \%
1	19.121 BB	0.4871	531.76917	14.59544	4.1155
2	21.607 BB	0.6855	1.23893 e 4	261.62451	95.8845
Total	3 :		1.29210 e 4	276.21995	

Data File E: \DATA \backslash WRQ WRQ-05--05 WRQ -05-05-06-95-5 2019-12-18 01-01-11\WRQ-05--05.D
Sample Name: WRQ-05-05-Cl-rac

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal l: DADl, Sig=262,4 Ref=355,90, EXT
Signal has been modified after loading from rawdata file!

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m \mathrm{~mA}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area
1	15.371 MF R	0.5119	5449.81299	177.45215	50.0770
2	17.544 FM R	0.5726	5433.06006	158.14549	49.9230
Total	:		1.08829 e 4	335.59764	

Data File E: \DATA \backslash WRO WRQ-05--07\WRQ-05-07-8-9-10 2019-12-19 23-03-29\WRQ-05-07.D Sample Name: WRQ-05-07

Additional Info : Peak (s) manually integrated

==2,
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal l: DADl, Sig=262,4 Ref=355,90, EXT
Signal has been modified after loading from rawdata file!

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA}^{\mathrm{A}} \mathrm{~A}^{2} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area
1	15.489	MM R	0.4238	5945.11084	233.81195	97.1726
2	17.683	MM R	0.4397	172.98402	6.55733	2.8274

210200
$190 \quad 18$

Data File E: \DATA $\backslash W R Q \backslash W R Q-05-17-18 \backslash W R Q-05-17-18$ 2019-12-28 23-09-37\WRQ-05-17-181.D
Sample Name: WRQ-05-18

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with IsTDs

Signal l: DADl A, Sig $=220,4$ Ref $=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [maU]	Area *
1	17.007		0.4115	1.15967 e 4	428.87823	49.8109
2	18.610		0.4627	1.16848 e 4	388.71231	50.1891
Total	3 :			2.32815 e 4	817.59055	

Data File E: \DATA \WRQ WRQ -05-20\WRQ-05-20 2019-12-30 17-39-45\WRQ-05-20.D Sample Name: WRQ-05-20

Acq. Operator : SYSTEM Seq. Line : 1
Acq. Instrument : 1260 Location : 54

Injection Date : 12/30/2019 5:41:13 PM Inj : 1
Inj Volume : 7.000 $\mu \mathrm{l}$
Acq. Method : E:\DATA\WRQ\WRQ-05-20\WRQ-05-20 2019-12-30 17-39-45\WRQ-2-95-5-DAD-1ML30MIN.M
Last changed : 12/30/2019 5:39:45 PM by SYSTEM
Analysis Method : E: \DATA $\backslash \mathrm{WRQ} \backslash \mathrm{WRQ}-05-20 \backslash \mathrm{WRQ}-05-20$ 2019-12-30 17-39-45\WRQ-2-95-5-DAD-1ML3OMIN.M (Sequence Me thod)
Last changed : 7/21/2020 8:52:29 PM by SYSTEM (modified after loading')
Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with IsTDs

Signal l: DADl A, Sig $=220,4$ Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{m}_{\mathrm{h}} \mathrm{AU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [madu]	Area \%
1	16.905	MM R	0.4571	2.12663 e 4	775.46625	94.8088
2	18.447	MM R	0.4508	1164.42810	43.04722	5.1912
Total	3 :			2.24307 e 4	818.51347	

3d

Data File E: \DATA \backslash WRQ
Sample Name: WRQ-05-09

Acq. Method : E: \DATA $\mathrm{WRQ} \backslash$ WRQ-05--07\WRQ-05-07-8-9-10 2019-12-19 23-03-29\WRQ-2-95-5-DAD-1ML-60MIN.M
Last changed : 12/19/2019 11:03:29 PM by SYSTEM
Analysis Method : E: \DATA $\begin{gathered}\text { WRQ } \\ \text { ARQ-05--07 WRQ-05-07-8-9-10 } \\ \text { 2019-12-19 23-03-29 WRQ-2-95-5-DAD- }\end{gathered}$ IML-60MIN.M (Sequence Method)
Last changed : 7/21/2020 8:29:58 PM by SYSTEM (modified after loading)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal l: DADl, Sig=264,4 Ref=355,90, EXT
Signal has been modified after loading from rawdata file!

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\text { MAU }^{+}{ }^{*} s\right]} \end{gathered}$	Height [midu]	Area \%
1	13.717	MM R	0.4244	3907.79834	153.47763	50.2725
2	19.668	MM R	0.5642	3865.44116	114.17921	49.7275
Tota				7773.23950	267.65684	

Data File E: \DATA \backslash WRQ \backslash WRQ-05-12-13 WRQ -05-12-13 2019-12-25 15-43-54 4 WRQ-05-12-13.D
Sample Name: WRQ-05-12-Cl

Additional Info : Peak (s) manually integrated

==2,
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal l: DADl, Sig=264,4 Ref=355,90, EXT
Signal has been modified after loading from rawdata file!

Peak \#	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA}^{\mathrm{A}} \mathrm{~A}^{2} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area
1	13.887 BB	0.3774	9416.22852	382.17908	93.5279
2	20.137 BB	0.4078	651.60229	19.90847	6.4721

3 e

Data File E: $\backslash \mathrm{DATA} \backslash$ WRQ WRQ -05-mBr-RAC \backslash WRQ-05-mBr-RAC 2020-06-19 21-12-22 \backslash WRQ-05-mBr-RAC.D Sample Name: WRQ-05-mBr-RAC

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with IsTDs

Signal l: DADl A, Sig=220, 4 Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~S}]} \end{gathered}$	Height [mAU]	Area *
1	14.123		0.3503	9274. 55566	400.37326	49.9855
2	22.236		0.5483	9279.94336	253.95900	50.0145
Total	3 :			1.85545 e 4	654.33226	

Data File E: \DATA \backslash WRQ W WR-05--mBr-S \backslash WRQ-05-mBr-S 2020-06-19 $21-45-45 \backslash$ WRQ-05-mBr-S.D
Sample Name: WRQ-05-mBr-S

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl A, Sig=220,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]		Height [mind	Area *
1	14.141	MM R	0.3950	1.24136 e 4	523.78461	93.3130
2	22.150	MM R	0.6012	889.57928	24.66289	6.6870
Total	3 :			1.33032e4	548.44749	

Data File E: \DATA $\backslash W R Q \backslash W R Q-05-F-R A C \backslash W R Q-05-F-R A C \quad 2020-06-16$ 17-54-06
Sample Name: WRQ-05-F-RAC

Acq. Operator	: SYSTEM	Seq. Line :	2
Acq. Instrument	: 1260	Location :	61
Injection Date	: 6/16/2020 6:27:01 PM	Inj :	1
		Inj Volume :	. 000
Acq. Method	$\begin{aligned} : & E: \backslash D A T A \backslash \text { WRQ } \backslash \text { WRQ-05-F- } \\ & -1 \text { ML-30MIN.M } \end{aligned}$	$5 \text {-F-RAC } 2020$	$6-16$
Last changed	: 6/16/2020 5:54:06 PM		
Analysis Method	: E: \DATA \backslash WRQ WRQ -05-F -1ML-30MIN.M (Sequenc	$5-\mathrm{F}-\mathrm{RAC} 2020$	$5-16$
Last changed	: 7/20/2020 8:40:11 PM		

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with IsTDs

Signal 1: DADl A, Sig $=254,4$ Ref $=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [maU]	Area \%
1	11.180		0.3244	4918.21631	223.81128	50.2807
2	12.703		0.4325	4863.31055	169.64330	49.7193
Total	3 :			9781.52686	393.45457	

Sample Name: WRQ-05-F-S

Additional Info : Peak (s) manually integrated

==12,
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl A, Sig=254,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mind]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.284		0.3092	338.43790	14.56021	5.0712
2	12.722	MM R	0.4516	6335.30176	233.79028	94.9288
Total	3 :			6673.73965	248.35049	

Data File E: \DATA \backslash WRQ WRQ-05-CF3-RAC \backslash WRQ-05-CF3-RAC 2020-06-16 21-27-58\WRQ-05-CF3-RAC.D Sample Name: WRQ-05-CF3-RAC

Additional Info : Peak (s) manually integrated

==2,
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl A, Sig=254,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	TYpe	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\text { MAU }^{\left.+A^{*} s\right]}\right.} \end{gathered}$	Height [mAU]	Area \%
1	7.537		0.2208	7093.07568	481.72916	50.0025
2	8.312		0.2573	7092.35742	415.08438	49.9975
Total	s :			1. 41854 e 4	896.81354	

Data File E: \DATA \backslash WRQ WRQ--05-CF3-S \backslash WRQ-05-CF3-S 2020-06-16 20-49-51\WRQ-05-CF3-S.D
Sample Name: WRQ-05-CF3-S

Additional Info : Peak (s) manually integrated

==2,
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl A, Sig=254,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [IMAU]	Area *
1	7.519		0.2238	320.80942	21.65504	4.1342
2	8.272		0.2762	7439.04053	414.89069	95.8658
Total	s :			7759.84995	436.54573	

3h

[^0]Data File E: \DATA \backslash WRQ W WRO-05--05 WRQ-05-05-06-95-5 2019-12-18 01-01-11 Sample Name: WRQ-05--06-Me

Acq. Operator : SYSTEM Seq. Line : 2
Acq. Instrument : 1260 Location : 52
Injection Date : 12/18/2019 2:04:08 AM Inj : 1

Acq. Method : E: \DATA \backslash WRQ $\$ WRQ-05--05 -1ML-60MIN.M
Last changed : 12/18/2019 1:01:11 AM by SYSTEM
 -1ML-60MIN.M (Sequence Method)
Last changed : 7/21/2020 8:15:01 PM by SYSTEM (modified after loading)
Additional Info : Peak (s) manually integrated

==2,
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal l: DADl, Sig=262,4 Ref=355,90, EXT
Signal has been modified after loading from rawdata file!

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m \mathrm{~mA}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area
1	17.716 BB	0.5042	7095.61768	205.33069	49.9542
2	20.345 BB	0.5712	7108.61523	180.61755	50.0458
Totals :			1.42042e4	385.94824	

Data File E: \DATA \backslash WRQ
Sample Name: WRQ-05-08

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1, Sig=262,4 Ref=355,90, EXT
Signal has been modified after loading from rawdata file!

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{MAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mind]	Area \%
1	17.785 BB	0.4526	5495.39795	187.11365	97.0338
2	20.480 BB	0.3829	167.98982	5.18680	2.9662
Totals : 5663.38777					

$3 i$

Data File E: \DATA \backslash WRQ
Sample Name: WRQ-04-139
== ===2
Acq. Operator : SYSTEM Seq. Line : 1
Acq. Instrument : 1260 Location : 51

Injection Date : 12/1/2019 12:48:18 AM
Inj : 1
Inj Volume : $10.000 \mu \mathrm{l}$
Acq. Method : E: \DATA \backslash WRQ W WRQ-04-139\WRQ-04-139-AD-98 2019-12-01 00-46-53\WRQ-2-98-2-DADIML.M
Last changed : 12/1/2019 12:46:53 AM by SYSTEM
Analysis Method : E: \DATA \backslash WRQ ${ }^{\text {AnRQ-04-139 WRQ-04-139-AD-98 2019-12-01 00-46-53 WRQ-2-98-2-DAD- }}$ IML.M (Sequence Method)
Last changed : 7/20/2020 10:47:02 PM by SYSTEM (modified after loading)
Additional Info : Peak (s) manually integrated

===2,
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1, Sig=254,4 Ref=355,90, EXT
Signal has been modified after loading from rawdata file!

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{MAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area *
1	39.590 BB	0.7156	3262.94092	53.64431	50.2936
2	48.241 BB	0.9024	3224.84229	41.97158	49.7064
Tota	:		6487.78320	95.61590	

```
Data File E:\DATA\LYN\WCS-2-35 2019-12-05 22-40-08\LYN-4-193.D
```

Sample Name: WRQ-04-145

Acq. Operator : SYsTEM \quad Seq. Line : 4
Acq. Instrument : 1260 Location : 53
Injection Date : $12 / 6 / 2019$ 12:15:38 AM Inj : 1
Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method : E:\DATA\LYN\WCS-2-35 2019-12-05 22-40-08\WRQ-2-98-2--70min-DAD.M
Last changed : 12/5/2019 10:40:08 PM by SYSTEM
Analysis Method : E: \DATA \backslash LYN W WCS-2-35 2019-12-05 22-40-08\WRQ-2-98-2--70min-DAD.M (Sequence
Method)
Last changed : 7/20/2020 10:21:54 PM by SYsTEM
(modified after loading)
Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs
Signal 1: DAD1 A, Sig=254, 4 Ref=off

3j

[^1]Data File E: \DATA \backslash WRQ
Sample Name: WRQ-05-10

Acq. Operator : SYSTEM Seq. Line : 5
Acq. Instrument : 1260 Location : 56
Injection Date : 12/20/2019 1:41:06 AM Inj : 1

Inj Volume : $10.000 \mu \mathrm{l}$
Acq. Method : E: \DATA \backslash WRQ WRQ -05--07 CWRQ -05-07-8-9-10 2019-12-19 23-03-29\WRQ-2-95-5-DAD-1ML-60MIN.M
Last changed : 12/19/2019 11:03:29 PM by SYSTEM
Analysis Method : E: \DATA WRQ\WRQ-05--07\WRQ-05-07-8-9-10 2019-12-19 23-03-29\WRQ-2-95-5-DAD-IML-60MIN.M (Sequence Method)
Last changed : 7/21/2020 8:21:55 PM by SYSTEM
(modified after loading)
Additional Info : Peak (s) manually integrated

==2,
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl A, Sig=220,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\text { MAU }^{\left.+A^{*} s\right]}\right.} \end{gathered}$	Height [mind	Area \%
1	13.993	FM R	0.4369	2.12496 e 4	810.65375	50.1537
2	17.494	BB	0.4772	2.11193 e 4	671.04120	49.8463
Total	s :			4.23688e4	1481.69495	

Data File E: \DATA $\backslash W R Q \backslash W R Q-05-12-13 \backslash W R Q-05-12-13 \quad 2019-12-2515-43-54 \backslash W R Q-05-12-131 . D$
Sample Name: WRQ-05-13-Me

Additional Info : Peak (s) manually integrated

$===1$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with IsTDs

Signal l: DADl A, Sig $=220,4$ Ref $=360,100$

亿o Non

| 90 | 180 | 170 | 160 | 1 |
| :--- |

Data File E: \DATA \backslash WRQ \backslash WRQ-05-17-18 WRQ -05-17-18 2019-12-28 23-09-37\WRQ-05-17-18.D
Sample Name: WRQ-05-17

Additional Info : Peak (s) manually integrated

==2,
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl A, Sig=220,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\text { MAU }^{\left.+A^{*} s\right]}\right.} \end{gathered}$	Height [mind	Area \%
1	13.015	BV	0.3285	8453.36914	393.68243	50.3530
2	14.720	VB	0.3734	8334.84082	346.79016	49.6470
Total	s :			1.67882 e 4	740.47260	

Data File E: \DATA $\backslash W R Q \backslash W R Q-05-17-18 \backslash W R Q-05-17-18 \quad 2019-12-28$ 23-09-37\WRQ-05-17-182.D
Sample Name: WRQ-05-19

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal l: DADl A, Sig $=220,4$ Ref $=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [maU]	Area \%
1	13.020		0.3092	1688.35095	82.01949	11.8889
2	14.710		0.3702	1.25127 e 4	522.84393	88.1111
Total	3 :			1.42011e4	604.86343	

Data File E: \DATA \WRQ WRQ -05-22\WRQ-05-22 2020-01-06 23-03-15\WRQ-05-22.D Sample Name: WRQ-05-22
$==1$
Acq. Operator : SYSTEM Seq. Line : 1
Acq. Instrument : 1260 Location : 51
Injection Date : 1/6/2020 11:04:48 PM Inj : 1

Inj Volume : $7.000 \mu \mathrm{l}$
Acq. Method : E:\DATA\WRQ\WRQ-05-22\WRQ-05-22 2020-01-06 23-03-15\WRQ-2-95-5-DAD-1ML30MIN.M
Last changed : 1/6/2020 11:52:23 PM by SYSTEM
(modified after loading)
Analysis Method : E: \DATA WRQ\WRQ-05-22\WRQ-05-22 2020-01-06 23-03-15\WRQ-2-95-5-DAD-1ML30MIN.M (Sequence Method)
Last changed : 7/21/2020 8:59:28 PM by SYSTEM (modified after loading)
Additional Info : Peak (s) manually integrated

===2,
Area Percent Report
===_=,

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl A, Sig $=220,4$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\text { MAU }^{+}{ }^{*} s\right]} \end{gathered}$	Height [mind	Area *
1	27.177 BV	0.6639	1.62153 e 4	363.14661	49.7110
2	28.938 VB	0.6908	1.64038 e 4	341.86246	50.2890
Totals :			3.26191 e 4	705.00906	

Data File E: \DATA $\backslash W R Q \backslash W R Q-05-22 \backslash W R Q-05-22$ 2020-01-06 23-03-15\WRQ-05-221.D
Sample Name: WRQ-05-23

Additional Info : Peak (s) manually integrated

$==1$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with IsTDs

Signal l: DADl A, Sig $=220,4$ Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~S}]} \end{gathered}$	Height [mAU]	Area *
1	27.066	MF R	0.7405	2.70678 e 4	609.22577	95.4301
2	28.868	FM R	0.8004	1296.21387	26.99238	4.5699
Total	3 :			2.83640 e 4	636.21815	

[^2] Sample Name: WRQ-05-furan-rac

Acq. Method : E: \DATA \backslash WRQ WRQ-05-furan-rac WRQ-05-furan-RAC-ie-95 2020-07-03 22-39-43\WRQ -4-IE-95-5-DAD-1ML-30MIN.M
Last changed : 7/3/2020 10:39:43 PM by SYSTEM
Analysis Method : E: \DATA \backslash WRQ ${ }^{\text {AndQ-05-furan-rac } \backslash \text { WRQ-05-furan-RAC-ie-95 2020-07-03 22-39-43\WRQ }}$ -4-IE-95-5-DAD-1ML-30MIN.M (Sequence Method)
Last changed : 7/20/2020 8:19:08 PM by SYSTEM
(modified after loading)
Additional Info : Peak (s) manually integrated

$==2$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl A, Sig=254,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\text { MAU }^{\left.+A^{*} s\right]}\right.} \end{gathered}$	Height [mAU]	Area \%
1	18.540		0.4409	5114.61133	167.67819	50.1239
2	21.015	BB	0.5158	5089.32129	148.88193	49.8761
Total	s :			1.02039 e 4	316.56012	

Data File E: $\backslash \mathrm{DATA} \backslash$ WR...furan-s \backslash WRQ-05-furan-RAC-ie-95 2020-07-03 23-30-38 ${ }^{2}$ WRQ-05-furan-s.D Sample Name: WRQ-05-furan-s
==
Acq. Operator : SYSTEM
Acq. Instrument : 1260
Injection Date : $7 / 3 / 2020 \quad 11: 32: 10 \mathrm{PM}$
 -IE-95-5-DAD-1ML-30MIN.M
Last changed : 7/3/2020 11:30:38 PM by SYSTEM
Analysis Method : E: \DATA \backslash WRQ ARQ -05-furan-s \backslash WRQ-05-furan-RAC-ie-95 2020-07-03 23-30-38 -IE-95-5-DAD-1ML-30MIN.M (Sequence Method)
Last changed : 7/20/2020 8:31:18 PM by SYSTEM (modified after loading)
Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl A, Sig=254,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	TYpe	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [IMAU]	Area *
1	18.624		0.4687	4531.56299	145.35938	96.4745
2	21.265		0.3869	165.59886	5.03218	3.5255
Total	s :			4697.16185	150.39156	

Data File D: \HPLC\Data\20220601\A 2022-06-01 09-44-10\A2.D
Sample Name: CGXG-SAIFEN-RAC

Signal 1: VWD A, Wavelength=266 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \frac{\%}{\%} \end{gathered}$
1	26.495 BB	0.7861	1.01842 e 4	193.16212	49.8009
2	32.981 BB	1.0089	1.02656 e 4	151.42755	50.1991
Total	s :		2.04498 e 4	344.58968	

Data File D: \HPLC\Data\20220601\A 2022-06-01 09-44-10\Al.D
Sample Name: CGXG-SAIFEN-S

Additional Info : Peak (s) manually integrated

==2,
Area Percent Report

Signal l: VWDl A, Wavelength=266 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\text { min }]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	26.809		0.8130	1.96538 e 4	362.83182	94.7681
2	33.625		0.9829	1085.04285	16.14867	5.2319

4

$\stackrel{\infty}{\sim}$	$\stackrel{0}{0}$			の~~ロ		$\%$	
©®\%	-				¢i¢	¢	¢
\V	1		$1 /$	\V	V	\|	V

Data File E: \DATA \backslash CGXG $\$ CGXG-SC-15-90B 2021-07-04 09-30-36\CGXG-SC-15-90B.D
Sample Name: CGXG-SC-15-90B

Acq. Operator : SYSTEM Seq. Line : 1
Acq. Instrument : 1260 Location : 31
Injection Date : 7/4/2021 9:32:09 AM Inj : 1
Inj Volume : $5.000 \mu \mathrm{l}$
Acq. Method : E: $\backslash \mathrm{DATA} \backslash C G X G \backslash C G X G-S C-15-90 B 2021-07-0409-30-36 \backslash C G X G-2-I E-95-5-254 D A D-1 M L-$ 30MIN-5UL.M
Last changed : 7/4/2021 9:52:00 AM by SYSTEM (modified after loading)
Analysis Method : E: \DATA CGXG A CGXG-SC-15-90B 2021-07-04 09-30-36\CGXG-2-IE-95-5-254DAD-1ML-30MIN-5UL.M (Sequence Method)
Last changed : 7/17/2021 5:47:38 PM by SYSTEM (modified after loading)
Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl, Sig=270,2 Ref=off, EXT
Signal has been modified after loading from rawdata file

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	11.902 BB	0.3600	1738.35571	71.93020	49.7479
2	13.950 BB	0.3757	1755.97742	69.52423	50.2521

```
Data File E:\DATA\CGXG\CGXG-3-SC-15-90A 2021-07-17 08-40-51\CGXG-3-SC-15-90Al.D
```

Sample Name: CGXG-3-SC-15-90A
$==2$
Acq. Operator : SYSTEM Seq. Line : 2
Acq. Instrument : 1260 Location : 71

Injection Date : 7/17/2021 8:53:31 AM
Acq. Method : E: DATA CGXGYCGXG-3-SC-15-90A Inj Volume : 5.000μ
Last changed : \quad-30MIN-5UL.M
(modified after loading)

Analysis Method : E: \DATA CGXG\CGXG-3-SC-15-90A 2021-07-17 08-40-51\CGXG-2-IE-95-5-254DAD-1ML -30MIN-5UL.M (Sequence Method)
Last changed : 7/17/2021 5:48:26 PM by SYSTEM (modified after loading)
DAD1 B. Sig $=254,4$ Ref-360,100 (E:DATAICGXGLCGX G-3-SC-15-90A202 1-07-17 08-40-51C CGXG-3-SC-15-90A1.D)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal l: DADl B, Sig=254,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{MAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area *
1	11.879		0.3616	1095.14478	44.72906	97.1312
2	14.009		0.2731	32.34587	1.39722	2.8688
Total	3 :			1127.49064	46.12627	

90

180	170	160	150	140	130	120	110	100	1

Data File E: \DATA CGXG\CGXG-3-151-SC-100 2021-07-16 11-53-35\CGXG-3-151-SC-1001.D
Sample Name: CGXG-3-151-RAC

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl B, Sig=254, 4 Ref $=360,100$

Peak $\#$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.854 BB	0.1989	3055.35693	231.66972	49.6508
2	10.386 BB	0.2365	3098.33350	195.87973	50.3492
Total	3 :		6153.69043	427.54945	

Data File E: \DATA CGXG\CGXG-3-151-SC-100 2021-07-16 11-53-35\CGXG-3-151-SC-1002.D
Sample Name: CGXG-3-151-S

Acq. Operator : SYSTEM Seq. Line : 3
Acq. Instrument : 1260 Location : 72
Injection Date : 7/16/2021 12:38:30 PM Inj : 1
Inj Volume : 5.000 $\mu \mathrm{l}$
Acq. Method : E: \DATA\CGXG\CGXG-3-151-SC-100 2021-07-16 11-53-35\CGXG-2-IE-95-5-254DAD-1ML-30MIN-5UL.M
Last changed : 7/16/2021 1:01:45 PM by SYsTEM (modified after loading)
Analysis Method : E: \DATA CGXG CGXG-3-151-5C-100 2021-07-16 11-53-35\CGXG-2-IE-95-5-254DAD-1ML-30MIN-5UL.M (Sequence Method)
Last changed : 7/17/2021 5:39:40 PM by SYsTEM (modified after loading)
Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal l: DAD1 B, Sig=254, 4 Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.830		0.1970	198.56895	15.14498	3.4739
2	10.330		0.2438	5517.49658	341.02316	96.5261
Total	3 :			5716.06554	356.16814	

7

Data File E: \DATA \backslash SC \backslash SC-16-2-5 \backslash SC-16-5-RAC-AS-90 2021-04-02 09-54-54\SC-16-2-5.D
Sample Name: SC-16-5-RAC-AS-90

Additional Info : Peak (s) manually integrated

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DADl A, Sig=220,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]		Height [mind	Area *
1	22.334		0.8360	2548.25391	40.83508	50.1935
2	26.233		0.8144	2528.60669	38.09251	49.8065
Total	s :			5076.86060	78.92759	

Data File E: \DATA \backslash SC $\backslash \mathrm{SC}-16-2-5 \backslash S C-16-2$ 2021-04-02 $10-34-12 \backslash S C-16-2-5 . D$
Sample Name: SC-16-2

Acq. Method : E:\DATA S SC\SC-16-2-5\SC-16-2 2021-04-02 10-34-12\SC-1-ASH-90-10-DAD-1ML.M
Last changed : 4/2/2021 10:34:39 AM by SYsTEM (modified after loading)
Analysis Method : E:\DATA\SC\SC-16-2-5\SC-16-2 2021-04-02 10-34-12\SC-1-ASH-90-10-DAD-1ML.M (Sequence Method)
Last changed : 6/27/2021 10:33:49 PM by SYsTEM (modified after loading)
Additional Info : Peak(s) manually integrated

$==2$
Area Percent Report

Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Do not use	\&	ion Fac

Signal l: DADl A, Sig $=220,4$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\text { mants] }} \end{gathered}$	Height [maU]	Area *
1	21.992		0.6461	331.77695	6.02809	3.4881
2	25.663		0.9405	9179.81152	142.70569	96.5119
Total	3 :			9511.58847	148.73378	

Data File D：\LC\DATA $C G X G \backslash S C-16-46-\mathrm{rac} \backslash \mathrm{SC}-16-46-\mathrm{rac}$ 2021－06－28 19－05－53\SC－16－46－rac．D Sample Name：SC－16－46－rac

Acq．Method ：D：\LC $\backslash D A T A \backslash C G X G \backslash S C-16-46-\mathrm{rac} \backslash \mathrm{SC}-16-46-\mathrm{rac}$ 2021－06－28 19－05－53\CGXG－ADH－95－5 －262NM－1ML－30MIKN－5UL．M
Last changed ：6／28／2021 5：23：03 PM by 水统
Analysis Method ：D：\LC\DATA\CGXG\SC－16－46－rac SC－16－46－rac 2021－06－28 19－05－53\CGXG－ADH－95－5 $-262 \mathrm{MM}-1 \mathrm{ML}-30 \mathrm{MIKN}-5 \mathrm{UL} . \mathrm{M}$（Sequence Method）
Last changed ：7／17／2021 5：35：14 PM by 発统 （modified after loading）
Additional Info ：Peak（s）manually integrated

Area Percent Report
$==2$

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \＆Dilution Factor with IsTDs

Signal l：VWDl A，Wavelength＝262 nm

Data File D: \LC\DATA $\ C G X G \backslash S C-16-47-$ opt \backslash SC-16-47-opt 2021-06-28 17-28-11\SC-16-47-opt.D Sample Name: SC-16-47-opt

Additional Info : Peak (s) manually integrated

Area Percent Report
$==2$

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD A A, Wavelength=262 nm

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	16.014 BV	0.4669	3480.48633	112.61360	82.3388
2	19.985 VV	0.5955	746.54651	15.82673	17.6612
Total	3 :		4227.03284	128.44033	

[^0]: $\left.\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

[^1]: $\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ f 1(\mathrm{ppm})\end{array}$

[^2]: $\left.\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

