Supporting Information

Bimetallic doping Engineering into Ni₃S₂ Nanosheet Originated from NiFe Layered Double Hydroxide for Efficient Overall Water Splitting

Tianshan Song, ^a Hui Xue, ^{*}a Jing Sun, ^a Niankun Guo, ^a Jiawen Sun, ^a Yi-Ru Hao, ^a

and Qin Wang $^{\ast a}$

^a College of Chemistry and Chemical Engineering, Inner Mongolia University,

Hohhot 010021 (P. R. China)

*Corresponding authors: E-mail: qinwang@imu.edu.cn (Q. Wang)

Experimental

Materials

Ni(NO₃)₂· $6H_2O$, FeCl₂· $4H_2O$, urea, NH₄F, Na₂MoO₄, Cysteine, N-Methyl pyrrolidone (NMP), and KOH are all purchased from Tianjin Fengchuan chemical reagent technology Ltd. IrO₂ is purchased from Aladdin. Pt/C(20 ω t.%) is purchased from Johnson Matthey. Deionised water is used to prepare all solutions.

Preparation of NiFe-LDH/NF

Firstly, the Ni foam (2 cm×3 cm) used to be washed in 3 M HCl, deionized water, and ethanol with the assistance of ultrasonication each for 15 min. Then, Ni(NO₃)₂·6H₂O (1 mmol), FeSO₄·4H₂O (0.3 mmol), urea (5 mmol) and NH₄F (2 mmol) are added to a mixture of H₂O (11 mL) and ethanol (2 mL), and stir for 30 minutes at room temperature. The prepared NF is immersed into the above solution. The mixture is poured into a 20 mL autoclave and kept at 120 °C for 8 hours. The sample is rinsed with ethanol and deionized water after the hydrothermal reaction and dried in a vacuum oven at 60 °C.

Preparation of Fe-Ni₃S₂/NF

In general, 121.2 mg of cysteine and 15 mL of NMP is mixed by sonication for 30 minutes. The prepared NiFe-LDH/NF is immersed in the above solution. Then, the mixture is poured into a hydrothermal reactor with a capacity of 20 mL. The hydrothermal reactor is then placed in an oven at 200 °C for 20 hours. The sample is rinsed with ethanol and deionized water and dried in a vacuum oven at 60 °C.

Preparation of Fe, Mo-Ni₃S₂/NF

Fe, Mo-Ni₃S₂/NF is synthesized in a similar way to Fe-Ni₃S₂/NF. 121.2 mg of cysteine and 61 mg of Na₂MoO₄ are added to 15 mL of NMP and sonicated for 30 minutes. The prepared NiFe-LDH/NF is immersed in the above solution. Then, the mixture is poured into a hydrothermal reactor with a capacity of 20 mL. The hydrothermal reactor is then placed in an oven at 200 °C for 20 hours. The sample is rinsed with ethanol and deionized water and dried in a vacuum oven at 60 °C.

Preparation of Pt/C (20 ωt.%)/NF

The 5 mg of Pt/C (20 ω t.%) is added to a mixed solution of 20 microliters of Nafion (5%), 240 microliters of deionized water, and 240 microliters of anhydrous ethanol solution to form ink. Then the ink is evenly spread on the NF (Geometric Area: 1.0 cm²).

Preparation of IrO₂/NF

The 5 mg of IrO_2 and 5 mg of graphene are added to a mixed solution of 20 microliters of Nafion (5%), 240 microliters of deionized water, and 240 microliters of anhydrous ethanol solution to form ink. Then the ink is evenly spread on the NF (Geometric Area: 1.0 cm²).

Material characterization

The crystallinity and crystal structure of the synthesised catalysts are characterised by powder X-ray diffraction instrumentation. The instrument model used is the PAN analytical Empyrean XRD system. A high-resolution transmission electron microscope for characterisation the morphology, size, and element distribution of the synthesized catalyst. The instrument model is FEI Tecnai F20. X-ray photoelectron spectroscopy (XPS) is applied to characterize the element valence, surface composition, and relative content of each element of the synthesized catalyst. The instrument model used is XSAM800 photoelectron spectrometer. The Raman beam is detected on a Raman spectrometer (Renishaw in Via plus) with a 532 nm laser wavelength. The scanning electron microscopy (SEM) is performed on a JEOLJSM 6700-F scanning electron microscope. The transmission electron microscope (TEM) and high-resolution transmission electron microscope (HRTEM) images are taken on the JEM-2010 transmission electron microscope system. The Park system is used for atomic force microscopy (AFM).

Electrochemical measurements

Electrochemistry is tested in a typical three-electrode system. The synthesized catalyst is used as the working electrode, the carbon rod is used as the counter electrode, and the Hg/HgO electrode is used as the reference electrode (CHI 760E, Inc. Shanghai). The electrocatalytic activity of OER, HER, and overall water splitting are tested by using linear scanning voltammetry (LSV) at room temperature at a scan rate of 5 mV·s⁻¹ in 1.0 M KOH and corrected for the automatic iR compensation (90%). EIS data are recorded at open-circuit potentials. Stability is measured by cyclic voltammetry and amperometric i-t curve. The electrochemical double layer capacitance (C_{dl}) is also determined by cyclic voltammetry (CV). The electrochemically active surface area can be assessed by the slope of the charge current versus scan rate curve, which is proportional to C_{dl}. All potentials in the article have been converted to hydrogen electrodes (E_{RHE} = $0.059*pH + E^0_{(Hg/HgO)} +$ $E_{(Hg/HgO)}$). The Faraday efficiency is measured by comparing the experimentally measured and theoretically calculated amount of gas. The Faraday yield is calculated from the total amount of oxygen produced (n_{O_2} : mmol) and the total amount of charge Q (C) passing through the cell. Suppose four electrons are required to produce

 N_{0_2} molecule, the faradaic efficiency = $4F \times \frac{n_{0_2}}{Q} = 4F \times \frac{n_{0_2}}{2} \times 10/t$, where Q = t × 0.1 (C), F is the Faraday constant, and t represents the time (s) for the test time. The overall quantity of oxygen produced during the test is calculated by means of drainage.

Fig. S1. (a) XRD and (b) Raman spectrum patterns of NiFe-LDH, Fe-Ni $_3S_2$, and Fe, Mo-Ni $_3S_2$ catalysts.

Fig. S2. SEM images with different magnifications of (a, b) NiFe-LDH, (c, d) Fe-Ni₃S₂, and (e, f) Fe, Mo-Ni₃S₂.

Fig. S3. (a) Nitrogen adsorption-desorption isotherms of different catalysts, pore size distribution of (b) NiFe-LDH, (c) Fe-Ni $_3S_2$, (d) Fe, Mo-Ni $_3S_2$.

Fig. S4. AFM images of NiFe-LDH.

Fig. S5. EDS spectrum of Fe, Mo-Ni $_3S_2$ sample.

Fig. S6. EDS line scan profiles of Fe, Mo-Ni $_3S_2$.

Fig. S7. XPS spectra of NiFe-LDH, Fe-Ni $_3S_2$, and Fe, Mo-Ni $_3S_2$ catalysts (a) full spectrum, (b) O 1s, and (c) C 1s.

	Ni (at.%)	Fe (at.%)	S (at.%)	O (at.%)	C (at.%)	Mo (at.%)
NiFe-LDH	4.05	1.51	0	27.83	66.61	0
Fe-Ni ₃ S ₂	8.45	3.23	5.67	33.42	49.24	0
Fe, Mo-Ni ₃ S ₂	8.03	3.4	7.45	36.05	42.96	2.12

Table S1. The atomic percentage of different elements in various catalysts.

Fig. S8. HER polarization curves of catalysts prepared under different conditions.

Fig. S9. (a) HER polarization curves of Pt/C/NF (20 wt.%) and (c) OER polarization curves of IrO_2/NF ; (b, d) the corresponding Tafel slopes.

Fig. S10. (a-c) CV curves under different scanning speeds for NiFe-LDH, Fe-Ni₃S₂, and Fe, Mo-Ni₃S₂ in 1.0 M KOH solution of HER.

Fig. S11. I-t curves for the Fe, Mo-Ni $_3S_2$ in 1.0 M KOH solution of HER.

Fig. S12. SEM images of Fe, Mo-Ni $_3S_2$ catalysts after HER stability test.

Fig. S13. OER polarization curves of catalysts prepared under different conditions.

Fig. S14. (a-c) CV curves under different scanning speeds for NiFe-LDH, Fe-Ni₃S₂, and Fe, Mo-Ni₃S₂ in 1.0 M KOH solution of OER.

Fig. S15. I-t curves for the as-prepared samples in 1.0 M KOH solution of OER.

Fig. S16. SEM images of Fe, Mo-Ni $_3S_2$ catalysts after OER stability test.

Fig. S17. The CV scanning of overall water splitting before and after 2000 cycles.

Fig. S18. Comparison of recently reported catalysts for overall water splitting.

Table S2. Summary of representative catalysts that have been recently reported in alkaline medium of HER in 1.0 M KOH.

	η (mV)@j	Substrate	Reference	
Catalyst	(mA cm ⁻²)	Substrate		
Fe, Mo-Ni ₃ S ₂	67@10	Ni foam	This work	
NiCo ₂ S ₄	80@10	Ni foam	Adv. Funct. Mater., 2019, 29, 1807031	
Se-(NiCo)S _x /(OH) _x	103@10	Ni foam	Adv. Mater., 2018, 30, 1705538	
NiFe LDH@NiCoP	120@10	Ni foam	Adv. Funct. Mater., 2018, 28, 1706847	
CoV/CF-CWs	118@10	Cu foam	Adv. Funct. Mater., 2021, 31, 2008822	
Fe _{0.09} Co _{0.13} -NiSe ₂	92@10	Cu foam	Adv. Mater., 2018, 30, 1802121	
CoP/NPC/TF	80@10	Ti foam	Adv. Energy Mater., 2019, 1803970	
Co Nis- Nss	80@10	Ni foom	Angew. Chem. Int. Ed., 2019, 58,	
C0-11132 1138	C0-N1S2 NSs $80(@10$ N1 foam	INI IOalii	18676-18682	
Cu@NiFe LDH	116@10	Cu foam	Energy Environ. Sci., 2017, 10, 1820	
CoNx@GDY NS	70@10	Ni foam	Nano Energy, 2019 , 59, 591-597	
TiO2@CoCH	96@20	carbon paper	Nano Energy, 2021 , 82, 105732	
Ni ₂ P/Ni ₃ S ₂	80@10	Ni foam	Nano Energy, 2018 , 51, 26	
Fe _{0.09} Co _{0.13} -NiSe ₂	92@10	carbon cloth	Adv. Mater. 2018, 30, 1802121	
NFN-MOF/NF	87@10	Ni foam	Adv. Energy Mater. 2018, 1801065	
Co ₃ S ₄ /EC-MOF	84@10	carbon cloth	Adv. Mater. 2019, 31, 1806672	
δ-FeOOH	108@10	Ni foam	Adv. Mater. 2018, 30, 1803144	
CoMnCH/NF	180@10	Ni foam	J. Am. Chem. Soc., 2017, 139, 8320-	

			8328
CoFe-NA ₂ /NF	73@10	Ni foam	J. Energy Chem., 2022, 65, 405-414
Co _{0.9} Fe _{0.1} -Se/NF	125@10	Ni foam	J. Energy Chem., 2021 , 60, 194-201
NiCo-MoS ₂	153@10	carbon cloth	J. Energy Chem., 2021 , 57, 587-592
Ni-Ni(OH) ₂	72@10	Ni foam	J. Energy Chem., 2021 , 61, 236-242
(VO) ₂ P ₂ O ₇ -Ni ₂ P@NF	154@10	Ni foam	J. Energy Chem., 2022 , 65, 674-680
MoS ₂ -AB/NF	77@10	Ni foam	Nano Energy, 2022 , 92, 106707

Table S3. Summary of representative catalysts that have been recently reported in alkaline medium of OER in 1.0 M KOH.

Catalyst	η (mV)@j	Substrata	Reference	
Cataryst	(mA cm ⁻²)	Substrate		
Fe, Mo-Ni ₃ S ₂	240@10	Ni foam	This work	
LC-CoOOH NAs	290@10	carbon cloth	ACS Catal., 2021, 11, 6104-6112	
Ni ₃ FeN	270@10	Ni foam	ACS Nano, 2018, 12, 245-253	
Fe _{0.09} Co _{0.13} -NiSe ₂	290@10	carbon cloth	Adv. Mater., 2018, 30, 1802121	
a-CoVO _x	254@10	Ni foam	ACS Catal., 2018, 8, 644-650	
NiCo ₂ S ₄	243@10	Ni foam	Adv. Funct. Mater., 2019, 29, 1807031	
Ni/Mo ₂ C-NCNFs	288@10	Ni foam	Adv. Energy Mater., 2019, 9, 1803185	
NiFe _x Sn@NiFe	260@10	carbon cloth	Adv. Sci., 2020, 7, 1903777	
(Ni ₂ Co ₁) _{0.925} Fe _{0.075} -MOF	257@10	Ni foam	Adv. Mater., 2019, 31, 1901139	
NiFeCo-LDH	249@10	carbon fiber	Small, 2020, 16, 2002426	
CoNx@GDY NS	280@10	Ni foam	Nano Energy, 2019 , 59, 591-597	
CoFe-PBA	256@10	Ni foam	Nano Energy, 2020 , 68, 104371	
Ni(Fe)(OH) ₂	275@10	Ni foam	Nano Res., 2021 , 14, 4528-4533	
NiFeSn@NiFe	260@10	carbon cloth	Adv. Sci. 2020, 7, 1903777	
Co@N-CS/N-HCP@CC	248@10	carbon cloth	Adv. Energy Mater., 2019, 1803918	
Fe-Mn-O NS/CC	273@10	carbon cloth	Adv. Funct. Mater., 2018, 28, 1802463	
NiFe LDH	260@10	Ni foam	Adv. Mater., 2019, 31, 1903909	
δ-FeOOH	265@10	Ni foam	Adv. Mater., 2018, 30, 1803144	

γ-FeOOH NAs	286@10	Ni foam	Adv. Mater., 2021, 33, 2005587
Fe _{0.09} Co _{0.13} -NiSe ₂	251@10	carbon cloth	Adv. Mater., 2018, 30, 1802121
FeOOH/Ni ₃ N	244@10	carbon cloth	Appl. Catal. B, 2020, 269, 118600
CoN _x @GDY NS/NF	270@10	Ni foam	Nano Energy, 2019 , 59, 591-597
FeNiOOH(Se)	287@10	Fe foam	J. Am. Chem. Soc., 2019 , 141, 7005- 7013
DL-Co ₃ O ₄ /NF	256@20	Ni foam	J. Energy Chem., 2020 , 47, 299-306
Co _{0.9} Fe _{0.1} -Se/NF	246@10	Ni foam	J. Energy Chem., 2021 , 60, 194-201
CoFe-NA ₂ /NF	250@10	Ni foam	J. Energy Chem., 2022, 65, 405-414
NH4C0PO4·H2O/C0	254@10	Co foil	J. Energy Chem., 2020 , 51, 167-174
FCND	337@50	Ni foam	J. Energy Chem., 2021 , 55, 10-16

Catalyst	η (mV)@j	Substrate	Reference	
Catalyst	(mA cm ⁻²)	Substrate		
Fe, Mo-Ni ₃ S ₂	1.53@10	Ni foam	This work	
CoS ₂ -MoS ₂	1.6@10	carbon cloth	ACS Catal., 2018, 8, 4612-4621	
Ni/Mo ₂ C _(1:2) -NCNFs	1.64@10	Ni foam	Adv. Energy Mater., 2019, 1803185	
NI NIMAO (NIS			Adv. Funct. Mater., 2019, 29,	
IN-INIIVIOO4/INIS2	1.0@10	carbon cloth	1805298	
Ni/Ni(OH) ₂	1.59@10	carbon papers	Adv. Mater., 2020, 32, 1906915	
Fe _{7.4%} -NiSe	1.59@10	Ni foam	J. Mater. Chem. A, 2019, 7, 2233	
Co-Mo-S/CC	1.64@10	carbon cloth	Nanoscale, 2018 , 10, 8404-8412	
NiFe/(Ni,Fe) ₃ S ₂	1.56@10	graphite plate	Small Methods, 2019, 1900234	
Se-(NiCo)S _x /(OH) _x	1.6@10	Ni foam	Adv. Mater., 2018, 30, 1705538	
Ni ₃ S ₂	1.61@10	Ni foil	Appl. Catal. B, 2019, 243, 693-702	
FeNi@FeNiB-700	1.65@10	FeNi foam	J. Mater. Chem. A, 2019, 7, 19554	
Ni ₃ (S _{0.25} Se _{0.75}) ₂ @NiOO H	1.55@10	Ni foam	Small, 2018, 14, 1803666	
C09S8/Ni3S2	1.64@10	Ni foam	Appl. Catal. B, 2019, 253, 246-252	
Ni(OH) ₂ /Ni ₃ S ₂	1.57@10	Ni foam	J. Mater. Chem. A, 2018 , 6, 6938	
Fe _{11.1%} -Ni ₃ S ₂	1.6@10	Ni foam	J. Mater. Chem. A, 2018 , 6, 4346	
Ni ₃ S ₂ /VS ₄	1.57@10	Ni foam	Appl. Catal. B, 2019, 257, 117911	

Table S4. Summary of representative catalysts that have been recently reported in alkaline medium of overall water splitting in 1.0 M KOH.

V-Ni ₃ S ₂ @NiFe LDH	1.55@10	Ni foam	J. Mater. Chem. A, 2019, 7, 18118
Ni ₃ S ₂	1.55@10	Ni foam	J. Mater. Chem. A, 2019, 7, 18003
MoO ₃ -NiO	1.55@10	carbon cloth	Adv. Mater. 2020, 32, 2003414
FeOOH/Ni ₃ N	1.58@10	carbon cloth	Appl. Catal. B, 2020, 269, 118600
Co@N-CS/N-HCP	1.545@10	carbon cloth	Adv. Energy Mater., 2019, 1803918
Co ₃ S ₄ /EC-MOF	1.55@10	carbon cloth	Adv. Mater., 2019, 31, 1806672
FeCo-FeCoP@C	1.64@10	carbon cloth	J. Energy Chem., 2021, 53, 1-8
Co _x Fe _{1-x} -Se	1.55@10	Ni foam	J. Energy Chem., 2021, 60, 194-201
δ-FeOOH	1.6@10	Ni foam	Adv. Mater., 2018, 30, 1803144
CoFe-NA ₂	1.56@10	Ni foam	J. Energy Chem., 2022, 65, 405-414
S-NiFeOOH	1.57@10	Ni foam	J. Energy Chem., 2022 , 64, 364-371
MoO ₃ /Ni–NiO	1.55@10	carbon cloth	Adv. Mater., 2020, 32, 2003414